
THE DYNAMIC INCREMENTAL COMPILER
OF

APL\3000

Ronald L. Johnston
Computer Research Laboratory

Hewlett-Packard Company
3500 Deer Creek Road

Palo Alto, California, USA 94304
(415) 494-1444

ABSTRACT

Most APL implementations to date have been
interpretive because of the dynamic nature
of the language. APL\3000 employs a Dynamic
Incremental Compiler to allow all the
flexibility of change afforded by
interpretation, but giving the added bonus
of faster execution for programs run more
than once. APL\3000 compiles code on a
statement-by-statement basis as needed,
saving the code and reusing it where
possible. A statement is recompiled only
when made necessary by changes in syntax or
changes in variable bindings. The compiler
produces optimized code by employing the
Abrams techniques of Drag-along and Beating.

INTERPRETIVE PROCESSING

For years now, APL has been considered
nearly impossible to compile because of its
late binding of names. Since there are no
static declarations of name a~tributes, name
bindings can be determined only at run-time,
at which point a name takes on the
attributes of whatever is assigned to it.
Further, names can have different meanings
in different contexts, and can even have
different meanings on different executions
of the very same statement. The language
allows so much to change dynamically that
any given compilation of a statement could
prove inapplicable to a subsequent
invocation of the statement.

This dynamic, potentially unstable nature
has prompted most APL implementations to
choose an interpretive approach. While
straightforward, it carries with it some
inherent performance limitations. There is

Copyright © 1979 by the Association for Computing Machinery,
Inc. Copying without fee is permitted provided that the copies are
not made or distributed for direct commercial advantage and credit
to the source is given. Abstracting with credit is permitted. For
other copying of articles that carry a code at the bottom of the first
page, copying is permitted provided that the per-copy fee
indicated in the code is paid through the Copyright Clearance
Center, P. O. Box 765, Schenectady, N. Y. 12301. For permission to
republish write to: Director of Publications, Association for
Computing Machinery. To copy otherwise, or republish, requires a
fee and/or specific permission.

© 1 9 7 9 - - A C M 0 - 8 9 7 9 1 - 0 0 5 - - 2 / 7 9 / 0 5 0 0 - - 0 0 8 2 $00.75

a relatively high overhead for interpre-
tation when compared to executing compiled
code because an interpreter performs syntax
analysis and operand-conformability and
domain checking on every execution of a
statement. Often the interpretive overhead
is more costly than the execution itself,
particularly when the statement deals with
operands of few elements.

NAIVE PROCESSING

Most APL systems have also been handi-
capped by combining interpretation with
"naive" operation, in which each
subexpression is evaluated immediately after
its operands have been evaluated. For
instance, the statement

A~5÷BxC*D

where B, C, and D are numeric vectors of
length 100, would be evaluated naively as
shown by the following stylized code:

for i÷I until 100 do { tI+C*D }
t1[i] + C[i] * D[i];

for i~I until 100 do { t2+Bxtl }
t2[i] ÷ B[i] x t1[i];

for i~I until 5 do { t3+5÷t2 }
t3[i] ÷ t2[i];

A ÷ t3;

This approach is noticeably wasteful,
pointing out out one major source of
inefficiency in a naive APL system: its
rigidly literal execution of the statement,
one function at a time, forces unnecessary
array-shaped temporary results (and their
associated accessing loops) to be produced
in order to generate the end result. In
this particular example, only the first 5
elements of the results of BxC*D are
actually needed, a naive system fully
evaluates all of its elements (1OO) and then
takes the first 5.

