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Introduction

The purpose of this book is to provide back-

ground material for teachers and students of

APL. In a course on APL the focus is neces-
sarily on the details of the language and its
use: it may not always be apparent what the
purpose of a particular rule might be, nor how
one piece of the language relates to the whole.
This book is a collection of articles that deal
with the more fundamental issues of the lan-
guage. They appeared in widely scattered
sources, over a period of many years, and are
not always easy to find. They are arranged in
the order of their appearance, so it is possible
to get a sense of the development of the lan-
guage from reading the articles in sequence.
The first article, Formalism in Program-
ming Languages, appeared before there was
an implementation. The reader who knows
only contemporary APL will have to master
some differences in notation in order to under-
stand it. The effort will be repaid, however,
because it condenses in a very small space
some information on the properties of the sca-
lar functions which appears nowhere else. In
the discussion following the paper, R.A.
Brooker asks a key question, one which has
followed APL through its development:

Why do vou insist on using a notation
which is a nightmare for typist and com-
positor and impossible to implement with
punching and printing equipment cur-
rently available? What proposals have
you got for overcoming this difficulty?

The question had no good answer at the
time. The best that had been proposed in-

volved transliteration rules that would have
made it very difficult to work with the lan-
guage. It was not until the advent of IBM’s
Selectric typewriter, with its replaceable print-
ing element, that it became possible to think of
developing a special APL printing element.
Jean Sammet dismissed the paper in her review
of it two years later by writing, “as soon as
[the author| starts to defend the work on the
grounds that it is currently practical, he is on
very weak grounds.” By the time the review
appeared, however, the very impractical nota-
tion had found its implementers, and I read the
review as | was sitting at a terminal connected
to a 7090 system which was the time-sharing
host for something called TVSYS, the im-
mediate precursor of what would be called
APL.

The second paper is connected with the
transition from a pure notation to an im-
plemented programming language. When ‘it
was written, although implementations had
begun to appear, and the APL printing element
had been developed, it was still not clear what
was the best way to publish the language. In
the book. as you can see from the selection.
use was still made of boldface and italic type
styles, rather than the single font imposed by
the printing element. In the answer book, how-
ever, the functions were displayed in both the
old style and the new, so that the user could
easily see how to translate between the two.

In the third selection, Algebra as a Lan-
guage, the case is made for the superiority of
APL notation over those of conventional arith-
metic and algebra. It also gives a discussion of
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the analogies between teaching a mathematical
notation and teaching a natural language, a
note that will be heard again in the last selec-
tion. The paper makes clear that there is a
larger purpose to APL than merely to give
people something in which to program. What
is intended is a thorough reform of the way
mathematics is taught, given the existence of
the computer.

The next two papers form a pair and can be
discussed together. In the first, The Design of
APL, Falkoff and Iverson give the reasons for
many of the design decisions that went into
APL. The occasion for the second paper, The
Evolution of APL, was a conference on the
history of programming languages. The criteria
for a language to be represented at this confer-
ence were that it 1) was created and in use by
1967; 2) that it still be in use by 1977; and 3)
that it had considerably influenced the field of
computing. In the introduction to the proceed-
ings, APL was described as follows:

This language has received widespread
use in the past few years, increasing from
a few highly specialized mathematical
uses to many people using it for quite dif-
ferent applications, including those in
business. lIts unique character set, fre-
quent emphasis on cryptic “one-liner”
programs, and its effective initial im-
plementation as an interactive system
make it important. In addition, the un-
iqueness of its overall approach and
philosophy makes it signficant.

This quotation properly notes the success of
APL in commercial areas, and also gives ap-
propriate credit to the effectiveness of the ini-
tial implementation. One has to have lived
through the trauma of early time-sharing sys-
tems to be able to appreciate how good this
first APL really was. I could tell dozens of
stories about how bad most early time-sharing
systems were, and for each of the bad ones, I
could tell a dozen stories about the good qual-
ities of this first APL.

12 EUGENE E. MeDONNELL

The last three papers have in common that
they use the direct definition form of function
definition. It is a bit early yet to say how im-
portant this concept will be, but there is begin-
ning to be some evidence to suggest that it will
have applicability in many areas of program-
ming. At first glance, it might appear that its
use would be restricted to simple mathematical
functions, and might not, perhaps, be employ-
ed in large-scale programming activities. How-
ever, I have seen reasonably large report
generators —involving several dozen func-
tions—built using this form, and have seen
other systems in which two or three hundred of
these functions interact.

As APL enters its third decade, it promises
to find a signficantly larger number of users.
Those who truly wish to master it should know
more than just the meanings of its primitive
function symbols. This book is meant to help
them!

A note on the origins of “APL”

I remember quite well the day I first heard the
name APL. It was the summer of 1966 and I
was working in the IBM Mohansic Laboratory,
a small building in Yorktown Heights, NY.
The project I was working on was IBM’s first
effort at developing a commercial time-sharing
system, one which was called TSS. The sys-
tem was showing signs of becoming incom-
prehensible as more and more bells and whis-
tles were added to it. As an experiment in
documentation, I had hired three summer stu-
dents and given them the job of transforming
the “development workbook™ type of documen-
tation we had for certain parts of the system
into something more formal, namely Iverson
notation, which the three students had learned
while taking a course given by Ken Iverson at
Fox Lane High School in Mount Kisco, NY.
One of the students was Eric Iverson, Ken's
son.

As I walked by the office the three students
shared, I could hear sounds of an argument
going on. I poked my head in the door, and



Eric asked me, “Isn’t it true that everyone
knows the notation we're using is called
APL?”" 1T was sorry to have to disappoint him
by confessing that I had never heard it called
that. Where had he got the idea it was well
known? And who had decided to call it that?
In fact, why did it have to be called anything?
Quite a while later I heard how it was named.
When the implementation effort started in June
of 1966, the documentation effort started, too.
I suppose when they had to write about “it,”
Falkoff and Iverson realized that they would
have to give “it” a name. There were probably
many suggestions made at that time, but I have
heard of only two. A group at SRA in Chicago
which was developing instructional materials
using the notation was in favor of the name
“Mathlab.” This did not catch on. Another
suggestion was to call it “Iverson’s Better
Math™ and then let people coin the appropriate
acronym. This was deemed facetious.

Then one day Adin Falkoff walked into
Ken’s office and wrote “A Programming Lan-
guage” on the board, and underneath it the ac-
ronym “APL.” Thus it was born. It was just a
week or so after this that Eric Iverson asked
me his question, at a time when the name
hadn’t yet found its way the thirteen miles up
the Taconic Parkway from IBM Research to
IBM Mohansic.

There was a period of time, however, when
the name was in danger of having to be
changed. IBM had just gotten over the experi-
ence of having to withdraw the name NPL
which it had given to its “New Programming
Language,” because of a conflict with the use
of the same initials by Britain’s National
Physics Laboratory. The conflict involving
APL arose when a paper appeared in the 1966
AFIPS Fall Joint Computer Conference Pro-
ceedings. It was by George Dodd, of General
Motors Research, and was entitled APL—a
language for associative data handling in PL/I.
(PL/T was the name now given to the former
NPL.) In the review of this paper that ap-
peared in Computing Reviews 8, for Sep-
tember-October 1967 (review 12.753), Saul
Rosen wrote:

This reviewer has one suggestion that is
offered quite seriously, though some
readers might consider it frivolous. There
already exists at least one language that
is reasonably well known by its acronym
APL. I refer to the language developed
by Iverson for which translators and in-
terpreters have been written on a number
of computers. It would be helpful if the
authors of the present article could make
some minor change in the name of their
processor to remove this very global am-
biguity.

George Dodd replied in a letter to the editor
that appeared in CACM 11, for May 1968, p.
378:

I would like to offer a rebuttal to the last
paragraph of the otherwise excellent and
accurate review of APL—a language for
associative data handling in PL/I.

In the review it is pointed out that there
already exists one other language known
by the acronym APL; that being the lan-
guage developed by Kenneth Iverson of
IBM. The reviewer concludes that the
name of our processor should be changed
to avoid a conflict of names.

Before naming the language we con-
ducted a thorough search of Computing
Reviews, AFIPS Reviews, and other
sources, and at that time (spring, 1966)
ascertained that the APL acronym was
unique. Unfortunately, Iverson’s lan-
guage, which is an internal IBM develop-
ment project and not an announced prod-
uct, has also come to be known by the
same name. We feel our public reference
to APL preceded Iverson's and that a
more reasonable request from the re-
viewer would be that the name of the
Iverson APL be changed.

There was a short but fairly intense skirmish
inside IBM following the George Dodd letter.
I don’t know all the details, but I believe the
IBM branch office which handled the General
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Motors account was supporting George Dodd,
and the case for IBM’s right to use the initials
was being made by Al Rose. I don’t know
what became of George Dodd’s processor. The
issue wasn’t resolved until late in 1968, and
was one of the things preventing the release of
APL as a product. Rose eventually won the
day by making the case that Iverson had estab-
lished his stake in the initials when his book A
Programming Language was published in
1962, long before Dodd’s use of the letters in
1966. The story goes that, at the final meeting
to decide whether to release APL, the account
representative said, “The Detroit branch office
nonconcurs—" at which point the vice presi-
dent sitting in judgment replied, “That settles
it! Branch offices don’t nonconcur.” And so
IBM retained the use of the letters.

Curiously, in view of the National Physics
Laboratory’s objection to the programming lan-
guage named NPL, the Applied Physics Labo-
ratory of Johns Hopkins University never made
an issue, as far as I am aware, of IBM’s joint
use with them of the initials APL.

There is at least one other claimant to the
initials. When the IBM Philadelphia Scientific
Center closed in 1974, many of the APL
people there moved across the continent to the
San Francisco area, to work at an IBM lan-
guage development location in Palo Alto.
While this was going on, one of those moving
picked up a copy of the San Francisco Chroni-
cle which had the headline, “APL LEAVES
SAN FRANCISCO.” Since he had just pulled
up stakes in the Philadelphia area, he was star-
tled to see that the same thing was about to
happen again in San Francisco. On closer in-
spection, however, it developed that the story
concerned the departure of the facilities of the
steamship company, American President Lines,
from the docks of San Francisco to the docks
across the bay in Oakland.

Eugene E. McDonnell

September 1981
Palo Alto
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Formalism in Programming Languages’

Kenneth E. lverson

International Business Machines Corporation, Yorkiown Heights, New York

Introduction

Although the question of equivalences between algo-
rithms expressed in the same or different languages has
received some attention in the literature, the more practical
question of formal identities among statements in a single
language has received virtually none. The importance of
such identities in theoretical work is fairly obvious. The
present paper will be addressed primarily to the practical
implications for a compiler.

The formal identities can be incorporated directly into a
compiler, or can alternatively be used by a programmer to
derive a more efficient equivalent of a program specified
by an analyst. The identities cited include (1) dualities
which permit the inclusion of only one of a dual pair as a
basic operator, (2) partitioning identities which permit the
automatic allocation of limited fast-access storage in oper-
ations on arrays, (3) permutation identities which permit
the adoption of a processing sequence suited to the par-
ticular representation used (e.g., row list or column list of
a matrix), (4) general associativity and distributivity identi-
ties for double operators (determined as a function of the
properties of the basic operators) which permit efficient
reordering of operations, (5) transposition idenlities, and
(6) the automatic extension of the appropriate identities
to any ad hoc operations (i.e., subroutines or procedures)
defined by any user of the compiler.

The discussion will be based upon a programming lan-
guage which has been presented in full elsewhere [1]. How-
ever, the relevant aspects of the language will first be
summarized for reference.

* Received July, 1963. Presented at a Working Conference on
Mechanical Language Structures, Princeton, N. J., August 1963,
sponsored by the Association for Computing Machinery, the
Institute for Defense Analyses, and the Business Equipment
Manufacturers Association. This work was done at Harvard Uni-
versity while the author was a visiting lecturer, February
through June, 1963.

The problems of transliteration and syntax which com-
monly dominate discussions of language will here be sub-
ordinated as follows. The symbols employed will permit
the immediate determination of the class to which each
belongs; thus literals are denoted by roman type, variables
are denoted by italics (lowercase, lowercase bold, and
uppercase bold for sealar, vector and matrix, respectively),
and operators are denoted by distinet (usually nonalpha-
betic) symbols. The problems of transliteration (i.e., map-
ping the set of symbols employed onto the smaller set
provided in a computer) and of mapping positional infor-
mation (such as subseripts and superseripts) onto a linear
representation therefore can, and will, be subordinated to
questions of the structure of an adequate language.

The Language!

1. The left arrow *““«—” denotes “‘specification,” and each®
statement in the language is of the form

&L —

where z is a variable and « is some function.

2. The application of any unary operator O to a scalar
argument z is denoted by Oz, and the application of a
binary operator O to the arguments z, y is denoted by
z O y. The set of basic operators and symbols in shown in
Table 1. The use of the same symbol for a binary and a
unary operator (e.g., x L y for min(z, y) and Lz for
largest integer not exceeding z) produces no ambiguity
and does conserve symbols.

As shown in Table 1, any relation is treated as an oper-
ator (denoted by the usual symbol for the relation) having
the range zero and one (logical variables). Thus, for integers
7 and j, the operator “="" is equivalent to the Kronecker
delta.

! The language described here differs from that in [1] in minor
details designed to further systematize and simplify its structure.

? Except for branching statements, which are not relevant to
the present discussion.

Formalism in Programming Languages 17



TABLE 1. SymBoLs FOR Basic OPERATORS

UNARY BINARY
Operation Symbol Operation Symbols
Absolute value | Arithmetic + - X =
operators
Minus — Arithmeticre- < = = = > #
lations
Floor (largest integer L Max, Min i ]
contained)
Ceiling (smallest in- r Exponentia- T Y
teger containing) tion (y*)
Logical negation ~ | Residue m|n
mod m
Reciprocation + | Logical anD, AV
(+z2e 1+ 2) OR

TABLE 2. Unary OpPERATIONS DEFINED ON ARRAYS

vx Dimension of vector x

vA Row dimension of matrix 4 (dimension of row
vectors)

uA Column dimension of matrix 4 (dimension of

column vectors)

[SXOIN%) Transposition of matrix about axis indicated
by the straight line (94 is ordinary transposi-
tion of A)
0} (Ox denotes transposition of vector x (reversal
of order of components)
L Base-two value of vector

3. The ith component of a vector x is denoted by «.,
the ith row vector of a matrix M by M’, the jth column
vector by M;, and the (¢, j)th element by M;". A vector
may be represented by a list of its components separated
by commas. Thus, the statement

x—1,23,4

specifies x as a vector of dimension 4 comprising the first
four positive integers. In particular, catenation of two
vectors x and y may be denoted by x, y.

4. Operators are extended component-by-component to
arrays. Thus if O is any operator (unary or binary as
appropriate),?

r— Ox < r;— Ox;
r—esOyore—s 0%
R— OM - R;'— OM;'

R—MON < R —M; O Nj.

5. The order of execution of operations is determined by
parentheses in the usual way and, except for intervening
parentheses, operations are executed in order from right to
left, with no priorities accorded to multiplication or other
operators.

6. Certain unary operators are defined upon vectors
and matrices rather than upon scalars. These appear in

3 The symbol «> will be used to denote equivalence.
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Table 2 and include the dimension operators » and u as
well as the transposition operators ©, ©, @, ©, in which
the symbols indicate the axis of transposition of a matrix.

7. It is convenient to provide symbols for certain con-
stant vectors and matrices as shown in Table 3. The
parenthetic expression indicating the dimension of each
may be elided when it is otherwise determined by conform-
ability with some known vector.

TABLE 3. CoNsTANT VECTORS AND SQUARE MATRICES OF
DIMENSION n

Symbol Designated Constant
e(n) Full vector (all 1’s)
ei(n) jth unit vector (1 in position j)

ai(n) Prefix vector of weight j (j
leading 1's)

wi(n) Suffix vector of weight j (j
trailing 1's)

Logical Vectors

vi(n) Interval vector (j, j+1,---,

Jj+n—1)
O(n) Zero matrix \ —_
N (n) Identity matrix (1’s on di-

agonal)

™ (n) Strict upper right triangle (1’s
above diagonal)

M (n) Upper right triangle (1’s above
and on diagonal)

@(n) Strict lower right triangle

Logical Matrices

E-(n) Upper left triangle J

8. If «(z) denotes one of a family of variables (e.g,
scalars z' or x;, vectors x' or X' or X;, or matrices ‘X)
for 7 belonging to some index set i, and if O is a binary oper-
ator, then for any set s C i,

O';/a(i) — a(s;) O a(s2) O -+ O a(sy).

If
a(z)

x, and s = 1'(vx),

or if

a(7)
then s and 7 may be elided. Thus,
+/x =%+ 2+ - + 2,
N/x=2x1/N\x- N\ x4,
+/X=Xi+ X: 4+ -+ + X,x, ete.

If a(i) = X*and s = 1'(uX), then the s and 7 may be
elided provided that a second slash be added to distinguish
this case from the preceding one. Thus,

o/X=X0X0 - 0X*¥X

9. If « is any argument and O is any binary operator,
then O"/a denotes the nth power of a with respect to O.

X; and s = tl(VX),



Formally,
O"a+>aQaO - O «a (ton terms).

Hence O'/a = @, O '/a is the inverse of a with respect
to O, and 0% a is the identity element of the operator O
(if they exist).

10. If O; and O are binary operators, then the matriz
product 45! B is a matrix of dimension uA4 X vB defined by:

(AS;B);" = 01/A'0:B; .

In particular, 4 §; B denotes the ordinary matrix product.
Moreover, the pair (5!) behaves as a binary operator on
A and B and hence may be treated as a binary operator.
For example, applying the notation of part 9, (%)™'/4
denotes the ordinary inverse of A.

If the post-multiplier is a vector x (i.e., a matrix of one
column), the usual conventions of matrix algebra are
applied:

(AF x)i= A x=+/4" X x.
Similarly,
(x%B);=x%B;

11. The outer product of two vectors x and y is denoted
by * O y and defined as the matrix M of dimension
vx X vy such that M;' = x; O v, .

12. Deletion from a vector x of those components corre-
sponding to the zeros of a logical vector u of like dimension
is called compression and is denoted by u/x. Compression
is extended to matrices both row-by-row and column-by-
column as follows:

Y—u/XoY =uwX
Y—u// XY =u/X;.

and xfy=+/xXy.

11. If p is any vector containing only indices of x, then
xp is defined as follows:

Y %Oy =%, 1€ ‘I(VP)-

If p is a permutation vector (containing each of its own
indices once) and if vp = wx, then x, is a permutation of x.

Permutation is extended to matrices by row and by
column as follows:

Y X, Y = (X,
Y — XPH YJ' = (Xj)p.

12. Left rotation is a special case of permutation denoted
by k£ T x and defined by

y—k T xoy = 2

Right rotation is denoted by & | x and is defined anal-
ogously.

A noncyclic left rotation (left shift) denoted by & is
defined as follows:

El xo (~o*) Xk T a

(The zero attached to the shaft of the arrow suggests that
zeros are drawn into the “evacuated” positions). Similarly,

k] xe (~d) Xk | 2

Rotations are extended to matrices in the usual way, a
doubled symbol (e.g., ) denoting rotation of columns.
For example,

(k1 X)' =k ] X,

and (ke) ];T N is a matrix with ones on the kth super-

diagonal.!

13. Any new operator defined (e.g., by some algorithm,
usually referred to as a subroutine) is to be denoted in
accordance with Definition (2) and is extended to arrays
exactly as any of the basic operators defined in the lan-
guage. For example, if x ged y (or, better, z | y) is used to
denote the greatest common divisor of integers z and y,
then x | y, | / x, and X & y are automatically defined.
Moreover, if n is a vector of integers and F* represents
the prime factorization of n; with respect to the vector
of primes p (that is, n = F ¥ p), then clearly | / n =
(L//F) % p. Similarly, if z [ y denotes the Le.m. of z
and y, then [ / n = ([ //F) } p.

Array Operations in a Compiler

The systematic extension of the familiar vector and
matrix operations to all operators, and the introduction
of the generalized matrix product, greatly increase the
utility and frequency of use of array operations in pro-
grams, and therefore encourages their inclusion in the
source language of any compiler. Array operations can, of
course, be added to the repertoire of any source language
by providing library or ad hoe subroutines for their exe-
cution However, the general array operations spawn a
host of wuseful identities, and these identities cannot be
mechanically employed by the compiler unless the array
operations are denoted in such a way that they are easily
recognizable.

The following example illustrates this point. Consider
the veetor operation

yexfy

and the equivalent subroutine (expressed in ArLcon and
using vx as a known integer):

for 7« = 1 step 1 until »x do

x(@) = z(2) + y(@)

4 The £ may be elided.
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It would be difficult to make a compiler recognize all
legitimate variants of this program (including, for example,
an arbitrary order of scanning the components), and to
make it distinguish the quite different and essentially
sequential program:

for 7 = 1 step 1 until »x — 1 do

2(i+1) := z(@) + y@@)

The foregoing programs could perhaps be analyzed by
a compiler, but they are merely simple examples of much
more complex scan procedures which would oceur in, say,
a matrix product subroutine. A somewhat more complex
case is illustrated by the vector operation z «— k T «,
and the equivalent ALcoL program:

for z = 1 step 1 until »x do begin
ifi +k = vxthenj:=17+ k;
elsej := 7+ k — wx;
z2(j) := z(); end

Finally, there is a distinct advantage in incorporating
array operations by providing a single general scan for
each type (e.g., vector, matrix, and matrix product) and
treating the operator (or operators) as a parameter. It
then matters not whether each operator is effected by a
one-line subroutine (i.e., a machine instruction) or a multi-
line subroutine, or whether it is incorporated in the array
operation as an open or a closed subroutine. If several
types of representations are permitted for variables (e.g.,
double precision, floating point, chained vectors), then a
scan routine may have to be provided for each type of
representation.

Identities

The identities fall naturally into five main classes:
duality, partitioning (selection), permutation, associativity
and distributivity, and transposition. A few examples of
each class will be presented together with a brief discussion
of their uses.

In discussing identities it will be convenient to employ
the symbols O, O:1, O:, p, o, and 7 to denote operators,
and to define certain functions and relations on operations
as follows. The (unary) logical functions «aO and vO
are equal to unity iff O is associative and O is commuta-
tive, respectively. The relation 0602 holds iff O dis-
tributes over Os:, and OaQ. holds iff O; associates
with Os, that is,

(201y) Oz < 201(yO22).

This latter is clearly a generalization of associativity, that
is, 01201 <> aO; . Finally, the unary operator & applied
to the operator O; (denoted by 80,) produces the
operator Qs which is dual to O; in the sense defined in
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TABLE 4. OPERATIONS AND RELATIONS DEFINED ON OPERATORS

1iff z0(yOz) < (z0y)0z
1iff 20y < yOzx

Self-associativity «O
Commutativity YO
Distributivity 01802 = 1 iff zO1(yO22) < (x01y) O:2(z012)
Associativity 01aQ2 = 1 iff z0:1(y022) « (zO1y) 02z
Dual wrt r 80 is an operator such that
(80)z <> rO7rz if O is unary
z(80)y « 7((rz)O (ry)) if O is binary.

Table 4 (which summarizes these functions) and in Sub-
section (a) below.

All of the identities are based upon the fundamental
properties of the elementary operators summarized in
Tables 5-8. Table 5 shows the vector a of binary arith-
metic operators and below it two logical matrices deserib-
ing its properties of distributivity and associativity. These
matrices show, for example, that a; (that is, X) dis-
tributes over + and —, that " and L distribute over
themselves and each other, and that X associates with
itself and =+. The first four rows of the table show the
self-associativity of a (equal to the diagonal of the outer
product matrix a & a), the commutativity, and the dual
operators, wrt +— and —, respectively.

Table 6 shows three alternative ways of denoting the
16 binary logical functions: as the vector of operators I,
as the matrix T of characteristic vectors (T; is the
characteristic vector of operator [;), and as the vector 1L T
obtained as the base-two values (expressed in decimal) of
the columns of 7. The symbols employed in I include
the familiar symbols \/ and /\ for or and and, V and
A for their complements (i.e., the Pierce function and
the Sheffer stroke), 0 and 1 for the zero and identity
functions, the six numerical relations =, <, =, =, >,

TABLE 5. PROPERTIES OF THE BINARY ARITHMETIC OPERATORS

1 01 0 1 1 0 0} oaa
1 01 0 1 10 0} va
% o+ 0L [ ! ba (wrt +)
+ - L IF }  éda (wrt —)
4+ - X =T L | mn} a
-+ 0 0 0 0 1 1 0 0
e - o 0 0 0 r» r O 0
jé X 1 1.0 0 0 01 0
= < r ¢ 0 0 0 0 f 0 °
-g r 0 0 0 0 1 10 o] ™
= L 00 0 0 1 1 0 0
_ | 00 0 0 0 0 0 0
m 0 0 I I I L 0o 0
e 1 1.0 0 0 0 0 0
P = 00 0 0 0 0 0 0
2 X 00 1 1 0 0 0 0
= 5 0 0 0 0 0 0 0 0 .
E r 00 001 00 o *
2 I 00 00 0 1 0 0
= 0 O 0 0 0 0 0 0 0
- 00 0 0 0 0 0 0

f ¢ and r denote left and right distributivity.



TABLE 6. PropERTIES OF THE BINARY LoGicAL OPERATORS

1101011101000001}al
110000111100 0011}+
1Vz e o=AA%8>a<yV 0]}asl*
000000O0OOO11 111111
0000111100001 111],
006110011001 10011
0101010101010101
OA> e<€ oaxZV V=ag=a=s A 1}1
0123435607 8 9101112131415} U T
0011111111000000¢O0°0
A11111111100000¢0°¢0°0
> 2000101000000O0GO0¢O00
«301010101000000O0O0
< 4111111110000 00®00
BBl 17311173111 T1111
S 6/0001010000101000
5V 7010101010101 0101 Br
2 v s800010100000O00O0O0O0
Z=90001010000101000
2 %1000 001 010000101000
21110 0 01 01 00000O0O0O0O0O0
@120 1 01010100000O0O00
<1301 0101010101010 1
A140 001 01 0000O0O0O0O0O0 O
1150 1 0 1 01 01 01 010101
OA> e< o#V V= G 2a £ A 1}1
012345678 9101112131415} I T
00111100000O0O0O0O0O0O00
A1111100000000O0O0TO0O0
> 2000010000000000O00
@« 30001000000O0O0O0GO0O0 O]
< 411110000000O000O0 O]
s w B 141341 11d34101%11T
S 6000100100100T1000
SV 7000100010001000°1 21
S v 80001 00000O0O0O0O0GO0O0O0
Z=9000100100100T1O00 0]
< 5100001001001 001000
21110 0 0100 000O00O0O0O0O0O0
@120 001 0000000O0O0O0O0O0
<1300010001000°1000O0°1
A140 001 000000O0O0O0O0O0O0
1150 0 01 000100010001
* Duality with respect to ~.

#, and the symbols e, o, @, and & for the four ‘“unary”
functions, that is, zey = =z, 20y = y, zay = & and
0y = §.

The remaining portion of Table 6 is arranged like Table
5. Since ((al) N\ v1)/1 = (0, N\, #, \/, =, 1), it follows
that the only nontrivial associative commutative logical
operators are g = (/\, \/, #, = ). The properties of this
particularly useful subset (abstracted from Table 6) are
summarized in Table 7. .

Certain functions of the matrices lal and Lol are also of
interest—for example, the matrix (l&l) > (15l) shows that
there are only six operator pairs which are associative

and not distributive, namely, (%, #) (#, =), (=, #),
(=7 =); (a’y ;é) and (6: =)

(a) DuavriTIES

A unary operator 7 is said to be self-inverse if rrx < x.
If p, ¢ and 7 are unary operators, if = is self-inverse,
and if pz < rorx, then ox < 7prx, and p and o are said to
be dual’ with respect to 7. The floor and ceiling operators
L and [ are obviously dual with respect to the minus
operator. Duality clearly extends to arrays, e.g.,

[x o — L — a.

The duals of unary operators are shown in Table 8 as
the vector éc.

If p and ¢ are binary operators, if 7 is a self-inverse
unary operator, and if

pz < 7(12)0 (1Y),

then p and ¢ are said to be dual with respect to r. The max
and min operators ( [T and L) are dual with respect to
minus, and or and and (\/ and /\) are dual with respect
to negation (~), as are the relations = and =.

Dual operators are displayed in the vectors éa and
6l of Tables 5 and 6. Each of the 16 logical operators has
a dual:

6!;‘ = l-L(D~T|' .

The duality of binary operators p and ¢ also extends to
vectors and matrices. Moreover, when they are used in

reduction, the following identities hold:
p/x & 10/7X,
p/X & 70/7X,
o//X < ra//7X.

TABLE 7. PROPERTIES OF THE NONTRIVIAL ASSOCIATIVE
CommuTaTIiVE LoGicAL OPERATORS

ANV # =| g
A i 1 1 0
V |1 1 0 1| g
#= |0 0 0 0
= |0 0 0 0
A |1 0 0 o0
V [0 1 0 0| gae
# [0 0 1 1
= (0 0 1 1

TABLE 8. PRrOPERTIES OF THE UNARY OPERATORS

| L T ==+ ~}e
rL— =} éc (wrt —)
— + | éc (wrt =)
~} é¢ (wrt ~)

8 Abbreviated as ‘‘dual wrt’’.
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For example ,

L/x = — [/—x,
and
N/x = ~\//~x (DeMorgan’s Law).

The basic reduction identity (namely, p/x < 70/7x)
leads immediately to the following family of identities
for the matrix product:

ASB & (e )2 (+B).

For the logical operators, the family comprises 256 iden-
tities, of which 144 are nontrival.

Duality relations can be specified for a compiler by a
table incorporating I and él, and can be employed to
obviate the inclusion of a subroutine for one of the dual
pair or to transform a source statement to an equivalent
form more efficient in execution. IFor example, in a com-
puter such as the IBM 7090 (which executes an or be-
tween registers (i.e., logical vectors) much faster than a
corresponding and, and which quickly performs an or
over a register (i.e., a test for non-zero)), the operation
~(~x) A y is more efficiently executed as the equivalent
operation x Y/ ~vy, obtained by duality.

(b) PARTITIONING

Partitioning identities, which permit a segment of a
vector result to be expressed in terms of segments of the
argument vectors, are of obvious utility in the efficient
allocation of limited capacity high-speed storage.

If 5 «— xOy, then u/z «— (u/x)O(u/y), where u is
an arbitrary (but conformable) logical vector. This simple

identity applies for any binary operator O and permits
any vector operation to be partitioned or segmented at

will. A similar identity holds for unary operators.
From the definition of the matrix product it is clear
that for any binary operators p'and o,

u/AqB < A7u/B,
and
u//A7B < (u//A)%B.
If p is any associative commutative operator (i.e.,
ap = yp = 1), then

p/x < (p/w/x)p(p/u/x),

where w is used as an alternative notation for (~u).
Consequently,

AGB < ((w/A4) 5 (u//B))p((u/A) G (u//B)).

Since the distributivity of ¢ and p is not involved, the
foregoing identity (which is a simple generalization of
the familiar identity for the product of partitioned mat-
rices) applies to most of the common arithmetic and
logical operators.

The identity for the two-way partitioning effected by
u and w can obviously be extended to a (uP)-way par-
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titioning effected by a logical partition matrix P (defined
by ¢ = +//P) as follows:

ASB o pi'*P/(P/A) 5 (P'//B).

This is the form most useful in allocating storage; if fast-
access storage for 2n components of 4 and B were avail-
able, P would normally be chosen such that P' =
(n X4 | @

(¢) PERMUTATION

In this section, p, g and r will denote permutation
vectors of appropriate dimensions.

If O is any binary operator, then

(x0y)p < xpOyp,

i.e., permutation distributes over any binary operator.
For any unary operator O,

(Ox)p =¥ O(xp);

and permutation therefore commutes with any unary
operator. Consider, for example, a vector x whose com-
ponents are arranged in increasing order on some func-
tion g(x;) [e.g., lexical order so as to permit binary search]
but is represented by (i.e., stored as) the vector y in
arbitrary order and the permutation vector p such that
x = yp . Then the operation s <~ Ox may be executed as
w «— Oy, where z = w,, .
For any binary operators p and o,

(A5B) P « AP5B, . (1)

Moreover, if ap = yp = 1, then p/x <> p/x,, and con-
sequently

A,5B < A% B. (2)

Finally, then

(A4¢B)P — A2ZB, .
This single identity permits considerable freedom in trans-
forming a matrix product operation to a form best suited
to the access limitations imposed by the representation
(i.e., storage allocation) used for 4 and B (e.g., row-by-
row and column-by-column lists).

For the special case ¢ = 1', 4 = N, p = +,and ¢ = X,
equation (1) reduces to the well-known method of per-
muting the columns of a matrix by ordinary premul-
tiplication by a permutation matrix NP, that is,

B N*LB.

The fact that NP and ® N? are inverse permutations
(ie, (ONP) ¥ NP = N) is obtainable directly from
equation (2) and the fact that O[NP = (O N), = Np .

The rotation operators T, |, T, are special cases of
permutations; consequently,

ik 1T AGB— (T A)5(k T B).



Moreover, this identity still holds when the cyclic rota-
tion operators are replaced by the corresponding non-
cyclic operators I ; 1 . 1;[ , and ﬁ . In particular,

ilB=; 1l Nt =0G T =) LB,
and if

then
4+ IN=;IrlIn=GTitxrlx),

a well-known identity for the superdiagonal matrices

Rl Nandk | .

(d) AssociaTivity AND DistriBurivity oF DOUBLE
OPERATORS
If ap = vp = odp = 1, then a(5) = 1; that is,

As(B5C) — (A2B)4C.
Moreover, (§)dp = 1; that is
A5 (BpC) < (A5B)p(A5C).

For example, if C is the connection matrix of a directed
graph, then B = C % C is the matrix of connections of
length fwo; the operator (%) is associative and distributes
over \/. Similarly, if D is a distance matrix (D] is the

distance from point ¢ to point j), then E = D -Ll~ D is

the matrix of minimum distance for trips of two legs;
(:_) is associative and distributes over L.

The associativity of matrix product operators can be
very helpful in arranging an efficient sequence of cal-
culations on matrices stored row-by-row or column-by-
column. For the logical operators, the number of asso-
ciative double operators is given by the expression

+/+/(al)/16l

which (according to Table 6) has the value 66.
(e) TRANSPOSITIONS

Of the unary transposition operators, € and @ are
special cases of permutation, but © and @ are not.
Table 9 shows the multiplication table for the group
generated by these four transpositions. The notation
chosen for the four added operators is clear: O denotes
the identity, ® @ 08 < 60, 2@ < @6 (90° axial
left rotation), and & < O 6 (axial right rotation).
Since @& <« @O , it could as well have been denoted by
®.

The following illustrate the many transposition iden-
tities:

OA’B < A5 OB (3)
©A;B < (64)5B (4)

TABLE 9. Group oF TranNsPosITIONS (rotations of the square)

SIOXSISISICISISYE
I ERIZEEE)

QODO®BO
QPO
OODODD
SAZAGRS-ROURY
POOOSD

QPBODOO
PDPOODO

S

O

%)
@ﬂu
)

S

O
D)

OGNS XORONSRORN

@
O
%)
S
Q)

ALB— (QA)5(6B) if ap=vp =1 (5)
S(47B) < (OB)z(0A4) if yo =1 (6)
®(A;B) — (0B)5(@A4) if ap=7vp=9vs=1 (7)

Identities (3)—(5) are special cases of the permutation
identities and permit freedom in the order of scan, which
may be important if a backward-chained representation is
employed for the vectors involved. Identity (6) is the
generalization of the well-known transposition identity of
matrix algebra. Identity (7) is obtained directly from (6)
by the application of (3), (4) and (5).

Conclusion

The use of a programming language in which elementary
operations are extended systematically to arrays provides
a wealth of useful identities. If the array operations are
incorporated directly in a compiler for the language, these
identities can be automatically applied in compilation,
using a small number of small tables describing the funda-
mental properties of the elementary operators. Moreover,
the identities can be extended to any ad hoc operators
specified by the source program, provided only that the
fundamental characteristics (associativity, ete.) of the ad
hoc operators are supplied.

Exploitation of the identities within the compiler will,
of course, increase the complexity of the compiler, and one
would perhaps incorporate only a selected subset of them.
However, the possibility of later extensions to exploit
further identities is of some value. Finally, the identities
are extremely useful to the programmer (as opposed to the
analyst who specifies the overall procedure and who may
use the identities in theoretical work), since the tricks
used by the programmer, as in allocating storage (par-
titioning) or modifying the sequence of a scan (permu-
tation), are almost invariably special cases of the more
general identities outlined here.
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DISCUSSION

Gorn: Some almost ancient sources of generalized operators
are: Whitehead, Universal Algebra, and Grassman, Die Ausdehn-
ungslehre. Some more modern sources are: Bourbaki Algebra,
Forder, Calculus of Extension, and Bodewig, Matriz Calculus.

Backus: Why this comment?

Gorn: The paper presents generalized relationships among
operators. The cited references are directly concerned with such
questions.

Brooker: Why do you insist on using a notation which is a
nightmare for typist and compositor and impossible to implement
with punching and printing equipment currently available? What
proposals have you got for overcoming this difficulty?

Iverson: Transliteration is, of course, essential, but I have
avoided its treatment first, because a suitable scheme is highly
dependent on the particular equipment available, and second,
because it is extremely simple. If, for example, you have the
stamina of ALGoL and Map users (who tirelessly write PRO-
CEDURE and WHENEVER), then you can use the distinct
names that I have given (for conversational purposes) to each of
the operators. Anyone who prefers briefer symbols can (as I have)
easily design schemes which are brief, simple and mnemonic.

Gorn: This question of transliteration: I'm not talking about
this paper in particular. In general it is a problem that is always
with us. There is a danger that as the transliteration rules become
more complicated replacement productions; we rapidly fall into a
recognition problem, a translation problem and possibly an un-
solvable word problem,

Iverson: Yes, one should distinguish the recognition of identi-
fiers from the syntax, which is of more concern to the ultimate
user.

Brooker: Tt is not obvious to me that these two symbols for
FLOOR and CEILING have a great deal of mnemonic value.

ITverson: Yes, but once you have read it, you can remember it.

