ELEMENTARY ALGEBRA

- 'IBM PHILADELPHIA SCIENTIFIC CENTER

_ ' Data Processing Division K. E. IVERSON
S .

- -
f &n‘c

TECH, REPORT NO. 320-3001 JUNE 1971

o~

e




PHILADELPHIAS SCIENTIFIC CENTER
TECHNICAL REPORTS

320-2900 K Spietberg, An Algorithm for the Simple Plant Loca-
tion Problem with Some Side Conditions, 48 p.,
November 1967
8. 320-2901 J Greenstadr, Vanations on Varisble-Metric Methods,
23 p.. May 1967
= 320-2902 Y Bard. A Function Maximization Method with Ap-
plication to Parameter Estimation, 16 p.. June 1967
320-2903 AN Bomberault & W W. White, Scheduling Empty
Box Cars, 23 p.. December 1966
®  320-2904 B.D. Gavril. S.C.U. Special Control Unit Information
Briel No. I, 12 p.. July 1967
B 320-2905 B.D. Garri. $.C.U. Special Control Unit Information
Brief No. 1, 29 p., July 1967
320-2906 0. Gurel & L. Lapidus, Stability Via Liapunov's Second
Method, 54 p., July 1967
320-2907 O. Gurel, Stability Analysis of N-Dimensional Systems
Through Topology of Velocity-Space, 29 p., August
1967
320-2908 E.S. Savas, Computers in Urban Air Pollution Control
Systems, 51 p., August 1967
320-2909 J. Greenstadt, Cell Discretization Il - Discrete Equations
(Elliptic Case), 27 p., August 1967
* 320-2910 H. Eisenpress & J. Greenstadt, The Estimation of Non-
Linear Econometric Systems, 15 p., August 1967
320-2911 CE Lemke & K Spielberg, Direct Search Zero-One and
Mixed Integer Programming, 62 p., September 1967
320-2912 J. Greenstad:. A Richocheting Gradient Method for
Non-Linear Optimization, 26 p., September 1967
®  320-2913 Y Bard, On a Numerical Instability of Davidon-Like
Methods. 4 p., September 1947
320-2914 J. Greenstadt, Cell Discretization 11 - Treatment of Dis-
crete Equations (Hyperbolic and Parabolic Case), 13 p.,
September 1967

320-2915 J. Rubin, Optimal Classification into Groups - An Ap-
proach for Solving the Taxonomy Problem, 62 p.,
November 1967

320-2916 S.G. Hahn, On the Optimal Cutting of Defective Glass
Sheets, 20 p., October 1967

320-2917 R G. Loomis, & J.J. Lorenzo, Experiments in Mapping
with a Geo Space Plotter, |8 p.. September 1967

320-2918 L.S Woo, An Algorithm for Straight Line Representa-
tion of Simple Planar Graphs, 19 p., October 1967

320-2919 O Gurel & L. Lapidus, The Maximum Principle and
Discrete Systems, 22 p., November 1967

B 320-2920 M Guignard, Generalized Kuhn-Tucker Conditions for

Mathematical Programming in a Banach Space, 17 p.,
November 1967
320-2921 O Gurel, Marker Layout Problem Via Graph Theory,
42 p,, January 1968
* 320-2922 H.P. Friedman & J. Rubin, On Some Invariant Criteria
for Grouping Data, 69 p., November 1967

* 320-2923 P.G. Comba, A Language for 3-Dimensional Geometric
Processing - Written Form, 40 p., December 1967

320-2924 P.G. Comba, A Procedure for Detecting Intersections
of 3-Dimensional Objects, 18 p., January 1968

320-2925 A.R. Colville, Mathematical Programming Codes, 25 p.,
January 1968

320-2926 A.R.D. Norman & M.J. Dowling, Railroad Car Inven-
tory: Empty Woodrack Cars on the Louisville and
Nashville, 69 p., June 1967

320-2927 G. Gordon, The Development of Simulation Languages,
34 p., January 1968

t 320-2928 F. Freudenstein & L.S. Woo, Kinematics of the Human
Knee Joint, 30 p., January 1968

f  320-2929 K Spielberg, Plant Location With Generalized Search
Origin, 32 p., March 1968

t® 320.2930 J F Raimond, An Algorithm for the Exact Solution of
the Machine Scheduling Problem, 40 p.. March 1968

»

it=

tw

-|-l

320-2931 R. Shareshian & K. Spielberg. The Mixed Integer Algori-
thm of N. Driebeek, 18 p., July 1966

320-2932 R. Shareshian, A Modification of the Mixed Integer Al-
gorithm of N. Driebeek, 11 p., July 1966

320-2933 Y. Bard, Production-Transportation-Marketing Model,
22 p., October 1966

320-2934 J. Greensiadi, Further Experiments in Triangularizing
Matrices, 19 p., November 1966

320-2935 G. Gordon & K. Zelin, A Simulation Study of Emergency
Ambulance Service in New York City, 37 p., February 1968

320-2936 B.D. Gavril, S.C.U. Special Control Unit Information
Brief No. 3, xx+ 173 p., March 1968

320-2937 O. Gurel & L. Lapidus, A Guide to Methods for the Gene-
ration of Liapunov Functions, 82 p., March 1968

320-2938 K. Spielberg, Enumerative Methods for Integer and Mixed
Integer Programming, |15 p., March 1968

320-2939 S. Poley, Mesh Analysis of Piping Systems, 136 p., March
1968

320-2940 R.G. Loomis, A Design Study on Graphics Support in a
FORTRAN Environment, 33 p., May 1966

320-2941 J. Greenstadt, On the Problem of Fairing, 58 p., December
1966 .
320-2942 J. Greenstadt, On the Relative Efficiencies of Gradient
Methods, 16 p., January 1967
320-2943 O. Gurel & M.M. Salah, Stability Analysis Reports,
Report No. 1, 25 p., Report No. 2, 16 p., February 1967
320-2944 J. Greenstad:, Cell Discretization | - Variational Basis, 27 p.,
February 1967
320-2945 O. Gurel, Additional Considerations on Marker Layout
Problem Via Graph Theory, 34 p., April 1968
320-2946 D W. Webber & W W. White, Ag Algorithm for Solving
Large Structured Linear Programming Problems, 28 p.,
April 1968
320-2947 L.S Woo & F. Freudenstein, On the Curves of Synthesis
in Plane, Instantaneous Kinematics, 40 p., May 1968
320-2948 Y. Bard & J L. Greenstadt, A Modified Newton Method
for Optimization with Equality Constraints, 13 p., May 1968
320-2949 A R. Colville, A Comparative Study on Nonlinear Program-
ming Codes, 77 p., June 1968
320-2950 O. Gurel & M. Guignard, Structure of Constrained Opti-
mality With Respect to Higher Order Derivatives, 25 p.,
June 1968
320-2951 H Salkin & K. Spielberg, Adaptive Binary Programming,
90 p., June 1968
320-2952 A M. Bomberault & W.W. White, Networks and Trans-
portation: The Empty Freight Car Allocation Problem,
58 p., July 1968
320-2953 L.S Woo, Type Synthesis in Plane Linkages, 39 p., July
1966
320-2954 S Poley & C. Strauss, A Three Dimensional Piping De-
sign Program, 30 p., July 1968
320-2955 Y. Bard, Comparison of Gradient Methods for the Solu-
tion of Nonlinear Parameter Estimation Problems, 58 p.,
September 1968
320-2956 H. Eisenpress & A. Bomberault, Efficient Symbolic Dif-
ferentiation using PL/I-Formac, 25 p., September 1968
320-2957 O. Gurel, Stability of the Pair (X,f), 14 p., November
1968
320-2958 S. Gorenstein, Printing Press Scheduling for Multi-Edi-
tion Periodicals, 22 p., November 1968
320-2959 C Hao, L. Woo, V. Vitagliano, & F. Freudenstein,
Analysis of Control-Mechanism Performance Critenia
for an Above Knee-Leg Prosthesis, 51 p., December 1968
320-2960 E. Balas, Project Scheduling with Resource Constraints,
23 p., January 1969
320-2961 O Gurel & L. Lapidus, Topology of Velocity-Space for
Stability Analysis, 12 p., January 1969
320-2962 J. Cord, Generalized Upper Bounds with Upper Bounded
Variables, 47 p., January 1969

(continued on back cover)



IBM PHILADELPHIA SCIENTIFIC CENTER TECHNICAL REPORT NO. 320-3001, JUNE 1971

ELEMENTARY ALGEBRA

K. £ IVERSON

IBM CORPORATION
PHILADELPHIA SCIENTIFIC CENTER
3401 MARKET STREET, PHILADELPHIA, PENNSYLVANIA 19104

Capyright 1971 IBM Carp.