APL\3000: AN INCREMENTAL COMPILER

APL\3OO0 is a complete APL system that
runs on the HP 3000 minicomputer. It is not
an interpreter, nor is it "naive", being

"lh,: i,,cremental Compiler of APL\~O00 82 R.L. Johnston

instead a dynamic incremental compiler which
uses the techniques of Drag-along and
Beating to produce optimized code. These
techniques will be more fully described
later in the paper. The flexible,
interactive nature of the language has not
been changed to accommodate compilation;
there have been no restrictions placed on
the language. APL\3000 appears to be a
"standard" APL interpreter, with few hints
that it is really a compiler. Calculator
mode input is immediately compiled and
executed, as are Quad-input and the argument
to the Execute function. User-defined
functions are dynamically compiled
statement-by-statement. The code produced
is then saved for subsequent invocations.

By not compiling a statement until its
execution is demanded, it is possible to
overcome APL's lack of name declarations.
Code can be generated that matches the
specific run-time attributes of each name.
This technique has the beneficial
consequence of also leaving some statements
uncompiled: those that have never been
executed.

The idea of dynamically compiling code for
APL is not entirely new. It has been
employed by at least one interpretive APL
system as a technique for faster processing
of some primitive functions. However, its
application was in a naive setting, and the
object code was simply discarded after its
single execution because it could not be
guaranteed valid later.

SIGNATURE CODE AND BINDING ERRORS

Recognizing the potential variability of
name bindings, the APL\3000 compiler hedges

against any attribute changes that would
invalidate the compiled code. In addition
to the working code, it produces a preamble
block of "SIGNATURE CODE" which specifies
and checks the assumptions bound into the
working code. Though signature and working
code will be discussed as if they were
physically separate entities, this is really
only a conceptual distinction. They are
actually just two components of a single
code block, with the block's signature
always preceding the block's working code as
below.

+ + + .

1 Signature I Working
I Code I Code 1
+ + . +

On re-execution of a statement's code
block, the signature code is executed first
to test the validity of the working code
which follows. If the signature assertions
are satisfied, then the working code is
executed with no further interpretive
overhead. However, if the signature code
finds that the working code is no longer
valid, the code "breaks", causing a "BINDING
ERROR." The dynamic compiler is then
automatically invoked to produce code for
the new situation. Figure I illustrates
this process.

At the heart of this strategy is the
assumption that most APL statements are
"well-behaved" - that is, they do not really
exercise the dynamic nature of the language.
If this is the case, then the code that is
generated will remain valid over several,
perhaps all, executions of a statement.
However, if this proves not to be the case,
it is certainly not desirable to be
continually recompiling a given statement;

+

I C o m p i I e
New I "HARD"
Expression >I Signature

I and Working
I Code

+

. . . . >
Execute
Working
C o d e

+ +

I Save I
.... >I Code I-->

I Block I
+ +

Previously
Compiled
Expression

+

I Test
....... >I Signature

I Code
+

I
I

Code Breaks
I
I
V

Compile
"SOFT"
Signature
and Working
Code

...... >

.... >

. +

Execute I
Working ~-->
Code

. +

Execute
Working >
Code

. ÷

Replace ,I
Old Code I
With I-->
New I
Version I

. +

FIGURE I: Execution of an expression

~.L. Johnston 83 The Incremental Compiler of APL\30OO

the cost of compiling is too high, and this
would reduce APL\3000 to the equivalent of
an interpreter. To avoid this, the dynamic
compiler takes the defensive measure of
changing the type of code it emits for that
statement.

HARD AND SOFT CODE

Signature code is actually a collection of
assertions about the identifiers involved in
an expression. These assertions specify,
for each identifier, the attributes which
were current at compile time and which must
remain unchanged for the working code to be
valid. Two general types of identifier
bindings are made in compiling expressions;
these are reflected by two types of working
code and hence two types of signature code:
"Hard" and "Soft."

HARD code is the type of code initially
emitted for an expression. Here, to gain
the fastest possible execution, certain
attributes of identifiers and their data
descriptors are bound at compile-time as
constants which are not expected to change:
I) rank, 2) rho, 3) machine representation,
and 4) data storage layout. This prevents
the expression's working code from having to
make run-time computations of such things as
subscripting polynomials, loop induction
steps and limits, subscript range limits,
and so on. If re-execution of this code
fails later because an identifier changed
attributes, then that identifier is assumed
to be unstable (in the current expression,
anyway) and the second type of code - soft
code - is generated by the incremental
compiler for any of the expression's
computations involving that identifier.