Gorn: But the more redundance you put in the symbolism of
a language, the more equivalence problems you have.

Iverson: Not problems, I suggest that these are assets. In the
extreme we could go back to the Assign and the Sheffer stroke,
let’s say, and then we have no problems.

Ross: 1 don’t remember who asked the original question
about notation, but I submit that they find themselves a sugar-
daddy or someone with a few thousand bucks and get themselves
a display console such as we’re getting with programmable char-
acters. You can even publish from it by taking pictures. I don’t
see why we should let mechanies influence our progress at all.

Iverson: Someone who is interested in standardization would
not like that comment—a 48-character set is the thing you know.
The limitation on the available character set, I think, is more of
a transient phenomenon than the algorithms we want to deseribe.

Ross: With our console the 48 characters are available, and
there is another mode where you can program any bit patterns
you want in a matrix; we are doing this specifically for this pur-
pose because we feel that the notation that goes along with the
set of ideas should be usable.

Bauer: 1 would say that compared with some other existing
proposals for matrix extensions such as that of Ershov this is a
much more closed consistent system. No one can say today how
far we will go in using such a language in the near future.

Iverson: Let me comment that it is useful to distinguish two
reasons for learning a language; one is for description and analysis
and the other is for automatic execution. I submit that this kind
of formalism is extremely helpful in analyzing difficult problems
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without worrying about whether one wants to execute the resulting
program. As a matter of fact, I would use this as a preliminary
before going into some language that is executable.

Gorn: As I have it, the descriptive language you have does
have direct translation properties into command language.

Holt: T would like to translate that comment of Ken's about
description, analysis, and execution in the following way: Pro-
gramming languages are machine-dependent—one is appropriate
for the human processor and another for the computer.

Iverson: Well, I would disagree with that because I would use
exactly the same notation for describing the computer. In fact,
I’ve done it for the 7090 or most of the 7090, and other machines
as well. In fact, you ecan say the instruction set of the machine is
another form of language with a slave to execute it.

Holt: Then, what was the meaning of your comment?

Iverson: At this point, for example, this is not a source lan-
guage in the sense that there is a mechanism available for translat-
ing it into some other language. There is no convenient way for
automatic execution by translation or direct execution. Now I
suggest that the notation is worthwhile just for analysis even
though later we have to do a hand translation into some executable
language.

Green: If I may interrupt for a moment, I think we should limit
the discussion on notation to the next five minutes. And we should
get to other questions.

Tompkins: There exist problems around here which were coded
first in essentially this language and then were translated with
great care into ForTrAN, for example.

Perlis: How should this language be used on computers?
For what class of problems—on or off computers? Thus, it’s not
quite clear to me that a mathematical proof of an algorithm
written in FORTRAN (the same algorithm if you will) is any more
difficult than a mathematical proof of one of your algorithms.
Algorithms are written for two reasons: 1) execution by computer:
which means that it is pointless to write it if you cannot execute
it on a computer, and 2) for description and analysis. Now if the
description is difficult to read, then it fails somewhat. If, in
addition, analysis is as difficult, say, as in ALcow, then the virtue
of the language is questionable.

A last question: You haven’t discussed at all the way you de-
scribe data. It is not clear that you have a notation for describing
data, though you have a great wealth of notation for manipulating
data once it is described. Now ALcoL will obviously be extended to
include matrix and vector operations in expressions. So my ques-
tion is: for what classes of problems, remembering you have no
data description, is your description better than ‘“Algolic” de-
scriptions?

Iverson: I’m not sure if I can really separate all these points.
The question of representation (data description) is too lengthy
to treat here. To save time, let me say that I discuss it in Chapter
3 of my book. This discussion is fairly limited, but adequate.

Concerning the virtues of the language for deseription and
analysis, I can only say that I have found it very useful in many
diverse areas, including machine description, search procedures,
symbolic logie, sorting and linear programming. Now it is a

separate problem as to whether you want to incorporate the
complete generality of the language in any particular compiler—
but I suggest that it is desirable to have a more general system
that you retract from for any particular compiler rather than
adding ad hoe provisions to more limited languages.

As to the question of proofs, you ean, of course, translate a
proof in any language to any other language, but I suggest that
the proofs I give are the kind that are immediately obvious to any
mathematician. There is, of course, the question of to whom you
want your proofs to be obvious. Likewise, for difficulty of reading,



the question is, “for whom?”” And I suggest that anybody who
has ever dealt with matrix operations finds this notation very easy
to read.

Perlis: But is it fair to say then that if one is going to create
or extend a language that the direction of extension really isn’t
critical—that the accent should not be put on operations so much,
but on data representation or sequence rules?

Iverson: No, I disagree.

Gorn: Since you are supporting an infix notation for binary
operators, would it not be useful to have some control operators
in the language which would correspond to the combinatory
logician’s “Application’ operation? Also operators for insertion
and deletion of parentheses, and operators to adjust priorities
in the scopes of other operators, e.g. to construct precedence
matrices of the type discussed by Floyd?

Iverson: Let me give a sort of general answer to this sort of
thing. You’re probably talking about some specialized application
for which you want special operators. I submit that no one can
design a language that is equally useful for everybody. Instead,
what you would like to have is a single core which you can extend
in a straightforward manner.

In so far as precedence and hierarchy are concerned, I have not
found any great need for them in my work, but I can understand
why you might want to use them in compilers. In fact, I think such
hierarchy should be included in a tabular form so that it is easily
changeable.

Holt: The presentation is a marvelous demonstration of the
power of notation in the hands of a very clever man. Conclusions:
(1) Let us teach this skill to clever people. (2) Leat us create ma-
chine mechanisms to respond to notational inventions.

Iverson: On the contrary, the basie notions are very simple and
should be introduced at high school level to provide a means for
deseribing algorithms explicitly. For example, the vector can be
introduced as a convenient means for naming a family of variables
and can be used by the student (together with a few very simple
operators) to work out explicit algorithms for well-known opera-
tions such as decimal addition, polynomial evaluation, ete, A
little notation and much care in requiring explicit algorithms
would, in fact, clarify and simplify the presentation of elementary
mathematics and obviate the teaching of programming as such.

Gosden: Many of the equivalences only become useful and
powerful when time dependency is included. For example, each
operation on any array implies serial or parallel execution com-
ponent by component. How ean you cover this for serial or parallel
statements? Obviously, there are many tricks that are time (or
series) dependent in array operations. How do they relate to
dualities and equivalences, ete.

Iverson: Parallel operation is implied by any vector oparation;
serial operation can be made explicit by a program showing the
specified sequence of operations on components. Distinctions of
this type (employing the present notation) are made clear in
Falkoff’s “Algorithms for Parallel Search Memories” [J. ACM,
Oct. 1962).

More complex simultaneity can be expressed by a collection of
programs operating concurrently, all mutually independent but
for interaction through certain (interlock) variables common to
some two or more programs. IExplicit dependence on real time can
be introduced by incorporating, as one of this collection of pro-
grams, a program describing a clock (i.e., oscillator)-driven
counter.

Gorn: Does your generalized operator notation for matrices
lead to a simpler proof of the generalized Laplace expansion of
determinants?

Iverson: For a given logical vector u, the Laplace expansion
of the determinant 6A can be expressed as

3A = (+i/((6u/Si//A) X (5u/Si//A) X p'S7)) X p'u,

where S is a logical matrix whose rows represent all partitions of
weight -+/u, where p’v = p(v/al, ¥/i!) is the “parity” of the
logical vector v, and pp is the parity of the permutation vector p,
defined as +1 or —1 according as the parity of p is even or odd.
Since

3A = +i/((X/RP'/A) X pP¥)
(where P is the matrix whose (»A)! rows exhaust all permutations
of dimension »A, and where compression by a logical matrix U is
defined in the obvious way as the catenation of the vectors Uf/A¥),
then the usual proof of the Laplace expansion (i.e. showing that a
typiecal term of either expansion occurs in the other) ean be earried
through directly with the aid of the following fact: if u is any
logical vector and p is a permutation of like dimension, then
there exists a unique triple v, q, r, such that
N? = u/v//N? and NFf = u/v//SP.

[The vectors v and u are clearly related by the expressions v =
lSJ"Xu, and u = vXN’, and moreover, pp = (p'u) X (p'v) X

(pq) X (pr)].

The special matrices occurring in the foregoing can all be
specified formally in terms of the matrix T (b, n) defined as follows:
T;' € 0(b), uT = b*, »T = n, and bLT = ¢, where blx
denotes the base-b wvalue of the wvector x. Thus S=
(+/u=+/M)//M, where M = T (2,»A) and P = (A/e/M)//M,
where M = T(»A, »A), and o/x is the sel selection operation
11, p. 23].

Moreover, the parity function pp may be defined formally as
pp =14 — u, whereu =2 | +/00/(p > p).

Dijkstra: How would you represent a more complex operation,
for example, the sum of all elements of a matrix M which are
equal to the sum of the corresponding row and column indices?

Iverson: —++/(M = ! -?. W) //M

List of Conferees, Working Conference on Language Structures, August 14-16, 1963

P. Ab:ahams, International Electriec Corp.; R. W. Allard, Control Data Corp.; John W. Backus, IBM; F. Bauer, Math. Inst. der TH Munchen; R. Bosak, Inst. for Defense
Analyses; R. A. Brooker, IBM; L. L. Bumgarner, Oak Ridge Nat. Lab.; W, H. Burge, Univac Div., Sperry Rand; T. E. Cheatham. Jr., Computer Associates, Inc.; H. B.
Curry, Pennsylvania State U.; E. W. Dijkstra, Technological U., Eindhoven: Arthur Evans, Carnegie Inst. of Technology; R. J. Evey. IBM; J. Fennell, Logistics Research
Project; Robert W. Floyd, Computer Associates, Inc.; Donald B. Gillies, U. of Illinois; Ruth Goodman, Westinghouse Corp.; 8. Gorn, U. of Pennsylvania; John Gosden,
Auerbach Electronies Corp.; Robert M. Graham, U, of Michigan; Julien Green, IBM; Sheila Greibach, Harvard U.; John W. Gny, Nat. Security Agency; Leonard H. Haines,
MIT; A. W. Holt, U. of Pennsylvania; P. Z Ingerman, Westinghouse Electric Corp.; R. Itturiaga, Carnegie Inst. of Technology; E. T. Irons, Inst. for Defense Analyses; K. E.
Iverson, IBM; Walter W. Jacobs, Inst. for Defense Analyses; Charles Katz, General Electric; R. A. Kirsch, Nat. Bur. Standards; Rainer Kogon, IBM; B. M. Leavenworth,
IBM; M. Henri Leroy, Cie Bull; L. Lombardi, MIT; William H. Marlow, Logistics Research Project; E. J. MeCluskey, Princeton U.; M. A. Melkanoff, U. of California; J. N.
Merner, Burroughs Corp.; G. J. Mitchell, Inet. for Defense Analyses; A. Newell, Carnegie Inst. of Technology; M. Paul, Math. Inst. der TH Munchen; A. J. Perlis, Carnegie
Inst. of Technology; George Radin, IBM; Gene F. Rose, System Development Corp_; D. T. Ross, MIT; Bernard D. Rudin. Lockheed Aircraft Corp.; R. A. Sibley, Jr., IBM;
K. H. Speierman, Burroughs Corp.; T. B. Steel, System Development Corp.; C. B. Tompkins, U. of California; Hale F. Trotter, Princeton U.; R. E. Utman, Business Equip-
ment Mfrs. Assoc.; 8. Warshall, Compnter Associates, Ine.; J. H. Wegstein, Nat. Bur. Standards; J. Weizenbaum, General Electric; M. V. Wilkes, Univ. Math. Laboratory,

Cambridge; Kenneth A. Wolf, Control Data Corp.

Formalism in Programming Languages 25






b Conventions Governing Order of Evaluation







Conventions Governing Order of Evaluation
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The common conventions for the evaluation of unparenthesized ex-
pressions include the rules that (1) in a multilevel expression such as
a+bh
c=d’
is evaluated; (2) subject to the first rule, multiplication and division
are performed before addition and subtraction; (3) subject to the first
two rules, evaluation proceeds from left to right; (4) division can be

represented by three distinct but synonymous symbols (a + b, a/ b,

each line is evaluated before the function connecting the lines

and %) and (5) multiplication can be represented by two distinct but

synonymous symbols (¢ < b and a+ b), or the symbol can be elided.
The one convention used in this book is that (subject to parentheses)
evaluation proceeds from right to left. This appendix treats the major
reasons for this choice.

The common conventions are usually defended on the grounds
that they are simple and well known and that their use significantly
simplifies the reading and writing of expressions. Because of the
familiarity of certain common constructions, these conventions appear
simple, but this simplicity is illusory and vanishes on closer examina-
tion. Inquiries among students and colleagues have shown such dis-
agreement on the interpretation of the conventions as to dispel the
notion that they are well known. Finally, the much simpler conven-
tion adopted in this text proves at least as effective in simplifying the
reading and writing of expressions.

Consider, for example, the expressions x + y x z and x + yz. Ac-
cording to the rules, both are equivalent to the expression (x = y) X z.
However, yz is frequently used as an expression for multiplication
which is performed first regardless of other rules. Furthermore, the
dot notation for multiplication yields the expression x < y -+ z, which
(according to the interpretations encountered) seems to fall midway
between the other cases. Proponents of the common convention pro-
test that such expressions would be parenthesized anyway for clarity;
but then the convention seems to lose most of its value.

Matters are further complicated by the alternative notations for
division. For example, x + y+ z and x + y/ z should have the same
interpretation, but frequently they do not. Similarly, the formally
equivalent expressions x+a+y+b and x+a/y+ b frequently re-
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ceive different interpretations. It is interesting to consider the dif-
ferent possible evaluations of the following expressions which,
according to rule 3, are equivalent:

X+yxz X+y*z X+ yz
xlyxz ®ly=-z xlyz

The common convention also appears to include a number of
tacit rules that writers obey automatically. For example, xy may be
written for x X y, and any variable should be replaceable by a numeri-
cal value. However, while the expression 3y is commonplace, most
readers would find the expressions x3 and 3 4 jarring and perhaps
inadmissible as expressions for x x 3 and 3 x 4.

In spite of these defects, the common conventions are reasonably
convenient when applied to simple expressions involving only the
four basic arithmetic functions, but more serious difficulties arise in
their haphazard extension to other functions. For example, the expres-
sion sin n x cos m would be interpreted as (sin n) x (cos m), whereas
sin n x 7 would be interpreted as sin (n x 7). Moreover, the expres-

d
sion a”‘d is usually interpreted as a ')rather than as ((a®))" (that is,
from right to left rather than from left to right according to rule 3),
apparently because the latter case can be expressed by the equivalent
expression @?*¢*4, In the notation used in this book the first case
would be expressed as either a>k b>* ¢>* d or */a,b,c,d and the
second as eitherak bxcxdora* x/b,c,d.

As further functions are introduced (for example, absolute value,
maximum, minimum, residue, the relations, logical functions, and the
circular functions), the complexity grows and the utility of any relative
priority of execution among the functions decreases. Mathematical
texts handle this problem either by liberal use of parentheses or by
ad hoc (and frequently unstated) conventions. Programming lan-
guages, which must face the issue more formally, have usually treated
the problem by establishing a hierarchy of priorities among the func-
tions such that any function is evaluated before all others having lower
priorities. Such a system is usually very complex (Algol, one of the
best known, has nine priority levels) and can therefore be used effi-
ciently only by a programmer who employs it frequently. The occa-
sional (and the prudent) programmer avoids the whole issue by
including all the parentheses that would have been required with no
convention.

Further examples of the complexity and ambiguity of the com-
mon conventions could be easily adduced. However, the skeptical
reader will find it more instructive to scan various textbooks trying to
formulate precisely the rules used (stated or implied) and applying
them rigorously.

The question of the efficacy of the common convention in re-
ducing the need for parentheses will now be addressed. Any conven-
tion will reduce the need for parentheses, but the important question
is how the common convention compares in this respect with other
conventions, and in particular with the notation used in this text.

The utility of the common convention stands forth well in the
expression for a polynomial. For example, in the expression



ax? + bx? + cx’

it would be awkward to have to enclose each term in parentheses.
However, in the present notation this would be written as

+/(a,b,c)xxXp,q,r

or, if the vectors of coefficients and exponents were denoted by ¢ and e
respectively, then it would be written as

+/exxXkXe

These forms make clear the structure of the polynomial while per-
mitting suppression of detail by using vectors; the corresponding ex-
pression in conventional notation is

€, XX+ e, X X2+ ...+ €, XX,
where n is the magic variable that denotes the dimensions of all vectors.

The expression (derived in Chapter 4) for the efficient evaluation
of a polynomial such as (a,b,c,d,e,f) Il x provides a further ex-
ample. In the notation used in this text it appears (without parentheses)
as

(a,b,c,d,e,fillx=a+xXb+xxXxc+xxXd+xXe+xXf

whereas in the common convention it would appear as

(d b ;e zdsesf) 1 x
=a+xXx(btxx(c+xx(d+xx(e+xxf))))

Further examples could be adduced, but again the skeptical
reader will find it more instructive to formulate a set of precise rules
based on the common convention and to translate into the resulting
notation the expressions appearing in the present text.

There is one further argument against imposing a priority among
functions in the present notation. If F and G are dyadic functions,
then the expression F/ x G y would have either of two interpretations
(that is, (F/x) G y or F/ (x G y)), depending upon the relative priori-
ties of F and G. These two interpretations differ markedly in form
and would therefore lead to confusion. For example, +/ x x y would be
interpreted as +/ (x x 3) whereas the similar expression X/ x+ y
would be interpreted as (x/ x) + y. Similar remarks apply to the matrix
product M F. G N (defined in Chapter 9).

The reasons for choosing a right-to-left instead of a left-to-right
convention are:

1. The usual mathematical convention of placing a monadic
function to the left of its argument leads to a right-to-
left execution for monadic functions; for example, F G x
=P (7 %)

2. The notation F/ z for reduction (by any dyadic function F)
tends to require fewer parentheses with a right-to-left con-
vention. For example, expressions such as +/ (xxy) or
+/ (u/x) tend to occur more frequently than (+/x) % y and
(+/ u) [ x.

3. An expression evaluated from right to left is the easiest to
read from left to right. For example, the expression
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a+xxXb+xxc+xxd+xxXe+xxf

(for the efficient evaluation of a polynomial) is read as a plus
the entire expression following, or as a plus x times the fol-
lowing expression, or as a plus x times b plus the following
expression, and so on.
In the definition

Pli=% Fx,Fx,F...Fx

X

the right-to-left convention leads to a more useful definition
for nonassociative functions F than does the left-to-right
convention. For example, —/ x denotes the alternating sum
of the components of x, whereas in a left-to-right convention
it would denote the first component minus the sum of the
remaining components. Thus if d is the vector of decimal
digits representing the number 7, then the value of the ex-
pression 0= 9|+/d determines the divisibility of n by 9;
in the right-to-left convention, the similar expression
0= 11|—/ d determines divisibility by 11.
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A.l1 INTRODUCTION

Although few matnematicians would gquarrel with the
proposition that the algebraic notation taught in high
school 1is a language (and indeed the primary language of
mathematics), yet little attention has been paid to the
possible implications of such a view of algebra. This paper
adopts this point of view to illuminate the inconsistencies
and deficiencies of conventional notation and to explore the
implications of analogies between the teaching of natural
languages and the teaching of algepra. Based on this
analysis it presents a simple and consistent algebraic
notation, illustrates its power in tne exposition of some
familiar topics in algebra, and proposes a pasis for an
introductory course in algebra. Moreover, it shows how a
computer can, if desired, be used in tne teaching process,
since the language proposed is directly usable on a computer
terminal.

A.2 ARITHMETIC NOTATION

We will first discuss tnhe notation of arithmetic,
i.e., that part of algebraic notation whicn does not involve
the use of variables. For example, the expressions 3-4 and
(3+4)-(5+6) are arithmetic expressions, but the expressions
3-X and (X+4)-(Y+6) are not. We will now explore the
anomalies of arithmetic notation and the modifications
needed to remove them.

Functions_and symbols_for functions. The importance of
introducing the concept of "function" rather early in the
mathematical curriculum is now widely recognized.
Wevertheless, thnose functions which tne student encounters
first are wusually referred to not as "functions" but as
"operators". For example, absolute value (1-3]) and
arithmetic negation (-3) are wusually referred to as
operators. Ia fact, most of the functions which are so
fundamental and so widely used that they nave been assigned
some grapiic symbol are commonly called operators
(particularly tnose functions such as plus and times which
apply to two arguments), wnereas the less common functions
which are usually referred to oy writing out their names
(e.g., Sin, Cos, Factorial) are called functions-

This practice of referring to tnhe most common and most
elementary functions as operators is surely an unnecessary
obstacle to the understanding of functions when that term is
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first applied to the more complex functions encountered.
For this reason the term "function" will be used nere for
all functions regardless of the choice of symbols used to
represent them.

The functions of elementary algepra are of two types,

taking either one argument or two. Thus addition 1is a
function of two arguments (denoted by X+Y) and negation is a
function of one argument (denoted by ~-Y). It would seem

poth easy and reasonable to adopt one form for each type of
function as suggested by the foregoing examples, that is,
the sympbol for a function of two arguments occurs between
its arguments, and the symbol for a function of one argument
occurs before its argument. Conventional notation displays
considerable anarchy on this point:

1. Certain functions are denoted by any one of
several symbols which are supposed to be synonomous
but which are, however, used in subtly different ways.
For example, in conventional algebra XxY and XY both
denote the product of X and Y. However, one would
write either 3xY or 3X or Xx3, or 3x4, but would not
likely accept X3 as an expression for Xx3, nor 3 4 as
an expression for 3xu, Similarly, X:Y and X/Y are
supposed to pbe synonomous, but in the sentence "Reduce
8/6 to lowest terms", the symbol / does not stand for
division.

2., The power function has no sympol, and is denoted
by position only, as in XV/. Tne same notation is
often used to denote the ©Nth element of a family or
array X.

3. The remainder function (that is, the integer
remainder on dividing X into Y) is used very early in
arithmetic (e.g., in factoring) but is commonly not
recognized as a function on a par with addition,
division, etc., nor assigned a symbol. Because the
remainder function nas no sympbol and is commonly
evaluated by the method of 1long division, there is a
tendency to confuse it with division. This confusion
is compounded by the fact that the term "quotient"
itself 1is ambiguous, sometimes meaning the quotient
and sometimes the integer part of the quotient.

4. The sympol for a function of one argument
sometimes occurs Dbefore the argument (as in -4) but
may also occur after it (as in 4! for factorial 4) or
on both sides (as in |X| for absolute value of X).

Table A.l shows a set of symbols which can be used in
a simple consistent manner to denote the functions mentioned
thus far, as well as a few other very useful basic functions
such as maximum, minimum, integer part, reciprocal, and
exponential. The table shows two uses for each symbol, one
to denote a monadic function (i.e., a function of one
argument), and one to denote a dyadic function (i.e., a
function of two arguments). This is - simply a systematic
exploitation of the example set by the familiar use of the
minus sign, either as a dyadic function (i.e., subtraction
as in 4-3) or as a monadic function (i.e., negation as in
-3). No function symbol is permitted to be elided; for
example, XxY may not be written as XxvY.

A 1little experimentation with the notation of Table
A.1 will show that it can be wused to express clearly a
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Monadic form £fB f Dyadic form AfB
Definition Name Name Definition
or example or example

+3 «> 0+3 Plus +| Plus 2%3.,2 +» 5.2
-3, %5 0-3 Negative -| Minus 2-3.2 «> 1.2
x3 «+ (3>0)-(3<0) Signumn x| Times 2x3.2 +> 6.4
$3 +» 133 Reciprocal|:| Divide [2:3.2 ++0.625
B [B |LB Ceiling [ Maximum [3[7 <> 7
3.14| 4 3 o
—aoqulTy Ty Floor L| Minimum |3l 7 <> 3
*3 «> (2,7182800)x3| Expon- x| Power 2%3 > B
ential
@%5 «+ 5 +> *@5 Watural @| Loga- 10®83«>Log 3 base 10
logarithm rithm 1083<>(®3):®10
| 73.14 <> 3.1u4 Magnitude ||| Remain-|3[8 <=+ 2
der
Table A.1l

number of matters which are awkward or impossible to express
in conventional notation. For example, X:Y is the quotient
of X divided by Y; either [(X:Y) or ((X-(Y|X)):Y yield the
integer part of the quotient of X divided by Y; and X[ (-X)
is equivalent to |X.

In conventional notation tne symbols <, <, =, 2, >,
and =z are used to state relations among quantities; for
example, tne expression 3<4 asserts that 3 is less than 4.
It is more useful to employ them as symbols for dyadic
functions defined to yield the value 1 if the indicated
relation actually nolds, and the value zero if it does not.

Thus 3<4 yields the value 1, and 5+(3<4) yields the value 6.

Arrays. The ability to refer to collections or arrays of
items is an important element in any natural language and is
equally important in mathematics. The notation of vector
algebpra embodies the wuse of arrays (vectors, matrices,
3-dimensional arrays, etc.) but in a manner which is
difficult to learn and limited primarily to the treatment of
linear functions. Arrays are not normally included in
elementary algebra, probably because they are thought to be
difficult to learn and not relevant to elementary topics.

A vector (tnat 1is, a l-dimensional array) can be
represented py a list of its elements (e.g., 1 3 5 7) and
all functions can pe assumed to be applied
element-by-element. For example:

1 2 3 4 x 4 3 2 1 produces

Similarly:

1 2 3 4 + 4 3 2 i
5 b 5 S

i 1 2 3 4
2 6 24
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i 2 8 4% % 2
i 4 9 18

2 * 1 2 3 4
2 4 8 16

In addition to applying a function to each element of
an array, it is also necessary to be able to apply some
specified function to the collection itself. For example,
"Take the sum of all elements", or "Take the product of all
elements", or "Take the maximum of all elements". This can
be denoted as follows:

+/2 5 3 2
19

x/2 5 8 2
60

/2 5 3 2

5

The rules for wusing such vectors are simple and
obvious from the foregoing examples. Vectors are relevant
to elementary mathematics in a variety of ways. For
example:

1. They can be used (as in the foregoing examples) to
display the patterns produced by various functions when
applied to certain patterns of arguments.

2. They can be wused to represent points in coordinate
geometry. Thus 5 7 19 and 2 3 7 represent two points,
5 7 19 - 2 3 7 yields 3 4 12, the displacement between
them, and (+/(5 7 19 - 2 3 7)*2)*.5 yields 13, the
distance between them.

3. They can be used to represent rational numbers. Thus if
3 4 represents the fraction three-fourths, then 3 4x5 6
yields 15 24, the product of the fractions represented
Dy 3 4 and 5 6. Moreover, */3 4 and +/5 6 and */15 24
yield the actual numbers represented.

4. A polynomial can be represented by its vector of
coefficients and vector of exponents. For example, the
polynomial with coefficients 3 1 2 4 and exponents
0 1 2 3 can be evaluated for the argument 5 by the
following expression:

+/3 1 2 & X § # 01 2 3
558

Constants. Conventional notation provides means for writing
any positive constant (e.g., 17 or 3.14) but there 1is no
distinct notation for negative constants, since the symbol -
occurring in a number like -35 is indistinguishable from the
symbol for the negation function. Thus negative thirty-five
is written as an expression, which 1is much as if we
neglected to have symbols for five and =zero because
expressions for them could be written in a variety of ways
such as 8-3 and 8-8.

It seems advisable to follow Beberman [1] in using a
raised minus sign to denote negative numbers. For example:

3 =54 32 1
2 12 @ 1 2

Conventional notation also provides no convenient way
to represent numbers which are easily expressed in
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8 9
expressions of the form 2.14x10 or 3.265x10 . A useful
practice widely used in computer languages is to replace the
symbols x10 Dby the symbol E (for exponent) as
follows: 2.14E8 and 3.265E 9.

Order_of_ execution. The order of execution in an algebraic
expression is commonly specified by parentheses. The rules
for parentheses are very simple, but the rules which apply
in the absence of parentheses are complex and chaotic. They
are based primarily on a hierarchy of functions (e.g., the
power function is executed before multiplication, which is
executed before addition) which has apparently arisen
because of its convenience in writing polynomials.

Viewed as a matter of language, the only purpose of
such rules 1is the potential economy in the use of
parentheses and the consequent gain in readability of
complex expressions. Economy and simplicity can be achieved

py the following rule: parentheses are obeyed as usual and
otherwise expressions are evaluated from right to left with
all functions being treated equally. The advantages of this
rule and the complexity and ambiguity of conventional rules
are discussed in Berry [2], page 27 and in Iverson [31],
Appendix A. Even polynomials can be conveniently written
without parentheses if use is made of vectors. For example,
the polynomial in X with coefficients 3 1 2 4 can be written
without parentheses as +/3 1 2 4 x X = 0 1 2 3. Moreover,
Horner's expression for the efficient evaluation of this
same polynomial can also be written without parentheses as
follows:

3+ Xx1+Xx2+X x4

Analogies_with_natural_ language. The arithmetic expression
3x4 can be viewed as an order to do something, that is,
multiply the arguments 3 and 4. Similarly, a more complex
expression can be viewed as an order to perform a number of
operations in a specified order. In this sense, an
arithmetic expression 1is an imperative sentence, and a
function corresponds to an imperative verb in natural
language. Indeed, the word "function" derives from the
latin verb "fungi" meaning "to perform".

This view of a function does not conflict with the
usual mathematical definition as a specified correspondence
between the elements of domain and range, but rather
supplements this static view with a dynamic view of a

any specified element of the domain.

If functions correspond to imperative verbs, then
their arguments (tne things upon which they act) correspond
to nouns. In fact, the word "argument" has (or at least
had) the meaning topic, theme, or subject. Moreover, the
positive integers, being the most concrete of arithmetical
objects, may be said to correspond to proper nouns.

What are the roles of negative numbers, rational
numbers, irrational numbers, and complex numbers? The
subtraction function, introduced as an inverse to addition,
yields positive integers in some cases but not in others,
and negative numbers are introduced to refer to the results

in these cases. In other words, a negative numoer refers to
a process or the result of a process, and 1is therefore
analogous to an abstract noun. For example, the abstract

noun "justice" refers not to some concrete object (examples
of which one may point to) put to a process or result of a
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process. Similarly, rational and complex pumpers refer to
the results of processes; division, and finding the zeros
of polynomials, respectively.

A.3 ALGEBRAIC NOTATION

Names. An expression such as 3xX can be evaluated only if
the variable X has been assigned an actual value. In one
sense, therefore, a variable corresponds to a pronoun whose

referent must be made clear before any sentence including it

can be fully understood. In English the referent may be
made clear by an explicit statement, but is more often made
clear by indirection (e.g., "See the door. Close it."), or

by context.

In conventional algebra, the value assigned to a
variable name is usually made clear informally by some
statement such as "Let X nave tne value 6" or "Let X=6".
Since the equal symbol (tnat is, '=') is also used in other
ways, it is better to avoid its use for this purpose and to
use a distinct symbol as follows:

X+6

Y+«3xy

X+Y
18

(X-3)x(X-5)
3

Assigning _names_to_expressions. In tne foregoing example,
the expression (X-3)x(X-5) was written as an instruction to
evaluate the expression for a particular value already
assigned to X. One also writes the same expression for the
quite different notion "Consider the expression (X-3)x(X-5)
for any value which might later be assigned to the argument
X." This is a distinct notion which should be represented
by distinct notation. The idea 1is to be able to refer to
the expression and this can be done by assigning a name to
it. The following notation serves:

V2«6 X
Z+(X-3)x(X-5)V

The V's indicate that the symbols between them define
a function; the first 1line shows that the name of the
funetion is G. The names X and Z are dummy names standing
for the argument and result, and the second 1line shows how
they are related.

Following this definition, the name ¢ may be used as a
function. For example:

G 6
3

61 23456 7%
8 30 10 3 8

Iterative functions can be defined with equal ease as
shown in Chapter 12.
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Eorm_of names. If the variables occurring in algebraic
sentences are viewed simply as names, it seems reasonable to
employ names with some mnemonic significance as illustrated
by the following sequence:

LENGTH+6

WIDTH+«5
AREA<«LENGTHXWIDTH
HEIGHT+«U4
VOLUME<AREAXHEIGHT

This is not done in conventional notation, apparently
because it is ruled out by the convention that the
multiplication sign may be elided; that is, AREA cannot be
used as a name because it would be interpreted as AxRxExA4.

This same convention leads to otner anomalies as well,
some of which were discussed in the section on arithmetic
notation. The proposal made there (i.e., that the
multiplication sign cannot be elided) will permit variable
names of any length.

A.4 ANALOGIES WITH THE TEACHING OF NATURAL LANGUAGE

If one views the teaching of algebra as the teaching
of a language, it appears remarkable how little attention is
given to the reading and writing of algebraic sentences, and
nhow much attention is given to identities, that is, to the
analysis of sentences with a view to determining other
equivalent sentences; e.g., "Simplify the expression
(X-4) x (X+4) ."™ It is possible that this emphasis accounts
for much of the difficulty in teaching algebra, and that the
teaching and learning processes in natural languages may
suggest a more effective approach.

In the 1learning of a native language one can
distinguish the following major phases:

1. An informal phase, in which the child 1learns to
communicate in a combination of gestures, single words,
etc., but with no attempt to form grammatical sentences.

2. A formal phase, in which the child learns to communicate
in formal sentences. This phase is essential because it
is difficult or impossible to communicate complex
matters with precision without imposing some formal
structure on the language.

3. An analytic phase, in which one 1learns to analyze
sentences with a view to determining equivalent (and
perhaps "simpler" or "more effective") sentences. The
extreme case of such analysis 1is Aristotelian Logic,
which attempts a formal analysis of certain classes of
sentences. More practical everyday cases occur every
time one carefully reads a composition and suggests
alternative sentences which convey the same meaning in a
briefer or simpler form.

The same phases can be distinguished in the teaching
of algebraic notation:
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1. An informal phase in which one issues an instruction to
add 2 and 3 in any way which will be understood. For
example:

243 Add 2 and 3

2
3 *

w N

|

Add two and three
Add // and ///

The form of the expression is unimportant, provided that
the instruction is understood.

2. A formal phase in which one emphasizes proper sentence
structure and would not accept expressions such
2

as 6 *x _3 or 6x(add two and three) in lieu of 6x(2+3).

Again, adherence to certain structural rules is
necessary to permit the precise communication of complex
matters.

3. An analytic phase in which one 1learns to analyze
sentences with a view to establishing certain relations
(usually identity) among them. Thus one learns not only
that 3+4% is equal to 4+3 but that the sentences X+Y and
Y+X are equivalent, that is, yield the same result
whatever the meanings assigned to the pronouns X and Y.

In learning a native language, a child spends many
years in the informal and formal phases (both in and out of
school) before facing the analytic phase. By this time she
has easy familiarity with the purposes of a language and the
meanings of sentences which might be analyzed and
transformed. The situation is quite different in most
conventional courses in algebra - very little time is spent
in the formal phase (reading, writing and "understanding"
formal algebraic sentences) before attacking identities
(such as commutativity, associativity, distributivity,
etc.). Indeed, students often do not realize that they
might quickly check their work in "simplification" by
substituting certain values for the variables occurring in
the original and derived expressions and comparing the
evaluated results to see if the expressions have the same
"meaning", at least for the chosen values of the variables.

It is interesting to speculate on what would happen if
a native language were taught in an analogous way, that is,
if children were forced to analyze sentences at a stage in
their development when their grasp of the purpose and
meaning of sentences were as shaky as the algebra student's
grasp of the purpose and meaning of algebraic sentences.
Perhaps they would fail to learn to converse, just as many
students fail to learn the much simpler task of reading.

Another interesting aspect of learning the
non-analytic aspects of a native language is that much (if
not most) of the motivation comes not from an interest in
language, but from the intrinsic interest of the material
(in children's stories, everyday dialogue, etc.) for which
it is used. It is doubtful that the same 1is true in
algebra - ruling out statements of an analytic nature
(identities, etc.), how many "interesting" algebraic
sentences does a student encounter?
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The use of arrays can open up the possibility of much
more interesting algebraic sentences. This can apply both
to sentences to be read (that is, evaluated) and written by
students. For example, the statements:

2%1 2 3 4% 5
2x1 2 3 & 5
241 2 3 4 5
1 2 3 # §5+2
12 3 4§ 52
1 2 34 5%x5 4 3 2 1

produce interesting patterns and therefore have more
intrinsic interest than similar expressions involving only
single quantities. For example, the last expression can be
construed as yielding a set of possible areas for a
rectangle having a fixed perimeter of 12,

More interesting possibilities are opened up by
certain simple extensions of the use of arrays. One example
of such extensions will be treated here. This extension
allows one to apply any dyadic function to two vectors 4 and
B so as to obtain not simply the element-by-element product
produced by the expression 4xB, but a table of all products
produced by pairing each element of 4 with each element of
B. For example:

A=1 2 3

B2 3 §5 7

Ao xB Ao .+B Ao, xB
2 2 5 i 3 L 6 8 5 1 1 1
E 6 10 1y L 5 7 9 L 8 32 128
6 9 15 21 5 6 8 10 9 27 243 2187

If S+«1 2 3 4 5 6 7, then the following expressions
yield an addition table, a multiplication table, a
subtraction table, a maximum table, an "equal" table, and a
"greater than or equal" table:

So.+S S .8
2 3 [ 5 6 7 8 1 2 3 4 5 6 7
3 I 5 6 7 8 9 2 2 3 4 S B 17
n 5 6 T 8 9 10 3 3 3 4 5 6 7
5 6 7 8 9 10 11 4 4 4 4 5 6 7
6 7 8 g 16 11 212 5 5 5 5 5 6 7
3 8 8 410 2113 12 23 6 6 6 6 6 6 7
8 9 10 11 312 13 a1y T 7T T 7 T 7T 7
So . xX So,=8
3 2 3 y 5 6 7 1000000
2 4 6 8 10 12 14 0100000
3 6 9 12 415 18 21 0010000
n 8 12 16 20 24 28 0001000
5 10 15 20 25 30 35 000 04100
6 12 18 24 30 36 42 00000O0T10
7 14 21 28 35 42 49 006 0000 1
Se.=-8 So.28
071 "2 T3 "4 75 T8 1606 009 6 @
i 071 72 T3 T4 "5 1 1@ 6 0 00
2 1 071 72 "8 Ty 1.1 5 0 0D @
g 2 4 @1 "% T8 11141000
B 3 2 1 Db T T2 o O O <
5 4 3 2 4 @ "1 1. 2 % 1 1 1 '8
6 5 4 3 2 1 0 111 1 1 142
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Moreover, the graph of a function can be produced as
an "equal" table as follows. First recall the function ¢
defined earlier:

VZ«G X
Z+(X=3)=(X=5)V
g8 3 0 il 0 3 8
The range of the function for this set of arguments is
from 8 down to "1, and the elements of this range are all
contained in the following vector:

R«8 7 6 54 3 2 10 "1

Consequently, the "equal" table Re.=G S produces a rough
graph of the function (represented by 1's) as follows:

Re.=G S
1 00 00 O 2
00 0O0O0O0OO
00 0O0O0OO0OO
0 00O0O0CO0O
00 0O0OO0OTO O
0100010
00 0O0OOO
00O0O0OOO
0010100
0001000

A.5 A PROGRAM FOR ELEMENTARY ALGEBRA

The foregoing analysis suggests the development of an
algebra curriculum with the following characteristics:

1. The notation wused is unambiguous, with simple and
consistent rules of syntax, and with provision for the
simple and direct use of arrays. Moreover, the
notation is not taught as a separate matter, but is
introduced as needed 1in conjunction with the concepts
represented.