PREFACE

The present text treats the usual topics expected in a
second course 1in high school algebra. It differs from
conventional treatments in the following respects:

1. The notation used is simple and precise and applies
to arrays (vectors and matrices) in a simple and uniform
manner.,

2. Arrays are used extensively to give a graphic view
of functions by displaying the patterns produced by
applying them to vectors. They are also used to clarify
topics which use vectors directly, such as linear
functions and polynomials.

3. The precision of the notation permits an algorithmic
treatment of the material. In particular, every
expression in the book can be executed directly by
simply typing it on an appropriate computer terminal.
Hence if a computer 1is available, it can be used by
students for individual or collective exploration of
relevant mathematical functions in the manner discussed
in Berxry et al [7]. Even 1if a computer 1is not
available, the algorithmic treatment presents the
essentials of computer programming in a mathematical
light, 1i.e., as the precise definition and application
of functions.

4, The algorithmic approach is the same as that used in
a cgﬁzzﬁagtion_—ia—topics such as the slope (derivative)
of functions, and the circular, hyperbolic, exponential,
and logarithmic functions.

5. The organization of topics follows a pattern
suggested by considering algebra as a language; in
particular, the treatment of formal identities is
deferred until much work has been done in the reading
and writing of algebraic sentences. These matters are
discussed fully in the Appendix Algebra as a Language,

and any teacher may be well-advised to begin by reading
this appendix.



The pace of the text is perhaps best suited to a
second year course, but it can also be used for a first year

course since the early chapters contain all of the
essentials such as the introduction of the negative and
rational numbers. When used as a second year text, these
early chapters can serve not only as a brief review, but

also as an introduction to the notation used.

This text grew out of a summer project undertaken in
1969 in collaboration with my colleagues Adin Falkoff and
Paul Berry of IBM, and with five high school teachers-- Mr.
John Brown, now of Dawson College, Montreal; Mr. Nathaniel
Bates, of Belmont Hill School, Belmont, Massachusetts; Miss
Linda Alvord, of Scotch Plains High School, Scotch Plains,
N.J.; and Sisters Helen Wilxman and Barbara Brennan, of Mary
Immaculate School, Ossining, N.Y. I am indebted to all of
these people for much fruitful discussion, and particularly
to Messrs. Falkoff and Berry for helping to set and maintain
the direction of the project.
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Chapter 1

THE LANGUAGE OF MATHEMATICS

1.1. INTRODUCTION

Algebra is the language of mathematics. It is
therefore an essential topic for anyone who wishes to
continue the study of mathematics. Moreover, enough of the

language of algebra has crept into the English language to
make a knowledge of some algebra useful to most
non-—mathematicians as well. This is particularly true for
people who do advanced work in any trade or discipline, such
as insurance, engineering, accounting, or electrical wiring.
For example, instructions for laying out a playing field
might include the sentence, "To verify that the corners are
square, note that the length of the diagonal must be equal
to the square root of the sum of the squares of the length
and the width of the field," or alternatively, "The length

of the diagonal must be V,12+L0ﬁ" In either case (whether
expressed in algebraic symbols or in the corresponding
Engl ish words), the comprehension of such a sentence depends
on a knowledge of some algebra.

Because algebra is a language, it has many
similarities to English. These similarities can be helpful
in learning algebra, and they will be noted and explained as
they occur. For instance, the integers or counting numbers
(L, 2, 3, 4, 5, 6, . . .) in algebra correspond to the
concrete nouns in English, since they are the basic things
we discuss, and perform operations upon. Furthermore,
functions in algebra (such as + (plus), x (times), and -
(subtract) correspond to the verbs in English, since they do
something to the nouns. Thus, 2+3 means "add 2 to 3," and
(2+3)x4 means "add 2 to 3 and then multiply by 4." 1In fact,
the word "function" (as defined, for example, in the
American Heritage Dictionary), is descended from an older
word meaning, "to execute," or "to perform."

When the language of algebra is compared to the
language of English, it is in certain respects much simpler,
and in other respects more difficult. Algebra is simpler in
that the basic algebraic sentence is an instruction to do

something, and algebraic sentences (usually called
expressions) therefore correspond to imperatiye English
sentences (such as "Close the door."). For example, 2+3

means "add 2 and 3," and YEAR+1970 means "assign to the name
YEAR the value 1970," and Y«<1970 means "assign to the name Y
the value 1970." Since imperative sentences form only a
small and relatively simple part of English, the language of
algebra is in this respect much simpler.

-)=

Algebra 1is also simpler in that it permits less
freedom in the ways you can express a particular function.
For example, "subtract 2 from 4" would normally be written
in algebra only as u4-2, whereas in English it could be
expressed in many ways such as "take the number 2 and
subtract it from the number 4," or "compute the difference
of the integers 4 and 2."

The most difficult aspect of traditional
presentations of algebra is the early emphasis on
identities, or the equivalence of different expressions.
For example, the expressions (5+7)x(5+7) anad
(5x5)+(2x5x7)+(7x7) are equivalent in the sense that,
although they involve a different sequence of funtions, they
each yield the same result. English also offers equivalent
expressions. For example, "The dog bit the man" is
equivalent to "The man was bitten by the dog." It is not

that the rules for determining equivalence 1in algebra are
more difficult than in English; on the contrary, they are so
much simpler that their study 1is more rewarding and
therefore more attention is given to equivalences in algebra
than in English.

In the present treatment this aspect of algebra (that
is, the study of identities or equivalence of expressions),
is delayed until the student has devoted more attention to
the reading, writing, and evaluation of algebraic
expressions.

The exercises form an important part of the
development, and the point at which the reader should be
prepared to attempt each group of exercises is indicated in
the right margin. For example, the first such marginal note
appears as [l-6 and indicates that Exercises 1 to 6 of this
chapter may be attempted at that point.

1.2. EXPRESSIONS AND RESULTS

The expression 2+3 when evaluated produces the result
5. Buch a fact will be written in the following form:

2+3
5
and will be read aloud as "2 plus 3 makes 5."
examples would be read in a similar way:

The following

7+12
19

32



Where there is more than one function to be executed,
parentheses are used to indicate which is to be done first.
Thus the expression

(2+3) x4
is evaluated by first performing the function within the

parentheses (that is, 2+3), and then multiplying the result
by 4. The final result is therefore 20, as shown below:

(2+3) x4
20
The foregoing is read aloud as "quantity .+3, times 4." The
word "quantity" indicates that the first expression

following it is to be executed first. That is, you are to
find the result of 2+3 before attempting to execute the
function "times".

The steps in the execution of an expression may be
displayed on successive lines, substituting at each line the
value of part of the expression above it as illustrated
below:

(2+3) x4

o xi

20

The vertical 1line drawn to the left of the first two lines

indicates that they are equivalent statements, either of

which would produce the result 20 shown on the final line.

The whole statement would be read aloud as "Quantity 2 plus

3 times 4 is equivalent to 5 times 4 which makes 20. The

following examples would be read in a similar way as shown

on the right:

(2+3)x(5+4) Quantity » plus 3 times quantity 5
plus «

is equivalent to

5 x 9 5 times 4

us which makes 45

((2x3)+(5xu4))x2 Quantity 2 times 3 plus guantity 5
times 4, all times 2

is equivalent to

quantity 6 plus 20 times 2

is equivalent to

26 times 2

52 which makes 52

The last example 1illustrates the difficulty of
expressing in English the sequence of execution that is
expressed so simply by parentheses in algebra, that is, when
parentheses are "nested" within other parentheses even the
use of the word "guantity" does not suffice and one resorts
to expressions such as "all times 2". The main point is
this: in learning any new language (such as algebra) it is
important to re-~express statements in a more familiar
language {such as English); however, certain things are so
awkward to express in the o0ld language that it becomes
important to learn to "think" in the new language.