SOFT code is less specifically tailored to
the current attributes of the offending
identifier. Rank determines the maximum
number of nested loops needed to access a
variable's data, so it continues to be bound
into the code. Representation dictates the
type of machine instructions needed to deal
with the data, so it too is bound into the
code. The soft signature for the identifier
will assert that both I) rank and 2) machine
representation are unchanged since the code
was compiled. All other attributes of the
identifier are allowed to change from one
invocation of the code to the next without
causing the code to break. Soft code is
less efficient than hard code because it
requires more housekeeping computation and
more indirection through the Attribute
Table, but the lost efficiency rarely
approaches the cost of repeated
recompilation.

DRAG-ALONG AND BEATING

APL\3000 produces non-naive code by
employing two optimization strategies
conceived by Philip Abrams in 1970. In his
doctoral thesis [I], he described two
processes, "Drag-along" and "Beating", which

might be used to dramatically improve APL
performance for large array operands.

DRAG-ALONG is the process of deferring
operations on array expressions as long as
possible. As more global context is
recognized, it can often lead to
simplification or optimization of the
original expression. The most common
optimization results from detecting a
sequence of operations that can share the
same evaluation loops, reducing both the
number of loops and the number of
array-shaped temporaries created.

BEATING substitutes data-descriptor
manipulation for brute force data copying in
many selection functions - a selection
function being one which rearranges or
selects data without changing its values.
Abrams elaborated the concept of using data
descriptors to indicate how a block of
linear storage is to be accessed in order to
exhibit a particular rank, shape, and
ordering. He further showed that if the
data descriptors were separated from the
storage they apply to, then the functions
Take, Drop, Reverse, Transpose, and
Subscripting by a scalar or Arithmetic
Progression Vector (APV, also called
"J-vectors") could be implemented with no
data movement. By applying a set of
transformations to the original data's
descriptor in these cases, a new descriptor
can be calculated which properly indicates
the selected data, and which shares the data
block with its original owner.

APL\3000 implements this DESCRIPTOR
CALCULUS, attaching a reference count to
each data block. In this way, operations on
one variable (which must not alter others by
side effect) can detect sharing and acquire
a private copy of the data block if
necessary. As an illustration, if A is
the 5-element numeric vector
1.1 2.2 3.3 4.4 5.5, and B is assigned

the Reversal of A, they would share A's
data block:

REF A[I] A[2] A[3] A[4] A[5]
4- 4- 4- 4- 4- 4- 4-

I 2 I 1.1 I 2.2 I 3.3 I 4.4 I 5.5 1
÷ ÷ 4- + 4- 4- 4-

COUNT B[5] B[4] B[3] B[2] B[I]

Beating may interact with drag-along by
restricting the scope of a deferred
operation to produce only the pertinent
elements of the result. Applying these
strategies to the example given earlier,

A÷5÷BxC*D

APL\3000 would generate the following
(stylized) code:

for i÷I until 5 do { tI÷5÷BxC*D }
till] ÷ B[i] x C[i] * D[i];

A÷ tl;

Note that Drag-along enabled the naive
approach's 3 loops with 3 temporaries to be

the Incremental Compiler of APL\3000 84 R.L. Johnston

merged into I loop with I temporary, and
Beating allowed the loop to be limited to 5
elements rather than 100.