2. Heavy use is made of arrays to display
‘mathematical properties of functions in terms of
patterns observed in vectors and matrices (tables),
and to make possible the reading, writing, and
evaluation of a host of interesting algebraic
sentences before approaching the analysis of sentences
and the concomitant development of identities.

Such an approach has been adopted in the present text,
where it has been carried through as far as the treatment of
polynomials and of linear functions and 1linear equations.
The extension to further work in polynomials, to slopes and
derivatives, and to the circular and hyperbolic functions is
carried forward in Iverson [9]1 and in Orth [10] .

It must be emphasized that the proposed notation,
though simple, is not 1limited in application to elementary
algebra. A glance at the bibliography of Rault and Demars
[4] will give some idea of the wide range of applicability.

KENNETH E. IVERSON



The role of the computer. Because the proposed notation is
simple and systematic it can be executed by automatic
computers and has been made available on a number of
time-shared terminal systems. The most widely used of these

1s described in Falkoff and Iverson [5]1. It is important to
note that the notation is executed directly, and the user
need learn nothing about the computer itself. In fact, each
of the examples in this appendix are shown exactly as they
would be typed on a computer terminal keyboard.

The computer can obviously be useful in cases where a
good deal of tedious computation is required, but it can be
useful in other ways as well. For example, it can be used
by a student to explore the behavior of functions and
discover their properties. To do this a student will simply
enter expressions which apply the functions to various
arguments. If the terminal is equipped with a display
device, then such exploration can even be done collectively
by an entire class. This and other ways of wusing the
computer are discussed in Berry et al [6] and in Appendix C.
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The Design of APL

A. D. Falkoff
K. E. lverson

Abstract: This paper discusses the development of APL, emphasizing and illustrating the principles underlying its design. The principle
of simplicity appears most strongly in the minimization of rules governing the behavior of ApPL objects, while the principle of practicali-
ty is served by the design process itself, which relies heavily on experimentation. The paper gives the rationale for many specific de-
sign choices, including the necessary adjuncts for system management.

Introduction

This paper attempts to identify the general principles
that guided the development of APL and its computer
realizations, and to show the role these principles played
in the evolution of the language. The reader will be as-
sumed to be familiar with the current definition of APL
[1]. A brief chronology of the development of APL is
presented in an appendix.

Different people claiming to follow the same broad
principles may well arrive at radically different designs;
an appreciation of the actual role of the principles in de-
sign can therefore be communicated only by illustrating
their application in a variety of specific instances. It
must be remembered, of course, that in the heat of battle
principles are not applied as consciously or systematical-
ly as may appear in the telling. Some notion of the evo-
lution of the ideas may be gained from consulting earlier
discussions, particularly Refs. 2-4.

The actual operative principles guiding the design of
any complex system must be few and broad. In the pres-
ent instance we believe these principles to be simplicity
and practicality. Simplicity enters in four guises: uni-
formity (rules are few and simple), generality (a small
number of general functions provide as special cases a
host of more specialized functions), familiarity (familiar
symbols and usages are adopted whenever possible),
and brevity (economy of expression is sought). Practi-
cality is manifested in two respects: concern with actual
application of the language, and concern with the practi-
cal limitations imposed by existing equipment.

We believe that the design of APL was also affected in
important respects by a number of procedures and cir-
cumstances. Firstly, from its inception APL has been

developed by wusing it in a succession of areas. This
emphasis on application clearly favors practicality and
simplicity. The treatment of many different areas fos-
tered generalization: for example, the general inner
product was developed in attempting to obtain the ad-
vantages of ordinary matrix algebra in the treatment of
symbolic logic.

Secondly, the lack of any machine realization of the
language during the first seven or eight years of its de-
velopment allowed the designers the freedom to make
radical changes, a freedom not normally enjoyed by de-
signers who must observe the needs of a large working
population dependent on the language for their daily
computing needs. This circumstance was due more
to the dearth of interest in the language than to foresight.

Thirdly, at every stage the design of the language was
controlled by a small group of not more than five people.
In particular, the men who designed (and coded) the
implementation were part of the language design group,
and all members of the design group were involved in
broad decisions affecting the implementation. On the
other hand, many ideas were received and accepted
from people outside the design group, particularly from
active users of some implementation of APL.

Finally, design decisions were made by Quaker con-
sensus; controversial innovations were deferred until
they could be revised or reevaluated so as to obtain
unanimous agreement. Unanimity was not achieved
without cost in time and effort, and many divergent
paths were explored and assessed. For example, many
different notations for the circular and hyperbolic func-
tions were entertained over a period of more than a year
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before the present scheme was proposed, whereupon
it was quickly adopted. As the language grows, more
effort is needed to explore the ramifications of any major
innovation. Moreover, greater care is needed in intro-
ducing new facilities, to avoid the possibility of later
retraction that would inconvenience thousands of users.
An example of the degree of preliminary exploration
that may be involved is furnished by the depth and di-
versity of the investigations reported in the papers by
Ghandour and Mezei [5] and by More [6].

The character set

The typography of a language to be entered at a simple
keyboard is subject to two major practical restrictions: it
must be linear, rather than two-dimensional, and it must
be printable by a limited number of distinct symbols.

When one is not concerned with an immediate ma-
chine realization of a language, there is no strong reason
to so limit the typography and for this reason the lan-
guage may develop in a freer publication form. Before
the design of a machine realization of APL, the restric-
tions appropriate to a keyboard form were not observed.
In particular, different fonts were used to indicate the
rank of a variable. In the keyboard form, such distinc-
tions can be made, if desired, by adopting classes of
names for certain classes of things.

The practical objective of linearizing the typography
also led to increased uniformity and generality. It led to
the present bracketed form of indexing, which removes
the rank limitation on arrays imposed by use of super-
scripts and subscripts. It also led to the regularization of
the form of dyadic functions such as NoJ and NawJ (later
eliminated from the language). Finally, it led to writing
inner and outer products in the linear form +.x and o . x
and eventually to the recognition of such expressions as
instances of the use of operators.

The use of arrays and of operators greatly reduced the
demand for distinct characters in APL, but the limitations
imposed by the normal 88-symbol typewriter keyboard
fostered two innovations which greatly increased the
utility of the 88 symbols: the systematic use of most
function symbols to represent both a dyadic and a mo-
nadic function, as suggested in conventional notation
by the double use of the minus sign to represent both
subtraction (a dvadic function) and negation (a monadic
function): and the use of composite characters formed
by typing one symbol over another (through the use of
a backspace), as in ® and ! and ®.

It was necessary to restrict the alphabetic characters
to a single font and capitals were chosen for readability.
Italics were initially favored because of their common
use for denoting variables in mathematics, but were
finally chosen primarily because they distinguished the
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letter O from the digit O and letters like L and T from the
graphic symbols | and T.

To allow the possibility of adding complete alphabetic
fonts by overstriking, the underscore (_), diaeresis
(™), overbar ("), and quad (0) were provided. In the
APL\ 360 realization, only the underscore is used in this
way. The inclusion of the overbar on the typeball fortu-
nately filled a need we had not anticipated —a symbol for
negative constants, distinct from the symbol for the ne-
gation function. The quad proved a useful symbol alone
and in combination (as in B), and the diaeresis still re-
mains unassigned.

The SELECTRIC® typewriter imposed certain practical
limitations on the placement of symbols on the keyboard,
e.g., only narrow characters can appear in the upper
row of the typing element. Within these limitations we
attempted to make the keyboard easy to learn by group-
ing related symbols (such as the relations) in a rational
order and by making mnemonic associations between
letters and the functions associated with them in the
shifted case (such as the magnitude function | with M,
and the membership symbol € with F).

Valence and order of execution

The valence of a function is the number of arguments it
takes; APL primitives have valences of 1 (monadic
functions) and 2 (dyadic functions), and user-defined
functions may have a valence of 0 as well. The form for
all ApL primitives follows the familiar model of arithme-
tic, that is, the symbol for a dyadic function occurs be-
tween its arguments (as in 3+4) and the symbol for a
monadic function occurs before its argument (as in -4 ).

A function f of valence greater than two is conven-
tionally written in the form f(a,b,c,d). This can be
construed as a monadic function F applied to the vector
argument «.b,c,d, and this interpretation is used in
APL. In the APL\360 realization, the arguments a,b.c,
and d must share a common structure. The definition
and implementation of generalized arrays, whose ele-
ments include enclosed arrays, will, of course, remove
this restriction.

The result of any primitive APL function depends only
on its immediate arguments, and the interpretation of
each part of an APL statement is therefore localized. Like-
wise, the interpretation of each statement is independent
of other statements in a program. This independence of
context contributes significantly to the readability and
ease of implementation of the language.

The order of execution of an APL expression is con-
trolled by parentheses in the familiar way, and parenthe-
ses are used for no other purpose. The order is other-
wise determined by one simple rule: the right argument
of any function is the value of the entire expression fol-
lowing it. In particular, there is no precedence among



functions; all functions, user-defined as well as primitive,
are treated alike.

This simple rule has several consequences of practical
advantage to the user:

a) An unparenthesized expression is easy to read from
left to right because the first function encountered is
the major function, the next is the major function in
its right argument, etc.

An unparenthesized expression is also easy to read
from right to left because this is the order in which it
is executed.

If T is any vector of numerical terms, then the pres-
ent rule makes the expressions -/7 and /T very
useful: the former is the alternating sum of 7 and the
latter is the alternating product. Moreover, a contin-
ued fraction may be written without parentheses in
the form 3++4++5+%6, and the efficient evaluation
of a polynomial can be written without parentheses in
the form 3+Xx4+Xx5+Xx6.

b

~

C

~

The ruie that multiplication is executed before addi-
tion and that the power function is executed before mul-
tiplication has been long accepted in mathematics. In
discarding any established rule it is wise to speculate on
the reasons for its adoption and on whether they still
apply. This rule makes parentheses unnecessary in the
writing of polynomials, and this alone appears to be a
sufficient reason for its original adoption. However, in
APL a polynomial can be written more perspicuously in
the form +/CxX*E, which also requires no parentheses.
The question of the order of execution has been dis-
cussed in several places: Falkoff et al. [2,3], Berry [7],
and Appendix A of Iverson [8].

The order in which isolated parts of a statement, such
as the parts (X+4) and (Y-2) in the statement (Y+4)
x(Y-2), are executed is normally immaterial, but does
matter when repeated specifications are permitted in a
statement as in (4«2 )+A. Although the use of such ex-
pressions is poor practice, it is desirable to make the in-
terpretation unequivocal: the rule adopted (as given in
Lathwell and Mezei [9]) is that the rightmost function or
specification which can be performed is performed first.

It is interesting to note that the use of embedded as-
signment was first suggested during the course of the
implementation when it was realized that special steps
were needed to prevent it. The order of executing iso-
lated parts of a statement was at first left unspecified
(as stated in Falkoff and Iverson [1]) to allow freedom
in implementation, since isolated parts could then be
executed in parallel on any machine offering parallel
processing. However, embedded assignment found such
wide use that an unambiguous definition became es-
sential to fix the behavior of programs moving from
system to system.

Another aspect of the order of execution is the order
among statements, which is normally taken as the order
of appearance, except as modified by explicit branches.
In the publication form of the language branches were
denoted by arrows drawn from a branch point to the set
of possible destinations, and the drawing of branch ar-
rows is still to be recommended as an adjunct for clari-
fying the structure of a program (Iverson [10], page 3).

In formalizing branching it was necessary to introduce
only one new concept (denoted by =) and three simple
conventions: 1) continuing with the statement indicated
by the first element of a vector argument of -, or with the
next statement in sequence if the argument is an empty
vector, 2) terminating the function if the indicated con-
tinuation is not the index of a statement in the program,
and 3) the use of labels, local names defined by the in-
dices of juxtaposed statements. At first labels were
treated as local variables, but it was found to be more
convenient in both use and implementation to treat them
as local constants.

Since the branch arrow can be tollowed by any valid
expression it provides convenient multi-way conditional
branches. For example, if I, is a Boolean vector and S is
a corresponding set of statement numbers (often formed
as the catenation of a set of labels), then »L /S provides
a (1+pL)-way branch (to one of the elements of S or
falling through if every element of L is zero): if I is an
empty vector or an index to the vector S, then ~S[I]
provides a similar (1+pL )-way branch.

Programming languages commonly incorporate special
forms of sequence control, typified by the DO statement
of FORTRAN. These forms are excluded from APL be-
cause their cost in complication of the language out-
weighs their utility. The array operations in APL obviate
many instances of iteration, and those which remain can
be represented in a variety of ways. For example, group-
ing the initialization, modification, and testing of the con-
trol variable at the head of the iterated segment provides
a particularly perspicuous arrangement. Moreover,
specialized sequence control statements are usually
context dependent and necessarily introduce new rules.

Conditional statements of the IF THEN ELSE type are
not only context dependent, but their inherent limitation
to a sequence of binary choices often leads to awkward
constructions. These, and other, special sequence con-
trol forms can usually be modeled readily in APL and pro-
vided as application packages if desired.

Scalar functions

The emphasis on generality is illustrated in the defini-
tions of many of the scalar functions. For example, the
definition of the factorial is not limited to non-negative
integers but is extended in the manner of the gamma
function. Similarly, the residue is extended to all num-
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bers in a simple and useful way: M|N is defined as the
smallest (in magnitude) among the quantities N-MxT
(where I is an integer) which lie in the range from O to
M. If no such quantity exists (as in the case where M is
zero) then the restriction to the range O to M is discard-
ed, that is, 0 | X is X. As another example, 0*0 is defined
as 1 because that is the limiting value of X*Y when the
point 0 O is approached along any path other than the X
axis, and because this definition is needed to make the
common general form of writing a polynomial (in which
the constant term C is written as CxX*0 ) applicable when
the value of the argument X is zero.

The urge to generality must be tempered to avoid set-
ting traps for the unwary, and compromise is sometimes
necessary. For example, X+0 could be defined as infinity
(i.e., the largest representable number in an implementa-
tion) so as to obviate special treatment of the case Y=0
when computing the arc tangent of X+Y, but is instead
defined to yield a domain error. Nevertheless, 0+0 is
given the value 1. in spite of the fact that the mathe-
matical argument for it is much weaker than that for 0%0,
because it was deemed desirable to avoid an error stop
in this case.

Eventually it will be desirable to be able to set sepa-
rate limits on domains to suit various classes of users.
For example, an implementation that incorporates com-
plex numbers must yield a result for the expression
“1%.5 but should admit of being set to yield a domain
error for a user studying elementary arithmetic. The
experienced user should be permitted to use an imple-
mentation in a mode that gives him complete control of
domain and other errors, i.e., an error should not stop
execution but should give necessary information about
the error in a form which can be used by the program in
which it occurs. Such a facility has not yet been incorpo-
rated in APL implementations.

A very general and useful set of functions was intro-
duced by adopting the relation symbols < < = > > # to
represent functions (i.e., propositions ) rather than asser-
tions. The result of any proposition was defined to be 0
or 1 (rather than, say. true or false) so that it would lie
in the domain of other arithmetic functions. Thus X=Y
and X#Y represent general comparisons, but if X and Y
are integers then X=Y is the Kronecker delta and X2Y is
its inverse; if X and Y are Boolean variables, then X2Y is
the exclusive-or and X<Y is material implication. This
definition also allows expressions that incorporate
both relational and arithmetic functions (such as
(2=+/[110=8°.15) /S«1 N, which yields the primes up
to integer V). Moreover, identities among Boolean func-
tions are more evident when expressed in these terms
than when expressed in more conventional symbols.

The adoption of the relation symbols as functions
does not preclude their use as assertions in informal sen-
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tences. For example, although one might feel compelled
to substitute “X<Y is true” for “X<Y" in the sentence
“If X<Y then (X<Y)v(X=Y)", there is no more reason
to do so than to substitute “*Bob is there is true” for
“Bob is there” in the sentence which begins “If Bob is
there then. . .”

Although we strove to adopt familiar symbols and
usage, any clash with the principle of uniformity was
invariably resolved in favor of uniformity. For example,
familiar symbols (such as + - X %) are used where
possible, but anomalies such as [X| for magnitude and
N'! for factorial are regularized to |X and !N. Notation
such as X" for power and (}) for the binomial coeffi-
cient are replaced by regular dyadic forms X*V and M'lV.
Elision of the times sign is not permitted; this allows the
use of multiple-character names and avoids confusion
between multiplication, as in X(X+3), and the applica-
tion of a function, as in F(X+3).

Moreover, each of the primitive scalar functions in
APL is extended to arrays in exactly the same way. In
particular, if V and W are vectors the expressions V/xW
and 3+V are permitted as well as the expressions V+Y
and 3%V, although only the latter pair would be permit-
ted (in the sense used in APL) in conventional vector
algebra.

One view of simplicity might exclude as redundant
those functions which are easily expressed in terms of
others. For example, [ X may be written as -| -X, and
[ /X may be written as = /-X, and A/L may be written
as ~v/~L. From another viewpoint it is simpler to use a
more complete or symmetric set of primitives, since one
need not remember which of a pair is provided and how to
express the other in terms of it. In APL, completeness has
been favored. For example, symbols are provided for all
of the nontrivial logical functions although all are easily
expressed in terms of a small subset of them.

The use of the circle to denote the whole family of
functions related to the circular functions is a practical
technique for conserving symbols as well as a useful
generalization. It leads to many convenient expressions
involving reduction and inner and outer products (such
as 1 2 30.0X for a table of sines, cosines and tan-
gents). Moreover, anyone wishing to use the symbol
SIN for the sine function can define the function SIN as
either 10X (for radian arguments) or 10Xx180+01 (for
degree arguments ). The notational scheme employed for
the circular functions must clearly be used with discre-
tion; it could be used to replace all monadic functions by
a single dyadic function with an integer left argument to
encode each monadic function.

Operators
The*dot in the expression M+.xN is an example of an
operator: it takes functions (in this case + and X) as



arguments and produces a new function called an inner
product. (In elementary mathematics the term operator
is also used as a synonym for function, but in APL we
eschew this usage.) The evolution of operators in APL
furnishes an example of growing generality which has as
yet been neither fully exploited nor fully regularized.

The operators now in APL were introduced one by ong
(reduction, then inner product, then outer product, then
axis operators such as $[I]) without being recognized
as members of a class. When this class property was
recognized it was apparent that the operators had not
been given a consistent syntax and that the notation
should eventually be regularized to give operators the
same syntax as functions, i.e., an operator taking two
arguments occurs between its (function) arguments (as
in +.%) and an operator taking one argument appears in
front of it. It also became evident that our treatment of
operators had introduced a useful heirarchy into the
order of execution, operators being executed before
functions.

The recognition of operators as such has also made
clear the much broader role they might be expected to
play —derivative and integral operators are only two of
many useful operators that must be added to the lan-
guage.

The use of the outer product operator furnishes a
clear example of a significant process in the evolution of
the language: when a new facility is introduced it takes
considerable time to recognize the many ways in which
it can be used and therefore to appreciate its role in the
further development of the language. The notation o’ (n)
(later regularized to NooJ/) had been introduced early to
represent a prefix vector, i.e., a Boolean vector of IV ele-
ments with J leading 1's. Some thought had been given
to extending the definition to a vector J (perhaps to
yield an N=column matrix whose rows were prefix vec-
tors determined by the elements of J) but no decision
had been taken. When considering such an extension we
normally communicate by defining any proposed nota-
tion in terms of existing primitives. After the outer prod-
uct was introduced the proposed extension was written
simply as Jo .21/, and it became clear that the function
o« was now redundant.

One should not conclude from this example that every
function or set of functions easily expressed in terms of
another is discarded as redundant: judgment must be
exercised. In the present instance the a was discarded
partly because it was too restrictive, i.e., the outer prod-
uct form could be applied to yield a host of related func-
tions (such as Jo.<1N and Jo.<$1N) not all of which
were expressible in terms of the prefix and suffix func-
tions o, and w. As mentioned in the discussion of scalar
functions, the completeness of an obvious family of
functions is also a factor to be considered.

Operators are attractive from several points of view.
Because they provide a scheme for denoting whole
classes of related functions, they offer uniformity of
expression and great economy of symbols. The concise-
ness of expression that they allow can also be directly
related to efficiency of implementation. Moreover,
they introduce a new level of generality which plays an
important role in the formal manipulability of the lan-
guage.

Formal manipulation

APL is rich in identities and is therefore amenable to a
great deal of fruitful formal manipulation. For example,
many of the familiar identities of ordinary matrix algebra
extend to inner products other than +.x, and de Mor-
gan’s law and other dualities extend to inner and outer
products on arrays. The emphasis on generality, unifor-
mity, and simplicity is likely to lead to a language rich in
identities, but our emphasis on identities has been such
that it should perhaps be enunciated as a separate and
important guiding principle. Indeed. the preface to Iver-
son [10] cites one chapter (on the logical calculus) as
illustration of *‘the formal manipulability of the language
and its utility in theoretical work™. A variety of identi-
ties is treated in [10] and [11], and a schema for proofs
in APL is presented in [12].

Two examples will be used to illustrate the role of
identities in the development of the language. The iden-
tity
(+/X)=(+/U/X)++/(~U) /X

applies for any numerical vector X and logical vector U.
Maintaining this identity for the case where U is a vector
of zeros forces one to define the sum over an empty
vector as zero. A similar identity holds for reduction by
any associative and commutative function and leads one
to define the reduction of an empty array by any func-
tion as the identity element of that function.

The dyadic transpose IQ4 performs a general permu-
tation on the coordinates of A as specified by the argu-
ment 7. The monadic transpose is a special case which,
in order to yield ordinary matrix transpose for an array
of rank two, was initially defined to interchange the last
two coordinates. It was later realized that the identity

Ay (M+.xN)=Q (8N )+. xQM

expected to hold for matrices would not hold for higher
rank arrays. To make the identity true in general, the
monadic transpose was defined to reverse the order of
the coordinates as follows:

A L (RA)=(Pr1ppA)R4.
Moreover, the form chosen for the left argument of the
dyadic transpose led to the following important identity:

A (IQJQA)=T[JIRA.

The Design of APL 53



Execute and format

In designing an executable language there is a funda-
mental choice to be made: Is the statement of an expres-
sion to be taken as an order to evaluate it, or must the
evaluation be indicated by an explicit function in the
language? This decision was made very early in the de-
velopment of APL, albeit with little deliberation. Never-
theless, once the choice became manifest, early in the
development of the implementation, it was applied uni-
formly in all situations.

There were some arguments against this, of course,
particularly in the application of a function to its argu-
ments. where it is often useful to be able to *“‘call by
name,” which requires that the evaluation of the argu-
ment be deferred. But if implemented literally (i.e., if
functions could be defined with this as an option) then
names per se would have to be known to the language
and would constitute an additional object type with its
own rules of behavior and specialized primitive func-
tions. A deliberate effort had been made to eliminate
unnecessary type distinctions, as in the uniform lan-
guage treatment of numbers regardless of their internal
representation, and this point of view prevailed. In the
interest of keeping the semantic rules simple, the idea of
“call by name™ was rejected as a primitive conceptin APL.

Nevertheless, there are important cases where the
formal argument of a function should not be evaluated at
the time of invocation—as in the application of a gen-
eralized root finder to an arbitrary function. There are
also situations where it is useful to inhibit evaluation of
an expression, as in certain conditional forms, and the
need for some treatment of the problem was clear. The
basis for a solution was at hand in the form of character
arrays, which were already objects of the language. Ef-
fectively, putting quotes around a statement inhibits its
execution by making it a data item, a character array
subject to the normal language functions. To get the ef-
fect of working with names, or with expressions to be
conditionally evaluated, it was only necessary to intro-
duce the notion of “unquote,” or more properly “exe-
cute,” as a function that would cause a character array
to be evaluated as if it were the same expression without
the inhibition.

The actual introduction of the execute function did
not come for some time after its recognition as the likely
solution. The development that preceded its final accep-
tance into APL illustrates several design principles.

The concept of an execute function is a very powerful
one. In a sense, it makes the language ‘‘self-conscious,”
and introduces endless possibilities for obscurity in pro-
grams. This might have been a reason for not allowing it,
but we had long since realized that a general-purpose
language cannot be made foolproof and remain effective.
Furthermore. ApL is easily partitioned, and beginning
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users, or users of application packages, need not know
about more sophisticated aspects of the language. The
real issues were whether the function was of sufficiently
broad utility, whether it could be defined simply, and
whether it was perhaps a special case of a more general
capability that should be implemented instead. There
was also the need to establish a symbol for it.

The case for general utility was easily made. The exe-
cute function does allow names to be used as arguments
to functions without the need for a new data type: it
provides the means for generating variables under pro-
gram control, which can be useful, for example, in man-
aging data that do not conveniently fit into rectangular
arrays; it allows the construction and execution of state-
ments under program control; and in interpretive imple-
mentations it provides conversion from characters to
numbers at machine speeds.

The behavior of the execute function is simply de-
scribed: it treats a character array argument as a repre-
sentation of an APL statement and attempts to evaluate or
execute the statement so represented. System commands
and attempts to enter function definition mode are not
valid APL statements and are excluded from the domain
of execute. It can be said that, except for these exclu-
sions, execute acts upon a character array as if the ele-
ments of the array were entered at a terminal in the im-
mediate execution mode.

Incidentally, there was pressure to arbitrarily include
system commands in the domain of execute as a means
of providing access to other workspaces under program
control in order to facilitate work with large collections
of data. This was resisted on the basis that the execute
function should not allow by subterfuge what was other-
wise disallowed. Indeed, consideration of this aspect of
the behavior of execute led to the removal of certain
anomalies in function definition and a clarification of the
role of the escape characters) and V.

The question of generality has not been finally settled.
Certainly, the execute function could be considered a
member of a class that includes constructs like those of
the lambda calculus. But it is not necessary to have the
ultimate answer in order to proceed, and the simplicity
of the definition adopted gives some assurance that gen-
eralizations are not being foreclosed.

For some time during its experimental implementation
the symbol for execute was the epsilon. This was chosen
for obvious mnemonic reasons and because no other
monadic use was made of this symbol. As thought was
being given to another new function—format—it was
observed that over some part of each of their domains
format and execute were inverses. Furthermore, over
these parts of their domains they were strongly related to
the functions encode and decode, and we therefore
adopted their symbols overstruck by the symbol o.



The format function furnishes another example of a
primitive whose behavior was first defined and long ex-
perimented with by means of APL defined functions.
These defined functions were the DFT (Decimal
Format) and EFT (Exponential Format) familiar to
most users of the APL system. The main advantage of
the primitive format function over these definitions is its
much more efficient use of computer time.

The format function has both a dyadic and a monadic
definition, but the execute function is monadic only.
This leaves the way open for a related dyadic function,
for which there has been no dearth of suggestions, but
none will be adopted until more experience has been
gained in the use of what we already have.

System commands and other environmental
facilities

The definition of APL is purely abstract: the objects of
the language, arrays of numbers and characters, are act-
ed upon by the primitive functions in a manner indepen-
dent of their representation and independent of any
practical interpretation placed upon them. The advan-
tages of such an abstract definition are that it makes the
language truly machine independent, and avoids bias in
favor of particular application areas. But not everything
in a computing system is abstract, and provision must be
made to manage system resources and otherwise com-
municate with the environment in which the language
functions operate.

Maintaining the abstract nature of the language in a
real computing system therefore seemed to imply a need
for language-like facilities in some sense outside of APL.
The need was first met by the use of system commands,
which are syntactically not part of APL, and are also ex-
cluded from dynamic use within APL programs. They
provided a simple and, in some ways, convenient answer
to the problem of system management, but proved insuf-
ficient because the actions and information provided by
them are often required dynamically.

The exclusion of system commands from programs
was based more strongly on engineering considerations
than on a theoretic compulsion, since the syntactic dis-
tinction alone sets them apart from the language, but
there remained a reluctance to allow such syntactic
anomalies in a program. The real issue, which was
whether the functions provided by the system com-
mands were properly the province of APL, was tabled for
the time being, and defined functions that mimic the ac-
tions of certain of them were introduced to allow dy-
namic execution. The functions so provided were those
affecting only the environment within a workspace, such
as width and origin, while those that would have affected
major physical resources of the system were still exclud-
ed for engineering reasons.

These environmental defined functions were based on
the use of still another class of functions—called “I-
beams” because of the shape of the symbol used for
them —which provide a more general facility for commu-
nication between APL programs and the less abstract
parts of the system. The I-beam functions were first in-
troduced by the system programmers to allow them to
execute System/360 instructions from within APL pro-
grams, and thus use APL as a direct aid in their program-
ming activity. The obvious convenience of functions of
this kind, which appeared to be part of the language, led
to the introduction of the monadic I-beam function for
direct use by anyone. Various arguments to this function
yielded information about the environment such as avail-
able space and time of day.

Though clearly an ad hoc facility, the I-beam func-
tions appear to be part of the language because they "
obey APL syntax and can be executed from within an
APL program. They were too useful to do without in the
absence of a more rational solution to the problem, and
so were graced with the designation *‘system-dependent
functions,” while we continued to use the system and
think about the general problem of communication
among the subsystems composing it.

Shared variables

The logical basis for a generalized communication facil-
ity in APL\360 was laid in 1964 with the publication of
the formal description of System/360 [2]. It was then
observed that the interaction between concurrent “asyn-
chronous™ processes (programs) could be completely
comprehended by an interface comprising variables that
were shared by the cooperating processes. (Another fa-
cility was also used, where one program forced a branch
in another, but this can be regarded as a derivative rep-
resentation based on variables shared between one
program and a processor that drives the other.) It was
not until six or seven years later, however, that the full
force of this observation was brought to bear on the
practical problem of controlling in an organic way the
environment in which APL programs run.

Three processors can be identified during the execu-
tion of an APL program: APL, or the processor that ac-
tually executes the program: the system, or host that
manages libraries and other environmental factors,
which in ApL\360 is the System/360 processor; and the
user, who may be observing and processing output or
providing input to the program. The link between APL
and system is the set of I-beam functions, that between
user and system is the set of system commands, and
between user and APL, the quad and quote-quad. With
the exception of the quote-quad, which is a true variable,
all these links are constructs on the interfaces rather
than the interfaces themselves.
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It can be seen that the quote-quad is shared by the
user and APL. Characteristically, a value assigned to it in
a program is presented to the user at the terminal, who
utilizes this information as he sees fit. If later read by the
program, the value of the quote-quad then has no fixed
relationship to what was earlier specified by the pro-
gram. The values written and read by the program are
a fortiori APL objects —abstract arrays —but they may
have practical significance to the user-processor, sug-
gesting, for example, that an experimental observation
be made and the results entered at the keyboard.

Using the quote-quad as the paradigm for their behav-
ior, a general facility for shared variables was designed
and implemented starting in late 1969 (see Lathwell
[13]). The underlying concept was to provide communi-
cation across the boundary between independent proces-
sors by explicitly establishing certain variables as being
shared between them. A shared variable is syntactically
indistinguishable from others and may be used normally
either on the right or left of an assignment arrow.

Although motivated most strongly at the time by a
need to provide a “file and I/O™ capability for APL\360,
the shared variable facility satisfied other needs as well,
a significant criterion for the inclusion of a new feature
in the language. It provides for general communication,
not only between APL and the host system, but also
between APL programs running concurrently at different
terminals, which is in a sense a more fundamental use of
the idea.

Perhaps as important as the practical use of the facil-
ity is the potency that an implementation lends to the
concept of shared variables as a basis for understanding
communication in any system. With respect to APL\360,
for example, we had long used the term “distinguished
variable” in discussing the interface between APL and
system, meaning thereby variables, like trace and stop
vectors, which hold control or state information. It is
now clear that “distinguished variables™ are shared vari-
ables, distinguished from ordinary variables by the fact
of their being shared, and further qualified by their
membership in a particular interface. In principle, the
environment and resources of APL\360 could be com-
pletely controlled through the use of an appropriate set
of such distinguished variables.

System functions

In a given application area it is usually easier to work
with ApL augmented by defined functions, designed to
embody the significant concepts of the area, than with
the primitive functions of the language alone. Such de-
fined functions, together with the relevant variables or
data objects, constitute an application language. or appli-
cation extension. Managing the resources or environ-
ment of an APL computing system is a particular applica-
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tion, in which the data objects are the distinguished vari-
ables that define the interface between APL and system.

For convenience, the defined functions constituting an
application extension for system management should
behave differently from other defined functions, at least
to the extent of being available at all times, like the prim-
itives, without having to be copied from workspace to
workspace. Such ubiquity requires that the names of
these functions be distinguished from those a user might
invent. This distinction can only be made, if APL is to
remain essentially context independent, by the establish-
ment of a class of reserved names. This class has been
defined as names starting with the quad character, and
functions having such names are called system functions.
A similar naming convention applies to distinguished
variables, or system variables, as they are now called.

In principle, system functions work with system vari-
ables that are independently identifiable. In practice,
the system variables in a particular situation may not
be available explicitly, and the system functions may
be locked. This can come about because direct access to
the interface by the user is deemed undesirable for tech-
nical reasons, or because of economic considerations
such as efficiency or protection of proprietary rights. In
such situations system functions are superficially distin-
guishable from primitive functions only by virtue of the
naming convention.

The present I-beam functions behave like system
functions. Fortunately, there are only two of them: the
monadic function that is familiar to all users of ApL, and
the dyadic function that is still known mostly to system
programmers. Despite their usefulness, these functions
are hardly to be taken as examples of good application
language design, depending as they do on arbitrary nu-
merical arguments to give them meaning, and having no
meaningful relationships with each other. The monadic
I-beams are more like read-only variables —changeable
constants, as it were —than functions. Indeed, except for
their syntax, they behave precisely like shared variables
where the processor on the other side replaces the value
between each reference on the APL side.

The shared variable facility itself requires communica-
tion between APL and system in order to establish a de-
sired interface between APL and cooperating processors.
The prospect of inventing new system commands for
this, or otherwise providing an ad hoc facility, was most
distasteful, and consideration of this problem was a ma-
jor factor in leading toward the system function concept.
It was taken as an indication of the validity of the shared
variable approach to communication when the solution
to the problem it engendered was found within the con-
ceptual framework it provided, and this solution also
proved to be a basis for clarifying the role of facilities
already present.



In due course a set of system functions must be de-
signed to parallel the facilities now provided by system
commands and go beyond them. Aside from the obvi-
ous advantage of being dynamically executable, such a
set of system functions will have other advantages and
some disadvantages. The major operational advantage
is that the system functions will be able to use the full
power of APL to generate their arguments and exploit
their results. Countering this, there is the fact that this
power has a price: the automatic name isolation provided
by the extralingual system commands will not be avail-
able to the system functions. Names used as arguments
will have to be presented as character arrays, which is not
a disadvantage in programs, although it is less convenient
for casual keyboard entry than is the use of unadorned
names in system commands.

A more profound advantage of system functions over
system commands lies in the possibility of designing the
former to work together constructively. System com-
mands are foreclosed from this by the rudimentary na-
ture of their syntax; they do constitute a language, but
one having no constructive potential.

Workspaces, files, and input-output

The workspace organization of APL\360 libraries serves
to group together functions and variables intended to
work together, and to render them active or inactive as a
group, preserving the state of the computation during
periods of inactivity. Workspaces also implicitly qualify
the names of objects within them, so that the same name
may be used independently in a multiplicity of work-
spaces in a given system. These are useful attributes; the
grouping feature, for example, contributes strongly to
the convenience of using APL by obviating the linkage
problems found in other library systems.

On the other hand, engineering decisions made early
in the development of APL\360 determined that the
workspaces be of fixed size. This limits the size of ob-
jects that can be managed within them and often be-
comes an inconvenience. Consequently, as usage of
APL\360 developed, a demand arose for a “file” facility,
at first to work with large volumes of data under pro-
gram control, and later to utilize data generated by other
systems. There was also a demand to make use of high-
speed input and output equipment. As noted in an earlier
section, these demands led in time to the development of
the shared variable facility. Three considerations were
paramount in arriving at this solution.

One consideration was the determination to maintain
the abstract nature of APL. In particular, the use of prim-
itive functions whose definitions depend on the repre-
sentation of their arguments was to be avoided. This
alone was sufficient to rule out the notion of a file as a

formal concept in the language. APL has primitive array
structures that either encompass the logical structure of
files or can be extended to do so by relatively simple
functions defined on them. The user of APL may regard
any array or collection of arrays as a file, and in princi-
ple should be able to use the data so organized without
regard to the medium on which these arrays may be
stored.

The second consideration was the not uncommon
observation that files are used in two ways, as a medium
for exchange of information and as a dynamic exten-
sion of working storage during computation (see Falkoff
[14]). In keeping with the principle just noted, the
proper solution to the second problem must ultimately
be the removal of workspace size limitations, and this
will probably be achieved in the course of general de-
velopments in the industry. We saw no prospect of a sat-
isfactory direct solution being achieved locally in a
reasonable time. so attention was concentrated on the
first problem in the expectation that, with a good general
communication facility, on-line storage devices could be
used for workspace extension at least as effectively as
they are so used in other systems.