The expression 2+ xu, written without parentheses,
could be taken to mean either (?+:)x- (which makes 20), or
2+(3-4) (which makes 1u). To avoid such ambiguity we make
the following rule: when two or more functions occur in

succession with no parentheses between them,

the rightmost
function is executed first. For example:

2+ 305

2+ 1

1423 +ux5

1+2x3+ 20
1+2x 23
1+ 46
4.7
(1+2x3)+4x5
(1+ 6)+ 20
7 +20
27
1.3. NAMES
Consider the following statements:
(1+3+5+749)x2
50
(1+3+5+749)x3
75

(1+3+45+7+9) x4
100

f1-6
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Since the expression 1+3+5+7+9 occurs again and again in the
foregoing statements, it would be convenient to give some
short name to the result produced by the expression, and
then use that short name instead of the expression. This is
done as follows:

I T<+1+3+5+7+9

LTx2
50

77x3
75

I Txy
100

IT
25

The foregoing would be read aloud as follows: "The name IT
is assigned the value of the expression 1+3+5+7+9. I7T times
2 makes 50. IT times 3 makes 75. I7 times 4 makes 100. I7T
makes 25."

Names can be chosen at will. For example:

LENGTH«S
WIDTH<N
LENGTHxWIDTH

20
AREA«LENGTHxWIDTH
ARFA

20

PRICE<S

QUANTITY <4

PRICExQUANTITY
20

Mathematicians usually prefer to use short names like [ or W
or X ox Y, perhaps because this brings out the underlying
structure or similarity of expressions which may deal with
different names. Consider, for example, the following
sequence:

X<5

Y«h

AxY
20

-6-
If x is taken to mean length and Y is taken to mean
width, then the result is the area of the corresponding
rectangle; but if X is taken to mean price and Y is taken to

mean quantity, then the result is the total price. This
makes clear that there 1s some similarity between the
calculations of an area from length and width and the
calculation of total price from price and quantity.

The names used in algebra are also called variables,

since they may vary in the sense that the same name may

represent different values at different times. For example:
X<3
XxX
9
X<5
AxX
25

This ability to wvary distinguishes a name like X from a
symbol like 5 which always represents the same value and is

It 1is interesting to note that the wvariables in
algebra correspond to the pronouns in English. For example,
the sentence "close it" is meaningless until one knows to
what "it" refers. This reference is usually made clear by a
preceding sentence. For example, "See the door. Close it"
is unambiguous because the first sentence makes it clear
that "it" refers to "the door". Similarly, in algebra the
expression IT+5 cannot be evaluated unless the value to
which IT refers is known. 1In algebra this reference is made
clear in one way, by the use of the assignment represented
by the symbol «. For example:

IT<3
IT+5
8

The same name J7 can stand for different values at different
times just as the pronoun "it" can refer to different things
at different times.

E13-18
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1.4. QVER NOTATION
It is often

list of numbers.

numbers

necessary to take the sum over a whole
For example, 1if the list consists of the
1 35 7 9 11, then their sum could be written as

1+3+5+7+9+11
36

It is more convenient to use the following notation:

+/1 3 5 7 9 11
36

The foregoing is read aloud as "Sum over 1 3 5 7 9 11", or
as "Plus over 1 3 5 7 3 11."

The g¢gver notation can be used for other functions as
well as for addition. For example:

READ AS

x/1 2 3 Times over 1 2 3
6 makes 6

x/1 2 3 4 Times over 1 2 3 4
24 makes 24

+/1 2 3 4 Plus over 1 2 3 4
10 makes 10
(+/1 2 3 u)xe Quantity plus over 1 2 3 4
times ©
60 makes 60

6x +/1 2 3 U4 6 times plus over 1 2 3 4

60 makes 60
N«1 2 3 4 N assigned 1 2 3 4
+/ N Plus over N

10 makes 10
x/ N Times over N

24 makes 24

g19-21

-8
1.5. THE POSITIVE INTEGERS

The natural numbers 1 2 3 4 5 N .

are also called
They may be produced as follows:

13

12 34 56 789 10 11 12 13 14 15 16

N<6
1N
1 2 3 4 5 6

The symbol 1 is the Greek letter iota
the English letter 1i.

which corresponds to
The expression 1/ is read aloud as

"the integers to N." Thus:
READ AS
+/15 Plus over the integers to 5
15 makes 15
/15 Times over the integers to 5
120 makes 120

§22-25

1.6. VECTORS

A list of numbers such as 3 5 7 11 is called a vector.
The numbers in the list are called the elements of the
vector. Thus the first element of the vector 3 5 7 11 is
the number 3, the second element is 5, the third element is
7 and the fourth is 11. The number of elements in the
vector is called the size of the vector. Thus the size of
the vector 3 5 7 11 is 4.



Vectors can
following examples:

35 7+1 2 3
4 7 10

12 343 2 1
ITENTT

12 3x3 2 1
34 3

—g-

be added and multiplied as shown in the

READ AS

Vector 3 5 7 plus vector 1 2 3
makes 4 7 10

Vector 1 2 3 plus vector 23 2 1
makes 4 4y 4

Vector 1 2 3 times 3 2 1
makes 3 4 3

From this it should be clear that when two vectors are added
the first element is added to the first element, the second

element is added to the second, and so on.

Multiplication

is performed similarily.

Like any other result,

name. For example:

V+<1 2 3 4
W<l 3 2 1

V+W
5 5% 5 5§

V=W
4 &6 b 4

2374

a vector can be assigned a
READ AS

The name 7V is assigned wvector 1 2 3 4

The name ¥ is assigned vector 4 3 2 1

V plus W
makes 5 5 & 5

V times W
makes 4 6 & 4

V times V
makes 1 4 9 16

The following examples may be read similarly:

Ne1b

NxN
1 4 9 16 25

(16)x16

1 4 9 16 25 38

READ AS
# is assigned integers to 5

N
makes 1 2 3 4 5

N times ¥
makes 1 4 9 16 25

Quantity integers to s times
guantity integers to 6
makes 1 4 9 16 25 36

~10-

The addition of two vectors V and means that the
first element of V is to be added to the first element of ¥,
the second element of V is to be added to the second element
of ¥, and so on, and that an expression such as

1 3 546 8 1 4 3

cannot be executed because the vectors are not of the same
size.

However, expressions of the following form can be

executed:
READ AS

3 41 3 5 7 3 plus vector 1 3 5 7
w6 8 10 makes 4 6 8 10

12 34 5 +p Vector 1 2 3 4 5 plus ©
7 8 9 10 11 makes 7 8 + 10 11
In other words, if one of the gquantities to be added is a

single number, it is added to each element of the vector
quantity. The same holds for multiplication as follows:

READ AS
3x1 3 5 7 3 times vector 1 3 5 7
3 9 15 21 makes 3 9 15 21
3x15 3 times integers to 5

36 9 12 15 makes 3 6 9 12 15

2+3x15 2 plus 3 times integers to 5
5 8 11 14 17 makes 5 8 11 14 17
1+42x16 1 plus 2 times integers to 6
357 3 11 13 makes 3 5 7 3 11 13
+/1+2%16 plus over 1 plus 2 times integers to 6

ug makes 48
1++/1+2%16 1 plus plus over 1 plus 2 times
integers to 6
49 makes 49



1.7. REPETITIONS

Consider the following statements and their
verbalization:

READ AS

3p2 3 repetitions of 2
2 2 2 makes 2 2 2

2p3 2 repetitions of 3
33 makes 2 3

Sp7 5 repetitions of 7
77 7 77 makes 7 7 7 7 7
The symbol o is the Greek letter rho which corresponds to
the English r.