THE COMPILATION PROCESS

Compilation is a 3-step process which
flows roughly as follows:

SOURCE --> TREE --> FOLIATED TREE --> E-CODE
(I) (2) (3)

The first step is to perform a SYNTAX
ANALYSIS of the statement, scanning the
tokenized source, referring to the Attribute
Table to find the current name bindings.
The result of this step is an ordered set of
expression trees. The statement may need to
be split into more than one expression tree
in order to avoid side effects which would
give unpredictable results. Function calls,
assignment statements, and shared-variable
accesses all have the ability to change the
current attributes of identifiers. The
compiler must isolate any of these from the
processing of the rest of the statement in
order to generate code which cannot
invalidate itself. Figure 2 shows the
expression tree for a statement which
requires only I tree.

ANS

FIGURE 2: Expression Tree for ANS ~ ^/P=@P

(P a variable; value immaterial)

With the syntax of the statement
determined, the next compilation step is
called FOLIATION. This is the context-
gathering process of tree traversal during
which the drag-along and beating strategies
are applied. The result is a much fuller
tree in which each node has attached to it
information describing the shape,
representation, and the accessing methods of
its result.

Two types of auxiliary description nodes
are used to represent this information.
One, the "RRR" node, describes the general
structure of an item: I) Rank (number of
dimensions), 2) Rho (size of each
dimension), and 3) Representation (machine
data type). The other, the "DELOFF" node,
indicates the data-access information for an
item: I) DEL (steps for each coordinate),
and 2) OFFset (location of its logical first
element).

During foliation, the expression tree is
traversed leaf-to-root, with all subtrees of
a node being visited before the node itself.
This guarantees that a full description of
each of the node's operands is available to
the compiler as it foliates that node. If
the node being foliated is a leaf (constant
or identifier), the required descriptive
information is immediately available from
either the Attribute Table or the Constant
Block. As an identifier node is foliated,
its signature code is placed into the object
code block to indicate the attributes which
are being bound into its RRR and DELOFF
nodes. A given identifier has a signature
emitted for it only once during the tree
traversal, regardless of how many times
it appears in the tree.

As the tree traversal continues, the leaf
descriptions are pushed upwards towards the
root of the tree, each function node causing
the descriptions they inherit to be changed
according to their defined effect on their
operands. Note that the foliation process
is not concerned with actual values of
variables, simply with their structure and
accessing information.

If the node to be foliated is a function
for which beating can be performed, its RRR
and DELOFF nodes are derived by modifying
those of its operands according to the
subscript calculus defined by Abrams.

Foliation continues until either the root
of the tree has been reached or a function
node has been reached for which there is no
operand value-independent way of predicting
the structure of its result. In either case
the foliated tree (or subtree) is ready for
the next compilation step, "Code
Generation." Figure 3 shows Figure 2's tree
after foliation.

The CODE-GENERATION process is performed
by traversing the fully-foliated tree again,
this time working from the root of the tree
towards its leaves. By utilizing the

R.L. Johnston 85 The Incremental Compiler of APL\3000

L I I pp: 0
REP: BOOLEAN

ANS

PP:
REP:

0
BOOLEAN

pp: 1
p: 5
REP: BOOLEAN

DEL: I
OFFSET: 0

pp: 1
p: 5
REP: CHARACTER

DEL: 1
OFFSET: 0

i CHARACTER

I"DEL: -I
L OFFSET: 4

FIGURE 3:

i

P-- -- -- I PP: I
p: 5
REP: CHARACTER

Foliated tree for ANS ÷ ^/P=~P DEL: 1
(P ~ 'RADAR') OFFSET: 0

context information that has been attached
to the tree in the form of RRR and DELOFF
nodes, non-naive code is generated. This
means that all the optimizations described
earlier are applied: loop merging, reduction
of temporaries, evaluation of only the
required results, and producing the results
of selection functions by descriptor
calculus alone.

Functions which will require loops to be
generated in order to step through
non-scalar operands are examined to see if
their loops can be shared with those of
other functions. If they have identical
DELOFF descriptions, then their loops can be
merged into one set. Multi-dimensional
operands could potentially require several
nested loops - one for each dimension.
However, it is often the case that such
loops can be collapsed into fewer loops
because the operand's data access is very
regular (row-major order, for instance).