The third consideration was one of generality. One
possible approach to the communication problem would
have been to increase the roster of system commands
and make them dynamically executable, or add varia-
tions to the I-beam functions to manage specific storage
media and I/O equipment or access methods. But in ad-
dition to being unpleasant because of its ad hoc nature,
this approach did not promise to be general enough. In
working interactively with large collections of data, for
example, the possible functional variations are almost
limitless. Various classes of users may be allowed ac-
cess for different purposes under a variety of controls,
and unless it is intended to impose restrictive constraints
ahead of time, it is futile to try to anticipate the solutions
to particular problems. Thus, to provide a communica-
tion facility by accretion appeared to be an endless task.

The shared variable approach is general enough be-
cause, by making the interface explicitly available with
primitive controls on the behavior of the shared variable,
it provides only the basic communication mechanism. It
then remains for the specific problem to be managed by
bringing to bear on it the full power of APL on one side,
and that of the host system on the other. The only re-
maining question is one of performance: does the shared
variable concept provide the basis for an effective imple-
mentation? This question has been answered affirma-
tively as a result of direct experimentation.

The net effect of this approach has been to provide for
APL an application extension comprising the few system
functions necessary to manage shared variables. Actual
file or I/O applications are managed, as required, by
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user-defined functions. The system functions are used
only to establish sharing, and the shared variables are
then used for the actual transfer of information between
APL workspaces and file or 1/O processors.

Appendix. Chronology of APL development

The development of APL was begun in 1957 as a neces-
sary tool for writing clearly about various topics of inter-
est in data processing. The early development is de-
scribed in the preface of Iverson [10] and Brooks and
Iverson [15]. Falkoff became interested in the work
shortly after Iverson joined IBM in 1960, and used the
language in his work on parallel search memories [16].
In early 1963 Falkoff began work on a formal descrip-
tion of System/360 in APL and was later joined in this
work by Iverson and Sussenguth [2].

Throughout this early period the language was used
by both Falkoff and Iverson in the teaching of various
topics at various universities and at the IBM Systems
Research Institute. Early in 1964 Iverson began using it
in a course in elementary functions at the Fox Lane
High School in Bedford, New York, and in 1966 pub-
lished a text that grew out of this work [8]. John L.
Lawrence (who, as editor of the IBM Systems Journal,
procured and assisted in the publication of the formal
description of System/360) became interested in the use
of APL at high school and college level and invited the
authors to consult with him in the development of cur-
riculum material based on the use of computers. This
work led to the preparation of curriculum material in a
number of areas and to the publication of an APL\360
Reference Manual by Sandra Pakin [17].

Although our work through 1964 had been focused on
the language as a tool for communication among people,
we never doubted that the same characteristics which
make the language good for this purpose would make it
good for communication with a machine. In 1963 Her-
bert Hellerman implemented a portion of the language
on an IBM/1620 as reported in [18]. Hellerman's sys-
tem was used by students in the high school course with
encouraging results. This, together with our earlier work
in education, heightened our interest in a full-scale imple-
mentation.

When the work on the formal description of Sys-
tem/360 was finished in 1964 we turned our attention to
the problem of implementation. This work was brought
to rapid fruition in 1965 when Lawrence M. Breed
joined the project and, together with Philip S. Abrams,
produced an implementation on the 7090 by the end of
1965. Influenced by Hellerman’s interest in time-sharing
we had already developed an APL typing element for the
IBM 1050 computer terminal. This was used in early
1966 when Breed adapted the 7090 system to an experi-
mental time-sharing system developed under Andrew
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Kinslow, allowing us the first use of APL in the manner
familiar today. By November 1966, the system had been
reprogrammed for System/360 and APL service has been
available within IBM since that date. The system be-
came available outside IBM in 1968.

A paper by Falkoff and Iverson [3] provided the first
published description of the APL\360 system, and a
companion paper by Breed and Lathwell [19] treated
the implementation. R. H. Lathwell joined the design
group in 1966 and has since been concerned primarily
with the implementations of APL and with the use of APL
itself in the design process. In 1971 he published, to-
gether with Jorge Mezei, a formal definition of APL in
APL [9].

The APL\360 System benefited from the contributions
of many outside of the central design group. The preface
to the User’s Manual [1] acknowledges many of these
contributions.
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This paper is a discussion of the
evolution of the APL language, and it
treats implementations and applications
only to the extent that they appear to have
exercised a major influence on that
evolution. Other sources of historical
information are cited in References 1-3; in
particular, The Design of APL [1] provides
supplementary detail on the reasons behind
many of the design decisions made in the
development of the language. Readers
requiring background on the current
definition of the language should consult

APL Language [4].

Although we have attempted to confirm
our recollections by reference to written
documents and to the memories of our
colleagues, this remains a personal view
which the reader should perhaps supplement
by consulting the references provided. 1In
particular, much information about
individual contributions will be found in
the Appendix to The Design of APL [1]1, and
in the Acknowledgements in A Programming
Language [10] and in APL\360 User's Manual
i23]. Because Reference 23 may no longer
be readily available, the acknowledgements
from it are reprinted in Appendix A.

McDonnell's recent paper on the
development of the notation for the
circular functions [5] shows that the
detailed evolution of any one facet of the
language can be both interesting and
illuminating. Too much detail in the
present paper would, however, tend to
obscure the main points, and we have
therefore limited ourselves to one such
example. We can only hope that other
contributors will publish their views on
the detailed developments of other facets
of the language, and on the development of
various applications of it.

The development of the language was
first begun by Iverson as a tool for
describing and analyzing various topics in
data processing, for use in teaching
classes, and in writing a book, Automatic

Data Processing [6], undertaken together
with Frederick P. Brooks, Jr., then a
graduate student at Harvard. Because the
work began as incidental to other work, it
is difficult to pinpoint the beginning, but
it was probably early 1956; the first
explicit use of the language to provide
communication between the designers and
programmers of a complex system occurred
during a leave from Harvard spent with the
management consulting firm of McKinsey and
Company in 1957. Even after others were
drawn into the development of the language,
this development remained largely
incidental to the work in which it was
used. For example, Falkoff was first
attracted to it (shortly after Iverson
joined IBM in 1960) by its use as a tool in
his work in parallel search memories [7],
and in 1964 we began to plan an
implementation of the language to enhance
its utility as a design tool, work which
came to fruition when we were joined by
Lawrence M. Breed in 1965.

The most important influences in the
early phase. appear to be Iverson's
background in mathematics, his thesis work
in the machine solutions of linear
differential equations [8] for an economic
input-output model proposed by Professor
Wassily Leontief (who, with Professor
Howard Aiken, served as thesis adviser),
and Professor Aiken's interest in the
newly-developing field of commercial
applications of computers. Falkoff brought
to the work a background in engineering and
technical development, with experience in a
number of disciplines, which had left him
convinced of the overriding importance of
simplicity, particularly in a field as
subject to complication as data processing.

Although the evolution has been
continuous, it will be helpful to
distinguish four phases according to the
major use or preoccupation of the period:
academic use (to 1960), machine description
(1961-1963) , implementation (1964-1968),
and systems (after 1968).
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1. ACADEMIC USE

The machine programming required in
Iverson's thesis work was directed at the
development of a set of subroutines
designed to permit convenient
experimentation with a variety of
mathematical methods. This implementation
experience led to an emphasis on
implementable language constructs, and to
an understanding of the role of the
representation of data.

The mathematical background shows
itself in a variety of ways, notably:

1. In the use of functions with
explicit arguments and explicit results;
even the relations (< < = 2 > #) are
treated as such functions.

2. In the use of logical functions and
logical variables. For example, the
compression function (denoted by /) uses
as one argument a logical vector which
is, in effect, the characteristic vector
of the subset selected by compression.

3. In the use of concepts and
terminology from tensor analysis, as in
inner product and outer product and in
the use of rank for the "dimensionality"
of an array, and in the treatment of a
scalar as an array of rank zero.

4, 1In the emphasis on generality. For
example, the generalizations of
summation (by F/), of inner product (by
F.G), and of outer product (by °.F)
extended the utility of these functions
far beyond their original area of
application.

5. In the emphasis on identities
(already evident in [9]) which makes the
language more useful for analytic
purposes, and which leads to a uniform
treatment of special cases as, for
example, the definition of the reduction
of an empty vector, first given in A
Programming Language [10].

In 1954 Harvard University published
an announcement [11] of a new graduate
program in Automatic Data Processing
organized by Professor Aiken. (The program
was also reported in a conference on
computer education [12]). Iverson was one
of the new faculty appointed to prosecute
the program; working under the guidance of
Professor Aiken in the development of new
courses provided a stimulus to his interest
in developing notation, and the diversity
of interests embraced by the program
promoted a broad view of applications.

The state of the language at the end
of the academic period is best represented
by the presentation in A Programmin
Language [10], submitted for p ication in
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early 1961. The evolution in the latter
part of the period is best seen by
comparing references 9 and 10. This
comparison shows that reduction and inner
and outer product were all introduced in
that period, although not then recognized
as a class later called operators. It also
shows that specification was originally (in
Reference 9) denoted by placing the
specified name at the right, as in P+g->2Z.
The arguments (due in part to F.P. Brooks,
Jr.) which led to the present form (Z+FP+Q)
were that it better conformed to the
mathematical form Z=P+@, and that in
reading a program, any backward reference
to determine how a given variable was
specified would be facilitated if the
specified variables were aligned at the
left margin. What this comparison does not
show is the removal of a number of special
comparison functions (such as the
comparison of a vector with each row of a
matrix) which were seen to be unnecessary
when the power of the inner product began
to be appreciated, as in the expression

MA .=V, This removal provides one example
of the simplification of the language
produced by generalizations.

2. MACHINE DESCRIPTION

The machine description phase was
marked by the complete or partial
description of a number of computer
systems. The first use of the language to
describe a complete computing system was
begun in early 1962 when Falkoff discussed
with Dr. W.C. Carter his work in the
standardization of the instruction set for
the machines that were to become the IBM
System/360 family. Falkoff agreed to
undertake a formal description of the
machine language, largely as a vehicle for
demonstrating how parallel processes could
be rigorously represented. He was later
joined in this work by Iverson when he
returned from a short leave at Harvard, and
still later by E.H. Sussenguth. This work
was published as "A Formal Description of
System/360" [131].

This phase was also marked by a
consolidation and regularization of many
aspects which had little to do with machine
description. For example, the cumbersome
definition of maximum and minimum (denoted
in Reference 10 by UlV and ULV and
equivalent to what would now be written as
[/U/V and L/U/V) was replaced, at the
suggestion of Herbert Hellerman, by the
present simple scalar functions. This
simplification was deemed practical because
of our increased understanding of the
potential of reduction and inner and outer
product.

The best picture of the evolution in
this period is given by a comparison of A
Programming Language [10] on the one hand,




and "A Formal Description of System/360"
[13] and "Formalism in Programming

Languages" [14] on the other. Using
explicit page references to Reference 10,
we will now give some further examples of
regularization during this period:

1. The elimination of embracing symbols
(such as |X| for absolute value, LX] for
floor, and [X] for ceiling) and
replacement by the leading symbol only,
thus unifying the syntax for monadic
functions.

2. The conscious use of a single
function symbol to represent both a
monadic and a dyadic function (still
referred to in Reference 10 as unary and

binary).

3. The adoption of multi-character
names which, because of the failure
(page 11) to insist on no elision of the
times sign, had been permitted (page 10)
only with a special indicator.

4. The rigorous adoption of a
right-to-left order of execution which,
although stated (page 8) had been
violated by the unconscious application
of the familiar precedence rules of
mathematics. Reasons for this choice
are presented in Elementary Functions
(15], in Berry's APL\360 Primer [16],
and in The Design of APL T[1J.

5. The concomitant definition of
reduction based on a right-to-left order
of execution as opposed to the opposite
convention defined on page 16.

6. Elimination of the requirement for
parentheses surrounding an expression
involving a relation (page 11). An
example of the use without parentheses
occurs near the bottom of page 241 of
Reference 13.

7. The elimination of implicit
specification of a variable (that is,
the specification of some function of
it, as in the expression 15«2 on page
81), and its replacement by an explicit
inverse function (T in the cited
example) .

Perhaps the most important
developments of this period were in the use
of a collection of concurrent autonomous
programs to describe a system, and the
formalization of shared variables as the
means of communication among the programs.
Again, comparisons may be made between the
system of programs of Reference 13, and the
more informal use of concurrent programs
introduced on page 88 of Reference 10.

It is interesting to note that the
need for a random function (denoted by the
question mark) was first felt in describing

the operation of the computer itself. The
architects of the IBM System/360 wished to
leave to the discretion of the designers of
the individual machines of the 360 family
the decision as to what was to be found in
certain registers after the occurrence of
certain errors, and this was done by
stating that the result was to be random.
Recognizing more general use for the
function than the generation of random
logical vectors, we subsequently defined
the monadic question mark function as a
scalar function whose argument specified
the population from which the random
elements were to be chosen.

3. IMPLEMENTATION

In 1964 a number of factors conspired
to turn our attention seriously to the
problem of implementation. One was the
fact that the language was by now
sufficiently well-defined to give us some
confidence in its suitability for
implementation. The second was the
interest of Mr. John L. Lawrence who, after
managing the publication of our description
of System/360, asked for our consultation
in utilizing the language as a tool in his
new responsibility (with Science Research
Associates) for developing the use of
computers in education. We quickly agreed
with Mr. Lawrence on the necessity for a
machine implementation in this work. The
third was the interest of our then manager,
Dr. Herbert Hellerman, who, after
initiating some implementation work which
did not see completion, himself undertook
an implementation of an array-based
language which he reported in the
Communications of the ACM [17]. Although
this work was limited In certain important
respects, it did prove useful as a teaching
tool and tended to confirm the feasibility
of implementation.

Our first step was to define a
character set for APL. Influenced by Dr.
Hellerman's interest in time-sharing
systems, we decided to base the design on
an 88-character set for the IBM 1050
terminal, which utilized the _
easily-interchanged Selectric@ytyping
element. The design of this character-set
exercised a surprising degree of influence
on the development of the language.

As a practical matter it was clear
that we would have to accept a
linearization of the language (with no
superscripts or subscripts) as well as a
strict limit on the size of the primary
character set. Although we expected these
limitations to have a deleterious effect,
and at first found unpleasant some of the
linearity forced upon us, we now feel that
the changes were beneficial, and that many
led to important generalizations. For
example:
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1. On linearizing indexing we
realized that the sub- and
super-script form had inhibited the
use of arrays of rank greater than 2,
and had also inhibited the use of
several levels of indexing; both
inhibitions were relieved by the
linear form A[I;J;K].

2. The linearization of the inner
and outer product notation (from MIwN
and MxN to M+.xN and Mo .xN) led
eventually to the recognition of the
operator (which was now represented
by an explicit symbol, the period) as
a separate and important component of
the language.

3. Linearization led to a
regularization of many functions of
two arguments, (such as NaJ for oJ(n)
and A*B for ab) and to the
redefinition of certain functions of
two or three arguments so as to
eliminate gne of the arguments. For
example, 1J(n) was replaced by ¥,
with the simple expression J+1W
replacing the original definition.
Moreover, the simple form 1N led to
the recognition that J21N could
replace Nod (for J a scalar) and that
Jo.21N could generalize NaJ in a
useful manner; as a result the
functions o« and w were eventually
withdrawn.

4. The limitation of the character
set led to a more systematic
exploitation of the notion of
ambiguous valence, the representation
of both a monadic and a dyadic
function by the same symbol.

5. The limitation of the character
set led to the replacement of the two
functions for the number of rows and
the number of columns of an array, by
the single function (denoted by p)
which gave the dimension vector of
the array. This provided the
necessary extension to arrays of
arbitrary rank, and led to the simple
expression ppA for the rank of 4.

The resulting notion of the dimension
vector also led to the definition of
the dyadic reshape function DpX.

6. The limitation to 88 primary
characters led to the important
notion of composite characters formed
by striking one of the basic
characters over another. This scheme
has provided a supply of easily-read
and easily-written symbols which were
needed as the language developed
further. For example, the quad,
overbar, and circle were included not
for specific purposes but because
they could be used to overstrike many
characters. The overbar by itself
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also proved valuable for the
representation of negative numbers,
and the circle proved convenient in
carrying out the idea, proposed by
E.E. McDonnell, of representing the
entire family of (monadic) circular
functions by a single dyadic
function.

7. The use of multiple fonts had to
be re-examined, and this led to the
realization that certain functions
were defined not in terms of the
value of the argument alone, but also
in terms of the form of the name of
the argument. Such dependence on the
forms of names was removed.

We did, however, include
characters which could print above
and below alphabetics to provide for
possible font distinctions. The
original typing element included both
the present flat underscore, and a
saw-tooth one (the pralltriller as
shown, for example, in Webster's
Second), and a hyphen. In practice,
we found the two underscores somewhat
difficult to distinguish, and the
hyphen very difficult to distinguish
from the minus, from which it
differed only in length. We
therefore made the rather costly
change of two characters,
substituting the present delta and
del (inverted delta) for the
pralltriller and the hyphen.

In the placement of the character set
on the keyboard we were subject to a number
of constraints imposed by the two forms of
the IBM 2741 terminal (which differed in
the encoding from keyboard-position to
element-position), but were able to devise
a grouping of symbols which most users find
easy to learn. One pleasant surprise has
been the discovery that numbers of people
who do not use APL have adopted the type
element for use in mathematical typing.

The first publication of the character set
appears to be in Elementary Functions [15].

Implementation led to a new class of
questions, including the formal definition
of functions, the localization and scope of
names, and the use of tolerances in
comparisons and in printing output. It
also led to systems questions concerning
the environment and its management,
including the matter of libraries and
certain parameters such as index origin,
printing precision, and printing width.

Two early decisions set the tone of
the implementation work: 1) The
implementation was to be experimental, with
primary emphasis on flexibility to permit
experimentation with language concepts, and
with questions of execution efficiency
subordinated, and 2) The language was to be



compromised as little as possible by
machine considerations.

These considerations led Breed and
P.S. Abrams (both of whom had been
attracted to our work by Reference 13) to

Propose and build an interpretive
implementation in the summer of 1965. This
was a batch system with punched card input,
using a multi-character encoding of the
primitive function symbols. It ran on the
IBM 7090 machine and we were later able to
experiment with it interactively, using the
typeball previously designed, by placing
the interpreter under an experimental time
sharing monitor (TSM) available on a
machine in a nearby IBM facility.

TSM was available to us for only a
very short time, and in early 1966 we began
to consider an implementation on
System/360, work that started in earnest in
July and culminated in a running system in
the fall. The fact that this interpretive
and experimental implementation also proved
to be remarkably practical and efficient is
a tribute to the skill of the implementers,
recognized in 1973 by the award to the
principals (L.M. Breed, R.H. Lathwell, and
R.D. Moore) of ACM's Grace Murray Hopper
Award. The fact that the many APL
implementations continue to be largely
interpretive may be attributed to the array
character of the language which makes
possible efficient interpretive execution.

We chose to treat the occurrence of a
statement as an order to evaluate it, and
rejected the notion of an explicit function
to indicate evaluation. In order to avoid
the introduction of "names" as a distinct
object class, we also rejected the notion
of "call by name". The constraints imposed
by this decision were eventually removed in
a simple and general way by the
introduction of the execute function, which
served to execute its character string
argument as an APL expression. The
evolution of these notions is discussed at
length in the section on "Execute and
Format" in The Design of APL [11].

In earlier discussions with a number
of colleagues, the introduction of
declarations into the language was urged
upon us as a requisite for implementation.
We resisted this on the general basis of
simplicity, but also on the basis that
information in declarations would be
redundant, or perhaps conflicting, in a
language in which arrays are primitive.

The choice of an interpretive
implementation made the exclusion of
declarations feasible, and this, coupled
with the determination to minimize the
influence of machine considerations such as
the internal representations of numbers on
the design of the language, led to an early
decision to exclude them.

In providing a mechanism by which a
user could define a new function, we wished
to provide six forms in all: functions with
0, 1, or 2 explicit arguments, and
functions with 0 or 1 explicit results.
This led to the adoption of a header for
the function definition which was, in
effect, a paradigm for the way in which a
function was used. For example, a function
F of two arguments having an explicit
result would typically be used in an
expression such as 2Z«A4 F B, and this was
the form used for the header.

The names for arguments and results
in the header were of course made local to
the function definition, but at the outset
no thought was given to the localization of
other names. Fortunately, the design of
the interpreter made it relatively easy to
localize the names by adding them to the
header (separated by semicolons), and this
was soon done. Names so localized were
strictly local to the defined function, and
their scope did not extend to any other
functions used within it., It was not until
the spring of 1968 when Breed returned from
a talk by Professor Alan Perlis on what he
called "dynamic localization" that the
present scheme was adopted, in which name
scopes extend to functions called within a
function.

We recognized that the finite limits
on the representation of numbers imposed by
an implementation would raise problems
which might require some compromise in the
definition of the language, and we tried to
keep these compromises to a minimum. For
example, it was clear that we would have to
provide both integer and floating point
representations of numbers and, because we
anticipated use of the system in logical
design, we wished to provide an efficient
(one bit per element) representation of
logical arrays as well. However, at the
cost of considerable effort and some loss
of efficiency, both well worthwhile, the
transitions between representations were
made to be imperceptible to the user,
except for secondary effects such as
storage requirements.

Problems such as overflow (i.e., a
result outside the range of the
representations available) were treated as
domain errors, the term domain being
understood as the domain of the machine
function provided, rather than as the
domain of the abstract mathematical
function on which it was based.

One difficulty we had not anticipated
was the provision of sensible results for
the comparison of quantities represented to
a limited precision. For example, if X and
Y were specified by Y+«2:3 and X«3xY, then
we wished to have the comparison 2=x yield
1 (representing true) even though the
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representation of the quantity x would
differ slightly from 2.

This was solved by introducing a
comparison tolerance (christened fuzz by
L.M. Breed, who knew of its use in the Bell
Interpreter [18]) which was multiplied by
the larger in magnitude of the arguments to
give a tolerance to be applied in the
comparison. _This tolerance was at first
fixed (at 1E 13) and was later made
specifiable by the user. The matter has
proven more difficult than we first
expected, and discussion of it still
continues [19, 20].

A related, but less serious, gquestion
was what to do with the rational root of a
negative number, a question which arose
because the exponent (as in the expression
“8%2+3) would normally be presented as an
approximation to a rational. Since we
wished to make the mathematics behave
you thought it did in high school" we
wished to treat such cases properly at
least for rationals with denominators of
reasonable size. This was achieved by
determining the result sign by a continued
fraction expansion of the right argument
(but only for negative left arguments) and
worked for all denominators up to 80 and
"most" above.

as

Most of the mathematical functions
required were provided by programs taken
from the work of the late Hirondo Kuki in
the FORTRAN IV Subroutine Library. Certain
functions (such as the inverse hyperbolics)
were, however, not available and were
developed, during the summers of 1967 and
1968, by K. M. Brown, then on the faculty
of Cornell University.

The fundamental decision concerning
the systems environment was the adoption of
the concept of a workspace. As defined in
"The APL\360 Terminal System" [21]:

APL\360 is built around the idea of a
workspace, analogous to a notebook,
in which one keeps work in progress.
The workspace holds both defined
functions and variables (data), and
it may be stored into and retrieved
from a library holding many such
workspaces. When retrieved from a
library by an appropriate command
from a terminal, a copy of the stored
workspace becomes active at that
terminal, and the functions defined
in it, together with all the APL
primitives, become available to the
user.

The three commands required for
managing a library are "save",
"load", and "drop", which
respectively store a copy of an
active workspace into a library, make
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a copy of a stored workspace active,
and destroy the library copy of a
workspace. Each user of the system
has a private library into which only
he can store. However, he may load
a workspace from any of a number of
common libraries, or if he is privy
to the necessary information, from
another user's private library.
Functions or variables in different
workspaces can be combined, either
item by item or all at once, by a
fourth command, called "copy". By
means of three cataloging commands, a
user may get the names of workspaces
in his own or a common library, or
get a listing of functions or
variables in his active workspace.

The language used to control the
system functions of loading and storing
workspaces was not APL, but comprised a set
of system commands. The first character of
each system command is a right parenthesis,
which cannot occur at the left of a valid
APL expression, and therefore acts as an
"escape character", freeing the syntax of
what follows. System commands were used
for other aspects such as sign-on and
sign-off, messages to other users, and for
the setting and sensing of various system
parameters such as the index origin, the
printing precision, the print width, and
the random link used in generating the
pseudo-random sequence for the random
function.

When it first became necessary to
name the implementation we chose the
acronym formed from the book title A
Programming Language [10] and, to allow a
clear distinction between the language and
any particular implementation of it,
initiated the use of the machine name as
part of the name of the implementation (as
in APL\1130 and APL\360). Within the
design group we had until that time simply
referred to "the language".

A brief working manual of the APL\360
system was first published in November 1966
[22], and a full manual appeared in 1968
[23]. The initial implementation (in
FORTRAN on an IBM 7090) was discussed by
Abrams [24], and the time-shared
implementation on System/360 was discussed
by Breed and Lathwell [25].

3 SYSTEMS

Use of the APL system by others in
IBM began long before it had been completed
to the point described in APL\360 User's
Manual [23]. We gquickly learned the -
difficulties associated with changing the
specifications of a system already in use,
and the impact of changes on established
users and programs. As a result we learned



to appreciate the importance of the
relatively long period of development of
the language which preceded the
implementation; early implementation of
languages tends to stifle radical change,
limiting further development to the
addition of features and frills.

On the other hand, we also learned
the advantages of a running model of the
language in exposing anomalies and, in
particular, the advantage of input from a
large population of users concerned with a
broad range of applications. This use
quickly exposed the major deficiencies of
the system.

Some of these deficiencies were
rectified by the generalization of certain
functions and the addition of others in a
process of gradual evolution. Examples
include the extension of the catenation
function to apply to arrays other than
vectors and to permit lamination, and the
addition of a generalized matrix inverse
function discussed by M.A. Jenkins [26].

Other deficiencies were of a systems
nature, concerning the need to communicate
between concurrent APL programs (as in our
description of System/360), to communicate
with the APL system itself within APL
rather than by the ad hoc device of system
commands, to communicate with alien systems
and devices (as in the use of file
devices), and the need to define functions
within the language in terms of their
representation by APL arrays. These
matters required more fundamental
innovations and led to what we have called
the system phase.

The most pressing practical need for
the application of APL systems to
commercial data processing was the
provision of file facilities. One of the
first commercial systems to provide this
was the File Subsystem reported by Sharp
[27] in 1970, and defined in a SHARE
presentation by L.M. Breed [28], and in a
manual published by Scientific Time Sharing
Corporation [29]. As its name implies, it
was not an integral part of the language
but was, like the system commands, a
practical ad hoc solution to a pressing
problem.

In 1970 R.H. Lathwell proposed what
was to become the basis of a general
solution to many systems problems of
APL\360, a shared variable processor [30]
which implemented the shared variable
scheme of communication among processors.
This work culminated in the APLSV System
[31] which became generally available in
19735

Falkoff's "Some Implications of
Shared Variables" [32] presents the

essential notion of the shared variable
system as follows:

A user of early APL systems
essentially had what appeared to be
an "APL machine" at his disposal, but
one which lacked access to the rest
of the world. 1In more recent
systems, such as APLSV and others,
this isolation is overcome and
communication with other users and
the host system is provided for by
shared variables.

Two classes of shared variables are
available in these systems. First,
there is a general shared variable
facility with which a user may
establish arbitrary, temporary,
interfaces with other users or with
auxiliary processors. Through the
latter, communication may be had with
other elements of the host systen,
such as its file subsystem, or with
other systems altogether. Second,
there is a set of system variables
which define parts of the permanent
interface between an APL program and
the underlying processor. These are
used for interrogating and
controlling the computing
environment, such as the origin for
array indexing or the action to be
taken upon the occurrence of certain
exceptional conditions.

4. A DETAILED EXAMPLE

At the risk of placing undue emphasis
on one facet of the language, we will now
examine in detail the evolution of the
treatment of numeric constants, in order to
illustrate how substantial changes were
commonly arrived at by a sequence of small
steps.

Any numeric constant, including a
constant vector, can be written as an
expression involving APL primitive
functions applied to decimal numbers as,
for example, in 3.14x10*-5 and -2.718 and
(3.14x10%*-5),(-2.718),5. At the outset we
permitted only non-negative decimal
constants of the form 2.718, and all other
values had to be expressed as compound
statements.

Use of the monadic negation function
in producing negative values in vectors was
particularly cumbersome, as in
(-4),3,(-5),-7. We soon realized that the
adoption of a specific "negative" symbol
would solve the problem, and familiarity
with Beberman's work [33] led us to the
adoption of his "high minus" which we had,
rather fortuitously, included in our
character set. The constant vector used
above could now be written as ~4,3,75, 7.
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Solution of the problem of negative
numbers emphasized the remaining
awkwardness of factors of the form 10xWN.

At a meeting of the principals in Chicago,
which included Donald Mitchell and Peter
Calingaert of Science Research Associates,
it was realized that the introduction of a
scaled form of constant in the manner used
in FORTRAN would not complicate the syntax,
and this was soon adopted.

These refinements left one function
in the writing of any vector constant,
namely, catenation. The straightforward
execution of an expression for a constant
vector of N elements involved ¥N-1
catenations of scalars with vectors of
increasing length, the handling of roughly
.5xNxN+1 elements in all. To avoid gross
inefficiencies in the input of a constant
vector from the keyboard, catenation was
therefore given special treatment in the
original implementation.

This system had been in use for
perhaps six months when it occurred to
Falkoff that since commas were not required
in the normal representation of a matrix,
vector constants might do without them as
well. This seemed outrageously simple, and
we looked for flaws. Finding none we
adopted and implemented the idea
immediately, but it took some time to
overcome the habit of writing expressions
such as (3,3)pX instead of 3 3pX.

5. CONCLUSIONS

Nearly all programming languages are
rooted in mathematical notation, employing
such fundamental notions as functions,
variables, and the decimal (or other radix)
representation of numbers, and a view of
programming languages as part of the
longer-range development of mathematical
notation can serve to illuminate their
development.

Before the advent of the
general-purpose computer, mathematical
notation had, in a long and painful
evolution well-described in Cajori's
history of mathematical notations [34],
embraced a number of important notions:

1. The notion of assigning an
alphabetic name to a variable or
unknown quantity (Cajori, Secs.
339-341).

2. The notion of a function which
applies to an argument or arguments
to produce an explicit result which
can itself serve as argument to
another function, and the associated
adoption of specific symbols (such as
+ and x) to denote the more common
functions (Cajori, Secs. 200-233).
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3. Aggregation or grouping symbols
(such as the parentheses) which make
possible the use of composite
expressions with an unambiguous
specification of the order in which
the component functions are to be
executed (Cajori, Secs. 342-355).

4. Simple, uniform representations
for numeric quantities (Cajori, Secs.
276-289).

5. The treatment of quantities
without concern for the particular
representation used.

6. The notion of treating vectors,
matrices, and higher-dimensional
arrays as entities, which had by this
time become fairly widespread in
mathematics, physics, and
engineering.

With the first computer languages
(machine languages) all of these notions
were, for good practical reasons, dropped;
variable names were represented by
"register numbers", application of a
function (as in 4+B) was necessarily broken
into a sequence of operations (such as
"Load register 801 into the Addend
register, Load register 802 into the Augend
register, etc."), grouping of operations
was therefore non-existent, the various
functions provided were represented by
numbers rather than by familiar
mathematical symbols, results depended
sharply on the particular representation
used in the machine, and the use of arrays,
as such, disappeared.

Some of these limitations were soon
removed in early "automatic programming"
languages, and languages such as FORTRAN
introduced a limited treatment of arrays,
but many of the original limitations
remain. For example, in FORTRAN and
related languages the size of an array is
not a language concept, the asterisk is
used instead of any of the familiar
mathematical symbols for multiplication,
the power function is represented by two
occurrences of this symbol rather than by a
distinct symbol, and concern with
representation still survives in
declarations.

APL has, in its development, remained
much closer to mathematical notation,
retaining (or selecting one of) established
symbols where possible, and employing
mathematical terminology. Principles of
simplicity and uniformity have, however,
been given precedence, and these have led
to certain departures from conventional
mathematical notation as, for example, the
adoption of a single form (analogous to
3+4) for dyadic functions, a single form
(analogous to -4) for monadic functions,



and the adoption of a uniform rule ror the
application of all scalar functions to
arrays. This relationship to mathematical
notation has been discussed in The Design
of APL [1] and in "Algebra as a Language"
which occurs as Appendix A in Algebra: an
algorithmic treatment [35].

The close ties with mathematical
notation are evident in such things as the
reduction operator (a generalization of
sigma notation), the inner product (a
generalization of matrix product), and the
outer product (a generalization of the
outer product used in tensor analysis). 1In
other aspects the relation to mathematical
notation is closer than might appear. For
example, the order of execution of the
conventional expression F G H (X) can be
expressed by saying that the right argument
of each function is the value of the entire
expression to its right; this rule,
extended to dyadic as well as monadic
functions, is the rule used in APL.
Moreover, the term operator is used in the
same sense as in “derivative operator" or
"convolution operator" in mathematics, and
to avoid conflict it is not used as a
synonym for function.

As a corollary we may remark that the
other major programming languages, although
known to the designers of APL, exerted
little or no influence, because of their
radical departures from the line of
development of mathematical notation which
APL continued. A concise view of the
current use of the language, together with
comments on matters such as writing style,
may be found in Falkoff's review of the
1975 and 1976 International APL Congresses
C361].

Although this is not the place to
discuss the future, it should be remarked
that the evolution of APL is far from
finished. In particular, there remain
large areas of mathematics, such as set
theory and vector calculus, which can
clearly be incorporated in APL through the
introduction of further operators.

There are also a number of important
features which are already in the abstract
language, in the sense that their
incorporation requires little or no new
definition, but are as yet absent from most
implementations. Examples include complex
numbers, the possibility of defining
functions of ambiguous valence (already
incorporated in at least two systems
[37, 38]), the use of user defined
functions in conjunction with operators,
and the use of selection functions other
than indexing to the left of the assignment
arrow.

We conclude with some general
comments, taken from The Design of APL [1],

on principles which guided, and
circumstances which shaped, the evolution
of APL:

The actual operative principles
guiding the design of any complex
system must be few and broad. In the
present instance we believe these
principles to be simplicity and
practicality. Simplicity enters in
four guises: wuniformity (rules are
few and simple), generality (a small
number of general functions provide
as special cases a host of more
specialized functions), familiarity
(familiar symbols and usages are
adopted whenever possible), and
brevity (economy of expression is
sought). Practicality is manifested
in two respects: concern with actual
application of the language, and
concern with the practical
limitations imposed by existing
equipment.

We believe that the design of APL was
also affected in important respects
by a number of procedures and
circumstances. Firstly, from its
inception APL has been developed by
using it in a succession of areas.
This emphasis on application clearly
favors practicality and simplicity.
The treatment of many different areas
fostered generalization: for
example, the general inner product
was developed in attempting to obtain
the advantages of ordinary matrix
algebra in the treatment of symbolic
logic.

Secondly, the lack of any machine
realization of the language during
the first seven or eight years of its
development allowed the designers the
freedom to make radical changes, a
freedom not normally enjoyed by
designers who must observe the needs
of a large working population
dependent on the language for their
daily computing needs. This
circumstance was due more to the
dearth of interest in the language
than to foresight.

Thirdly, at every stage the design of
the language was controlled by a
small group of not more than five
people. In particular, the men who
designed (and coded) the
implementation were part of the
language design group, and all
members of the design group were
involved in broad decisions affecting
the implementation. On the other
hand, many ideas were received and
accepted from people outside the
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design group, particularly from
active users of some implementation
of APL.

Finally, design decisions were made
by Quaker consensus; controversial
innovations were deferred until they
could be revised or reevaluated so as
to obtain unanimous agreement.
Unanimity was not achieved without
cost in time and effort, and many
divergent paths were explored and
assessed. For example, many
different notations for the circular
and hyperbolic functions were
entertained over a period of more
than a year before the present scheme
was proposed, whereupon it was
guickly adopted. As the language
grows, more effort is needed to
explore the ramifications of any
major innovation. Moreover, greater
care is needed in introducing new
facilities, to avoid the possibility
of later retraction that would
inconvenience thousands of users.
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APL LANGUAGE SUMMARY

APL is a general-purpose programming language with the
following characteristics (reprinted from APL Language [4]):

The primitive objects of the language are arrays (lists,
tables, lists of tables, etc.). For example, A+B is
meaningful for any arrays A4 and B, the size of an array
(pA) is a primitive function, and arrays may be indexed
by arrays as in A[3 1 4 2],

The syntax is simple: there are only three statement
types (name assignment, branch, or neither), there is no
function precedence hierarchy, functions have either one,
two, or no arguments, and primitive functions and defined
functions (programs) are treated alike.

The semantic rules are few: the definitions of primitve
functions are independent of the representations of data
to which they apply, all scalar functions are extended to
other arrays in the same way (that is, item-by-item), and
primitive functions have no hidden effects (so-called
side-effects).

The sequence control is simple: one statement type
embraces all types of branches (conditional,
unconditional, computed, etc.), and the termination of
the execution of any function always returns control to
the point of use.

External communication is established by means of
variables which are shared between APL and other systems
or subsystems. These shared variables are treated both
syntactically and semantically like other variables. A
subclass of shared variables, system variables, provides
convenient communication between APL programs and their
environment.

The utility of the primitive functions is vastly enhanced
by operators which modify their behavior in a systematic
manner. For example, reduction (denoted by /) modifies a
function to apply over all elements of a list, as in +/L
for summation of the items of L. The remaining operators
are scan (running totals, running maxima, etc.), the axis
operator which, for example, allows reduction and scan to
be applied over a specified axis (rows or columns) of a
table, the outer product, which produces tables of values
as in RATE. . *YEARS for an interest table, and the inner
product, a simple generalization of matrix product which
is exceedingly useful in data processing and other
non-mathematical applications.