The following two columns of statements show some
interesting properties of repetitions, including the

relation between multiplication and a sum of repetitions:

+/3p2 2»*3
6 0

+/4p?2 2%y
3 8

+/5p7 AR
35 35

+/15p20 20x15
300 300

x/202 x/2p3
4 9

x/3p?2 x/3p3
8 27

x/4p2 x/U4p3
16 81

x/5p2 x/5p3
32 243

f29-31
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1.8. SUMMARY

This chapter has been concerned primarily with the
language or notation of algebra, and the wuses of the
notation have been kept simple. Now that the language has
been mastered, succeeding chapters can turn to more
interesting uses of it. This does not imply that all the
notation of algebra has now been covered, but rather that

the main ideas have been introduced and that any further
additions will be easy to grasp. The situation may be
compared to the learning of a natural language such as
French. Once the main ideas of the language have been

learned (in months or years of study),
needed for some
easily.

the new French words
particular purpose can be picked up more

For example,  the next chapter will treat the maximum

function, represented by the symbol [ and defined to yield
the larger of its two arguments:

READ AS

2 maximum 3
3 makes 3

24 2 maximum 4
4 makes 4

2[5 2 maximum 5
makes 5

o

512 5 maximum 2
5 makes 5
The important point is that this new function is
exactly like the functions plus and times, thus:

treated

2[1 2 3 4
2 2 3 4

315
3 3 3 4 5

r/e 1 7 10 3 10
10

12 3 4 5[5 4% 321
54 3 4 5



The main
chapter will
should be useful for reference purposes:

EXAMPLE
(2+3)xu4
20
2+ 3%y
14
N+3
Nxi
12
+/3 5 7
15
x/2 3 5 2
60
1 2 3x3 2 1
3
3x1 2 3
3
15
1 4 5
Sp4
4 [T
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points of the notation
now be summarized in

READ AS

Quantity 2 plus 3
times 4
makes 20

2 plus quantity
3 times 4
makes 1u

N is assigned 3

N times u
makes 12

Plus over vector
3 5 7
makes 15

Times over vector
2 35 2
makes 60

Vector 1 2 3 times
vector 3 2 1
makes 3 4 3

3 times vector
1 2 3
makes 3 6 9

Integers to 5
makes 1 2 3 4 5

5 repetitions of &
makes 4 4 4 4 4

in this
which

introduced
few examples

COMMENTS

Function in paren-
theses is execut-
ed first

Rightmost function
is executed first
if there are no
intervening
parentheses

Name N is assigned
the value of the
expression to
the right of <«

Element=by-element
multiplication

Single number multi-
plies each element

B32
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Chapter 2

FUNCTION TABLES AND MAPS

2.1. INTRODUCTION

In Chapter 1, addition was spoken of as a "function"
because it "does something" to the numbers it is applied to
and produces some result, Multiplication was also referred
to as a function, but the notion of function is actually
much broader than these two examples alone might suggest.
on her height and is therefore a function of her height. 1In
fact, if one were told that the normal weight for a height
of 57 inches is 113 pounds, the normal weight for a height
of 58 inches is 115 pounds, and so on, then one could
evaluate the function "normal weight” for any given height
by simply consulting the list of corresponding heights and
weights.

It is usually most convenient to present the necessary
information about a function such as "normal weight” not by
a long English sentence as begun above,
the form shown in Figure 2.1,

H 57 113 W
E 58 115 E
I 59 117 I
G 60 120 G
H 61 123 H
T 62 126 T
63 130
I 64 134 I
N 65 137 N
66 141
I 67 145 p
N 68 149 o
C 69 153 U
H 70 157 N
E 71 161 D
S 72 165 s

Table of Normal Weights
Versus Heights

Figure 2.1
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to which a function is
(or arguments) of the
in the expression 3x4 the number 3
argument of the function x and u is
______ argument. Evaluation of the "normal
function (represented by Table 2.1) for a given
argument (say 68 inches) is performed by finding the
argument 68 in the first column and reading the weight (1493

pounds) which occurs in the same row.

The quantity (or
applied is (are)
function.

quantities)

weight"

function is the collection of all
arguments for which it is defined. Addition is, of course,
defined for any pair of numbers, but the function "normal
weight" is certainly not defined for heights such as 2
inches or 200 inches. For practical purposes, the domain of
a function such as "normal weight" 1is simply the collection
of arguments in the table we happen to possess, even though

The domain of a

information for other arguments might be available
elsewhere. For example, the domain of the function of Table
2.1 is the set of integers from 57 to 70, that is, the set

of integers 56 +i114,

The range of a function is the collection of all the
results of the function. For example, the range of the
function of Figure 2.1 is the set of integers 113, 115, 117
120, etc., occurring in the second column.

A table of normal weights often shows several columns
of weights, one for small framed people, one for mediumn,
and one for large. Such a table appears in Figure 2.2, In
such a case the weight is a function of two arguments, the
height and the "frame-class"”; the first argument determines
the row and the second argument determines the column in
which the result appears. Thus the normal weight of a
small ~-boned, 66-inch woman is 133 pounds.

BH1-2
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Frame
Small Medium Large

H 57 105 113 121 W
E 58 107 115 123 E
I 59 109 117 125 I
G 650 112 120 128 G
H 61 115 123 131 H
T 62 118 26 135 T

63 122 130 139
I 5y 126 134 143 I
N 65 129 137 147 N

60 133 141 151
I o7 137 145 155 P
N 65 141 149 158 0
C 59 145 153 152 U
H 70 149 157 165 N
E 71 153 161 163 D
S 72 157 165 173 S

Normal Weight as a Function
of Two Arguments

Figure 2.2

An arithmetic function can also be represented by a
table, as 1is illustrated by Figure 2.3 for the case of
multiplication. Since the domain of multiplication includes
all numbers, no table can represent the entire
multiplication function; Figure 2.3, for example, applies
only to the domain of the first few integers. The
multiplication sign in the wupper left corner is included
simply to indicate the arithmetic function which the table
represents,

x 1 2 3 4 5 < 7 g 9 10
1 1 2 3 4 5 b 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 2% 27 30
4 4 8 12 16 20 2428 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 bu 72 80

Multiplication Table

Figure 2.3

f13-4
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In any table, the first column represents the domain
of the first argument and the first row represents the
domain of the second argument; the rest is called the body
of the table. For example, in Figure 2.2, the body of the
table is that part bordered on the left and top by the solid
lines.

In any table representing a function of two arguments,
any one column of the body (taken together with the column
of arguments not in the body) represents a function of one
argument., For example, 1if one takes the second column of
the body of Figure 2.2, it represents the same function of
one argument as does Figure 2.1.

Thus any function of two arguments can be
as a collection of functions of one argument. For example,
the second column of the body of Figure 2.3 represents the
"times two" function, the third column represents the "times
three" function, etc.

thought of

Similarly, one row of the body of a function table
represents a function of one argument. For example, the
fifth row of the body of Figure 2.2 gives weights as a
function of "frame" for 61 inch women.

2.2. READING FUNCTION TABLES

The basic rule for reading a function table 1is very
simple - to evaluate a function, find the row in which the
value of the first argument occurs (in the first column, not
in the body of the table) and find the column in which the
second argument occurs (in the first row) and select the
element at the intersection of the selected row and the
selected column. However, just as there is more to reading
an English sentence than pronouncing the individual words,
so a table can be "read" so as to yield useful information
about a function beyond that obtained by simply evaluating
it for a few cases.

For example, can the table of Figure 2.2 be "read" so
as to answer the following guestions:

l. Can two women of different
normal weight?

heights have the same

2. For a given frame type, does normal weight always
increase with increasing height?

E5-10
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3. For a given height, does normal weight increase
with frame type?
4. How many inches of height produce (about) the same

change in weight as the change from small to large
frame?

Does this change remain about the same throughout
the table?