After the looping structures have been
decided upon, the code within the loops is
generated by traversing the tree. Starting
at the tree's root and working towards its
leaves, each function node is visited and
its corresponding machine-instruction

sequence is emitted into the Code Block.
This traversal continues until all nodes of
the expression tree have been visited and
their corresponding instructions emitted.
Every instruction which has the possibility
of failing (e.g., divide could fail by
dividing by 0), has associated with it a
source pointer by which the source token in
error might be identified. When the code-
generation process has been completed, the
resultant code block is passed to the
E-machine for execution. Figure 4 shows the
Hard code generated from the foliated tree
of Figure 3.

EXECUTION: THE E-MACHINE

Our original intent was that the compiler
produce HP 3000 code. However, it soon
became clear that the machine architecture
made this an impractical approach. The HP
3000 is a "pure-code".machine which strictly
enforces the distinction between "code" and
"data". It does not allow one to generate
code (which is data to the compiler) and
immediately view the result as executable
code. Instead, it is necessary to invoke
the operating system's Linker/Loader in
order to put the code into a form the

khe Incremental Compiler of APL\3000 86 R.L. Johnston

{ SIGNATURE CODE }
ASSERT: (1=ppP) ^ (5=pP) ^ (CHAR=REP(P))

(O=OFFSET(P)) ^ (I=DEL(P));
ASSERT: WRITEABLE(ANS);

{ WORKING CODE }
spadl ÷ O; { initialize forward register to OFFSET(P) }
spad2 ÷ 4; { initialize reverse register to OFFSET(P) }
spad3 + 5; { initialize loop-limit register to ~P }
temp + I;
WHILE spadl ~ spad3 DO

BEGIN
temp + temp ^ P[spadIJ = P[spad2];
IF temp = 0 THEN GOTO finish; { early-out }
spadl +~ I;
spad2 +,- -I;
END;

finish: ANS ÷ temp;

FIGURE 4: Code Block for ANS ÷ ^/P=~P
(Hard code, P+'RADAR')

machine will execute. This is too slow a
process to be practical for the dynamic
compiler, which seeks to provide immediate
response to an execution request, whether it
be for first execution or recompilation of a
function's statement, or for processing of
calculator mode, the execute function, or
Quad input.

The compiler's target machine is, instead,
a hypothetical "E-machine" which is
simulated on the HP 3000 by a combination of
firmware and software. This machine has a
fairly traditional scalar-oriented
architecture which has, for every APL
primitive function, a set of corresponding
machine instructions. It has 256
Scratch-Pad (SPAD) Registers, which are used
mainly for loop controls, counters, and
indexing of variables. All computation is
done on its Stack, which is also used to
hold intermediate scalar results. The
machine shares the Attribute Table with the
compiler itself, calling upon it to give the
current name bindings as needed by either
Hard or Soft code. A 32-bit address space
is supported, though the HP 3000 itself is a
16-bit minicomputer. The larger address
space is provided by a paged virtual-memory
scheme which has microcoded support. This

allows APL\3000 to handle very large
workspaces - the practical limit being the
amount of on-line disk storage available.

When the E-machine is invoked, it is given
the address of a code block to execute, and
an initial Program Counter offset from the
beginning of that block. This makes it
possible to bypass the signature code when
checking it is unnecessary - as is the case
when the code has just been compiled and the
signature is guaranteed correct. The
E-machine executes until the code block
either terminates normally or causes an
error which prevents its completion. The
E-machine indicates its success or failure
and passes control back to the process which
invoked it. If it terminates on an error,
the type and source location of the error
are also passed back so that the appropriate
error-handling mechanism may be invoked.

REFERENCES

[I] Abrams, Philip s., "An APL Machine",
PhD dissertation, SLAC Report No 114,
February 1970

[2] Hewlett-Packard Journal, July 1977

R.L. Johnston 87 The Incremental Compiler ~f AI~L\3000