The number of primitive functions is small enough that
each is represented by a single easily-read and
easily-written symbol, yet the set of primitives embraces
operations from simple addition to grading (sorting) and

formatting. The complete set can be classified as
follows:
Arithmetic: + - x + * @ o | L [ ! H
Boolean and Relational: VY A ¥ & ~ < < = 2 > =
Selection and Structural: / \ /# %X [;1 + +p , ¢ R e

General: € 1?2 L T AV e ¥
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PROGRAMMING STYLE IN APL

Kenneth E. Iverson
IBM Thomas J. Watson Research Center
Yorktown Heights, New York

When all the techniques of program management and programming practice have been applied, there
remain vast differences in quality of code produced by different programmers. These differences turn
not so much upon the use of specific tricks or techniques as upon a general manner of expression,
which, by analogy with natural language, we will refer to as style. This paper addresses the question
of developing good programming style in APL.

Because it does not rest upon specific techniques, good style cannot be taught in a direct manner, but
it can be fostered by the acquisition of certain habits of thought. The following sections should
therefore be read more as examples of general habits to be identified and fostered, than as specific
prescriptions of good technique.

In programming, as in the use of natural languages, questions of style depend upon the purpose of
the writing. In the present paper, emphasis is placed upon clarity of expression rather than upon
efficiency in space and time in execution. However, clarity is often a major contributor to efficiency,
either directly, in providing a fuller understanding of the problem and leading to the choice of a better,
more flexible, and more easily documented solution, or indirectly, by providing a clear and complete
model which may then be adapted (perhaps by programmers other than the original designer) to the
characteristics of any particular implementation of APL.

All examples are expressed in 0-origin. Examples chosen from fields unfamiliar to any reader should
perhaps be skimmed lightly on first reading.

1. Assimilation of Primitives and Phrases

Knowledge of the bare definition of a primitive can permit its use in situations where its applicability
is clearly recognizable. Effective use, however, must rest upon a more intimate knowledge, a feeling
of familiarity, an ability to view it from different vantage points, and an ability to recognize similar
uses in seemingly dissimilar applications.

One technique for developing intimate knowledge of a primitive or a phrase is to create at least one
clear and general example of its use, an example which can be retained as a graphic picture of its
behavior when attempting to apply it in complex situations. We will now give examples of creating
such pictures for three important cases, the outer product, the inner product, and the dyadic transpose.

Outer product. The formal definition of the result of the expression F<A° .fB for a specified primitive
f and arrays 4 and B of ranks 3 and 4 respectively, may be expressed as:

R[H;I;J3K3;L;M;N]<—A[H;I;J] f B[K;L;M;N]
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Although this definition is essentially complete, it may not be very helpful to the beginner in forming
a manageable picture of the outer product.

To this end it might be better to begin with the examples:

No.+N«1 2 3 4 No . xN
2345 1 2 3 4
3 & 58 2 4 6 8
4L 56 7 3 6 9 12
586 728 4 8 12 16

and emphasize the fact that these outer products are the familiar addition and multiplication tables,
and that, more generally, 4o .fB yields a function table for the function f applied to the sets of
arguments A and B.

One might reinforce the idea by examples in which the outer product illuminates the definition,
properties, or applicability of the functions involved. For example, the expressions
So.xS« 3 2 1 01 2 3,and xS0.xS yield an interesting picture of the rule of signs in multipli-
cation, and the expressions Fo .=V and Ro.<V and ' *'[Ro.=V] (with V«(X-3)x(X+1+17)-5 and
with R specified as the range of V, that is, 7«8 7 6 5 4 3 2 1 0 1) illustrate the applicability
of outer products in defining and producing graphs and bar charts. These and other uses of outer
products as function tables are treated in Iverson [1].

Useful pictures of outer products of higher rank may also be formed. For example,
Do .VDo.vD+0 1 gives a rank three function table for the or function with three arguments, and if
A is a matrix of altitudes of points in a rectangular area of land and C is a vector of contour levels
to be indicated on a map of the area, then the expression Co.<4 relates the points to the contour
levels and +#Co .<A gives the index of the contour level appropriate to each point.

Inner Product. Although the inner product is perhaps most used with at least one argument of rank
two or more, a picture of its behavior and wide applicability is perhaps best obtained (in the manner
employed in Chapter 13 of Reference 1) by first exploring its significance when applied to vector
arguments. For example:

Pe2 3 & T 44
@e2 0 2 1 O

+/Px@Q Total cost in terms of price and quantity.
21

L/P+Q Minimum trip of two legs with distances to and from
3 connecting point given by P and @.

x/Px@ The number whose prime factorization is specified by
700 the exponents Q.

+/Px@Q Torque due to weights @ placed at positions P
21 relative to the axis.

The first and last examples above illustrate the fact that the same expression may be given different
interpretations in different fields of application.

The inner product is defined in terms of expressions of the form used above. Thus, P+.xQ <« +/PxQ
and, more generally for any pair of scalar functions f and g, Pf.g@ <> f/PgQ. The extension to arrays
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of higher rank is made in terms of the definition for vectors; each element of the result is the inner
product of a pair of vectors from the two arguments. For the case of matrix arguments, this can be
represented by the following picture:

R+ . xC
76 5 ﬂ- |
rR[3 21 ol T8l
2 4 6 8 P
L 31211 0
+.x |7 130i“ 6
2 31218 4
1 2i1l0 3
c

The +.x inner product applied to two vectors V and W (as in V+.xW) can be construed as a
weighted sum of the vector V, whose elements are each “weighted” by multiplication by the cor-
responding elements of ¥, and then summed. This notion can be extended to give a useful interpretation
of the expression M+.xW, for a matrix ¥, as a weighted sum of the column vectors of #. Thus:

We3d 1 4
eM«1+3 3p19

NS F e
® ;N
0 o w

M+ . xW
17 41 65

This result can be seen to be equivalent to writing the elements of W below the columns of ¥,
multiplying each column vector of by the element below it, and adding.

If W is replaced by a boolean vector B (whose elements are zeros or ones), then M+.xB can still be
construed as a weighted sum, but can also be construed as sums over subsets of the rows of ¥, the
subsets being chosen by the 1’s in the boolean vector. For example:

Bel O 1

M+ .xB
4L 10 6

B/M

=3
0 o w

+/B/M
4 10 16

Finally, by using an expression of the form Mx.*B instead of M+.xB, a boolean vector can be used
to apply multiplication over a specified subset of each of the rows of M. Thus:

Mx .%B
3 24 B3

x/B/M
3 24 63

This use of boolean vectors to apply functions over specified subsets of arrays will be pursued further
in the section on generalization, using boolean matrices as well as vectors.
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Dyadic transpose. Although the transposition of a matrix is easy to picture (as an interchange of
rows and columns), the dyadic transpose of an array of higher rank is not, as may be seen by trying
to compare the following arrays:

A 2 1 394 3 2 184

ABCD ABCD AM

EFGH MNOP EQ

IJKL IU
EFGH

MNOP QRST BN

QRST FR

UVWX IJKEL JV
UVWX

co

63

KW

DP

HT

Lx

The difficulty increases when we permit left arguments with repeated elements which produce “diago-
nal sections” of the original array. This general transpose is, however, a very useful function and worth
considerable effort to assimilate. The following example of its use may help.

The associativity of a function f is normally expressed by the identity:

XE(YfZ )« (XfY)f
Z

and a test of the associativity of the function on some specified domain D«<1 2 3 can be made by
comparing the two function tables Do .f(Deo .fD) and (Do .f
D)o .fD corresponding to the left and right sides of the identity. For example:

D«1 2 3
«L<Do .- (Do .-D) («R«(Do.-D)o.-D L=R
1 2 3 172 3 000
0 1 2 T2 73 Ty 000
1 0 4 "3 4 5 000
2 3 i 0 1 2 000
L 2 3 12 "3 000
0 1 2 23 b 000
3 4 5 1 01 000
2 3 & 0 1 2 000
1 2 3 1 72 73 000
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N o ESR

0
[(JeL<«Deo .+ (Do .4+D) [(R<(Do .+D)o .+D L=R

3 45 345 1 1
4 5 6 L 56 5 1 e
5 8 7 5 6 7 i e
4 56 4 56 i [ R
56 7 56 7 5 [ O
6 7 8 6 7 8 134
5 & 7 5 6 7 o I P
& 7 8 6 7 8 2 4 i
78 9 7838 s U |

For the case of logical functions, the test made by comparing the function tables can be made complete,
since the functions are defined on a finite domain D«0 1. For example:

D«<0 1

A/ ,(Do.V(Do.VD))=((De.VD)o.VD)
il

Af (Do .2(Ds .2D) Y=( (Do .2£D0) ¢ .2D)
2

A/ (Do .~(Do.~D))=((Do.AD)o .~D)
0

Turning to the identity for the distribution of one function over another we have expressions such
as:

X (Y42 )+ (Xx¥ )+ (X%Z )
and
XA(YVZ )<= (XAY)V(XAZ)

Attempting to write the function table comparison for the latter case as:

L«Do .A(Do .VD)
R«<(Do.AD)o .V (Do .AD)

we encounter a difficulty since the two sides L and # do not even agree in rank, being of ranks 3
and 4.

The difficulty clearly arises from the fact that the axes of the left and right function tables must agree
according to the names in the original identity; in particular, the X in position 0 on the left and in
positions 0 and 2 on the right implies that axes 0 and 2 on the right must be “run together” to form

a single axis in position 0. The complete disposition of the four axes on the right can be seen to be
described by the vector 0 1 0 2, showing where in the result each of the original axes is to appear.
This is a paraphrase of the definition of the dyadic transpose, and we can therefore compare L with
0 1 0 28R. Thus:

A/ ,(Do.A(Do.VD))=0 1 0 28((Do.AD)o.V(Do.AD))

The idea of thorough assimilation discussed thus far in terms of primitive expressions can be applied
equally to commonly used phrases and defined functions. For example:
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1oV The indices of vector V

1ppA The axes of 4

x/pA The number of elements in 4

VIAV] Sorting the vector V

ML A+#R<.-QR«M,0;] Sorting the rows of ¥ into lexical order

QFRM Applying to columns a function F defined on rows

Collections of commonly used phrases and functions may be found in Perlis and Rugaber [2] and
in Macklin [3].

2. Function Definition

A complex system should best be designed not as a single monolithic function, but as a structure built
from component functions which are meaningful in themselves and which may in turn be realized
from simpler components. In order to interact with other elements of a system, and therefore serve
as a “building block”, a component must possess inputs and outputs. A defined function with an
explicit argument, or arguments, and an explicit result provides such a component.

If a component function produces side effects by setting global variables used by other components,
the interaction between components becomes much more difficult to analyze and comprehend than if
communication between components is limited to their explicit arguments and explicit results. Ideally,
systems should be designed with communication so constrained and, in practice, the number of global
variables employed should be severely limited.

Because the fundamental definition form in APL (produced by the use of V or by [JFX, and commonly
called the del form) is necessarily general, it permits the definition of functions which produce side
effects, which have no explicit arguments, and which have no explicit results. The direct form which
uses the symbols o and w (as defined in Iverson [4]) exercises a discipline more appropriate to good
design, allowing only the definition of functions with explicit results, and localizing all names which
are specified within the function, thereby eliminating side effects outside of it.

The direct form of definition may be either simple or conditional. The latter form will be discussed
in section 6. The simple form may be illustrated as follows. The expression

F:uthz:a

may be read as “F is defined by the expression w+4:a, where a represents the first argument of F
and w represents the second”. Thus 8 F 3 yields 3.5.

If a direct definition is to produce a machine executable function, the definition must be translated by a suitable
function. For example, if this translation is called DEF, then:

DEF DEF
F:at+iw SORT : wl[ Aw]
F SORT

3 F y SORT 31 4 36 27186
3.25 1 2334 686 7

DEF DEF
P:+/axw*1pa POL: (wo .*1pa)+.xa
P POL

13 31 P4 13 31 POL B4 2 34
128 18 27 B4 125
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The direct form of definition will be used in the examples which follow. The question of the
translation function DEF is discussed in Appendix A.

3. Generality

It is often possible to take a function defined for a specific purpose and modify it so that it applies
to a wider class of problems. For example, the function 4AV: (+/w)+pw may be applied to a numeric
vector to produce its average. However, it fails to apply to average all rows in a matrix; the simple
modification AV2:(+/w)+ 14pw not only permits this, but applies to average the vectors along the
last axis of any array, including the case of a vector.

The problem might also be generalized to a weighted average, in which a vector left argument specifies
the weights to be applied in summation, the result being normalized by division by the total weight.
Again this function could be defined to apply to a vector right argument in the form
WAV : (+/axw) ++/a, but, applying the inner product in the manner discussed in the preceding section,
we may define a function which applies to matrices:

WAV2 : (w+.x0)++/a

Thus:
[*M<3 Lp112
e 1 2 3
b 5 6 7
8 9 10 41
W<2 1 3 4
W WAV2 M
1.9 5.9 9.9

The same function may be interpreted in different ways in different disciplines. For example, if column
I of M gives the coordinates of a mass of weight W[I], then W WAV2 M is the center of gravity of the
set of masses. Moreover, if the elements of W are required to be non-negative, then the result
W WAV2 M is always a point in the convex space defined by the points of ¥, that is a point within
the body whose vertices are given by M. This can be more easily seen in the following equivalent

function:
WAV3 :w+.x(wi+/a)
in which the weights are normalized to sum to 1.

Striving to write functions in a general way not only leads to functions with wider applicability, but
often provides greater insight into the problem. We will attempt to illustrate this in three areas,
functions on subsets, indexing, and polynomials.

Functions on subsets. It is often necessary to apply some function (such as addition or maximum)
over all elements in some subset of a given list. For example, to sum all non-negative elements in
the list X3 "4 2 0 ~3 7, we might first define the boolean vector which identifies the desired subset,
then select the set, and then sum it:

¥
3420 37

X=20 (X=20)/X +/(X20)/X
o T 32 07 12
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In general, if B is a boolean vector which defines a subset, we may write +/B/X. However, as seen
in the discussion of inner product, this may also be written in the form X+.xB, and in this form it
applies more generally to a boolean matrix (or higher rank array) in which the columns (or vectors
along the leading axis) determine the different subsets. For example, if

OeB«(4p2)T12%4
60 0600001214121 3131119
00 0011i1i000011 41 1
g6 1100141001100 9131
0191ppl1o0iglololaeild

then the columns of B represent all possible subsets of a vector of four elements, and if X«2 3 5 7
then:

X+.xB
75312 3 108 15 2 9 7 14 § 12 10 1%

yields the sums over all subsets of X, including the empty set (0 0 0 0), and the complete set
(111 1)

It is also easy to establish that

Xx.*B
17 5353 21 15 105 2 14 10 70 6 42 30 210

yields the products over all subsets, and that (for non-negative vectors X) the expression

Xl .xB
O7T 57375 T27%85 737517

yields the maxima over all subsets of X. This last expression holds only for non-negative values of
X, but could be replaced by the more general expression M+ (X-M<«| /X)[ .xB. A more general approach
to this problem (in terms of a new operator) is discussed in Section 2 of Iverson [5].

If we have a list A with repeated elements, and if we need to evaluate some costly function 7 on each
element of A, then it may be efficient to evaluate 7 only on the nub of 4 (consisting of the distinct
elements of A) and then distribute the results to the appropriate positions to yield #A. Thus:

Function Definition Example

A«3 235 2 3

Nub NUB: ((1pw)=wiw)/w NUB A
3 2 5
Distribution DIS:(NUB)o.=w DIS A
101001
019010
0@ o 1 O 0
Example F:wx2 F A
9 4 9 254 9
F NUB A
9 4 25

(F NUB A)+.xDIS A
94 9 254 9
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From the foregoing it may be seen that an inner product post-multiplication by the distribution matrix
DIS A distributes the results ¥ NUB A appropriately. The distribution function may also be used to
perform aggregation or summarization. For example, if C is a vector of costs associated with the
account numbers recorded in 4, then summarization of the costs for each account may be obtained
by pre-multiplication by DIS A. Thus:

€«1 2 3 4 5§ 6
(DIS A)+.xC
10 7 4

Indexing. If ¥ is a matrix of N« 14pM columns, and if I and o are scalars, then element M[I;cJ]
can be selected from the ravel RF<,M by the expression R[ (NxI)+J]. More generally, if X is a
two-rowed matrix whose columns are indices to elements of , then these elements may be selected
much more easily from R (by the expression R[ (NxX[0;])+K[1;]]) than from ¥ itself. Moreover,
the indexing expression can be simplified to R[(N,1)+.xK], or to R[ (pM)LK].

The last form is interesting in that it applies to an array M of any rank P, provided that X has P
rows. More generally, it applies to an index array X of any rank (provided that (ppM)=1tpK) to
produce a result of shape 14pX. To summarize, we may define a general indexing function:

SUB: (,a)[(pa)lw]

and use it as in the following examples:

[J«M«3 3p19 +K<3|2 5p110
0 1 2 O 1201
3 4 5 204 2 0
6 7 8
M SUB K
237 2 3
M SUB 3|2 3 5p130
04 804
8 04 80
4L 8 0 4 8
(4 4 Ypryx3) SUB 4|3 2 6p2x136

0 42 0 42 0 42
0 42 0 42 0 42

This use of the base value function in the expression (pa).iw correctly suggests the possible use of
the inverse expression (pa)Tw to obtain the indices to an array a in terms of the index to its ravel
(that is, w).

Polynomials. If 7:+/axw*1pa, then the expression C F X evaluates the polynomial with coefficients
C for the scalar argument X. The more general function:

P:(wo.*1pa)+. X0
applies to a vector right argument and (since we .*1pa is then a matrix ¥, and since M+ .xa is a linear
function of a) emphasizes the fact that the polynomial is a linear function of its coefficients. If
(pw)=pa, then M is square, and if the elements of w are all distinct (that is, (pw)=pNUB)), then
MIN is non-singular, and the function:

FIT: (Bwe.*1pa)+.xa
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is inverse to P in the sense that:
C« (C PX) FIT X and Y « (Y FIT X)P X

In other words, if Y<F X for some scalar function 7, then ¥ FIT X yields the coefficients of the
polynomial which fits the function 7 at the points (arguments) X. For example:

3vYex«0 .5 1 1.5
1.000 1.649 2.718 4, 482
3vC<Y FIT X
1.000 1.059 .296 .364
3%C P X

1.000 1.649 2.718 4.482
The function F can be defined in a neater equivalent form, using the dyadic form of [, as
FIT:oBwe .*1pa. Moreover, the more general function:

LSF :ofdwo . * 1N

(which depends upon the global variable V) vyields the ¥ coefficients of the polynomial of order
N-1 which best fits the function a«Fw in the least squares sense. Thus:

N<l
3%Y LSF X
1.000 1.059 .296 .364
N<3 N<2
3¥C«Y LSF X 3¥vC<«YLSF X
1014 631 1.118% «73% 2,308
3%C P X 3%C P X
1.014 1.608 2.759 L.468 .735 1.886 3.038 4.189

The case N+«2 yields the best straight line fit. It can be used, for example, in estimating the “compound
interest” or “growth rate” of a function that is assumed to be approximately exponential. This is done
by fitting the logarithm of the values and then taking the exponential of the result. For example:

X=0 1 2 3 4§
37Y«300x1.09*X
300.000 327.000 356.430 388.509 423.474 461.587
N+«2
39E«(®Y) LSF X
5.704 .086
*F
300 1.09
3¥(*E[0])x(*E[1])*X
300.000 327.000 356.430 388.509 423.474 461.587 .
37Y«Y+?6p[JRL«50
300.000 355.000 395.430 434.509 u454.474 508.587
3vE«(®Y) LSF X
5.749 .099
*E
313.7594974 1.104368699
3v(*E[0])x(*E[1])*X
313.759 346.506 382.671 §22.609 466.717 BH15.427
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The growth rate is *E[ 1], and the estimated compound interest rate is therefore given by the function
ECI:100x 1+x14(®x) LSF w
For example:

1¥I«Y ECT X
10.4
3F(*E[0])x(1+.01xI)*X
313.759 346.506 382.671 422.609 466.717 515.427

General considerations can often lead to simple solutions of specific problems. Consider, for example,
the definition of a “times” function T for the multiplication of polynomials, that is:

(¢ PX)x{D P X) = (T D) PX

The function T is easily shown to be linear in both its left and right arguments, and can therefore
be expressed in the form C+.xB+.xD. The array B is a boolean array whose unit elements serve to
multiply together appropriate elements of ¢ and D, and whose zeros suppress contributions from other
pairs of elements. The elements of B are determined by the exponents associated with C, with D, and
with the result vector, that is, 1pC and 1pD and 1p1+C,D. For each element of the result, the
“deficiency” of each element of the exponents associated with D is given by the table
S«(1p1+4C,D)o.-1pD, and the array B is obtained by comparing this deficiency with the contributions
from the exponents associated with C, that is, (1pC)e.=S5. To summarize, the times function may
be defined as follows:

T:o+.x(0Bw)+.xw
B:(1pa)o.=(1pl¥a,w)e.-1pw

For example:

[eFe(C+1 2 1) T" (P+1 3 B 1)
15 40 10 5 1

Since the expression a+.x(aBw) yields a matrix, it appears that the inverse problem of defining a
function DB (divided by) for polynomial division might be solved by inverting this matrix. To this
end we define a related function BQ expressed in terms of E and C, rather than in terms of ¢ and
D:

B@:(1pa)e.=(1pw)e.-11+(pw)-pa
and consider the matrix M<C+.xC B E.

The expression (EM)+.xE fails to work properly because ¥ is not square, and we recognize two cases,
the first being given by inverting the top part of ¥ (that is, EI(2pL/pM)+M) and yielding a quotient
with high-order remainder, and the second by inverting the bottom part and yielding a quotient with
low order remainder. Thus:

DBHO: (Dta)E(2pD« |L/pM)+M«w+ . xwBRo.
DBLO: (D+a )E(2pD<-L /oM) +Mecw+ . xwBQa
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For example:

F<1 5 10 10 7 4 E«<47101051
C+<1 2 1 gl 20 4
«@<«E DBHO C (Q<«E DBLO C
13 3 4 1 & 3 2
OFR<«E-C T @Q OYR«E-C T @
g 8 0 @ 2 3 320000

The treatment of polynomials is a prolific source of examples of the insights provided by precise
general functions for various processes, insights which often lead to better ways of carrying out
commonly-needed hand calculations. For example, a function E for the expansion of a polynomial C
(defined more precisely by the relation (E C)P X <> C P X+1) can be defined as:

E:(BC pw)+.xw BCs(1w)e. 1w

Working out an example shows that manual expansion of C can be carried out be jotting down the
table of binomial coefficients of order pC (that is, BC pw) and then taking a weighted sum of its
columns, the weights being the elements of C.

4. Identities

An identity is an equivalence between two different expressions. Although identities are commonly
thought of only as tools of mathematical analysis, they can be an important practical tool for simplfying
and otherwise modifying expressions used in defining functions.

Consider, for example, a function ¥ which applied to a boolean vector suppresses all 1’s after the first.
It could be used, for example, in the expression (~F X='D')/X to suppress the first D in a character
string X. The function could be defined as F: (w11)=1pw. However, the following identity holds:

(wr1l)=1pwe—<\w
and we may therefore use one or other of the equivalent functions:
F:(wl)=1pw G:<\w

One may react to a putative identity in several ways: accept it on faith and use it as a practical tool,
work some examples to gain confidence and a feeling for why it works, or prove its validity in a general
way. The last two take more time, but often lead to further insights and further identities. Thus the
application of the functions F and G to a few examples might lead one to see that G applies in a
straightforward way to the rows of a matrix, but ' does not, that both can be applied to locate the
first zero by the expressions ~F~B and ~G~B, and (perhaps) that the latter case (that is, ~<\~B)
can be replaced by the simpler expression <\B.

As a second example, consider the expression Y« ( (~B)/X),B/X with B«X<2. The result is to classify
the elements of X by placing all those in a specified class (those less than or equal to 2) at the tail

end of Y. More generally, we may define a classification function ¢ which classifies the elements of
its right argument according to its boolean left argument:

C:((~a)/w),a/w
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For example:

X<3 14 7 2
[JB<«X<?2

041 @ 6 1
B € X

3 L 2

Since the result of C is a permutation of its right argument, it should be possible to define an equivalent
function in the form w[V], where V is some permutation vector. It can be shown that the appropriate
permutation vector is simply Aa. For example:

AB X[AB]
02314 34712

Thus:
P:wlda] and C:((~a)/w),a/w
are equivalent functions.

For any given function there are often related functions (such as an inverse) of practical interest. For
example, if V<B C X, then there is some inverse function CI such that B CI V yields X. Moreover,
the definition of a related function may be much easier to derive from one of several different
equivalent definitions of the original function than from the others. Thus the definition of the inverse
CI may not be immediately evident from the definition C, but from the definition P it is clear that
what is needed is the inverse permutation. Thus:

CI:wlhhal]
V<B C X BCIV
34712 3 14 7T 2

Finally, a given formulation of a function may suggest a simple formulation for a similar function.
For example, the application of the function P with a left argument containing a single 1 can be seen
to effect a rotation of that suffix of the right argument marked off by the location of the 1. This
suggests the following formulation for a function which rotates each of the segments marked off by
the 1’s in the left argument:

RS :wlAa++\a]

100100010 RS "ABCDEFGHI"
BCAEFGDIH

Dualities. We will now consider one class of very useful identities in some detail. The most familiar
example of the class is known as deMorgan’s law and is expressed as follows:

XAY = ~(~X)V(~Y)
Useful related forms of deMorgan’s law are:
AT o el

AV > ~v\~T7
MV . AN <> (~M)A.V(~N)
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DeMorgan’s law concerns a relation between the functions and, or, and not (A v ~), and we say that
A is the dual of v with respect to ~. Each of the boolean functions of two arguments possess a dual
with respect to ~. For example, X<Y <> ~(~X)<(~Y), and from this the three related identities
</V «+> ~</~V, etc.) follow in the manner shown above. The five dual pairs of boolean functions
are:

\% N < = >
A A~ <

These dualities are frequently useful in simplifying expressions used in logical selections. For example,
we have already seen the use of the duality between < and < to replace the expression ~<\~w by
N\w.

Useful dualities are not limited to boolean functions. For example, maximum and minimum ([ and
L) are dual with respect to arithmetic negation (-) as follows:

XY %+ ~(-X)L{-Y)
Again the related forms of duality follow.

More generally, duality is defined in terms of any monadic function # and its inverse MI as follows:
a function F is said to be the dual of a function G with respect to ¥ if:

XFY -+ M (MX)GMY)

In the preceding examples of duality, each of the monadic functions used (~ and -) happened to be
self-inverse and MI was therefore indistinguishable from M.

The general form includes the duality with respect to the natural logarithm function @ which lies at
the root of the use of logarithm tables and addition to perform multiplication, namely:

x/X > x+/®X

The use of base ten logarithms rests similarly on duality with respect to the monadic function
108w and its inverse 10*w:

x/X > 10%x+/10@X

5. Proofs

A proof is a demonstration of the validity of an identity based upon other identities or facts already
proven or accepted. For example, deMorgan’s law may be proved by simply evaluating the two
supposedly equivalent expressions (XAY and ~(~X)v(~Y)) for all possible combinations of boolean
values of X and Y:

X Y XY =X =¥ (~X)¥(~Y) ==X}V (~Y)
0 O 0 al 1 1 0
0 A 0 gl 0 1 0
1 0 0 0 1 p 0
1 1 1 0 0 0 1

An identity which is useful and important enough to be used in the proofs of other identities is
commonly called a theorem. Thus:
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Theorem 1 (AxB)o .x(Pxg) <> (Ao.xP)x(Bo.xq)

We will prove theorem 1 itself for vectors 4,B,P, and @ by calling the results of the left and right
expressions L and R and showing that for any indices I and ¢/, the values of L[I;J/] and R[I;cJ]
agree. We do this by writing a sequence of equivalent expressions, citing at the right of each expression
the basis for believing it to be equivalent to the preceding one. Thus:

LLId ]

((AxB)o.x(Px@))[I;J] Def of L

(AxB) [I1x(Px@)[J] Def of o.x
(A[LIIxBLI1)x(PLJIxQLJ]) Def of vector x

R[I;J]

((Ao .xP)x(Bo.xQ))[I:J] Def of R

(Ao .xP)[I3J]x(Bo.xQ)[I;J] Def of matrix x
(ALIIxPLJ])x(BLIIxQLJ]) Def of o.x
(ALIIxBLI])x(PLJIxQLJI]) x associates and commutes

Comparison of the expressions ending the two sequences completes the proof.

We will now state a second theorem (whose proof for vector variables is given in Iverson [6]), and
use it in a proof that the product of two polynomials C P X and D P X is equivalent to the expression
+/,(Co.xD)xX*x(1pC)o.+1pD:

Theorem 2 +/ ,Vo.xW <> (+/V)x(+/W)

Thus:

Theorem 3 (C B X)x(D P X)
(+/CxX*xE<«1pC)x(+/DxX*xF«1pD) Def of P
+/, (CxX*E) o .x(DxXF) Theorem 2
+/,(Co.xD)x((X*E)o .x(X*F)) Theorem 1

+/,(Co.xD)xX*Eo .+F
The final step is based on the fact that (X*4)x(X*B) <> X*A+B.

A proof in which every step is fully justified is called a formal proof; a step which is justified less
formally by the observation of some general pattern is called an informal proof. We will now illustrate
an informal proof by assigning values to the arguments ¢ and D and displaying the tables Co.xD and
Eo .+F occurring in the last line of theorem 3:

C<3 1 4 E<1pC
De2 0 3 1 F«1pD
Co . %D Eo .+F

6 0 9 3 01 2 3

2 0 3 1 12 3 4

8 0 12 L 2 34 5

Since the elements of Eo .+F are exponents of X, and since the I'th diagonal of o .+F (beginning with
the zeroth) has the values I, each element of the I'th diagonal of Co.xD is multiplied by X*I. We
may therefore conclude (informally) that the expression is equivalent to a polynomial whose coefficient
vector is formed by summing the diagonals of Co.xD. Using theorem 3 as well, we therefore conclude
that this polynomial is equivalent to the product of the polynomials C P w and D P w.
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Many useful identities concern what are called (in APL Language [7]) structural and selection
functions, such as reshape, transpose, indexing, and compression. For example, a succession of dyadic
transpositions can be reduced to a single equivalent transposition by the following identity:

IQJQA > I[JIRA

The proof is given in Iverson [5]. Further examples of proofs in APL may be found in Orth [8]
and in Iverson [1,4].

6. Recursive Definition

A function can sometimes be defined very neatly by using it in its own definition. For example, the
factorial function F:x/1+1w could be defined alternatively by saying that 7 w +> wxF w-1 and giving
the auxiliary information that in the case w=0 the value of the function is 1. Such a definition which
utilizes the function being defined is called a recursive definition.

The direct definition form as defined in Iverson [4] permits a ‘“‘conditional” definition such as:
G:w:w<0:-w

Such a definition includes three expressions separated by colons and is interpreted by executing the
middle one, then executing the first or the last, according to whether the value of the (first element
of the) middle one is zero or not. Thus ¢ w is (for scalar arguments) equivalent to |w.

This conditional form is convenient for making recursive definitions. For example, the factorial func-
tion discussed above could be defined as F:wxFw-1:w=0:1, and a function to generate the binomial
coefficients of a given order could be defined recursively as:

BC:(Z,0)+0,Z«BCw-1:w=0:1
For example

BC 2 BC 3 BC 4
1 2 1 1331 14641

Recursive definition can be an extremely useful tool, but one that may require considerable effort to assimilate.
The study of existing recursive definitions (as in Chapters 7 and 8 of Orth [8] and Chapter 10 of Iverson
[4] ) may prove helpful. Perhaps the best way to grasp a particular definition is to execute it in detail for a
few simple cases, either manually or on the computer. The details of computer execution can usually be suitably
exhibited by inserting [J¢ at one or more points in the definition. We might, for example, modify and
execute the binomial coefficient function BC as follows:

BC:(Z,0)+0,Z2BCw-1:0=0:1

Q«BC 3

We will now give two less trivial recursive definitions for study. The first generates all permutations
of a specified order as follows:
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PER: (-L(1'w)=x!'X)0X, (('w),X)pPERX«w-1:w=1:1 1p0

PER 3 Q'ABCD'[PER 4]
210 DDDDDDABBACCBACCABCCABBA
2 0 1 CCABBADDDDDDABBACCBACCAB
021 BACCABCCABBADDDDDDABBACC
12 @ ABBACCBACCABCCABEADDDDDD
102
012

The second is a solution of the “topological sort” problem discussed on pages 258-268 of Knuth [9].
Briefly stated, an ¥ by ¥ boolean matrix can specify “precedences” required in the ordering of I items
(which may represent the steps to be carried out in some production process). If the positions of the
1’s in row I indicate which items must precede item I, then the function:

PR:oa[A(-pa)t8] PR S#S/w:AN/S«V/w:(-1tpw)+a

provides a solution in the sense that it permutes its vector left argument to satisfy the constraints
imposed by the matrix right argument. For example:

C+«"ATSFX"
M C PR M PROC PROC[ (15)PR M;]
010411 TFXAS ADDRESS TEXT
000O00O0 TEXT FIGURES
01011 STAMP XEROX
000O00O FIGURES ADDRESS
81040 XEROX STAMP

If the required orderings among certain items are inconsistent and cannot be satisfied, they are
suppressed from the result.

7. Properties of Defined Functions

Defined functions used as building blocks in the development of a complex system play much the same
role as primitives, and the comments made on the assimilation of primitives apply equally to such
defined functions. Moreover, a clear understanding of the properties of functions under design may
contribute to their design.

Many of the general properties of primitives (such as their systematic extension to arrays and the
existence of primitive inverse functions) are also useful in defined functions and should be preserved
as much as possible. The section on generality addressed certain aspects of this, and we now briefly
address some others, including choice of names, application of operators, and the provision of inverse
functions.

The names of primitive functions are graphic symbols, and the ease of distinguishing them from the
names of arguments contributes to the readability of expressions. It is also possible to adopt naming
schemes which distinguish defined functions from arguments, or which even distinguish several sub-
classes of defined functions. The choice of mnemonic names for functions can also contribute to clarity;
the use of the direct form of definition properly focusses attention on the choice of function names
rather than on the choice of argument names.

Present APL implementations limit the application of operators (such as reduction and inner product)
to primitive functions, and do not allow the use of defined functions in expressions such as ¥/ and
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o.F. For any defined function F it is sometimes useful (although questions of efficiency may limit
the usefulness to experimentation rather than general use) to define a corresponding outer product
function OPF, and a corresponding reduction function RF. For example:

Fiat+w
OPF:(ao.+0xw) F (ax0)o.+w
RF:(14w) F RF 1iw:1=pw:wl[0]

A«3 7 11
B«2 5 10
AFB A OPF B RF B
3.8 7.2 11.1 e G2 Bl 2.196078431
7.8 7«2 71
11:58 11,2 11.1

The importance of inverse functions in mathematics is indicated in part by the number of inverse pairs
of functions provided, such as the pair XOw and (-K)Ow, the pair B®w and B*w, and the pair

w*N and w*:N. Their importance in non-numeric applications is not so commonly recognized, and
it is well to keep the matter in mind in designing functions. For example, in designing functions
GET and PUT for accessing files, it is advantageous to design them as inverses in the sense that the
expression K PUT K GET 'FILENAME' will produce no change in the file.

Other examples of useful inverse pairs include the permutations w[P] and w[AP] defined by a given
permutation vector P, the classification function C:w[Aa] and its inverse (discussed in Section 4)
CI:wlAba], and the “cumulative sum” or “integration” function CS and its inverse, the “difference
function” DF defined as follows:

CS:++\w

DF:w-0, 14w

A#3 & 7 11 13 17

cs A DF A
3 8 15 26 39 56 3224 24

DF CS A CS DF A
&8 7 44 13 17 85 % 1 138 47

8. Efficiency

Emphasis on clarity of expression in designing a system may contribute greatly to its efficiency by
leading to the choice of a superior overall approach, but it may also lead to solutions which violate
the space constraints of a particular implementation or make ineffective use of the facilities which it
provides. It is therefore necessary at some point to consider the characteristics of the particular
implementation to be used. The speed and space characteristics of the various implementations of APL
are too varied to be considered here. There are, however, a number of identities which are of rather
general use.

Expressions involving inner and outer products often lead to space requirements which can be allevi-
ated by partitioning the arguments. For example, if 4 and B are vectors and F<Ao.f B, then the ¥
by N segment of the result represented by (¥,N)+R can be computed as (M+4)o.f (N4B), and M and
N can be chosen to make the best use of available space. The resulting segments may be stored in
files or, if the subsequent expressions to be applied to the result permit it, they may be applied to
the segments. For example, if the complete expression is +/Ao .fB, then each of the segments may
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be summed as they are produced. Expressions of the form (M,N)+FR can also be generalized to apply
to higher rank arrays and to select any desired rectangular segment.

If X is a vector, the reduction +/X can be partitioned by use of the identity:
+/X > (+/K+X)+(+/KX)

and this identity applies more generally for reduction by any associative function F. Moreover, this
identity provides the basis for the partitioning of inner products, a generalization of the partitioning
used in matrix algebra which is discussed more fully in Iverson [6].

The direct use of the distribution function DIS of Section 3 for summarization (in the form
(DIS A)+.xC) may lead to excessive use of both time and space. Such problems can often be alleviated
in a.general way by the use of sorting. For example, the expression R<A[P<AA] produces an ordered
list of the account numbers in which all repetitions of any one account number are adjacent. The points
of change in account numbers are therefore given by the boolean vector B«<R#z 1¢F and if the costs
C are ordered similarly by S«C[P], then the summarization may be performed by summing over the
intervals of S marked off by B.

The sorting process discussed above may itself be partitioned, and the subsequent summarization steps
may, for reasons of efficiency, be incorporated directly in the sorting process. Many of the uses of
sorting in data processing are in fact obvious or disguised realizations of some classification problem,
and a simpler statement of the essential process may lead simply to different efficient realizations
appropriate to different implementations of APL.

Like the inner and outer product, recursive definitions often make excessive demands on space. In
some cases, as in the function PER discussed in Section 6, the size of the arguments to which the
function is successively applied decreases so rapidly that the recursive definition does not greatly
increase the space requirements. In others, as in the function PR of Section 6, the space requirements
may be excessive, and the recursive definition can be translated (usually in a straightforward manner)
into a more space-efficient iterative program. For example, the following non-recursive definition is
such a translation of the function PR:

X«A PRN W
L1:>(A/S«V/W)/L2
A<ALA(-pA)1S]
W<S#S/W

~L1
L2:Z2+(-11pW)+A

9. Reading

Perhaps the most important habit in the development of good style in a language remains to be
mentioned, the habit of critical reading. Such reading should not be limited to collections of well-turned
and useful phrases, such as Bartlett’s Quotations or the collections of References 2 and 3, nor should
it be limited to topics in a reader’s particular speciality.