Arithmetic functions are more orderly than a function
such as that represented by Figure 2.2, and the patterns
that can be detected in reading their function tables are
more striking and interesting. Consider, for example, an

attempt to read Figure 2.3 to answer the following
guestions: :

5. The second column of the body (which was

previously remarked to represent the "times two"

function) contains the numbers 2 4 &, etc., which

are encountered in "counting by twos".
Can a similar statement be made about the
columns?

other

6. Is there any relation between
and columns of the body, e.g.,
row and the third column?

corresponding rows
between the third

7. Can every result in the body be obtained in at
least two different ways?
Are there any results which can be

only two ways?

obtained in

function table for
answers to the following

Similarly, one can construct a
addition and read it te determine
guestions:

8. In how many different ways can the result & be
obtained by addition?

Does the result 6 occur in the table 1in
pattern and if so does a similar
other results such as 7, 8, etc.?

some
pattern apply to

9. What is the relation between two successive

of the table?

rows

Because of the patterns they exhibit,
can be very helpful in gaining an understanding of
unfamiliar mathematical functions. For this reason they
will be used extensively in succeeding chapters.

function tables

B11



2.3. EXPRESSIONS FOR PRODUCING FUNCTION TABLES

If

oo

6 7 8
6 7 8 9 10
then the expression A.c¢xB yields the body of the function

table of Figure 2.3 as follows:

Ao, xB
2 3 4 5 6 7 8 9 10
4 6 8 10 12 14 16 18 20
6 g 12 15 18 21 24 27 30
8 12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 50
12 18 24 30 36 42 u8 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 b4 72 80

@3 unFw N

Similarly, the body of an addition table for the same
set of arguments can be produced as follows:

Ao, tB
2 3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 El 10 11 12
Yy 5 6 7 8 g 10 11 12 13
5 6 7 8 9 10 11 12 13 14
6 7 8 g 10 11 12 13 14 15
7 8 9 10 11 12 13 14 15 16
8 39 10 11 12 13 14 15 16 17
g 10 11 12 13 1% 15 16 17 18

The general rule is that the symbol o (pronounced
null) followed by a period followed by the symbol for a
function produces the appropriate function table when
applied to any arguments A and B. The expression "Ao¢.+B"
may be read as "the addition table for 4 and B" or as "4
addition table B", or even as "4 null dot plus B".
Similarly, "4¢.xB", may be read as "4 times table B", etc.

It is important to note that the expression Ae-.+B
produces only the body of the addition table to wbich one
may add a first column consisting of 4 and a first row
consisting of B if this is found to make the table easier to
read.

It is also important to note the difference between
the expressions A-°.xB, which vyields the multiplication
table, and the expression AxB, which vyields the
element-by-element product of 4 and B. For example:

A«1 3 5
B«2 U4 ©

AxB
2 12 30

Ao . xB
2 i 6
6 12 18
10 20 30

The body of a table alone does not define a function.
For example, the following tables define two distinct
functions although the bodies of the tables are identical:

mJ:wro‘-f
~ mLﬂLJM
CD\]OWU"‘U)
[ToliNe sl e} I =g
O W o 3w
w £ ;o
Do v
DO 3O n|w
W o3 ov;
© W ® I

1 1
The name of the function represented by the first
table is + (as shown in the upper left corner), and the

table can be used to evaluate expressions as shown on the
left below:

5 + 3 is 8 5 F 3 is 6
4 + 5 is 9 4 F 5 is 8
3 + 3 is 6 3 F 3 is 8

The function represented by the second table is called
F (as indicated in the wupper left corner) and the
expressions on the right above shown the evaluation of the
function F for the same arguments used on the left. Since
the results differ, the two tables represent different
functions.

The complete specification of a function table
therefore requires the specification of four items:

1. The left domain (i.e.,

argument) .

the domain of the left

2. The right domain.

FH12-13
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3. The body of the table,
4, The name of the function.

From these four items the table can be constructed and
used as illustrated below:

Left domain:
Right domain: 11 9 7 5 3 1

Body: 5 + (3x1b4)o,+(2x16)
Name : G

2 + 1 4

o

11 9 7 5 3 1
10 12 14 16 18 20
13 15 17 19 21 23
16 18 20 22 24 26
19 21 23 2% 27 29

o v Fow

4 G 5 is 19
6 ¢ 9 is 21
2%x6 G 9 is 4?2

2,4, THE FUNCTIONS DENOTED BY [ AND L
The advantages of the function table can perhaps be
better appreciated by applying it to some unfamiliar

to functions such as addition
are probably already well
understood by the reader. For this purpose we will now
introduce several simple new functions which will also be
found to be very useful in later work.

functions than by applying it
and multiplication which

It is sometimes instructive to introduce a new
function as a puzzle - the reader must determine the general
rule for evaluating the function by examining the results
obtained when it is applied to certain chosen arguments.
For example, the function [ can be applied to certain
arguments with the results shown below:

37 8

32 [ u7
47

If one performs enough such experiments it should be
possible to quess the general rule for the function. In
attempting such a guess it is helpful to organize the

H14-16
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experiments in some systematic way, and the function table

provides precisely the sort of organization needed. For
example:
I«1 2 3 4 56 78
Io.[1
1 2 3 4 5 6 7 8
2 2 3 4 5 6 7 8
3 3 3 4 5 6 7 8
b4 4 4 5 6 7 8
5 5 5 S 5 6 7 8
6 6 6 6 6 6 7 8
7 7 7 7 7 7 7 8
8 8 8 8 8 8 8 8
From the foregoing the reader should be able to state
the definition of the function and from that be able to

apply it correctly to any pair of arguments.

The function [ is called the maximum function because

it yields the larger of its two aréﬁiéﬁ%g. The minimum

function is denoted by | and is defined analogously. Its
function table appears below:
To, LT
1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3
1 2 3 4 4 4 i 4
1 2 3 4 5 5 5 5
1 2 3 4 5 6 6 6
1 2 3 4 5 6 7 7
1 2 3 4 5 6 7 8
2.5, THE POWER FUNCTION
Another very useful function is <called the power
function and is denoted by =*. Its function table is shown
below:
I«1 2 3 4 56 7
To,*x1
1 1 1 1 1 1 1
2 4 8 16 32 o4 128
3 9 27 81 243 729 2187
4 16 64 256 1024 4096 16384
5 25 125 625 3125 15625 78125
6 36 216 1296 7776 46650 279936
7 4g 343 2401 16807 117649 823543

B17-18
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The power function is defined in terms of
multiplication in much the same way as multiplication is
defined in terms of addition. To appreciate how

multiplication is defined as "repeated additions", consider
the following expressions:

2p2
2 2
+/2p2 2% 2
4 4
3p2
2 2 2
+/3p2 2% 3
6 6
L4p2
2 2 2 2
+ /4p2 2x i
8 8
+/5p2 2x5
10 10
+/6p2 2x6
12 12
+/8p3 3x8
24 24
Comparing the results +/2p2 and 2x2 and the results
+/3p2 and 2x3, etc., it should be clear that Mx¥ is

equivalent to adding ¥ quantities each having the value M.

The corresponding definition of the power function «
can be obtained by replacing each occurrence of + in the
foregoing expressions by x and each occurrence of x by =*:

2p2
2 2

x /2p2 2% 72
Y i

3p2
2 2 2

x/3p2 2% 3
8 8

bp?2
2 2 2 2

X /Up?2 2%4
16 16

x /5p2 2%5
32 32

x/6p2 2%6
64 64

x /8p3 3%8

6561 6561

-24-

In general, M to the power ¥ (that is, MxN) is
obtained by multiplying together ¥ factors each having the
value M.

2.6. MAPS

Figure 2.4 shows a map which represents the "times
two" function. The rule for evaluating a function
represented by a map is very simple: locate the specified
argument in the top row, then follow the arrow from that
argument to the result at the head of the arrow in the
bottom row. For example, the result for the argument 3 is

6
1 2 3 ‘4\

5.6
5 76 7 8 9 10 11 12 13 14

Map of "Times Two" Function
Figure 2.4

The rules for constructing a map are also simple.
First consider all of the wvalues in the domain of the
function together with all of the results. Choose the
smallest number and the largest number from this whole set
of numbers. Write a row of numbers beginning with the
smallest and continuing through each of the integers in
order up to the largest. Repeat the same numbers in a row
directly below the first row. For each argument in the top
row now draw an arrow to the corresponding result in the
bottom row.