Manuals and other books about a language are, like grammars and dictionaries in natural language,
essential, but reading should not be confined to them. Emphasis should be placed rather on the reading
of books which use the language in the treatment of other topics, as in the references already cited,
in Berry et al [10,11], in Blaauw [12], and in Spence [13].
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The APL neophyte should not be dissuaded from reading by the occurrence of long expressions whose
meanings are not immediately clear; because the sequence of execution is clear and unambiguous, the
reader can always work through sample executions accurately, either with pencil and paper, with a
computer, or both. An example of this is discussed at length in Section 1.1 of Iverson [4].

Moreover, the neophyte need not be dissuaded from reading by the occurrence of some unfamiliar
primitives, since all primitives can be summarized (together with examples) in two brief tables (pages
32 and 44 of APL Language [7]), and since these tables are usable after the reading of two short
sections: Fundamentals (pages 21-28) and Operators (pages 39-43).

Finally, one may benefit from the critical reading of mediocre writing as well as good; good writing
may present new turns of phrase, but mediocre writing may spur the reader to improve upon it.

10. Conclusions

This paper has addressed the question of style, the manner in which something is said as distinct
from the substance. The techniques suggested for fostering good style are analogous to techniques
appropriate to natural language: intimate knowledge of vocabulary (primitives) and commonly used
phrases (certain defined functions), facility in abstract expression (generality), mastery of a variety
of equivalent ways of expressing a matter (identities), a knowledge of techniques for examining and
establishing such equivalences (proofs), a precise general method for using an expression in its own
definition (recursion), and an emphasis on wide critical reading in rather than about the language.

If one accepts the importance of good style in APL, then one should consider the implications of these
techniques for the teaching of APL. Current courses and textbooks typically follow the inappropriate
model set by the teaching of earlier programming languages, which are not so simply structured and
not so easy to introduce (as one introduces mathematical notation) in the context of some reasonably
elaborate use of the language. Moreover, they place little or no emphasis on reading in APL and
little on the structure of the language, often confusing, for example, the crucial distinction between
operators and functions by using the same term for both. APL Language [7] does present this
structure, but, being designed for reference, is not itself a sufficient basis for a course.
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Appendix A
Translation from Direct to Del Form

The problem of translation from the direct to the del form of function definition is fully discussed
in Section 10.4 of Iverson [4], the discussion culminating in a set of translation functions usable (or
easily adapted for use) on most implementations of APL. Because it is aimed primarily at an
exposition of the translation problem, the functions developed in this presentation leave many secondary
problems (such as the avoidance of name conflicts) to the user, and the following translation functions
and associated variables may be found more convenient for experimentation with the use of direct
definition:

DeFS FaFTid s K@ :[1I0

>((2|+/E=""1v')YvA/ 1 3 z+/':" I9 E)/pD«(2p0I0«0)p""

F«'a X9 ' R 'w Y9 ' R9 E«, 1 1 +0CR OFX 'Q',"' ',[ 0.5],E
F<14pD«(0,-6-+/I)4 (- (3xI)++\I«"':" I9 F)OQ(7,pF)p (TxpF)+F
D«30(COL((2L21V/'aw"' I9 E),1+I),53]),8D[;0,(I«2+1F-2),1]
J((T1QI)AJ«>£ 0 ~1 &< I9 E)/K«+\I<0, 1+I«EeA9
K<v/((-K)PIo.>11+4[/K)[3J-1]

D<«D,(F,pE)+® 0 2 +(K+2xK<10K)d' ',E,[0.5] ';!

Z<X R9 YN
Z«(,((14X) I9 Y)o.2zN+1)/,Y,((pY), 1+N<pX)pl+X

Z«A I9 B
Z+(Ao .=B)A((pA),pB)p~2|+\B=11""?

Z9«DEF
Z9<JFX F9 [

(B
79+«
Y979+«
¥9Z9«X9
)/3>(0=1+%,
-+0,0p29+«
79+«

A9
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXY Z[]

The foregoing functions were designed more for brevity than clarity; nevertheless the reader who
wishes to study the translation process in detail may find it useful to compare them with those of
Reference 4.

For serious use of direct definition, one should augment the foregoing with functions which record
the definitions presented, display them on demand, and provide for convenient editing. For example,
execution of:

DEF

DEFR:0pe'R',Y,"«X' ,0pYJFX F9 X+{"
DEFR
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produces a function DEFR which, like DEF, fixes the definition of any function F presented to it in
direct form, but which also records the original definition (for later display or editing) in the associated
variable FF. The display of a desired function could then be produced by the following definition:

DEFR
DISPLAY:2,(NA.=( 1tpN)4'R',[1) #N«{INL 2

For example:

DEFR
PLUS:a+w

DISPLAY
PLUS
PLUS:a+w
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Notation as a Tool of Thought

Kenneth E. Iverson

IBM Thomas J. Watson Research Center

The importance of nomenclature, notation, and
language as tools of thought has long been recog-
nized. In chemistry and in botany, for example,
the establishment of systems of nomenclature by
Lavoisier and Linnaeus did much to stimulate and
to channel later investigation. Concerning lan-
guage, George Boole in his Laws of Thought
[1, p.24] asserted "That language is an instru-
ment of human reason, and not merely a medium
for the expression of thought, is a truth generally
admitted."

Mathematical notation provides perhaps the
best-known and best-developed example of lan-
guage used consciously as a tool of thought. Recog-
nition of the important role of notation in mathe-
matics is clear from the quotations from mathema-
ticians given in Cajori's A History of Mathemat-
ical Notations [2, pp.332,331]. They are well
worth reading in full, but the following excerpts
suggest the tone:

By relieving the brain of all unnecessary work,
a good notation sets it free to concentrate on
more advanced problems, and in effect increases

the mental power of the race.
A.N. Whitehead

The quantity of meaning compressed into small
space by algebraic signs, is another circum-
stance that facilitates the reasonings we are

accustomed to carry on by their aid.
Charles Babbage

Nevertheless, mathematical notation has seri-
ous deficiencies. In particular, it lacks universali-
ty, and must be interpreted differently according
to the topic, according to the author, and even
according to the immediate context. Programming
languages, because they were designed for the pur-

pose of directing computers, offer important ad-
vantages as tools of thought. Not only are they
universal (general-purpose), but they are also exec-
utable and unambiguous. Executability makes it
possible to use computers to perform extensive
experiments on ideas expressed in a programming
language and the lack of ambiguity makes possible
precise thought experiments. In other respects,
however, most programming languages are decided-
ly inferior to mathematical notation and are little
used as tools of thought in ways that would be
considered significant by, say, an applied mathe-
matician.

The thesis of the present paper is that the ad-
vantages of executability and universality found in
programming languages can be effectively com-
bined, in a single coherent language, with the ad-
vantages offered by mathematical notation. It is
developed in four stages:

(a)Section 1 identifies salient characteristics of
mathematical notation and uses simple prob-
lems to illustrate how these characteristics may
be provided in an executable notation.

(b)Sections 2 and 3 continue this illustration by
deeper treatment of a set of topics chosen for
their general interest and utility. Section 2
concerns polynomials, and Section 3 concerns
transformations between representations of
functions relevant to a number of topics, includ-
ing permutations and directed graphs. Al-
though these topics might be characterized as
mathematical, they are directly relevant to
computer programming, and their relevance
will increase as programming continues to de-
velop into a legitimate mathematical discipline.

(c)Section 4 provides examples of identities and
formal proofs. Many of these formal proofs
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concern identities established informally and
used in preceeding sections.

(d)The concluding section provides some general
comparisons with mathematical notation, refer-
ences to treatments of other topics, and discus-
sion of the problem of introducing notation in
context.

The executable language to be used is APL, a
general purpose language which originated in an
attempt to provide clear and precise expression in
writing and teaching, and which was implemented
as a programming language only after several years
of use and development [3].

Although many readers will be unfamiliar with
APL, I have chosen not to provide a separate intro-
duction to it, but rather to introduce it in context
as needed. Mathematical notation is always intro-
duced in this way rather than being taught, as pro-
gramming languages commonly are, in a separate
course. Notation suited as a tool of thought in any
topic should permit easy introduction in the con-
text of that topic; one advantage of introducing
APL in context here is that the reader may assess
the relative difficulty of such introduction.

However, introduction in context is incompati-
ble with complete discussion of all nuances of each
bit of notation, and the reader must be prepared to
either extend the definitions in obvious and sys-
tematic ways as required in later uses, or to con-
sult a reference work. All of the notation used
here is summarized in Appendix A, and is covered
fully in pages 24-60 of APL Language [4].

Readers having access to some machine embodi-
ment of APL may wish to translate the function
definitions given here in direct definition form
[5, p.10] (using « and « to represent the left and
right arguments) to the canonical form required
for execution. A function for performing this
translation automatically is given in Appendix B.

1. Important Characteristics of Notation

In addition to the executability and universali-
ty emphasized in the introduction, a good notation
should embody characteristics familiar to any user
of mathematical notation:

-Ease of expressing constructsarising in problems.
-Suggestivity.

-Ability tosubordinate detail.

-Economy.

-Amenability to formal proofs.
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The foregoing is not intended as an exhaustive list,
but will be used to shape the subsequent discus-
sion.

Unambiguous executability of the notation in-
troduced remains important, and will be emphasiz-
ed by displaying below an expression the explicit
result produced by it. To maintain the distinction
between expressions and results, the expressions
will be indented as they automatically are on APL
computers. For example, the integer function de-
noted by . produces a vector of the first » integers

when applied to the argument », and the sum
reduction denoted by :/ produces the sum of the
elements of its vector argument, and will be shown
as follows:

15
1 2 3 45
+/15
5
We will use one non-executable bit of notation:
the symbol «- appearing between two expressions

asserts their equivalance.

1.1 Ease of Expressing Constructs Arising in
Problems

If it is to be effective as a tool of thought, a
notation must allow convenient expression not only
of notions arising directly from a problem, but also
of those arising in subsequent analysis, generaliza-
tion, and specialization.

Consider, for example, the crystal structure
illustrated by Figure 1, in which successive layers
of atoms lie not directly on top of one another, but
lie ""close-packed" between those below them. The
numbers of atoms in successive rows from the top
in Figure 1 are therefore given by ¢, and the total
number is given by +/.5.

The three-dimensional structure of such a crys-
tal is also close-packed; the atoms in the plane
lying above Figure 1 would lie between the atoms
in the plane below it, and would have a base row of
four atoms. The complete three-dimensional
structure corresponding to Figure 1 is therefore a
tetrahedron whose planes have bases of lengths 1, 2,
3, v, and s. The numbers in successive planes are
therefore the partial sums of the vector .s, that
is, the sum of the first element, the sum of the
first two elements, etc. Such partial sums of a
vector v are denoted by +\v, the function +\ being
called sum scan. Thus:

+\15
1 36 10 15

+#¥\15
35



The final expression gives the total number of at-
oms in the tetrahedron.

The sum /.5 can be represented graphically in
other ways, such as shown on the left of Figure 2.
Combined with the inverted pattern on the right,
this representation suggests that the sum may be
simply related to the number of units in a rectan-
gle, that is, to a product.

The lengths of the rows of the figure formed by
pushing together the two parts of Figure 2 are giv-
en by adding the vector .s to the same vector rev-
ersed. Thus:

5

i 2 3 4 5
$15
54 3 21
(15)+(d15)
6 6 6 6 6
Fig. 1. Fig. 2.
o 8] 0oooo
o o oo 0ooo
o oo 0oo ooo
oo oo oopo 0o
o000 o0 Doooo 0

This pattern of s repetitions of s may be expressed
as sps, and we have:

5p6
6 6 6 6 6

+/5p6
30

6x5
30
The fact that +/506 «- 6x5 follows from the defini-
tion of multiplication as repeated addition.

The foregoing suggests that +/.5 <+ (sx5)+2, and,

more generally, that:

+/ N +> ((N+1)xN)#2 Al

1.2 Suggestivity

A notation will be said to be suggestive if the
forms of the expressions arising in one set of prob-
lems suggest related expressions which find appli-
cation in other problems. We will now consider
related uses of the functions introduced thus far,
namely:

1 ¢ P +/ +A\
The example:

Sp2
22 22 2
x/5p2
32
suggests that =/mov «» v«m, where - represents the
power function. The similiarity between the defi-

nitions of power in terms of times, and of times in

terms of plus may therefore be exhibited as fol-
lows:

x/MpN ++ N*xM

+/MpN +> NxM
Similar expressions for partial sums and partial
products may be developed as follows:

x\5p2
2 4 8 16 32

2*15
2 418 16 32

*\MpN > N*1M

+\MpN +» Nx1M
Because they can be represented by a triangle as
in Figure 1, the sums +\.s are called triangular
numbers. They are a special case of the figurate
numbers obtained by repeated applications of sum
scan, beginning either with +\.», or with +\wp1.

Thus:

5p1 +\+\5p1
SO B U O ¢ 1. 3 B 20 S

+\5p1 +\+\+\5p1
12 34 5 1 4 10 20 35

Replacing sums over the successive integers by
products yields the factorials as follows:

15

1 2345
% /45 x\15
120 1 2 6 24 120
8 15
120 1 26 24 120

Part of the suggestive power of a language re-
sides in the ability to represent identities in brief,
general, and easily remembered forms. We will
illustrate this by expressing dualities between
functions in a form which embraces DeMorgan 's
laws, multiplication by the use of logarithms, and
other less familiar identities.

If v is a vector of positive numbers, then the
product /v may be obtained by taking the natural
logarithms of each element of v (denoted by ev),
summing them (+/ev), and applying the exponential
function (++/ev). Thus:

x/V =+ *+/0V

Since the exponential function - is the inverse of
the natural logarithm e, the general form suggested
by the right side of the identity is:

IG F/G V
where ¢ 1s the function inverse to -.

Using » and v to denote the functions and and
or, and ~ to denote the self-inverse function of
logical negation, we may express DeMorgan 's laws
for an arbitrary number of elements by:
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A/B ++ ~v/~B
v/B ++ ~a/~B
The elements of & are, of course, restricted to the
boolean values o and 1. Using the relation symbols
to denote functions (for example, r<v yields 1 if x
is less than v and o otherwise) we can express fur-
ther dualities, such as:

=/B ++ ~=/~B
=/B ++ ~2/~B
Finally, using r and | to denote the maximum
and minimum functions, we can express dualities
which involve arithmetic negation:

(/V +> ~L/-V
LAV s =L f=p
It may also be noted that scan (r\) may replace
reduction (/) in any of the foregoing dualities.

1.3 Subordination of Detail

As Babbage remarked in the passage cited by
Cajori, brevity facilitates reasoning. Brevity is
achieved by subordinating detail, and we will here
consider three important ways of doing this: the
use of arrays, the assignment of names to functions
and variables, and the use of operators.

We have already seen examples of the brevity
provided by one-dimensional arrays (vectors) in
the treatment of duality, and further subordina-
tion is provided by matrices and other arrays of
higher rank, since functions defined on vectors are
extended systematically to arrays of higher rank.

In particular, one may specify the axis to which
a function applies. For example, ¢t1)# acts along
the first axis of a matrix » to reverse each of the
columns, and ¢r21m reverses each row; »,r11~ caten-
ates columns (placing » above v), and »,r21~ caten-
ates rows; and +/r11¥ sums columns and +/r21m
sums rows. If no axis is specified, the function
applies along the last axis. Thus +/» sums rows.
Finally, reduction and scan along the first axis
may be denoted by the symbols / and .

Two uses of names may be distinguished:
constant names which have fixed referents are
used for entities of very general utility, and ad hoc
names are assigned (by means of the symbol +) to
quantities of interest in a narrower context. For
example, the constant (name) 144 has a fixed refer-
ent, but the names crare, raver, and row assigned by
the expressions

CRATE + 144

LAYER « CRATE:8
ROW + LAYER+3
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are ad hoc, or variable names. Constant names for
vectors are also provided, as in 2 3 s 7 11 for a nu-
meric vector of five elements, and in r4scoe' for a
character vector of five elements.

Analogous distinctions are made in the names
of functions. Constant names such as +, ~, and -
are assigned to so-called primitive functions of
general utility. The detailed definitions, such as
+/mpn for vxu and x/mon for v-», are subordinated by
the constant names ~ and -.

Less familiar examples of constant function
names are provided by the comma which catenates
its arguments as illustrated by:

Cis),(¥5) =+ 1 2 3 4 §5 w3 2 1

and by the base-representation function -, which
produces a representation of its right argument in
the radix specified by its left argument. For exam-
ple:

222TT3%0121

22 2T wws 3 00

BN+2 2 2 701 23 4567
BN

01111

1 120011
01010101

BN ,$BN
09803 13T 1214313120000
00110061111001100
01010101

The matrix s» is an important one, since it can be
viewed in several ways. In addition to representing
the binary numbers, the columns represent all sub-
sets of a set of three elements, as well as the en-

tries in a truth table for three boolean arguments.
The general expression for » elements is easily seen
to be (wo2)r(12-v)-1, and we may wish to assign an
ad hoc name to this function. Using the direct
definition form (Appendix B), the name 1 is as-
signed to this function as follows:

T:(wp2)T7(12*%w)-1 A2

The symbol . represents the argument of the func-
tion; in the case of two arguments the left is repre-
sented by «. Following such a definition of the
function 7, the expression r : yields the boolean
matrix s» shown above.

Three expressions, separated by colons, are also
used to define a function as follows: the middle
expression is executed first; if its value is zero the
first expression is executed, if not, the last expres-
sion is executed. This form is convenient for re-
cursive definitions, in which the function is used
in its own definition. For example, a function
which produces binomial coefficients of an order



specified by its argument may be defined recur-
sively as follows:

BC:(X,0)+(0,X+BC w-1):w=0:1 A3

Thus sc 0 «» 1and 8¢ 1 «+» 1 1and Bc 4 «+ 1 4 6 & 1.

The term operator, used in the strict sense
defined in mathematics rather than loosely as a
synonym for function, refers to an entity which
applies to functions to produce functions; an exam-
ple is the derivative operator.

We have already met two operators, reduction,
and scan, denoted by , and \, and seen how they
contribute to brevity by applying to different func-
tions to produce families of related functions such
as +/ and «/ and »/,. We will now illustrate the
notion further by introducing the inner product
operator denoted by a period. A function (such as
+/) produced by an operator will be called a
derived function.

If » and ¢ are two vectors, then the inner prod-
uct +. is defined by:

P+.xQ +=+ +/PxQ

and analogous definitions hold for function pairs
other than + and -. For example:
Ped'3 5

Q2 1 2
Pt.xQ

Px.*Q
300
PL.+Q
Each of the foregoing expressions has at least
one useful interpretation: r:.«¢ is the total cost of
order quantities ¢ for items whose prices are given
by r; because r is a vector of primes, rx.+¢ is the
number whose prime decomposition is given by the
exponents ¢; and if r gives distances from a source

to transhipment points and ¢ gives distances from
the transhipment points to the destination, then
PL.+q gives the minimum distance possible.
The function .~ is equivalent to the inner product
or dot product of mathematics, and is extended to
matrices as in mathematics. Other cases such as
.+ are extended analogously. For example, if 7 is
the function defined by A.2, then:

T3
00001111
00110011
01010101

P+.xT 3 Px »T 3

0 538276510 135 3 195 5 10 6 30

These examples bring out an important point: if
5 is boolean, then r+.-s produces sums over subsets
of » specified by 1 's in &, and #-.+s produces prod-
ucts over subsets.

The phrase -.- is a special use of the inner
product operator to produce a derived function
which yields products of each element of its left
argument with each element of its right. For ex-
ample:

2 3 S5e.x15
2 G 6 8 10

3 b 9 12 15
§ 10 15 20 2%

The function ..~ is called outer product, as it
is in tensor analysis, and functions such as .+ and
«.» and -.< are defined analogously, producing
"function tables' for the particular functions. For
example:

D«<0 1 2 3
De.[D Deo.2D De . tD
212 3 1000 TR G T
11 2 3 1100 012 3
22 2 13 T & 190 09T 8
3 333 & 307 0001

The symbol : denotes the binomial coefficient
function, and the table o-.:0 1s seen to contain
Pascal 's triangle with its apex at the left; if ex-
tended to negative arguments (as with 0<"3 "2 “1 01
2 3) it will be seen to contain the triangular and higher-
order figurate numbers as well. This extension to
negative arguments is interesting for other func-
tions as well. For example, the table »-.x» consists
of four quadrants separated by a row and a column
of zeros, the quadrants showing clearly the rule of
signs for multiplication.

Patterns in these function tables exhibit other
properties of the functions, allowing brief state-
ments of proofs by exhaustion. For example, com-
mutativity appears as a symmetry about the diago-
nal. More precisely, if the result of the transpose
function » (which reverses the order of the axes of
its argument) applied to a table r<p-.i0 agrees with
7, then the function i is commutative on the do-
main. For example, r-ar«p-.ro produces a table of
1 's because 1 is commutative.

Corresponding tests of associativity require
rank : tables of the form p..r(p-.10) and (pe.10)e.10.
For example:

D«0 1

Do .a(De,.aD) (Do .aD)e.AD De.<(De.<D) (De.sD)e.sD

00 00 3 & 0 1
00 00 1 1 01

00 00 1 4 11
0 1 L S | 01 01

1.4 Economy
The utility of a language as a tool of thought
increases with the range of topics it can treat, but
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decreases with the amount of vocabulary and the
complexity of grammatical rules which the user
must keep in mind. Economy of notation is there-
fore important.

Economy requires that a large number of ideas
be expressible in terms of a relatively small vocab-
ulary. A fundamental scheme for achieving this is
the introduction of grammatical rules by which
meaningful phrases and sentences can be construct-
ed by combining elements of the vocabulary.

This scheme may be illustrated by the first
example treated -- the relatively simple and widely
useful notion of the sum of the first » integers was
not introduced as a primitive, but as a phrase con-
structed from two more generally useful notions,
the function . for the production of a vector of
integers, and the function +/ for the summation of
the elements of a vector. Moreover, the derived
function ./ is itself a phrase, summation being a
derived function constructed from the more gener-
al notion of the reduction operator applied to a
particular function.

Economy is also achieved by generality in the
functions introduced. For example, the definition
of the factorial function denoted by : is not re-
stricted to integers, and the gamma function of «x
may therefore be written as :x-1. Similiarly, the
relations defined on all real arguments provide
several important logical functions when applied to
boolean arguments: exclusive-or (=), material im-
plication (<), and equivalence (-).

The economy achieved for the matters treated
thus far can be assessed by recalling the vocabulary
introduced:

1

P L ] T .
/ \ .

+-x+r0!f L8
VA~CEzZ2o>2

The five functions and three operators listed in the
first two rows are of primary interest, the remain-
ing familiar functions having been introduced to
illustrate the versatility of the operators.

A significant economy of symbols, as opposed to
economy of functions, is attained by allowing any
symbol to represent both a monadic function (i.e.
a function of one argument) and a dyadic func-
tion, in the same manner that the minus sign is
commonly used for both subtraction and negation.
Because the two functions represented may, as in
the case of the minus sign, be related, the burden
of remembering symbols is eased.

For example, x-r and -v represent power and
exponential, rer and er represent base r logarithm
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and natural logarithm, x:v and :v represent divi-
sion and reciprocal, and r:v and :v represent the
binomial coefficient function and the factorial
(that is, x:y«s(:¥):(1x)x(:v-x)). The symbol , used
for the dyadic function of replication also repre-
sents a monadic function which gives the shape of
the argument (that is, r+sxpv), the symbol ¢ used
for the monadic reversal function also represents
the dyadic rotate function exemplified by
2¢15++3 4 5 1 2, and by “2¢.15++4 5 1 2 3, and finally,
the comma represents not only catenation, but also
the monadic ravel, which produces a vector of the
elements of its argument in "row-major" order.
For example:

z 2

T 2 oL
00110101

00 1 1
0 3 0 1
Simplicity of the grammatical rules of a nota-
tion is also important. Because the rules used thus
far have been those familiar in mathematical nota-
tion, they have not been made explicit, but two
simplifications in the order of execution should be
remarked:

(1)All functions are treated alike, and there are no
rules of precedence such as - being executed
before +.

(2)The rule that the right argument of a monadic
function is the value of the entire expression to
its right, implicit in the order of execution of
an expression such as szv coc v, is extended to
dyadic functions.

The second rule has certain useful consequences
in reduction and scan. Since r/v is equivalent to
placing the function r between the elements of v,
the expression -/v gives the alternating sum of the
elements of v, and :/v gives the alternating prod-
uct. Moreover, if s is a boolean vector, then <\z
"isolates" the first 1 in s, since all elements follow-
ing it become o. For example:

<\0 011011 ++0010000

Syntactic rules are further simplified by adopt-
ing a single form for all dyadic functions, which
appear between their arguments, and for all mo-
nadic functions, which appear before their argu-
ments. This contrasts with the variety of rules in
mathematics. For example, the symbols for the
monadic functions of negation, factorial, and mag-

nitude precede, follow, and surround their argu-
ments, respectively. Dyadic functions show even
more variety.



1.5 Amenability to Formal Proofs

The importance of formal proofs and deriva-
tions is clear from their role in mathematics. Sec-
tion 4 is largely devoted to formal proofs, and we
will limit the discussion here to the introduction
of the forms used.

Proof by exhaustion consists of exhaustively
examining all of a finite number of special cases.
Such exhaustion can often be simply expressed by
applying some outer product to arguments which
include all elements of the relevant domain. For
example, if p+o 1, then o..0 gives all cases of appli-
cation of the and function. Moreover,
DeMorgan's law can be proved exhaustively by
comparing each element of the matrix o-.sp with
each element of ~(~p)..v(~p) as follows:

De . AD ~( D)o ;V{ ~D')

00 00
01 01
(De.AD)=(~(~D)e.v(~D))
1 @
11
A/y(De,aD)=(~(~D)e.v(~D))

Questions of associativity can be addressed sim-
ilarly, the following expressions showing the asso-
ciativity of and and the non-associativity of
not-and:

A/ (Do, AD)e . AD)=(De.A(Do.AD))

A/ ((De.»D)e ~D)=(De »(De.»D))

A proof by a sequence of identities is presented
by listing a sequence of expressions, annotating
each expression with the supporting evidence for
its equivalence with its predecessor. For example,
a formal proof of the identity A.1 suggested by the
first example treated would be presented as fol-
lows:

+/\N
+/$N + is associative and commutative

((+/1N)+(+/d1N) )22 (X+X)42+>X
(+/CCAN)+(d1N)))#2 + is associative and commutative
(+/((N+1)pN))+2 Lemma
((N+1)xN)+2 Definition of x
The fourth annotation above concerns an identity
which, after observation of the pattern in the spe-
cial case (15)+(¢15), might be considered obvious or
might be considered worthy of formal proof in a
separate lemma.

Inductive proofs proceed in two steps: 1) some
identity (called the induction hypothesis) is as-
sumed true for a fixed integer value of some par-
ameter » and this assumption is used to prove that
the identity also holds for the value #»+1, and 2)
the identity is shown to hold for some integer val-
ue k. The conclusion is that the identity holds for
all integer values of » which equal or exceed «.

Recursive definitions often provide convenient
bases for inductive proofs. As an example we will
use the recursive definition of the binomial coeffi-
cient function sc given by A.3 in an inductive proof
showing that the sum of the binomial coefficients
of order v is 2+#. As the induction hypothesis we
assume the identity:

+/BC N «+ 2*N

and proceed as follows:

+/BC N+1

+/(X,0)+(0,X+BC N) A3
(+/X,0)+(+/0,X) + is associative and commutative
(+/X)+(+/X) 0+Y++Y
2x+/X Y+Y++2xY
2x+/BC N Definition of X
2x2*N Induction hypothesis
2*N+1 Property of Power (%)

It remains to show that the induction hypothesis
is true for some integer value of ». From the re-
cursive definition A.3, the value of s¢ o is the value
of the rightmost expression, namely 1. Consequent-
ly, +/8¢ o is 1, and therefore equals 2+o.

We will conclude with a proof that
DeMorgan 's law for scalar arguments, represented
by:

AAB ++ ~(~A)v(~B) A4

and proved by exhaustion, can indeed be extended
to vectors of arbitrary length as indicated earlier
by the putative identity:

ALY ¥ vyl A5

As the induction hypothesis we will assume that
A.5 is true for vectors of length (ov)-1.

We will first give formal recursive definitions
of the derived functions and-reduction and
or-reduction (+/ and v/), using two new primitives,
indexing, and drop. Indexing is denoted by an
expression of the form xcr31, where r is a single in-
dex or array of indices of the vector x. For exam-
ple, if x<2 3 s 7, then xr21 is 3, and xr2 11 is 3 2.
Drop is denoted by x+x and is defined to drop i«
(i.e., the magnitude of x) elements from x, from the
head if x>0 and from the tail if x<o. For example,
2+x 18 5 7 and ~2+x is 2 3. The take function (to be
used later) is denoted by + and is defined analo-
gously. For example, 3+xis 2 3 s and “3+x i 3 5 7.

The following functions provide formal defini-
tions of and-reduction and or-reduction:

ANDRED:w[1]AANDRED 1+w:0=pw:1 A6
ORRED :wl[1]v ORRED 14w:0=pw:0 A7
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The inductive proof of A.5 proceeds as follows:

AV

(VL11)a(Aa/14V) A6
~(~VL1] WV (~al1¥V) A4
~(~VL 1] }v{~~v)~13¥) A5
~(~V[1])v(v/~14V) s S5 4
v/ (~VE1])(~14V) A7
~v/~(V[1],1+V) v distributes over ,
V=Y Definition of , (catenation)

2. Polynomials

If ¢ is a vector of coefficients and x is a scalar,
then the polynomial in x with coefficients ¢ may be
written simply as +/cxx+"1+10C, OF +/(X+ 1+1pC)xC,
or (x+"1+0c)+.xc. However, to apply to a non-
scalar array of arguments x, the power function -
should be replaced by the power table ..« as shown
in the following definition of the polynomial func-
tion:

Pi(we.* 1+1pa)+.xa B.1

For example, 1 33120123 4«18 2764 125. If pa
is replaced by 1+0s, then the function applies also
to matrices and higher dimensional arrays of sets
of coefficients representing (along the leading axis
of o) collections of coefficients of different polyno-
mials.

This definition shows clearly that the polyno-
mial is a linear function of the coefficient vector.
Moreover, if « and . are vectors of the same shape,
then the pre-multiplier u:.« 1+1pa is the Vander-
monde matrix of » and is therefore invertible if the
elements of . are distinct. Hence if ¢ and x are
vectors of the same shape, and if v+c ¢ x, then the
inverse (curve-fitting) problem is clearly solved by
applying the matrix inverse function & to the Van-
dermonde matrix and using the identity:

C ++ (BXe.* 1+1pX)+.xY

2.1 Products of Polynomials

The "product of two polynomials » and ¢" is
commonly taken to mean the coefficient vector »
such that:

DEX«++ (BPX)X(CPX)

It is well-known that » can be computed by taking
products over all pairs of elements from z and ¢
and summing over subsets of these products associ-
ated with the same exponent in the result. These
products occur in the function table 5-.xc, and it is
easy to show informally that the powers of x asso-
ciated with the elements of -.xc are given by the
addition table e«(-1+108)c.+("1+1pc). For example:
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X+2

B+3 1 2 3

€+2 0 3

E+("1+1pB)e.+( 1+1pC)

Bo .x(C E X*E
6 0 9 012 1 2 4
2023 3 2 4 8
4 0 6 2 3 4 “ 8 16
6 09 I 4 5 B 16 32

+/,(Bo . xC)xX*E
518

(B B X)x(C B X)
518

The foregoing suggests the following identity,
which will be established formally in Section 4:

(B P X)x(C B X)+++/,(Be.xC)xX*("1+1pB)e.+( 1+1pC) B.2

Moreover, the pattern of the exponent table =
shows that elements of 5-.xc lying on diagonals are
associated with the same power, and that the coef-
ficient vector of the product polynomial is there-
fore given by sums over these diagonals. The table
s..xc therefore provides an excellent organization
for the manual computation of products of polyno-
mials. In the present example these sums give the
vector p+6 2 13 9 5 9, and p p x may be seen to equal
(BPX)x(CEX).

Sums over the required diagonals of s-xc can
also be obtained by bordering it by zeros, skewing
the result by rotating successive rows by successive
integers, and then summing the columns. We thus
obtain a definition for the polynomial product
function as follows:

PP:+#(1-1pa)dac.xw,1+0xa

We will now develop an alternative method
based upon the simple observation that if s rr ¢
produces the product of polynomials 5 and ¢, then
pp is linear in both of its arguments. Consequent-

ly,

PP:a+.xA+.xw

where 4 is an array to be determined. 2 must be of
rank 3, and must depend on the exponents of the
left argument (~1+:pa), of the result (“1+1p14a,0),
and of the right argument. The "deficiencies" of
the right exponent are given by the difference ta-
ble (i1p1+a,0)¢.-1pw, and comparison of these values
with the left exponents yields 4. Thus

A+("1+1pa)e.=((1pléa,w)e.-1pw)
and
PP:a+.x(( " 1+1pa)e.=(1pléa,w)o.-1pw)+.>w

Since a+.x4 is a matrix, this formulation sug-
gests that if p<s rr ¢, then ¢ might be obtained
from » by pre-multiplying it by the inverse matrix
(88+.x4), thus providing division of polynomials.



Since 5+.x4 is not square (having more rows than
columns), this will not work, but by replacing
M~8+.x4 by either its leading square part (2oL /0#)+w,
or by its trailing square part (-201/0#)+¥, One ob-
tains two results, one corresponding to division
with low-order remainder terms, and the other to
division with high-order remainder terms.

2.2 Derivative of a Polynomial

Since the derivative of x«v is wxx+v-1, we may
use the rules for the derivative of a sum of func-
tions and of a product of a function with a con-
stant, to show that the derivative of the polynomi-
al ¢ p x is the polynomial (1+cx"1+10c) 2 x. Using
this result it is clear that the integral is the polyn-
omial (a,c:1pc) 2 x, where 2 is an arbitrary scalar

constant. The expression 14cx"1+10c also yields the

coefficients of the derivative, but as a vector of the
same shape as ¢ and having a final zero element.

2.3 Derivative of a Polynomial with Respect
to Its Roots

If = is a vector of three elements, then the de-
rivatives of the polynomial ~/x-# with respect to
each of its three roots are -(x-ri21)x(x-rr37), and
~(x-RI11)x(x-R[31), and -(x-rRr11)x(x-rc21). More
generally, the derivative of -/x-# with respect to
fs1 1s simply -(x-#)=.«s=10x, and the vector of de-
rivatives with respect to each of the roots is
2 X=R )% nJ o ;4 T=ipR,

The expression -/x-# for a polynomial with
roots # applies only to a scalar r, the more general
expression being ~/x-.-z. Consequently, the gener-
al expression for the matrix of derivatives (of the
polynomial evaluated at xt77 with respect to root
rLs1) 1s given by:

-(Xo.-R)x.w[o,2]+1pR B3

2.4 Expansion of a Polynomial

Binomial expansion concerns the development
of an identity in the form of a polynomial in x for
the expression (x+v)~~v. For the special case of r-1
we have the well-known expression in terms of the
binomial coefficients of order »:

(X+1)*N <+ ((0,\N)IN)P X

By extension we speak of the expansion of a
polynomial as a matter of determining coefficients
» such that:

CPX+Y ++D P X

The coefficients o are, in general, functions of y. If
v=1 they again depend only on binomial coeffi-
cients, but in this case on the several binomial

coefficients of various orders, specifically on the
matrix Jeo.:1J+« 1+1p0C.

For example, if ¢+3 1 2 4, and ¢ g x+1+-0 P x, then
» depends on the matrix:

0Y 23 s B8 1T 2 3
1
i

o

o
[y
- W W e

0
0

0 )

and » must clearly be a weighted sum of the col-
umns, the weights being the elements of c. Thus:

De(do .+ 1+1pC)+.%xC

Jotting down the matrix of coefficients and per-
forming the indicated matrix product provides a
quick and reliable way to organize the otherwise
messy manual calculation of expansions.

If 5 is the appropriate matrix of binomial coef-
ficients, then p«s+.xc, and the expansion function is
clearly linear in the coefficients c. Moreover, ex-
pansion for r--1 must be given by the inverse ma-
trix @s, which will be seen to contain the alternat-
ing binomial coefficients. Finally, since:

€ P X+(K+1) #=+ C B (X+K)+1 ++ (B¥.xC) P (X+K)

it follows that the expansion for positive integer
values of v must be given by products of the form:

B+ .xB+.xB+.xB+.xC

where the 5 occurs v times.

Because +.« is associative, the foregoing can be
written as w+.xc, where » is the product of v occur-
rences of 5. It is interesting to examine the succes-
sive powers of s, computed either manually or by
machine execution of the following inner product
power function:

IPP:a+.xa IPP w-1:w=0:Je,.=J+ 1+il4pa

Comparison of s rer x with & for a few values of
¥ shows an obvious pattern which may be ex-
pressed as:

B IPP K ++ BxKx0[-Jeo.-J+ 1+114pB

The interesting thing is that the right side of this
identity is meaningful for non-integer values of &,
and, in fact, provides the desired expression for the
general expansion ¢ p x+v:

C P(X+Y) #+ (((Jo.td)xY*0[-dJo,-J+ 141pC)+.xC)P X B4

The right side of B.4 is of the form (u+.xc)e x,
where » itself is of the form s-r+r and can be dis-
played informally (for the case u-0c) as follows:

i 7 1 % a1 2 3
03 2 3 001 2

o0 13 xY* 00 0 1
0 0 0 3 00 00
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Since r-x multiplies the single-diagonal matrix
sx(k=£), the expression for » can also be written as
the inner product (y-s)+.xr, where r is a rank s
array whose rth plane is the matrix sxck=£). Such
a rank three array can be formed from an upper
triangular matrix » by making a rank i array
whose first plane is » (that is, (1=11+o)-.x#) and
rotating it along the first axis by the matrix v--J,
whose «th superdiagonal has the value -x. Thus:

DS:(Ie,.-I)6[1)(1=T+114pw)e.xw B5

DS Keo.!K+ 1+13

(=]
-
(=]

oo
o -
[N}

00
000
000

-

Substituting these results in B.4 and using the
associativity of +.x, we have the following identity
for the expansion of a polynomial, valid for non-
integer as well as integer values of r:

C P X+Y ++ ((Y*J)+.x(DS Je.'d+ 1+1pC)+.xC)P X B6

For example:

Y«3

C+3 1 4 2

Me(Y*J )+.%xDS Jo.'Jd+ 1+1pC
M

1 3 9 27
0 1 6 27
0o 0 1 9
0 0 0 1
M+ . xC
96 79 22 2
(M+.xC) P X+2
358
C P X+Y

358

3. Representations

The subjects of mathematical analysis and com-
putation can be represented in a variety of ways,
and each representation may possess particular
advantages. For example, a positive integer » may
be represented simply by » check-marks; less sim-
ply, but more compactly, in Roman numerals; even
less simply, but more conveniently for the per-
formance of addition and multiplication, in the
decimal system; and less familiarly, but more con-
veniently for the computation of the least common
multiple and the greatest common divisor, in the
prime decomposition scheme to be discussed here.

Graphs, which concern connections among a
collection of elements, are an example of a more
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complex entity which possesses several useful rep-
resentations. For example, a simple directed graph
of » elements (usually called nodes) may be repre-
sented by an » by » boolean matrix s (usually called
an adjacency matrix) such that srr:v1-1 if there is
a connection from node r to node v. Each connec-
tion represented by a 1 in 5 is called an edge, and
the graph can also be represented by a +/.5 by »
matrix in which each row shows the nodes con-
nected by a particular edge.

Functions also admit different useful represent-
ations. For example, a permutation function,
which yields a reordering of the elements of its
vector argument x, may be represented by a per-
mutation vector p such that the permutation func-
tion is simply xc#1, by a cycle representation which
presents the structure of the function more direct-
ly, by the boolean matrix s«r-=.02 such that the
permutation function is s+.xx, or by a radix repre-
sentation = which employs one of the columns of
the matrix 1+(¢.n)v 1+::8+px, and has the property
that 21+/7-1 is the parity of the permutation repre-
sented.

In order to use different representations con-
veniently, it is important to be able to express the
transformations between representations clearly
and precisely. Conventional mathematical nota-
tion is often deficient in this respect, and the pres-
ent section is devoted to developing expressions for
the transformations between representations useful
in a variety of topics: number systems, polynomi-
als, permutations, graphs, and boolean algebra.

3.1 Number Systems

We will begin the discussion of representations
with a familiar example, the use of different repre-
sentations of positive integers and the transforma-
tions between them. Instead of the positional or
base-value representations commonly treated, we
will use prime decomposition, a representation
whose interesting properties make it useful in in-
troducing the idea of logarithms as well as that of
number representation [6, Ch.16].

If » is a vector of the first o» primes and ¢ is a
vector of non-negative integers, then # can be used
to represent the number rx..z, and all of the integ-
ers .r/r can be so represented. For example,
2357x.»0000 18 1and 2 357 x.» 1100 1S 6
ard:

B
23587

M
0
)

- F -0}
coo~
cor o

xooownih
= oo
coow
conNno
O wm o

1
1
0
0
E

* O

Px ., *M.
1234 5856 78 9 10



The similarity to logarithms can be seen in the
identity:

x/Px ,*ME ++ Px_ *+/ME

which may be used to effect multiplication by ad-
dition.

Moreover, if we define ¢co and rcv to give the
greatest common divisor and least common multi-
ple of elements of vector arguments, then:

GCD Px.*ME ++ Px.*|l/ME
LCM Px,*ME ++ Px.x[/ME

ME VePx.*ME
210 W
3 2 2 18900 7350 3087
2249 GCcD VvV LcM v
12 3 21 926100
Px.*x|L/ME Px.«[ /ME
21 926100

In defining the function cco, we will use the
operator ; with a boolean argument 5 (as in 5/). It
produces the compression function which selects
elements from its right argument according to the
ones in 5. For example, 1 0 1 0 171518 1 3 5. More-
over, the function 5, applied to a matrix argument
compresses rows (thus selecting certain columns),
and the function s/ compresses columns to select
rows. Thus:

GCD:GCD M,(M+L/R)|R:12pR+(w=0)/w:+/R
LCM:(x/X)+CGCD X+(14w),LCM 1+w:0=pw:1l

The transformation to the value of a number
from its prime decomposition representation (vrs)
and the inverse transformation to the representa-
tion from the value (rrv) are given by:

VFR:ax,*w
RFV:D+a RFV w#ax.*D:a/~D+0=al|w:D

For example:

P VPR 2 1 3 1
10500

P RFV 10500
2131

3.2 Polynomials

Section 2 introduced two representations of a
polynomial on a scalar argument x, the first in
terms of a vector of coefficients ¢ (that is,
+/cxx«"1+10c), and the second in terms of its roots »
(that is, =/x-r). The coefficient representation is
convenient for adding polynomials (c+p) and for
obtaining derivatives (1+cx"1+:15c). The root repre-
sentation is convenient for other purposes, includ-
ing multiplication which is given by #1,r2.

We will now develop a function crr
(Coefficients from Roots) which transforms a roots
representation to an equivalent coefficient repre-

sentation, and an inverse function rrc. The devel-
opment will be informal; a formal derivation of crr
appears in Section 4.

The expression for crr will be based on
Newton 's symmetric functions, which yield the
coefficients as sums over certain of the products
over all subsets of the arithmetic negation (that is,
-r) of the roots ». For example, the coefficient of
the constant term is given by /-7, the product
over the entire set, and the coefficient of the next
term is a sum of the products over the elements of
-7 taken (pr)-1 at a time.

The function defined by A.2 can be used to
give the products over all subsets as follows:

Pe(-R)x.+M+T pR

The elements of » summed to produce a given coef-
ficient depend upon the number of elements of =
excluded from the particular product, that is, upon
+#~m, the sum of the columns of the complement of
the boolean "subset" matrix zos.

The summation over » may therefore be ex-
pressed as ((o,1pr)e.=+/~M)+.xp, and the complete
expression for the coefficients ¢ becomes:

C+((0,1pR)o.=4+F/~M)+.x(-R)x . *M+T pR

For example, if 7«2 3 5, then

M +i~M
00001111 32212110
00110011 (0,1pR)o.=4/~M
9 110 %@ % 0 4 000O0O0O0O0 1

(-R)x.*M 00010110

1 78 T3 1% T2 10 & ~30 01101000
10000000
((0,1pR)o.=+F/~M)+.%x(-R)x . *M+T pR

T30 31 T10 1

The function crr which produces the coefficients
from the roots may therefore be defined and used
as follows:

CFR:((0,1pw)e.=+/~M)+.x(-w)x.*M«T puw ca

CFR 2 3 5
T30 31 T10 1

(CFR 2 3/5) RPX¥+1 2 3 &5 6 7 8
8 00 "2 0 12 40 90

x/Xe,=2 3§
8 00 "2 0 12 40 90

The inverse transformation rrc is more diffi-
cult, but can be expressed as a successive approxi-
mation scheme as follows:

RFC:( 1+1p1+w)C w

G:(a-2)C w:TO0L2(/|Z+a STEP w:a-2
STEP: (B(ac.-a)x,*Jo . zJ+1pa)+.x(aco.* 1+1pw)+.%w

O«C+«CFR 2 3 5 7
210 "247 101 T17 1
TOL+1E" 8
RFC €
T8 23

The order of the roots in the result is, of course,
immaterial. The final element of any argument of
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rrc must be 1, since any polynomial equivalent to
«/x-r must necessarily have a coefficient of 1 for
the high order term.

The foregoing definition of rrc applies only to
coefficients of polynomials whose roots are all real.
The left argument of ¢ in zrc provides (usually
satisfactory) initial approximations to the. roots,
but in the general case some at least must be com-
plex. The following example, using the roots of
unity as the initial approximation, was executed on
an APL system which handles complex numbers:

ta

(*00J2x( 1+1N)tN+pl+w)Cw (04

. D*CfCFR 1J1 1J71 1J2 1J° 2
10 14 11 4 1
- RFC: € B
1J 1 1J2 1J1 1J 2
The monadic function o used above multiplies its
argument by pi.

In Newton's method for the root of a scalar
function r, the next approximation is given by
a+4-(F ar:or 4, where pr is the derivative of ». The
function srep is the generalization of Newton's
method to the case where r is a vector function of
a vector. It is of the form (aw)+.~5, where 5 is the
value of the polynomial with coefficients ., the
original argument of src, evaluated at o, the cur-
rent approximation to the roots; analysis similar to
that used to derive B.3 shows that » is the matrix
of derivatives of a polynomial with roots «, the
derivatives being evaluated at o.

Examination of the expression for » shows that
its off-diagonal elements are all zero, and the ex-
pression (@#)+.x5 may therefore be replaced by s:p,
where » is the vector of diagonal elements of .
Since (r,s)+n drops 7 rows and s columns from a
matrix », the vector » may be expressed as
x/0 1+("1+1pa)éas.-a; the definition of the function
srep may therefore be replaced by the more effi-
cient definition:

STEP:((ac.* 1+i1pw)+.xw)+x/0 1+( 1+1pa)dac.-a c3

This last is the elegant method of Kerner [7].
Using starting values given by the left argument
of ¢ in C.2, it converges in seven steps (with a tol-
erance ror-1£-8) for the sixth-order example given
by Kerner.

3.3 Permutations

A vector » whose elements are some permuta-
tion of its indices (that is, a/1=+/P-.=1pp) Wwill be
called a permutation vector. If o is a permutation
vector such that (ox)=pp, then xtp1 is a permutation
of x, and » will be said to be the direct representa-
tion of this permutation.
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The permutation xcp1 may also be expressed as
B+.xx, where s is the boolean matrix p-.=1p,0. The
matrix 5 will be called the boolean representation
of the permutation. The transformations between
direct and boolean representations are:

BFD:we.=1pw DFB:w+.x11%4puw

Because permutation is associative, the compos-
ition of permutations satisfies the following rela-
tions:

(X[D11)[D2] ++ X[(D1 [D21)]
B2+.x(B1+.xX) 4+ (B2+.xB1)+.xX
The inverse of a boolean representation s is &5, and
the inverse of a direct representation is either o or
piwen. (The grade function 4 grades its argument,
giving a vector of indices to its elements in ascend-
ing order, maintaining existing order among equal
elements. Thus 43 7 1 4 18 3 1 4 2 and 43 7 3 & is
1 3 4 2. The index-of function . determines the
smallest index in its left argument of each element
of its right argument. For example, 'a8coe' ' 8a5E"
i1S2 1 2 5,and 'B4BE' \'4BCDE' 1S 2 1 5 5 u.)

The cycle representation also employs a permu-
tation vector. Consider a permutation vector ¢ and
the segments of ¢ marked off by the vector c-i\c.
For example, if c«7 36 5 214, then c=1\c is
110011 0,and the blocks are:

8 §

W

y

Each block determines a "'cycle' in the associated
permutation in the sense that if z is the result of
permuting x, then:

RU7 i X073
R[3] is X[61]
R[2) is X[2]
R[1] is X[4]

R[6] is X[5] RCS] is XC3]

RC4] is X[1]

If the leading element of ¢ is the smallest (that is,
1), then ¢ consists of a single cycle, and the permuta-
tion of a vector x which it represents is given by
xtci«xr16ci1. For example:

X+'ABCDEFG'

C«1 76 5 2 4 3
X[Cl+«X[14C]

X

GDACBEF

Since xrei+4 is equivalent to x<arsqi, it follows
that xtci«xr1¢ec1 is equivalent to x«xct(1éc)cac1i, and
the direct representation vector » equivalent to c is
therefore given (for the special case of a single
cycle) by p«<c1éc)raca.

In the more general case, the rotation of the
complete vector (that is, 14c) must be replaced by
rotations of the individual subcycles marked off by



c=1\c, as shown in the following definition of the
transformation to direct from cycle representation:

DFC: (wlAX++\X+w=1\w])[du]

If one wishes to catenate a collection of disjoint
cycles to form a single vector ¢ such that c-1\¢
marks off the individual cycles, then each cycle c:
must first be brought to standard form by the
rotation (~1+criL/cr)écr, and the resulting vectors
must be catenated in descending order on their
leading elements.

The inverse transformation from direct to cycle
representation is more complex, but can be ap-
proached by first producing the matrix of all pow-
ers of o up to the ooth, that is, the matrix whose
successive columns -are » and ptp1 and (pto1)co3,
etc. This is obtained by applying the function row
to the one-column matrix p-.+,0 formed from o,
where row is defined and used as follows:

POW:POW D,(D+wl;1])[wl:S/pw:w

O«D«DFC C+7,3 6 5,2,1 4
2613957
POW Do.

o

N Wk oNE
NWoOE N
No U wN E
NOwWwEOON R
NwoRreONE
NOoOUEWNS o
N W ON E +

If w<pow pe.+,0, then the cycle representation of
» may be obtained by selecting from » only
"standard' rows which begin with their smallest
elements (ss#), by arranging these remaining rows
in descending order on their leading elements
(por), and then catenating the cycles in these rows
(crr). Thus:

CFD:CIR DOL SSR POW wo.+,0

SSR:(A/M=1¢M+|\w)fuw
DOL:wlVwl;1]:1]
CIR:(,1,A\0 1t+wzl\w)/,w

DFC C+7,3 6 5,2,1 4
4261357

CFD DFC C
7365214

In the definition of oz, indexing is applied to
matrices. The indices for successive coordinates are
separated by semicolons, and a blank entry for any
axis indicates that all elements along it are select-
ed. Thus wr:11 selects column 1 of ».

The cycle representation is convenient for de-
termining the number of cycles in the permutation
represented (wc:+/w=1\w), the cycle lengths
(cr:x-0,714x+(16u=1\w)/10w), and the power of the
permutation (rp:zcm cL o). On the other hand, it is
awkward for composition and inversion.

The :» column vectors of the matrix
(¢1#)7"1+1:8 are all distinct, and therefore provide
a potential radix representation [8] for the :»
permutations of order ». We will use instead a
related form obtained by increasing each element
by 1:

RR:1+($rw)T 141w

RR 4
1111112222223 3833 3uuuuh 4
1142233112228 3%12 23342122483
12 +2 4+24122122482129 22 23231 231 2
1. 11 2 ¢4 L4 1231 3131314223233 132431l

Transformations between this representation and
the direct form are given by:

DFR:w(1),X+w[1)SX+DFR 1+w:0=pw:w

RFD:wl1],RFD X-wl[1]sX+1+4w:0=puw:iw

Some of the characteristics of this alternate

representation are perhaps best displayed by modi-
fying orr to apply to all columns of a matrix argu-
ment, and applying the modified function »r to the
result of the function zz:

MF:wl,1;],[11X+wl(1 pX)p1;]SX+MF 1 O4w:0=1%puw:w

MF RR 4
1131132122 22223333 338K &4 40N
2 23 34 41123 3INu1I 2204 21223813
32 B2 33 BA 13 2481 K12231%23172
4 3 4 23 24 3 41314 24121323121

The direct permutations in the columns of this
result occur in lexical order (that is, in ascending
order on the first element in which two vectors
differ); this is true in general, and the alternate
representation therefore provides a convenient way
for producing direct representations in lexical or-
der.

The alternate representation also has the useful
property that the parity of the direct permutation
p is given by 21+/-1+rFp b, where v represents the
residue of » modulo ». The parity of a direct rep-
resentation can also be determined by the func-
tion:

PAR:2|+/,(Ieo.>I+1pw)Arwe.>w

3.4 Directed Graphs

A simple directed graph is defined by a set of &
nodes and a set of directed connections from one to
another of pairs of the nodes. The directed con-
nections may be conveniently represented by a x by
x boolean connection matrix ¢ in which ccrr;s3=1
denotes a connection from the rth node to the sth.

For example, if the four nodes of a graph are
represented by w+'grsr', and if there are connec-
tions from node s to node ¢, from # to 7, and from r
to ¢, then the corresponding connection matrix is
given by:
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oo
cooo
cococo
OO

A connection from a node to itself (called a self-
loop) is not permitted, and the diagonal of a con-
nection matrix must therefore be zero.

If » is any permutation vector of order ,#, then
#1+ncp1 is a reordering of the nodes, and the corre-
sponding connection matrix is given by ctr;r1. We
may (and will) without loss of generality use the
numeric labels ,# for the nodes, because if » is any
arbitrary vector of names for the nodes and : is
any list of numeric labels, then the expression
q-nrz) gives the corresponding list of names and,
conversely, #.¢ gives the list  of numeric labels.

The connection matrix ¢ is convenient for ex-
pressing many useful functions on a graph. For
example, +/c gives the out-degrees of the nodes,
+4c gives the in-degrees, +/.c gives the number of
connections or edges, sc gives a related graph with
the directions of edges reversed, and cvac gives a
related "symmetric" or "undirected" graph.
Moreover, if we use the boolean vector s«v/(:.1
oc)o.-L to represent the list of nodes z, then sv.ac
gives the boolean vector which represents the set
of nodes directly reachable from the set 5. Conse-
quently, cv.sc gives the connections for paths of
length two in the graph ¢, and cvev.Ac gives connec-
tions for paths of length one or two. This leads to
the following function for the transitive closure of
a graph, which gives all connections through paths
of any length:

TC:TC Z2:A/ ,w=2+wVw¥.Aw:2Z

Node v is said to be reachable from node r if
(rc ¢)tr;01=1. A graph is strongly-connected if
every node is reachable from every node, that is
LY % & o

If p+rc ¢ and orr:r3-1 for some r, then node r is
reachable from itself through a path of some
length; the path is called a circuit, and node r is
said to be contained in a circuit.

A graph 7 is called a tree if it has no circuits
and its in-degrees do not exceed 1, that is, r/12+/7.
Any node of a tree with an in-degree of o is called
a root, and if x«+/0=+/7, then r is called a x-rooted
tree. Since a tree is circuit-free, x must be at least
1. Unless otherwise stated, it is normally assumed
that a tree is singly-rooted (that is, «x-1);
multiply-rooted trees are sometimes called forests.

A graph ¢ covers a graph o if /,c20. If ¢ is a
strongly-connected graph and r is a (singly-rooted)
tree, then r is said to be a spanning tree of ¢ if ¢
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covers r and if all nodes are reachable from the
root of r, that is,

(A/,G2T) A A/RVRV . ATC T

where r is the (boolean representation of the) root
of r.

A depth-first spanning tree [9] of a graph ¢
is a spanning tree produced by proceeding from the
root through immediate descendants in ¢, always
choosing as the next node a descendant of the lat-
est in the list of nodes visited which still possesses
a descendant not in the list. This is a relatively
complex process which can be used to illustrate the
utility of the connection matrix representation:

DFST:((,1)°.=K) R wAKe.v~K+a=114pw C4

R:(C,[1)a)RwAPe . v~C+<\UAPY . Aw
i~v/P+(<\aVv.Awv . .AU+~v/a)Vv.Ara
tw

Using as an example the graph ¢ from [9]:

)

HOrOOOODOOOOO
O0OO0OO0OO0CODOOCOROO
OO0 OOOOOOOR
OO0 O0O0OO0ODOO0COOCOCORQO
[=N-N-N-N-T-N- -]
Oo0oocooooo0oo=o0OO0O
Ooo0cocoo0ooQocoOoORrO0OOO
Oo0oocoococoo=oOOO
O0OO0O0O0CORMHOOOO
oO+HOoOOrKKrrHROOODOOO
oOoCcoOrOOOOOOO
ocooOr+HrOOOOOOOO
O0o0o0oco0oo0ooCcoo0o0o0o0oO
o000 OQCODOOROO
[=- === - -
OO0 000000000 KK
Oo0co0oo0ocoocooco=oOU
O0co0oO0ocoo0coo=oOo0W0
oocooooo»—noooq
oooooooepooo“
Ococococoo=mOoOO0O0OO
cococoocoomroOO0OOOO
CccocorOoOO0OO0O0O0OO
cooroO0OO0OO0OOOCOO

The function orsr establishes the left argument
of the recursion  as the one-row matrix represent-
ing the root specified by the left argument of orsr,
and the right argument as the original graph with
the connections into the root x deleted. The first
line of the recursion r shows that it continues by
appending on the top of the list of nodes thus far
assembled in the left argument the next child c,
and by deleting from the right argument all con-
nections into the chosen child ¢ except the one
from its parent ». The child ¢ is chosen from
among those reachable from the chosen parent
(pv.rw), but is limited to those as yet untouched
(vapv.sw), and is taken, arbitrarily, as the first of
these (<\vapv.ru).

The determinations of » and v are shown in the
second line, » being chosen from among those nodes
which have children among the untouched nodes
(uv.av). These are permuted to the order of the
nodes in the left argument (av.swv.av), bringing
them into an order so that the last visited appears
first, and » is finally chosen as the first of these.

The last line of r shows the final result to be
the resulting right argument ., that is, the original
graph with all connections into each node broken



except for its parent in the spanning tree. Since
the final value of « is a square matrix giving the
nodes of the tree in reverse order as visited, substi-
tution of o,ér11« (or, equivalently, w,ea) for o
would yield a result of shape 1 2x0¢ containing the
spanning tree followed by its ''preordering' infor-
mation.

Another representation of directed graphs often
used, at least implicitly, is the list of all node pairs
v,# such that there is a connection from v to .
The transformation to this list form from the con-
nection matrix may be defined and used as follows:

LFC:(,w)/14DT 1+1%/D+pw

c LFC C
0011 112334
0010 3 43241
0101
1000

However, this representation is deficient since it
does not alone determine the number of nodes in
the graph, although in the present example this is
given by r/,1rc ¢ because the highest numbered
node happens to have a connection. A related boo-
lean representation is provided by the expression
(LFc c)e.=114pc, the first plane showing the out- and the
second showing the in-connections.

An incidence matrix representation often used
in the treatment of electric circuits [10] is given
by the difference of these planes as follows:

IFC:-#(LFC w)e.=11%pw

For example:

(LFC Cle.=114pC IFC C
1000 (T R W
1000 1 6 o "1
0100 0 171 ©
0010 =L A4 90
0010 0 0 1 "1
0001 Y e o 1
0010
000 1
0010
0100
0001
1000

In dealing with non-directed graphs, one some-
times uses a representation derived as the or over
these planes (v/). This is equivalent to |zrc c.

The incidence matrix r has a number of useful
properties. For example, +/1 is zero, ++1 gives the
difference between the in- and out-degrees of each
node, »: gives the number of edges followed by the
number of nodes, and x/0z gives their product.
However, all of these are also easily expressed in
terms of the connection matrix, and more signifi-
cant properties of the incidence matrix are seen in
its use in electric circuits. For example, if the
edges represent components connected between the

nodes, and if v is the vector of node voltages, then
the branch voltages are given by r+.xv; if 57 is the
vector of branch currents, the vector of node cur-
rents is given by Br+.x1.

The inverse transformation from incidence ma-
trix to connection matrix is given by:

CFI:Dp( " 1+1x/D)eD1(1 "1e.=w)+.%x 1+114D+L\bpw

The set membership function « yields a boolean
array, of the same shape as its left argument,
which shows which of its elements belong to the
right argument.

3.5 Symbolic Logic

A boolean function of » arguments may be rep-
resented by a boolean vector of 2« elements in a
variety of ways, including what are sometimes
called the disjunctive, conjunctive, equivalence,
and exclusive-disjunctive forms. The transforma-
tion between any pair of these forms may be repre-
sented concisely as some 2+# by 2+» matrix formed

by a related inner product, such as rv..ar, where r
« z v is the "truth table" formed by the function z de-
fined by A.2. These matters are treated fully in
[11, Ch.7].

4. Identities and Proofs

In this section we will introduce some widely
used identities and provide formal proofs for some
of them, including Newton 's symmetric functions
and the associativity of inner product, which are
seldom proved formally.

4.1 Dualities in Inner Products

The dualities developed for reduction and scan
extend to inner products in an obvious way. If or
is the dual of r and oc is the dual of ¢ with respect
to a monadic function » with inverse w7, and if 4
and s are matrices, then:

A F.GC B «» MI (M A) DF.DG (M B)

For example:

AV A % mSQ YA V(B
AA.=B #+ ~(~A)v.=(~B)
AL .+B ++ =(=4)[.+(~B)

The dualities for inner product, reduction, and
scan can be used to eliminate many uses of boolean
negation from expressions, particularly when used
in conjunction with identities of the following
form:
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AA(~B) ++ A>B
(~A)AB ++ A<B
(~A)a(~B) ++ A~B

4.2 Partitioning Identities

Partitioning of an array leads to a number of
obvious and useful identities. For example:

x/3 1 4 26 ++ (x/3 1) x (x/4 2 6)

More generally, for any associative function r:

F/V «+ (F/K4V) F (F/K+V)
F/VW +> (F/V) F (F/W)

If » is commutative as well as associative, the
partitioning need not be limited to prefixes and
suffixes, and the partitioning can be made by com-
pression by a boolean vector v:

F/V =% (P/USIVY F (FI(=<U)/V)

If £ is an empty vector (o-=0#), the reduction r/z
yields the identity element of the function r, and
the identities therefore hold in the limiting cases
o=x and o=v/u.

Partitioning identities extend to matrices in an
obvious way. For example, if v, », and 4 are arrays
of ranks 1, 2, and s, respectively, then:

Ve.xM <+ ((K¢V)+.x(K,14pM)tM)+(K+V)+.%x(K,0)+M D1
(I, J)+A+.xV ++ ((I,J,0)4A4)+.xV D.2

4.3 Summarization and Distribution
Consider the definition and and use of the fol-
lowing functions:

N:(vi<\we.zw)/w D3
S:(few)e.=w D4

A+3 3 1 4 1
C+10 20 30 40 50

N A S A (S A)+.xC
31 4 14 0 100 30 80 40
¢ I I T T
00010

The function » selects from a vector argument
its nub, that is, the set of distinct elements it con-
tains. The expression s 4 gives a boolean
"summarization matrix'"' which relates the ele-
ments of 4 to the elements of its nub. If 4 is a vec-
tor of account numbers and ¢ is an associated vec-
tor of costs, then the expression (s 4)+.xc evaluated
above sums or '"summarizes" the charges to the
several account numbers occurring in 4.

Used as postmultiplier, in expressions of the
form w+.xs a, the summarization matrix can be
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used to distribute results. For example, if r is a
function which is costly to evaluate and its argu-
ment v has repeated elements, it may be more effi-
cient to apply r only to the nub of v and distribute
the results in the manner suggested by the follow-
ing identity:

F V <+ (F N V)+t.xS V D5

The order of the elements of » v is the same as
their order in v, and it is sometimes more conven-
ient to use an ordered nub and corresponding
ordered summarization given by:

Q¥ :Nuwlbw] D6
05:(QNw)e.=w D.7

The identity corresponding to D.5 is:

FV e+ (FQN V)+.xQ2S V D8

The summarization function produces an inter-
esting result when applied to the function 7 defined
by A.2:

+/S+/T N ++ (0, N)!N

In words, the sums of the rows of the summariza-
tion matrix of the column sums of the subset ma-
trix of order » is the vector of binomial coefficients
of order ».

4.4 Distributivity

The distributivity of one function over another
is an important notion in mathematics, and we will
now raise the question of representing this in a
general way. Since multiplication distributes to
the right over addition we have ax(b+q)++abtaq , and
since it distributes to the left we have (a+p)xbe+ab+pb.
These lead to the more general cases:

(a+p)x(b+q) «++ ab+aq+pb+pq

(a+p)x(b+q)x(c+r) ++ abc+abr+aqc+aqr+pbc+pbr+pgc+pqr
(a+p)x(b+q)x...%(ctr)++ab...ct... . +pg...r

Using the notion that v«s,s and w«p,q Or v«a,s,c
and w+p,q.r, etc., the left side can be written sim-
ply in terms of reduction as x/v+v. For this case of
three elements, the right side can be written as the
sum of the products over the columns of the fol-
lowing matrix:

vLol vLol VL0l V[0l WCO]l W[O] W[O0] W(0]
vL1l vL1] W(1) WC1) vi1) vO1) WO1D WE1]
ve2] WC2] VL2 WL2) V(2] W[2] V[2] W(2]
The pattern of v's and »'s above is precisely
the pattern of zeros and ones in the matrix r«zpv,
and so the products down the columns are given by
(vx.+~1)x(Wx.+7). Consequently:

x/V+W ++ +/(Vx «~T)xWx *xT«] pV D9



We will now present a formal inductive proof of
D.9, assuming as the induction hypothesis that D.9
is true for all v and w» of shape » (that is,
~/N=(ov),ow) and proving that it holds for shape #+1,
that is, for x.v and r,», where x and r are arbitrary
scalars.

For use in the inductive proof we will first give
a recursive definition of the function rz, equivalent
to A.2 and based on the following notion: if w+z 2 is
the result of order 2, then:

M
an 11
101

0,[11M 1,118
0 00O 1 4 212 1
1 ¢ A O ¢ 09 1 3
9 1.0 1 9106 1

(0,011M),(1,(1)H)
4060031131311
P9 11009432
g 10Lt0% 0 1
Thus

I:(O.[I]T).(1.[1]T'~Iw—1):0=w:0 1p0 D.10
$/C(C+X V)% . 4~Q)XDx . +Q+Tp(D+Y , W)
+/(Cx.+~Z ,U)xDx.+(2+0,[1] T),U+1,01] T+TpW D.10
+7C(Cx . #~2) ,Cx . xa~U)x(Dx ,x2) ,Dx . *U Note 1
#7((Cxoa~D ) Cx o b~U)X( (Y50 )xWx *T), (¥*1)xWx *T Note 2
$+/((Cx 2~2) ,Cx . x~U)x(Wx , *T) ,YxWx ,*T Y*0 1+-+1,Y
$7C(XXVX  4~T) VX *~T)x(Wx . *T ), YxHx , *T Note 2
$7CXX( VX A~T )XW AT ), (XX (V. 2~T ) xWx . +T) Note 3

Induction hypothesis
(XxS5),(YxS)++(X,Y)xS
Definition of x/

+ distributes over ,

+/(Xxx/V+W) (Yxx/V+W)
+/(X,Y)xx/V+W
x/(X+Y),(V+W)
x/(X,V)+(Y,W)

Note 1: M+ .xN,P ++ (M+.xN),M+.xP (partitioning identity on matrices)

Note 2: V4.xM «+ ((14V)+.x(1,1+pM)+M)+(14V)+.x1 O+M
(partitioning identity on matrices and the definitionof C, D, Z, and V)

Note 3: (V,W)xP,Q «+ (VxP),Wx@Q

To complete the inductive proof we must show
that the putative identity D.9 holds for some value
of ». If w-0, the vectors 2 and 5 are empty, and
therefore x,4 «» ,x and r,s «» ,r. Hence the left
side becomes x/x+y, or simply x+r. The right side
becomes +/(xx.*~g)xrx.+q, Where ~¢ is the one-
rowed matrix 1 o and ¢ is o 1. The right side is
therefore equivalent to +/(x,1)x(1,¥), or x+v. Simi-
lar examination of the case #»-: may be found in-
structive.

4.5 Newton 's Symmetric Functions

If x is a scalar and & is any vector, then x/x-r is
a polynomial in » having the roots ». It is there-
fore equivalent to some polynomial ¢ ¢ x, and as-
sumption of this equivalence implies that ¢ is a
function of ». We will now use D.8 and D.9 to de-
rive this function, which is commonly based on
Newton 's symmetric functions:

x/X-R

x/X+(-R)

+/(Xx *~T)x(-R)x.*T+«T pR D9
(Xx,*~T)+.xP+(-R)x.*T Def of +.x
(X*S++#~T)+.xP Note 1
((X*QF S)+.x0QS S)+.xP D8
(X*QN S)+.x((Q2S S)+.xP) +.Xx is associative
(X*0,1pR)+.x((QS S)+.xP) Note 2

((@S S)+.xP)P X B.1 (polynomial)

((QS +#~T)+.x((-R)x.*T+«T pR))P X Defs of S
and P
Note 1: If X is a scalar and B is a boolean vector, then Xx,~B

+«+ X*+/B.

Note 2: Since T is boolean and has p R rows, the sums of its columns range from 0
to p R, and their ordered nub is therefore 0, 1p&.

4.6 Dyadic Transpose

The dyadic transpose, denoted by &, is a general-
ization of monadic transpose which permutes axes
of the right argument, and (or) forms ''sectors" of
the right argument by coalescing certain axes, all
as determined by the left argument. We introduce
it here as a convenient tool for treating properties
of the inner product.

The dyadic transpose will be defined formally
in terms of the selection function

SF:(,w)l1+(pw)ia-1]

which selects from its right argument the element
whose indices are given by its vector left argument,
the shape of which must clearly equal the rank of
the right argument. The rank of the result of x4
is r/x, and if 7 is any suitable left argument of the
selection 7 sr kaa then:

ISFKQA++(I[K])SFA D.11

For example, if » is a matrix, then 2 1 a# «+ ayand
1 1 gu is the diagonal of »; if 7 is a rank three array,
then 1 2 2 a7 is a matrix ''diagonal section' of r
produced by running together the last two axes,
and the vector 1 1 1 &7 is the principal body diago-
nal of r.

The following identity will be used in the se-
quel:

JRKRA <+ (JL[K])RA D12
Proof:

I SF JRKRA
(IlJ]) SF K®RA
((ILJI)[K]) SF 4
(I[(J[K]1)])) SF A
I SF(JLK])®A

Definition of & (D.11)
Definition of &
Indexing is associative
Definition of &

4.7 Inner Products

The following proofs are stated only for matrix
arguments and for the particular inner product
+.x. They are easily extended to arrays of higher
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rank and to other inner products r.c, where r and ¢
need possess only the properties assumed in the
proofs for + and .

The following identity (familiar in mathemat-
ics as a sum over the matrices formed by (outer)
products of columns of the first argument with
corresponding rows of the second argument) will be
used in establishing the associativity and distrib-
utivity of the inner product:

M+.xN ++ +/1 3 3 2 & Me.xN D.13

Proof: «(r,s)sF u+.xn 1s defined as the sum over v,
where vik1 «+ miz:k1xnrk:01. Similarly,

(I,J)SF +/1 3 3 2 § Meo.xN
is the sum over the vector » such that

WLK] «+ (I,J,K)SF 1 3 3 2 § Mo.xN

Thus:

WlK)

(I,J,K)SF 1 3 3 2 QMo .xN

(I,J,K)(1 3 3 2])SF Me.xN D.12
(I,K,K,J)SF Mo .xN Def of indexing
MII;K]IxN[(K;J] Def of Outer product
ViK] H

Matrix product distributes over addition as
follows:

M+.x(N+P) +> (M+.xN)+(M+.xP) D.14
Proof:
M+.x(N+P)
+/(J+ 1 3 3 2)8Meo.xN+P D13

+/JQ (Mo . xN)+(Me .xP) x distributes over +

+/(J8Me . xN)+(JQMo . xP) § distributes over +
(+/JOMe . xN)+(+/JOQMo . xP) + is assoc and comm
(M+.xN)+(M+.xP) D13

Matrix product is associative as follows:

M+ .x(N+.xP) ++ (M+.xN)+.xP D.15

Proof: We first reduce each of the sides to sums
over sections of an outer product, and then com-
pare the sums. Annotation of the second reduction
is left to the reader:

M+.x(N+.xP)

M+.x+/1 3 3 28Ne.xP D.12
+/1 3 3 28Mo.x+/1 3 3 28Neo.xP D.12
+/1 3 3 28+/M°.x1 3 3 28Ne-.xP x distributes over +
+/1 3 3 28+4/1 2 3 5 5 UQMo.xNo xP Note 1
+/+/1 3 3 2 4 81 2 3 5 5 4QMo . xNo xP Note 2
+/+/1 3 3 4 4 28Mec _ xNo xP D.12
+/+/1 3 3 4 4 28(Meo.xN)o . xP % is associative
+/+/1 4 4 3 3 28(Mo.xN)e.xP + is associative and

commutative
(M+.xN)+.xP
(+/1 3 3 28Mo.xN)+.xP
+/1 3 3 28(+/1 3 3 28Meo.xN)o . xP
+/1 3 3 28+/1 5 5 2 3 uU®(Mo.xN)o.xP
+/+#/1 3 3 2 481 5 5 2 3 4Q(Mo.xN)o.xP
+/+/1 4 4 3 3 28(Me ,xN)e ,xP

Note 1: +/Mo . xJQA «+ +/((1ppM),J+ppM)8M=° . xA

Note 2: JR+/A4 ++ +/(J,1+[ /J)8A
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4.8 Product of Polynomials
The identity B.2 used for the multiplication of
polynomials will now be developed formally:

(B P X)x(C P X)

(+/BxX*E+ 141pB)x(+/CxX*F+ " 1+1pC) B.1
+/+/(BxX*E)eo . x(CxX*F) Note 1
+/+/(Be . xC)x((X*E)o . x(X*F)) Note 2
+/+/(Be . xC)x(X*(Eo.+F)) Note 3

Note 1: (+/V)x(+/W)++>+/+/Vo.xX because x distributes over +and + is
associative and commutative, or see [ 12,P21] for a proof.

Note 2: The equivalence of (PxV)e . x(QxW) and (Po.xQ)x(VoexW) can be
established by examining a typical element of each expression.

Note 3: (X*I)x(X*d )++X*(T+J)

The foregoing is the proof presented, in abbre-
viated form, by Orth [13, p.52], who also defines
functions for the composition of polynomials.

4.9 Derivative of a Polynomial

Because of their ability to approximate a host
of useful functions, and because they are closed
under addition, multiplication, composition, differ-
entiation, and integration, polynomial functions
are very attractive for use in introducing the study
of calculus. Their treatment in elementary calcu-
lus is, however, normally delayed because the de-
rivative of a polynomial is approached indirectly,
as indicated in Section 2, through a sequence of
more general results.