Just as it is often helpful to read tables, so is it
helpful to read such maps. Consider, for example, the four
maps shown in Figure 2.5. From the first it is clear that
in the map of addition of 2, the arrows are all parallel.
From the map below this it is clear that the same is true
for addition of 3, and that the slope of the arrows depends
on the amount added. The maps on the right show
multiplication. Here the slopes of the arrows are not
constant, and the distance between successive arrowheads is
seen to be equal to the multiplier.

g19-22
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Maps for Addition and Multiplication
Figure 2.5
It is sometimes useful to show the maps of a sequence
of functions such as the following:

I«1 2 3 4 5 6

2xTI
2 i 6 8 10 12
8+ (2xI)

10 12 14 16 18 20
The appropriate maps are shown in Figure 2.6. The

broken 1lines show the map of the overall result produced,
that is, the map of the function 8 + (2xI)

9 10 11 12 13 14 15 16 17 18 19 20

N

1 2.3 b4 567 8..9710_11712_13 14 15 16 17 18 19 20

\\\\\

~ \
\

13714 15716 17 18 1 20

1 2 3 4 5 B 7 8 910 11712
Maps of a Sequence of Functions
Figure 2.6
Maps will be used in the next chapter to introduce the

function produces.

B23-24
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Chapter 3

THE NEGATIVE NUMBERS

3.1. SUBTRACTION

The gubtraction function is denoted by the mipus sign
(-). For example:

READ AS

8-3 8 minus 3
5 makes 5

(5+3)-3 Quantity 5+3 minus 3
S makes 5

(5-3)+3 Quantity 5-3 plus 3
S makes 5

The following examples illustrate the relation between
addition and subtraction:

5+3 5+4
8 9
8-3 9-4
5 5
6+3 61+
9 10
9-3 10-4
6 6
7+ 3 T+4
10 11
10-3 11-4
7 7
1 2 3 4% 5+3 1 2 3 4 5+4
b 5 6 7 8 56 789
4 5 6 7 8-3 56 7 8 9-4
1 2 3 4 5 12 3 4 5



-27-

From these examples it appears that subtraction will undo
the work of addition. That 1is, if 3 is added to 5 to
produce 8, and 3 is then subtracted from 8 the final result
is the original value 5. This is true 1in general, and
subtraction is therefore said to be the inverse of addition.
Thus for any number X and any number 4, the expression
(X+4)-4 will yield X.

undo
the

The converse is also true; that is, addition will
the work of subtraction, and addition is therefore
inverse of subtraction. For example:

8-3
5+3
8 9 10 11 12 13-3

56 789 10

5 6 7 8 9 10+3
8 9 10 11 12 13

In other words, (X-4)+A will also yield X.
In summary then:
(X+4)-A makes X
(X-A)+A makes X

For example:

(8 9 10 11 12 13+3)-3

8 9 10 11 12 13
(8 9 10 11 12 13-3)+3
8§ 9 10 11 12 13

B1-3
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This inverse relation between addition and subtraction
can also be exhibited in texrms of maps as follows:

12 3 4 56 78 9 10 11 12 13 14 15 16 17

\\\\+3

12 34 56 7 16 17

y %

12 3 4 556 7849 16 17

13 14 15 16 17

3.2. NEGATIVE INTEGERS
Consider a similar map for the «case (3 4 5 6 7 8
9-5)+5 which should yield 3 4 56 7 8 9 as a final result:

////

2 3456 789

A

1 273 %56 789 10

A problem arises in some of the subtractions, since 3-5 and
4-5 and 5-5 do not yield positive integers. However, the
map shows that if we keep track of the unnamed positions to
the left of the first positive integer, the overall mapping
for adding 5 and then subtracting 5 yields the correct final
result.

BL
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The problem 1is resolved by assigning names to each of
the new positions as follows:

12 34 56 78 9 10

g

Tuo T3 T2 7170717273 56 78 9 10

a————

1 273745767778 9 10

The first number to the left of 1 is named 0. This is read
aloud as "zero," and means "nothing" or "none.” The other
new numbers, 1, 2, 3, and 4 are
integers, and are read aloud as "negative 1, negative 2,
negative 3, and negative 4." O0f course, the negative
integers continue as far to the left as desired, just as the
positive integers continue as far to the right as desired.
The whole pattern including the negative integers, zero, and
the positive integers, will be called the integers.

The effect of all this is to introduce new integers so
that eyery subtraction has a proper result. Addition and
subtraction are still defined as before by moving the proper
number of places to the right or left in the pattern of the
integers, but the pattern has now been expanded to include
the negative integers and zero.

3.3. ADDITION AND SUBTRACTION

_The expression 7+ 3 can be considered either as adding
7 to 3 as follows:

4 73 72 71012 34586 78

+7

4 73 72 "1 012 34 56 78

or as adding 3 to 7 as follows:

4 73 72 71012 34 56 78
+ 3

4 73 "2 71012 34 56 78

that is, 7+ 3 yields the same result as 7-3.

£15-6
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The following examples each show an expression on the
left and the corresponding map on the right for a variety of
additions and subtractions involving both positive and
negative integers:

5«72 7101 2

5 4 3 2 1 5

0 1 2 3 4
S+3 \\;::SESEE;::\\:a
"5 T4 T3 7271 0 1 02 3 o4 og
5 Tu "3 T2 71 0 1 .
///:::::/// .
Ty oTw TS T2 TS 0o
5 Ty T3 "2 71 0 1
//<:::::/// -
T T N R B

S 4 3 2 5

“t0 1 2 3 4
5-73 \\\\\::j:::ss:::\;;3
75 10 1 2 3 4 5

<5
'
w

Tu T3 T2
The last example illustrates that subtraction of a negative
number ( 3 in the example) is equivalent to adding the

corresponding positive number (3 in the example). This
follows from the fact that subtraction of 3 is inverse to
addition of ~3 which is equivalent to subtraction of 3.
Hence subtraction of ~3 is inverse to subtraction and is
therefore eguivalent to the addition of 3.

3.4. EXPRESSIONS FOR THE INTEGERS

The function : introduced in Chapter 1 produces the
positive integers as illustrated below:

15
1 2 3 45

E7-9



The same function can be used to generate both
positive and negative integers as follows:

)

(189)-5
12 3 4% 56 78 9-5
T4 T3 7271012 34
. 5+19
473 72 71012 34
The non-negative integers (that is the positive

integers and zero), can be generated as follows:

(16)-1
01 2 3 4 5

“1+16
01 2 345

Non-positive integers can be generated as follows:

The following examples illustrate some functions applied to
a vector $§ of integers:

S« 5+19
S
4 73 27101 2 34

1+S
3 7271012345

“2+8

6 "5 "4 3 "2 7101 2
s-S
000000

S5+85
8 6 4 20246 8

2x5
8 6 4 2024 6 8

S+S+S
12 "9 "6 T30 3 6 9 12

3xS§
12 79 "6 30 36 9 12

gF10
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Chapter 4

FUNCTION TABLES WITH NEGATIVE INTEGERS

4,1, INTRODUCTION

Function tables were used in Chapter 2 to explore the
behavior of the functions plus and times. We can now apply
them in the same manner to explore the new function
subtraction introduced in Chapter 3. Moreover, they will be

useful in re-examining the behavior of plus and times when

applied to the new negative numbers also defined in Chapter

4.2. SUBTRACTION

If I«19, then the body of a subtraction table for the
arguments 1 to 9 1is given by the expression Io.-I as
follows:

I+19
I
1 2 3 4 5 6 7 8 g
S<Io,-T
S

i
I

A FEF NP, ORr N W

COCRPRNWFOOOD©

T

W~ F WP O
SOV E WP O
DO EONNR,RORN

1
FWONEPE ORLNWF
W NP, OR N®FO»
NP, ORLNWFOOD
PORNWFODN

The subtraction table § has a number of interesting
properties. For example, the zeros down the main diagonal
of the table show that any number subtracted from itself
yields O, Moreover, each diagonal parallel to the main
diagonal contains the same number repeated. For example,
the diagonal two places below the main diagonal consists of
all 2's.
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Consider the arguments 5 and 3 in the expression 5-3.
The result 2 1is found in the circled position in the
following subtraction table:

1
1
|
t
|
1

0 71 "2 73 "4 "5 Tp "7 78
10 "1 72 73 "4 "5 "6 7
2 1 0 "1 "2 73 4 75 7%
3 2 1 0 1 "2 73 4 75
4 3 @ 1 071 72 "3 4
5 4 3 [2) 1 0o 7172 73
6 5 4 3 2 1 0 "1 "2
7 6 5 4 3 2 1 0 "1
8 7 6 5 4 3 2 1 0

If each argument is increased by 1, the result is
found in the next row and next column; 1in other words, one
place down the diagonal as shown by the square in the above
table. Since every entry in this diagonal is the same, we
conclude that (5+1) - (3+1) yields the same result as 5-3.
More generally, if we increase each argument by any number
¥, the result is found by moving N places down the diagonal.
Hlence we can conclude that (5+VN) - (3+/) yields the same
result as 5-3.

The conclusions made above for the arguments 5 and 3

will apply to arguments having any values whatever. Hence
we conclude that (X+N) - (Y+N) vyields the same result as
X-Y.

The subtraction table § has another interesting
property. If we choose the element in the third row and
seventh column {(which represents the result 3-7}, we find
that it is the negative of the result in the seventh row and
third column (which represents 7-3). Hence the result of
3-7 is the negative of the result of 7-3. If any other pair
of numbers is substituted for 7 and 3, the same relation
will be observed in the table. We can therefore conclude
that for any numbers X and 7, the result of X-Y is the
negative of the result of Y-4X.

- 34-
From the above we may conclude the following: if we
take the subtraction table S and form a new table T each of
whose columns is equal to the corresponding row of 5, then

each element of T will be the negative of the corresponding
element of 5:

2

. 7

0 71 "2 73 "4 "5 Tp "7 78 0 1 2 3 4 5 6 7 8
10 71 72 73 T4 Ty T 77 1 0 1 2 3 4 5 g 7
2 1 0 "1 72 T3 4 75 e 271 0 1 2 3 4 5 6
3 02 1 0 "1 "2 73 "y s 3 7271 0 1 2 3 4 5
4 3 2 1 0 "1 "2 T3 Ty “y T3 72 71 0 1 2 3 4
5 4 3 2 1 0 1 "2 73 s Ty 73 72 71 0 1 2 3
6 5 4 3 2 1 0 "1 "2 6 5 T4 T3 7271 0 1 2
7 6 5 4% 3 2 1 0 1 7 76 5 Ty T3 T2 71 0 1
8 7 6 5 4 3 2 1 0 8 77 76 75 T4 T3 72 71 0

The sum of 4 and 4 is zero, and in general the sum of
any number and its negative is zero. Hence we can state the
foregoing result in another way; the sum of the tables S and
7 must be a table of all zeros:

S+ 7
0 0 0 0 0 0 Q 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 o]
0 0 0 0 0 0 0 0 Q
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0] 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

4.3. FLIPPING TABLES

In the previous section the table 7 was obtained from
the table S5 by interchanging rows and columns. This

Bl



interchange

follows:
main diagonal:

@90 OE wN

L S N B B |
OO FE WP O

{ I I A |
O U EFE W R O R

also

W 300 F WNEP O

OO FE WN R O

R ORNWEFOOO

[ B |
DOFEFE WNEPE O N

In examining the patterns exhibited by tables,

[ R R |
N E WP OR NW

can be

stated

in a

simple

graphic

way

as

flip the table over about the axis formed by the

1

2

3
U

FLONRP,ORLNWF

WN P ORPrNWEFEO

NP, ORLr NWw+Fud

convenient to
vertical axis and about a horizontal axis as follows:

(RS}

O EFE WNER, ORLN

NP ORNWFOO®

O FEF W PO N W

| I O R |

WP, ORrNDWEOO

U

[
WNPRP, OPRPLNWFOm

-

FWwWNR ORNWFE

A F WNERL ORF N W

[ R B |
NP, ORrRNWFOO®

DO FWNPE O

P ORPRrNWEFEOOO -

flip them in

[ I R
P OR NV WFE OO

[}

N F WP Ok,

| I R O S A |
oORrNWEFOOOO9®

P NwF oo g

ORLr NwWwFoo o

® 3D F WP O

it is
a similar way about a
S

071 72 73 "4 75 76 77 T8
1 0 1 "2 73 "4 "5 T "7
2 1 0 "1 "2 "3 "4 "5 78
3 2 1 0 "1 72 73 T4 s

Y4—3—p 1 g4 "2 ‘3434i>
5 4 3 2 1 071 72 "3
6 5 4 3 2 1 0 "1 "2
7 6 5 4 3 2 1 0 "1
8 7 6 5 4 3 2 1 0
8 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 "1
& 5 4 3 2 1 0 1 "2
5 4 3 2 1 0 1 "2 73
4 3 2 1 0 "1 "2 T3 Ty
3 2 1 0 172 73 T4 s
2 1 0 172 73 "4 "5 78
1 0 "1 "2 73 "4 Ts Te 77
071 72 73 4 "5 "6 "7 78

Each of these three methods of flipping a table is a
function which takes a table as argument and produces
another table as a result. The symbols for each of these
functions is a circle with a line through it which indicates

the axis about which the table is flipped, thus: &, ¢, and
©. For example:
XS oF
c 1 2 3 4 S5 & 7 8 8 "7 6 "5 T4 T3 "2 71 0
10 1 2 3 4 5 6 7 7 76 75 "4 "3 "2 71 o0 1
271 0 1 2 3 4 5 8 6 5 4 73 7271 0 1 2
"3 7271 0 1 2 3 4 5 5 "4 "3 7271 o0 1 2 3
4073 T2 71 0 1 2 3 4 4 73 7271 0 1 2 3 u
5 "4 "3 271 0 1 2 3 3 7271 0 1 2 3 4 5
6 5 4 T3 7271 o0 1 2 271 0 1 2 3 4 5 8
7 76 "5 "4 "3 "2 71 o 1 10 1 2 3 4 5 8 7
8 77 "6 75 "4 "3 7271 o0 0 1 2 3 4 5 6 7 8
es5 edS
8 7 6 5 4 3 2 1 o0 0 1 2 3 4 5 6 7 8
7 6 5 4 3 2 1 0 "1 1 0 1 2 3 4% 5 6 7
6 5 4 3 2 1 0 "1 "2 271 0 1 2 3 4 5 6
5 4 3 2 1 0172 73 "3 7271 0 1 2 3 4 5
4 3 2 1 0 "1 T2 73 & 4 73 7271 0 1 2 3 4
3 2 1 0 "1 72 73 "y s 5 "4 "3 7271 0 1 2 3
2 1 071 7273 4 "5 76 6 5 T4 "3 7271 o0 1 2
1 0 "1 "2 34 "5 T "7 "7 76 "5 T4 T3 "2 71 0 1
0 "1 72 73 "4 "5 Te "7 "8 8 77 "6 75 "4 "3 "2 71 o0

The last of these four examples illustrates how the flipping
functions can be applied in succession.

The function & 1is
transposes rows and columns), the function ¢ is called row
reversal (because it reverses each row vector in the table),
and ¢ is called column reversal.

called transpgsition (because it

A vector can be thought of much as a
and reversal can therefore be applied to it.

one-row table,
For example:

I+19

oI
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The relation between the subtraction table § and its
transpose T which was noted at the end of the preceding
section can now be stated as follows:

5+8Q8
0 0 o] 0 0 0 0 0 0
0 0 0 0 0 0 0 Q 0
0 0 0 0 0 0 Q 6] 0
0 0 0 0 0 0 0 0 0
0 0 0 o] 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

4,4. INDEXING TABLES

In discussing a table it is often necessary to refer
to a particular row of the table (e.g., the fourth row), or
to a particular column, or to a particular element. Such a
reference will be called indexing the table, and the row and
column numbers which refer to a given element are called its
indices.