The following presents a derivation of the de-
rivative of a polynomial directly from the expres-
sion for the slope of the secant line through the
points x, F x and (x+y),F(x+¥):

B X+¥)-(C P X))+Y

B X+Y)-(C B Xs0))eY

P X+Y)-((0xd)+.x(A«DS Jo, 'J+ 1+41pC)+.xC) P X)+Y B#6
(Y*J)+.xM) P X)-((0*xJ)+.xM+A+.xC) P X)+Y B6
(Y*d)+.xM)-(0*J)+.xM) P X)+Y P dist over -
(Y*J)-0%J)+.xM) P X)+Y +.x dist over -

0,Y*14J)+.xM) P X)+Y Note 1
Y#14Jd)+.%x 1 0 +M) P X)3Y D.1
Y*14J)+.x(1 0 0 +4)+.%xC) P X)+Y D.2

*14J-1)+.x(1 0 0 +4)+.xC) P X (Y*A)tY+>+YxA-1
* 7141 14pC)+.%x(1 0 0 +4)+.xC) P X Def of J
Y* 141 1+4pC)+.x 1 0 0 +4)+.xC) P X D.15

Note 1: O*0++1++>Y*0 and A/0=0x1+J

The derivative is the limiting value of the se-
cant slope for v at zero, and the last expression
above can be evaluated for this case because if
E+"1+1 1+pc 1s the vector of exponents of v, then all
elements of ¢ are non-negative. Moreover, o+ re-
duces to a 1 followed by zeros, and the inner prod-
uct with 1 o o+4 therefore reduces to the first plane
of 1 0 044 or, equivalently, the second plane of a.

If B+ve.1s« 1410c is the matrix of binomial coef-
ficients, then 4 is ns 5 and, from the definition of »ns
in B.5, the second plane of 4 is 5x1=-s..-4, that is,
the matrix s with all but the first super-diagonal
replaced by zeros. The final expression for the



coefficients of the polynomial which is the deriva-
tive of the polynomial ¢ p « is therefore:

((Je.td)x1=-Jo.-J+ 1+1pC)+.xC
For example:

¢« %5 T £1 23
(Jo.!d)x1=-Jo . -J+ 1+1pC

coc oo
(==

((Jo.td)x1=-Jo-J+ 1+1pC)+.%xC
7 22 39 0

Since the superdiagonal of the binomial coeffi-
cient matrix (iw)e.:# I8 (T1+18-1)114-1, or simply
wn-1, the final result is 1¢cx"1+1pc in agreement
with the earlier derivation.

In concluding the discussion of proofs, we will
re-emphasize the fact that all of the statements in
the foregoing proofs are executable, and that a
computer can therefore be used to identify errors.
For example, using the canonical function defini-
tion mode [4 , p.81], one could define a function
r whose statements are the first four statements of
the preceding proof as follows:

VF
(1] (¢C B XxY)=(C & X))xY
[2) ((C B Xex)=-{C B X20) )T
[3] ((C B X+Y)-((0*J)+.x(A+DS Jo.ld+ 1+1pC)+.%xC) P X)+Y
[4] ((((Y*J)+.xM) P X)-((0*J)+.xM«A+.xC) P X)+Y
v

The statements of the proof may then be executed
by assigning values to the variables and executing r
as follows:

C«5 2.3 1

Y«5

X+3 X+110

F F
132 66 96 132 174 222 276 336 402 u74 552
132 66 96 132 174 222 276 336 402 474 552
132 66 96 132 174 222 276 336 402 474 552

132 66 96 132 174 222 276 336 402 474 552

The annotations may also be added as comments
between the lines without affecting the execution.

5. Conclusion

The preceding sections have attempted to devel-
op the thesis that the properties of executability
and universality associated with programming lan-
guages can be combined, in a single language, with
the well-known properties of mathematical nota-
tion which make it such an effective tool of
thought. This is an important question which
should receive further attention, regardless of the
success or failure of this attempt to develop it in
terms of APL.

In particular, I would hope that others would
treat the same question using other programming

languages and conventional mathematical notation.
If these treatments addressed a common set of top-
ics, such as those addressed here, some objective
comparisons of languages could be made. Treat-
ments of some of the topics covered here are al-
ready available for comparison. For example, Ker-
ner [7] expresses the algorithm C.3 in both AL-
GOL and conventional mathematical notation.

This concluding section is more general, con-
cerning comparisons with mathematical notation,
the problems of introducing notation, extensions to
APL which would further enhance its utility, and
discussion of the mode of presentation of the earli-
er sections.

5.1 Comparison with Conventional Mathe-
matical Notation

Any deficiency remarked in mathematical nota-
tion can probably be countered by an example of
its rectification in some particular branch of math-
ematics or in some particular publication; compar-
isons made here are meant to refer to the more
general and commonplace use of mathematical
notation.

APL is similar to conventional mathematical
notation in many important respects: in the use of
functions with explicit arguments and explicit re-
sults, in the concomitant use of composite expres-
sions which apply functions to the results of other
functions, in the provision of graphic symbols for
the more commonly used functions, in the use of
vectors, matrices, and higher-rank arrays, and in
the use of operators which, like the derivative and
the convolution operators of mathematics, apply to
functions to produce functions.

In the treatment of functions APL differs in
providing a precise formal mechanism for the defi-
nition of new functions. The direct definition
form used in this paper is perhaps most appropriate
for purposes of exposition and analysis, but the
canonical form referred to in the introduction, and
defined in [4, p.811], is often more convenient for
other purposes.

In the interpretation of composite expressions
APL agrees in the use of parentheses, but differs in
eschewing hierarchy so as to treat all functions
(user-defined as well as primitive) alike, and in
adopting a single rule for the application of both
monadic and dyadic functions: the right argument
of a function is the value of the entire expression
to its right. An important consequence of this rule
is that any portion of an expression which is free of
parentheses may be read analytically from left to
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Fig. 3.
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right (since the leading function at any stage is the
"outer'" or overall function to be applied to the
result on its right), and constructively from right
to left (since the rule is easily seen to be equiva-
lent to the rule that execution is carried out from
right to left).

Although Cajori does not even mention rules
for the order of execution in his two-volume histo-
ry of mathematical notations, it seems reasonable
to assume that the motivation for the familiar
hierarchy (power before ~ and ~ before + or -) arose
from a desire to make polynomials expressible
without parentheses. The convenient use of vec-
tors in expressing polynomials, as in +/cxx~£, does
much to remove this motivation. Moreover, the
rule adopted in APL also makes Horner 's efficient
expression for a polynomial expressible without
parentheses:

+/3 4 2 5xX+0 1 2 3 ++ 3+XxU+Xx2+Xx5

In providing graphic symbols for commonly
used functions APL goes much farther, and pro-
vides symbols for functions (such as the power
function) which are implicitly denied symbols in
mathematics. This becomes important when oper-
ators are introduced; in the preceding sections the
inner product «.+ (which must employ a symbol for
power) played an equal role with the ordinary in-
ner product +.~. Prohibition of elision of function
symbols (such as ~) makes possible the unambi-
gious use of multi-character names for variables
and functions.

In the use of arrays APL is similar to mathe-
matical notation, but more systematic. For exam-
ple, v+v» has the same meaning in both, and in APL
the definitions for other functions are extended in
the same element-by-element manner. In mathe-
matics, however, expressions such as vxv and v.w
are defined differently or not at all.

124 KENNETH E. IVERSON

1_0 g+

n terms < > -ll;n(n+ 1) (n+2)(n+3)

. nterms <« = %n(n+ Dn+2)(n+3)(n+4)

r(= )

For example, vx» commonly denotes the vector
product [14, p.308]. It can be expressed in vari-
ous ways in APL. The definition

VP:((1¢a)x 1¢w)-( 1¢a)x1dw

provides a convenient basis for an obvious proof
that ve is 'anticommutative' (that is,
vvewe-- wvpv), and (using the fact that
“16x «+ 26x for 3-element vectors) for a simple
proof that in 3-space v and » are both orthogonal to
their vector product, that is, ~/0=v+.xv v v and
A/O=W+.xV VP W.

APL is also more systematic in the use of oper-
ators to produce functions on arrays: reduction
provides the equivalent of the sigma and pi nota-
tion (in +/ and x/) and a host of similar useful cas-
es; outer product extends the outer product of ten-
sor anaysis to functions other than x, and inner
product extends ordinary matrix product (+.x) to
many cases, such as v.» and (.+, for which ad hoc
definitions are often made.

The similarities between APL and conventional
notation become more apparent when one learns a
few rather mechanical substitutions, and the trans-
lation of mathematical expressions is instructive.
For example, in an expression such as the first
shown in Figure 3, one simply substitutes .~ for
each occurrence of j and replaces the sigma by +/.
Thus:

+/(1N)x2*-1N , OF +/Jx2%-Jd+1N

Collections such as Jolley's Summation of
Series [15] provide interesting expressions for
such an exercise, particularly if a computer is
available for execution of the results. For example,
on pages 8 and 9 we have the identities shown in
the second and third examples of Figure 3. These
would be written as:



+/x/( 141N )e.+13 ++ (x/N+0,13)+4
+/x/(T141N)e.+14 =+ (x/N+0,14)+5
Together these suggest the following identity:

+/%x/(T1+1N)o.+1K ++ (x/N+0,1K)+K+1

The reader might attempt to restate this general
identity (or even the special case where k-0) in
Jolley ' s notation.

The last expression of Figure 3 is taken from a
treatment of the fractional calculus [16, p.301],
and represents an approximation to the qth order
derivative of a function f. It would be written as:

(S*-Q)x+/(J'J-14Q)xF X-(J+ 1+1N)xS«(X-4)+N

The translation to APL is a simple use of .~ as
suggested above, combined with a straightforward
identity which collapses the several occurrences of
the gamma function into a single use of the bino-
mial coefficient function :, whose domain is, of
course, not restricted to integers.

In the foregoing, the parameter ¢ specifies the
order of the derivative if positive, and the order of

the integral (from 4 to x) if negative. Fractional
values give fractional derivatives and integrals, and
the following function can, by first defining a func-
tion r and assigning suitable values to » and 4, be
used to experiment numerically with the deriva-
tives discussed in [16]:

0S:(S*-a)x+/(J'J-1+a)xFu-(J+« 1+1N)xS+(w-A):N

Although much use is made of "formal" manip-
ulation in mathematical notation, truly formal
manipulation by explicit algorithms is very diffi-
cult. APL is much more tractable in this respect.
In Section 2 we saw, for example, that the deriva-
tive of the polynomial expression (we.+« 1+1pa)+.xa
is given by (we.+ 1+1pa)+.x16ax"1+1pa, and a set of
functions for the formal differentiation of APL
expressions given by Orth in his treatment of the
calculus [13] occupies less than a page. Other
examples of functions for formal manipulation
occur in [17, p.347] in the modeling operators for
the vector calculus.

Further discussion of the relationship with
mathematical notation may be found in [3] and
in the paper "Algebra as a Language" [6, p.325].

A final comment on printing, which has always
been a serious problem in conventional notation.
Although APL does employ certain symbols not
yet generally available to publishers, it employs
only 88 basic characters, plus some composite char-
acters formed by superposition of pairs of basic

characters. Moreover, it makes no demands such as
the inferior and superior lines and smaller type
fonts used in subscripts and superscripts.

5.2 The Introduction of Notation

At the outset, the ease of introducing notation
in context was suggested as a measure of suitability
of the notation, and the reader was asked to ob-
serve the process of introducing APL. The utility
of this measure may well be accepted as a truism,
but it is one which requires some clarification.

For one thing, an ad hoc notation which provid-
ed exactly the functions needed for some particular
topic would be easy to introduce in context. It is
necessary to ask further questions concerning the
total bulk of notation required, the degree of struc-
ture in the notation, and the degree to which nota-
tion introduced for a specific purpose proves more
generally useful.

Secondly, it is important to distinguish the dif-
ficulty of describing and of learning a piece of no-
tation from the difficulty of mastering its implica-
tions. For example, learning the rules for comput-
ing a matrix product is easy, but a mastery of its
implications (such as its associativity, its distrib-
utivity over addition, and its ability to represent

linear functions and geometric operations) is a
different and much more difficult matter.

Indeed, the very suggestiveness of a notation
may make it seem harder to learn because of the
many properties it suggests for exploration. For
example, the notation +.x for matrix product can-
not make the rules for its computation more diffi-
cult to learn, since it at least serves as a reminder
that the process is an addition of products, but any
discussion of the properties of matrix product in
terms of this notation cannot help but suggest a
host of questions such as: Is v.» associative? Over
what does it distribute? Is sv.ic «+ &(8c)v.+8B a
valid identity?

5.3 Extensions to APL

In order to ensure that the notation used in this
paper is well-defined and widely available on exist-
ing computer systems, it has been restricted to
current APL as defined in [4] and in the more
formal standard published by STAPL, the ACM
SIGPLAN Technical Committee on APL
[17, p.409]. We will now comment briefly on
potential extensions which would increase its con-
venience for the topics treated here, and enhance
its suitability for the treatment of other topics
such as ordinary and vector calculus.
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One type of extension has already been suggest-
ed by showing the execution of an example (roots
of a polynomial) on an APL system based on com-
plex numbers. This implies no change in function
symbols, although the domain of certain functions
will have to be extended. For example, |x will give
the magnitude of complex as well as real argu-
ments, +x will give the conjugate of complex argu-
ments as well as the trivial result it now gives for
real arguments, and the elementary functions will
be appropriately extended, as suggested by the use
of « in the cited example. It also implies the possi-
bility of meaningful inclusion of primitive func-
tions for zeros of polynomials and for eigenvalues
and eigenvectors of matrices.

A second type also suggested by the earlier sec-
tions includes functions defined for particular pur-
poses which show promise of general utility. Ex-
amples include the nub function », defined by D.3,
and the summarization function s, defined by D.4.
These and other extensions are discussed in [18].
McDonnell [19, p.240] has proposed generaliza-
tions of and and or to non-booleans so that 4vs is
the GCD of 2 and 5, and 4+5 is the LCM. The func-
tions ¢co and rcw defined in Section 3 could then be
defined simply by cco:v/w and rem:asw.

A more general line of development concerns
operators, illustrated in the preceding sections by
the reduction, inner-product, and outer-product.
Discussions of operators now in APL may be found
in [20] and in [17, p.129], proposed new opera-
tors for the vector calculus are discussed in
[17, p.47], and others are discussed in [18] and
in [17, p.129].

5.4 Mode of Presentation

The treatment in the preceding sections con-
cerned a set of brief topics, with an emphasis on
clarity rather than efficiency in the resulting al-
gorithms. Both of these points merit further com-
ment.

The treatment of some more complete topic, of
an extent sufficient for, say, a one- or two-term
course, provides a somewhat different, and perhaps
more realistic, test of a notation. In particular, it
provides a better measure of the amount of nota-
tion to be introduced in normal course work.

Such treatments of a number of topics in APL
are available, including: high school algebra [6],
elementary analysis [ 5], calculus, [13], design of
digital systems [21], resistive circuits [10], and
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crystallography [22]. All of these provide indica-
tions of the ease of introducing the notation need-
ed, and one provides comments on experience in its
use. Professor Blaauw, in discussing the design of
digital systems [21], says that "APL makes it
possible to describe what really occurs in a complex
system', that ""APL is particularly suited to this
purpose, since it allows expression at the high ar-
chitectural level, at the lowest implementation
level, and at all levels between', and that
" ..learning the language pays of (sic) in- and out-
side the field of computer design".

Users of computers and programming languages
are often concerned primarily with the efficiency
of execution of algorithms, and might, therefore,
summarily dismiss many of the algorithms pres-
ented here. Such dismissal would be short-sighted,
since a clear statement of an algorithm can usually
be used as a basis from which one may easily de-
rive more efficient algorithms. For example, in
the function srep of section 3.2, one may signifi-
cantly increase efficiency by making substitutions
of the form sav for (mw)+.xs, and in expressions
using +/cxx+"1+1pc one may substitute x.¢c or,
adopting an opposite convention for the order of
the coefficients, the expression x.c.

More complex transformations may also be
made. For example, Kerner's method (C.3) re-
sults from a rather obvious, though not formally
stated, identity. Similarly, the use of the matrix «
to represent permutations in the recursive function
r used in obtaining the depth first spanning tree
(C.4) can be replaced by the possibly more compact
use of a list of nodes, substituting indexing for in-
ner products in a rather obvious, though not com-
pletely formal, way. Moreover, such a recursive
definition can be transformed into more efficient
non-recursive forms.

Finally, any algorithm expressed clearly in
terms of arrays can be transformed by simple,
though tedious, modifications into perhaps more
efficient algorithms employing iteration on scalar
elements. For example, the evaluation of +/x de-
pends upon every element of x and does not admit
of much improvement, but evaluation of v/5 could
stop at the first element equal to i, and might
therefore be improved by an iterative algorithm
expressed in terms of indexing.

The practice of first developing a clear and pre-
cise definition of a process without regard to effi-
ciency, and then using it as a guide and a test in
exploring equivalent processes possessing other
characteristics, such as greater efficiency, is very
common in mathematics. It is a very fruitful prac-



tice which should not be blighted by premature
emphasis on efficiency in computer execution.

Measures of efficiency are often unrealistic be-
cause they concern counts of ''substantive' func-
tions such as multiplication and addition, and ig-
nore the housekeeping (indexing and other selec-
tion processes) which is often greatly increased by
less straightforward algorithms. Moreover, realis-
tic measures depend strengly on the current design
of computers and of language embodiments. For
example, because functions on booleans (such as /s
and v/5) are found to be heavily used in APL, im-
plementers have provided efficient execution of
them. Finally, overemphasis of efficiency leads to
an unfortunate circularity in design: for reasons of
efficiency early programming languages reflected
the characteristics of the early computers, and
each generation of computers reflects the needs of
the programming languages of the preceding gener-
ation.
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Appendix A. Summary of Notation

Fuw SCALAR FUNCTIONS aFw
w Conjugate + Plus
0-w Negative - Minus
(w>0)-w<0 Signum  x Times
13w Reciprocal # Divide
wl -w Magnitude | Residue w-axwwiat+az0
Integer part Floor P Minimum (wxw<a)+axwza
- cw Ceiling [ Maximum “(=a)=--w
2.71828...%w Exponential * Power x/wpa
Inverse of = Natural log @ Logarithm (ow)+ea
x/1+1w Factorial ! Binomial (lw)+(la)xluw-a
3 s LRTS Y 0o Wil Pi times ©
Boolean: v~ ~ (and, or, not-and, not-or, not)
Relations: < < = 2 > * (aRw is 1 il relation R holds).
Sec. V++2 3 5 M++1 2 3
Ref. 4 5 6
Integers 1 15++1 2 3 4 5
Shape 1 pV++3 pM++2 3 2 3p16++M 2p4++4 4
Catenation 1 VeoVer2 3 § 2 35 MM++1 2 31 2 3
“ 5 64 5 6
Ravel 1 JMe+1 2 3 4 5 86
Indexing 1 VE3 1]+=5 2 M[2;2]++5 M[2;]1++4 5 6
Compress 3 1 0 1/V++2 5 0 1/M++4 5 6
Take,Drop 1 24V++2 3 T24Ve+14V++3 5
Reversal 1 ¢Ve+5 3 2
Rotate 1 2¢V++5 2 3 T2¢V++3 5 2
Transpose 1,4 Qu reverses axes aQuw permutes axes
Grade 3 43 2 6 2++2 4 1 3 ¥3 2 6 2++3 1. 2 &
Base value 1 101 V++235 ViVe+50
&inverse 1 10 10 10T7235++2 3 5 VT50+«+2 3 5
Membership 3 Ved++0 1 0 Ve5 2++1 0 1
Inverse 2,6 @Bw is matrix inverse aflw++(Bw)+.xa
Reduction 1 +/V++10 +/M++6 15 +/M++5 7 9
Scan ! +\V++2 5 10 +\M++2 3p1 3 6 4 9 15
Inner prod 1 +.x is matrix product
Outer prod 1 0 30,41 2 3++M
Axis 1 F[I) applies F along axis I

Appendix B. Compiler from Direct to Can-
onical Form

This compiler has been adapted from [22, p.222].
It will not handle definitions which include « or :
or «» in quotes. It consists of the functions rrx and
r9, and the character matrices cs and as:

FIXx
0p0FX F9 O

D+F9 E;F;I;K

Fe(,(E='w')o,2541)/,E,(b4,pE)p"' Y9

Fe( ,(F='a')e.=541)/,F,(®4,pF)p"* X9 '

Fel4pD«( 0,4/ 6, I)4(-(3xI)++\I+"':"=F)OF,($6,pF)p"' "'
D+3¢C9[1+(1+'a'€E),I,0;1,8D[;1,(I+2+1F),2]
K+K+2xK<19K+IrKe(>#1 0¢'+0'e . .=E)/K++\~I+EcA9
F+(0,1+pE) pD+D,(F,pE)+80 ~2+K¢' ',E,[1.5]";"'
D+(F4+D),[1IP[2] 'mn',E

c9 A9
Z9+ 012345678
Y9Z9+ 9ABCDEFGH
Y9Z9+X9 IJKLMNOPQ
)/3+(0=1+, RSTUVWXYZ
+0,0029+ ABCDEFGHIL
JKLMNOPQR
STYYWXYzO
Example:
FIX

FIB:Z,+/ 24Z+FIBw-1:w=1:1

FIB 15
112 358 13 21 34 55 89 144 233 377 610

Ocr'FIB"
Z9+FIB Y9:2
+(0=1+,Y9=1)/3
+0,0p29+1
29+«2,+/ 242+FIB Y9-1
AFIB:2,+/ 24Z+FIBuw-1:w=1:1
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1979 ACM Turing Award Lecture

Delivered at ACM 79, Detroit, Oct. 29, 1979

The 1979 ACM Turing Award was presented to Kenneth E. Iverson by
Walter Carlson, Chairman of the Awards Committee, at the ACM Annual
Conference in Detroit, Michigan, October 29, 1979.

In making its selection, the General Technical Achievement Award Com-
mittee cited Iverson for his pioneering effort in programming languages and
mathematical notation resulting in what the computing field now knows as
APL. Iverson’s contributions to the implementation of interactive systems,
to the educational uses of APL, and to programming language theory and
practice were also noted.

Born and raised in Canada, Iverson received his doctorate in 1954 from
Harvard University. There he served as Assistant Professor of Applied
Mathematics from 1955-1960. He then joined International Business Ma-
chines, Corp. and in 1970 was named an IBM Fellow in honor of his
contribution to the development of APL.

Dr. Iverson is presently with I.P. Sharp Associates in Toronto. He has
published numerous articles on programming languages and has written
four books about programming and mathematics: A Programming Language
(1962), Elementary Functions (1966), Algebra: An Algorithmic Treatment
(1972), and Elementary Analysis (1976).

KENNETH E. IVERSON



8  The Inductive Method of Introducing APL







THE INDUCTIVE METHOD OF INTRODUCING APL

Kenneth E. Iverson
L.P. Sharp Associates
Toronto, Ontario

Because APL is a language, there are, in the teaching of it, many analogies with the
teaching of natural languages. Because APL is a formal language, there are also many
differences, yet the analogies prove useful in suggesting appropriate objectives and
techniques in teaching APL.

For example, adults learning a language already know a native language, and the
initial objective is to learn to translate a narrow range of thoughts (concerning
immediate needs such as the ordering of food) from the native language in which they
are conceived, into the target language being learned. Attention is therefore directed
to imparting effective use of a small number of words and constructs, and not to the
memorization of a large vocabulary. Similarly, a student of APL normally knows the
terminology and procedures of some area of potential application of computers, and
the inital objective should be to learn enough to translate these procedures into APL.
Obvious as this may seem, introductory courses in APL (and in other programming
languages as well) often lack such a focus, and concentrate instead on exposing the
student to as much of the vocabulary (i.e., the primitive functions) of APL as possible.

This paper treats some of the lessons to be drawn from analogies with the teaching
of natural languages (with emphasis on the inductive method of teaching), examines
details of their application in the development of a three-day introductory course in
APL, and reports some results of use of the course. Implications for more advanced
courses are also discussed briefly.

1. The Inductive Method

Grammars present general rules, such as for the conjugation of verbs, which the student
learns to apply (by deduction) to particular cases as the need arises. This form of
presentation contrasts sharply with the way the mother tongue is learned from repeated
use of particular instances, and from the more or less conscious formulation (by
induction) of rules which summarize the particular cases.

The inductive method is now widely used in the teaching of natural languages. One
of the better-known methods is that pioneered by Berlitz [1] and now known as the
“direct” method. A concise and readable presentation and analysis of the direct method
may be found in Diller [2].

A class in the purely inductive mode is conducted entirely in the target language, with
no use of the student’s mother tongue. Expressions are first learned by imitation, and
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concepts are imparted by such devices as pointing, pictures, and pantomime; students
answer questions, learn to ask questions, and experiment with their own statements,
all with constant and immediate reaction from the teacher in the form of correction,
drill, and praise, expressed, of course, in the target language.

In the analogous conduct of an APL course, each student (or, preferably, each student
pair) is provided with an APL terminal, and with a series of printed sessions which
give explicit expressions to be “imitated” by entering them on the terminal, which
suggest ideas for experimentation, and which pose problems for which the student must
formulate and enter appropriate expressions. Part of such a session is shown as an
example in Figure 1.

/ SESSION 1: NAMES AND EXPRESSIONS \

The left side of each page provides examples to be entered on the keyboard, and the
right side provides comments on them. Each expression entered must be followed by
striking the RETURN key to signal the APL system to execute the expression.
AREA«8x2 The name AREA is assigned to the result
HEIGHT<3 of the multiplication, that is 16
VOLUME<HEIGHTxAREA
HEIGHTxAREA If no name is assigned to the result, it
L8 is printed
VOLUME
48
3x8x2
L8
LENGTH«8 7 6 5 Names may be assigned to lists
WIDTH«2 3 4 5
LENGTHxWIDTH
16 21 24 25
PERIMETER<2x(LENGTH+WIDTH) Parentheses specify the order in which
PERIMETER parts of an expression are to be
20 20 20 20 executed
1125 o 125 s 12 Decimal numbers may be used
1.404928
1.12%3 Yield of 12 percent for 3 years
1.404928
SAMPLE PORTION OF SESSION

\ Figure 1 /

Because APL is a formal “imperative” language, the APL system can execute any
expression entered on the terminal, and therefore provides most of the reaction required
from a teacher. The role of the instructor is therefore reduced to that of tutor, providing
explicit help in the event of severe difficulties (such as failure of the terminal), and
general discussion as required. As compared to the case of a natural language, the
student is expected, and is better able, to assess his own performance.
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Applied to natural languages, the inductive method offers a number of important
advantages:

1. Many dull but essential details (such as pronunciation) required at the outset are
acquired in the course of doing more interesting things, and without explicit drill
in them.

2. The fun of constantly looking for the patterns or rules into which examples can
be fitted provides a stimulation lacking in the explicit memorization of rules, and
the repeated examples provide, as always, the best mnemonic basis for
remembering general rules.

3. The experience of committing error after error, seeing that they produce no lasting
harm, and seeing them corrected through conversation, gives the student a
confidence and a willingness to try that is difficult to impart by more formal
methods.

4.  The teacher need not be expert in two languages, but only in the target language.
Analogous advantages are found in the teaching of APL:

1. Details of the terminal keyboard are absorbed gradually while doing interesting
things from the very outset.

2. Most of the syntactic rules, and the extension of functions to arrays, can be quickly
gleaned from examples such as those presented in Figure 1.

3.  The student soon sees that most errors are harmless, that the nature of most are
obvious from the simple error messages, and that any adverse effects (such as an
open quote) are easily rectified by consulting a manual or a tutor.

4. The tutor need only know APL, and does not need to be expert in areas such
as financial management or engineering to which students wish to apply APL,
and need not be experienced in lecturing.

2. The Use Of Reference Material

In the pure use of the inductive method, the use of reference material such as grammars
and dictionaries would be forbidden. Indeed, their use is sometimes discouraged because
the conscious application of grammatical rules and the conscious pronunciation of words
from visualization of their spellings promotes uneven delivery. However, if a student
is to become independent and capable of further study on his own, he must be
introduced to appropriate reference material.

Effective use of reference material requires some practice, and the student should
therefore be introduced to it early. Moreover, he should not be confined to a single
reference; at the outset, a comprehensive dictionary is too awkward and confusing, but
a concise dictionary will soon be found to be too limited.

In the analogous case of APL, the role of both grammar and dictionary is played by
the reference manual. A concise manual limited to the core language [3] should be
supplemented by a more conprehensive manual (such as Berry [4]) which covers all
aspects of the particular system in use. Moreover, the student should be led immediately
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to locate the two or three main summary tables in the manual, and should be prodded
into constant use of the manual by explicit questions (such as “what is the name of
the function denoted by the comma”), and by glimpses of interesting functions.

3. Order Of Presentation

Because the student is constantly striving to impose a structure upon the examples
presented to him, the order of presentation of concepts is crucial, and must be carefully
planned. For example, use of the present tense should be well established before other
tenses and moods are introduced. The care taken with the order of presentation should,
however, be unobtrusive, and the student may become aware of it only after gaining
experience beyond the course, if at all.

We will address two particular difficulties with the order of presentation, and exemplify
their solutions in the context of APL. The first is that certain expressions are too
complex to be treated properly in detail at the point where they are first useful. These
can be handled as “useful expressions” and will be discussed in a separate section.

The second difficulty is that certain important notions are rendered complex by the
many guises in which they appear. The general approach to such problems is to present
the essential notion early, and return to it again and again at intervals to reinforce
it and to add the treatment of further aspects.

For example, because students often find difficulty with the notion of literals (i.e.,
character arrays), its treatment in APL is often deferred, even though this deferral also
makes it necessary to defer important practical notions such as the production of
reports. In the present approach, the essential notion is introduced early, in the manner
shown in Figure 2. Literals are then returned to in several contexts: in the
representation of function definitions; in discussion of literal digits and the functions
(v and 2) which are used to transform between them and numbers in the production
of reports; and in their use with indexing to produce barcharts.

Function definition is another important idea whose treatment is often deferred because
of its seeming complexity. However, this complexity inheres not in the notion itself,
but in the mechanics of the general del form of definition usually employed. This
complexity includes a new mode of keyboard entry with its own set of error messages,
a set of rules for function headers, confusion due to side-effects resulting from failure
to localize names used or to definitions which print results but have no explicit results,
and the matter of suspended functions.

All of this is avoided by representing each function definition by a character vector in
the direct form of definition [5 6]. For example, a student first uses the function
ROUND provided in a workspace, then shows its definition, and then defines an
equivalent function called R as follows:

ROUND 24.78 31.15 28.59
25 31 29

SHOW 'ROUND'
ROUND: L .5+W
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SESSION 4: LITERALS \

JANET<«5 Janet received 5 letters today

MARY+8

MARY[ JANET The maximum received by one of them
) MARY| JANET The minimum
i MARY>JANET Mary received more than Janet
i MARY=JANET They did not receive an equal number
0

What sense can you make of the following sentences:

JANET has 5 letters and MARY has 8

JANET has 5 letters and MARY has 4

'"JANET' has 5 letters and 'MARY' has 4
The last sentence above uses quotation marks in the usual way to make a literal
reference to the (letters in the) name itself as opposed to what it denotes. The second

points up the potential ambiguity which is resolved by quote marks.

LIST«24.6 3 17

pLIST
3
WORD<'LIST"
oWORD
L

SENTENCE<«'LIST THE NET GAINS'

INTRODUCTION OF LITERALS
\ Figure 2 j

DEFINE 'R:L.5+W?

R 24.78 31.15
25 9

The function DEFINE compiles the definition provided by its argument into an
appropriate del form, localizes any names which appear to the left of assignment arrows
in the definition, provides a “trap” or “lock™ appropriate to the particular APL system
so that the function defined behaves like a primitive and cannot be suspended, and
appends the original argument in a comment line for use by the function SHOW.
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This approach makes it possible to introduce simple function definition very early and
to use it in a variety of interesting contexts before introducing conditional and recursive
definitions (also in the direct form), and the more difficult del form.

4. Teaching Reading

It is usually much easier to read and comprehend a sentence than it is to write a
sentence expressing the same thought. Inductive teaching makes much use of such
reading, and the student is encouraged to scan an entire passage, using pictures, context,
and other clues, to grasp the overall theme before invoking the use of a dictionary to
clarify details.

Because the entry of an APL expression on a terminal immediately yields the overall
result for examination by the student, this approach is particularly effective in teaching
APL. For example, if the student’s workspace has a table of names of countries, and
a table of oil imports by year by country by month, then the sequence:

N<25
B<+/[1]+/[3] OIL

COUNTRIES, "' .0'[1+Bo.2([ /B)x(1N):N]

produces the following result, which has the obvious interpretation as a barchart of
oil imports:

ARABTA  [IDOOOOOOCOCOOOOOOOCO. - - . -
NIGERIA [DDOOOOOOOOOOOOCOO. ... ...
CANADA [IODDOOOOOOOOCOO. .« . e e e e e
INDONESTAOOOOOOOOO. « « v v v vv e e v vns
IRAN RN e et - e st (s, B
LIBYA ORI s wss 58 smmmn v o wae
ALGERIA [N o5 0 s 5 mosws s 5 sm
OTHER O000000000000000000000000

Moreover, because the simple syntax makes it easy to determine the exact sequence
in which the parts of the sentence are executed, a detailed understanding of the
expression can be gained by executing it piece-by-piece, as illustrated in Figure 3.
Finally, such critical reading of an expression can lead the student to formulate his
own definition of a useful related function as follows:

DEFINE [1
BARCHART : ' .0'[1+wo .2((1a)*a)x[ /w]

5. Useful Expressions

As remarked in Section 3, some expressions are too useful and important to be deferred
to the point that would be dictated by the complexity of their structure. In APL such
expressions can be handled by introducing them as defined functions whose use may
be grasped immediately, but whose internal definition may be left for later study.

For example, files can be introduced in terms of the functions GET, TO, RANGE, and
REMOVE, illustrated in Figure 4. These can be grasped and used effectively by the
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r N The width of the barchart \
25

@«(1N)=N Numbers from 0 to 1 in 25 equal steps
(display if desired)
[/B The largest value to be charted
C«(l/B)x@Q Numbers from 0 to the largest value to be
charted

S«Bo .2C Comparison of each value of B with

S each value in the range to be charted
1123143431221 1323313231331 711320.:00.0 0
11111111717 111111111006600100
1411412112121 2131312100000900000
1111211 3110000000000000C0@ 0
11111211 000000000000@06 00 Q
111141491100 0080068 0@ 000006040
1111131311000 000060060000 00100
1131443141111+ 1213143132d1l

3 244148 Examine a piece of 1+5
22222 2 22 2 2 2222202284
22 2222222222222 222111
2222222222222 221111411

DETAILED EXECUTION OF AN EXPRESSION

k Figure 3 J

student at an earlier stage and with much greater ease than can the underlying
language elements from which they must be constructed in most APL systems.

A further example is provided by the function needed to compile, display, and edit the
character vectors used in direct definition of functions. For example, an editing function
which deletes each position indicated by a slash, and inserts ahead of the position of
the first comma any text which follows it (in the manner provided for del editing in
many APL systems) is illustrated in Figure 5.

Deferral of the internal details of the definition of these essential functions can, in fact,
be turned to advantage, because they provide interesting exercises in reading (using the
techniques of Section 4) the definitions of functions whose purposes are already clear
from repeated use. For example, critical reading of the following definition of the
function EDIT is very helpful in grasping the important idea of recursive definition:

EDIT:EDIT(A DELETE Ktw),(14K+A), (K<+/A\4z"', " ) 4w:0=pA<",0p[*¢w:w
DELETE: (~(pw)t'/'=a)/w

Analysis of the complete set of functions provided for the compilation from direct
definition form also provides an interesting exercise in reading, but one which would
not be completed, or perhaps even attempted, until after completion of an introductory
course. Extensive leads to other interesting reading, of both workspaces and published
material, should be given the student to encourage further growth after the conclusion
of formal course work.
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ﬂf the first dimension of an array (list, table, or list of tables) has the value , (fo“

example, 14pOIL is 7), then it may be distributed to ¥ items of a file by a single
operation. For example:

OIL To "IMPORTS 72 73 74 75 76 77 78!

*Use the function GET to retrieve individual items from the IMPORTS file to verify the
effect of the preceding expression.

COUNTRIES TO 'IMPORTS 1'Non-numeric data may be entered
The functions RANGE and REMOVE are useful in managing files:

RANGE 'IMPORTS' Gives range of indices
172 78 74 75 76 77 78"

REMOVE 'IMPORTS 73 75 77' Removes odd years

RANGE 'IMPORTS'
1 72 74 76 78

FUNCTIONS FOR USING FILES

k Figure 4 )
[

TEXT<'DDELLLETN AND INSRTION' ‘\\\
Z<EDIT TEXT Apply EDIT to erroneous text
DDELLLETN AND INSRTION Line printed by the function
L I 10 Line entered on keyboard
DELETION AND INSRTION Line printed by the function
5B Line entered on keyboard
DELETION AND INSERTION Line printed by the function

Empty line entered on keyboard (carriage
return alone) ends execution of EDIT

DEFINE 'REVISE:DEFINE EDIT SHOW w' Define a function for revision

REVISE 'SUM!'
SUM:+/[a]w
/// MAX
MAX :+/[a]w
4 &l
MAX:T /[a]w

FUNCTIONS FOR EDITING AND REVISION

& Figure 5 J
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Advanced Courses

Advanced language courses can also employ the inductive method, but the greater the
student’s mastery of a language, the greater the potential benefits of the deductive
approach and of explicit analysis of the structure of the language. A point sometimes
made in the advanced treatment of natural languages is that grammar and related
matters can now be discussed in the target language, avoiding distractions and
distortions which might be introduced by use of the mother tongue.

Similar remarks apply to advanced APL courses. In particular, the use of APL in its
own discussion and in the introduction of the more complex functions is quite
productive. For example, reduction is very useful in discussing the inner product, and
inner product and grade are helpful in analyzing dyadic transpose.

Conduct Of The Course

The introductory course on which these remarks are based evolved through four
versions offered over a period of several months. The resulting course covers three
contiguous days, and has been offered a number of times in the final form.

Most students appear to work better in pairs than when assigned individually to
terminals. Because there are no lectures, each pair can work at their own pace.
Observations and student comments show that they find it more stimulating than a
lecture course, and tend to come early and work late. Moreover, they learn to consult
manuals much more than in a lecture course, and exhibit a good deal of independence
by the end of the three days.
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