Indexing is denoted by brackets in the manner
indicated by the following examples:

M«(16)o.-16

M
0 7172 73 "4 "5
10 71 72 T3 T4
2 1 07172 73
32 1 071 72
4 3 2 1 0 "1
5 4 3 2 1 0
ME33u]
1
M[O4;3]
1
M[3;])
2 1 0 "1 T2 73
M[;3]

N

"1 0 1 2 3

From the first two examples it should be clear that
the row index appears first. From the third it appears that
a row index alone selects the entire vector in that row.

gH2-3
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From the fourth it appears that a column index alone selects
the entire column. However, the column is displayed
horizontally, not as a column. This emphasizes the fact
that any single column or row selected from a matrix is
simply a vector and is displayed as such.

Indexing can also be used to select an element from a
vector, but in this case a single index only 1is required.
For example:

P2 3 5 7 11
Plu]

PL2]
2 35 7 11[2]

Moreover, a vector of indices can be used to select a
vector of elements as follows:

Pl1 3 5]
2 5 11
Ply]

2 3 5 7
P[5 4 3 2 1]
11 7 5 32

Finally, vectors can be used for both row and column
indices to a table as follows:

_ MEl 2;2 4 6]

1 3 75
0 2 T4
ML1 3]

0 "1 T2 T3 Ty s
2 1 0 "1 72 73
ML32 4 6]

1 73 75
0 T2 Ty
1 71 73
2 0 2
3 171
n 2 0
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4.5. ADDITION

Consider the addition table 4 defined as follows:

T17

A«lo +]

A
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 g 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
7 8 9 10 11 12 13
8 9 10 11 12 13 14

It is clear that the transpose of the table 4 (that

is, @4) 1is equal to A. From this we may conclude that for
any numbers X and Y, the sum X+Y is equal to the sum Y+X.
The diagonals and counter-diagonals (running from upper
right to lower left) of the addition table also show
interesting patterns whose meanings can be examined 1in the
manner illustrated in the discussion of the subtraction

table in the preceding section.

It 1s also interesting to examine an addition table
made for negative as well as positive arguments as follows:

J«(115)-8
J
7 "8 5 T4 T3 "2 "1 0 1 2 3 & 5 & 7

B<do ., +d

B
"4 T13 T12 T11 T10 T T8 "7 0 Te  Ts w4 T3 T2 1 0
T13 712 711 T10 "9 T8 "7 "6 Ts T4 T3 T2 1 0 1
“12 T11 T10 "9 T8 "7 "6 5 4 "3 "2 "1 0 1 2
11 10 "9 T8 "7 e s Ty T3 T2 1 0 1 2 3
10 Tg T8 "7 "6 5 T4 T3 T2 "1 0 1 2 3 n
"9 "8 "7 Te "5 T4 T3 T2 71 0 1 2 3 y 5
8 "7 T "5 T4 T3 T2 "1 0 1 2 3 n 5 6
"7 e s Ty T3 T2 "1 0 1 2 3 i 5 6 7
6 s T4 T3 T2 "1 0 1 2 3 4 5 6 7 8
s T4 T3 T2 Tq 0 1 2 3 n 5 6 7 8 9
4 T3 T2 T 0 1 2 3 n 5 6 7 8 3 10
3 T2 71 0 1 2 3 n 5 3 7 8 g 10 11
T2 71 0 1 2 3 y 5 6 7 8 g 10 11 12
! 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 m 5 & 7 8 9 10 11 12 13 14

One interesting

(consisting of all zeros)

the negative numbers.
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point 1s that the main diagonal
divides the positive numbers from
Other patterns noted in Table 4 can

also be found in the extended Table 7.

4.6. MULTIPLICATION

Again it will
multiplication tables,
only, and a table ¥ for

I+«17

MeIo.xT

M
1 2 3 4 5 6
2 n 6 8 10 12
3 3 9 12 15 18
n 8 12 16 20 24
5 10 1S5 20 25 30
8 12 18 24 30 36
7 14 21 28 35 u2

J«(115)-8

J

7 "6 5 w73 T2
Ned o, xdJ

49 42 35 28 21 14

21 18 15 12 3 6
14 12 10 8 6 y
7 6 5 U 3 2

0 0 0 0 0 0
"7 "6 "5 Tu T3 T2
T14 712 T10 T8 "6 T4
6

T21 T18 T15 T12 9
728 T24 T20 "1 12 8
735 T30 T25 T20 T15 T10
Tu2 T36 T30 24 T18 T12
T49 42 T35 28 T21 T1u

be convenient to consider two
a table M for positive arguments
negative arguments as well:

14
21
28
35
42
49

T14 721 T28 T35 "42 Tug
T12 T18 T24 T30 T36 42
10 T15 T20 T25 T30 35

8 “12 “16 20 24 "28
9 12 15 “18 21

6
n 6 8 10 T12 T1u
- 2 73 T4 "5 T 77
0 0 0 0 0 0
B 2 3 n 5 6 7
B 4 6 8 10 12 14
6

El 12 15 18 21
8 12 16 20 24 28
10 15 20 25 30 35
12 18 24 30 36 42
14 21 28 35 42 4S8

N EWONRP, ORNWEOOO
[eNeReloNoNelNolNoNoloReNeReNoNo]

[
N EFE WONRP,ORNWFEFOOOON

B5



-41~

The zeros in ¥ can be seen to divide the table into
one in the upper right corner, one in the
upper left, one in the lower left, and one in the lower
right. For convenience in referring to them we will call
these guadrant 1, gquadrant 2, guadrant 3, and gquadrant &4,
assigning the numbers in a counter-clockwise order beginning
with the upper right-hand corner as follows:

quadrant 2 quadrant 1

quadrant 3 quadrant &4

Each of the quadrants of ¥ <contains only positive
numbers or only negative numbers, and the signs reverse as
we proceed counter-clockwise through guadrants 1, 2, 3, and
Y. It is also interesting to consider this change of sign
by examining some row of the table.

First consider the fourth row of table ¥, which
represents the "four times" function for positive arguments:

ML)
4 8 12 16 20 24 28

Reading this row from 1left to
"counting by u's"; in other words, each entry is obtained
from the one before it by adding 4. Similarly, reading
backward is equivalent to "counting down by u4's", and each
entry is obtained from the one +to the right of it by
subtracting 4.

right 1is clearly

Now consider the row of table ¥ which represents the
same "four times" function, that is, row 12:

_ Nl12,] _ _
28 T2 20 T1s 12 8 "4 0 4 8 12 16 20 24 28

Reading from right to left is again "counting down by
fours" and so the entry 4 is preceded by 0 which is in turn
preceded by 4, and so on. Hence the zero entry separates
the positive and negative entrys in this row. The same
conclusion applies to any row, and a similar conclusion
applies to any column. Hence the gquadrants must alternate
in sign, as already observed.

g6-7
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4.7. MAXIMUM AND MINIMUM
Consider the

following set of positive and negative

numbers:
IT«(113)-7
I —_
6 5 s T3 T2 10 1 2 3 4 5 6

For any pair of positive numbers such as 3 and 5, the
value of their maximum 3[5 is the value of that one of the
pair which lies farthest to the right in the vector I. The
same rule applies +to both positive and negative numbers.
For example:

5
ir’s
3
3[ I
3 3 3 3 3 3 3 3 3 3 4 5 6
[ I
3 T3 T3 T3 T2 "1 0 1 2 3 4 5 6
Therefore, the maximum table appears as follows:
MAX«To.l1I
MAX
6 s T4 T3 7271 0 1 2 3 4 5 &
"5 75 Tu T3 T2 71 0 1 2 3 4 5 6
T Ty T4 T3 7271 0 1 2 3 4 5 8B
"3 73 "3 73 7271 0 1 2 3 4 5 b
T2 T2 T2 T2 7271 0 1 2 3 4% 5 6
17171717171 000102 3 04 5 6
o o 0O 0O O O O 1 2 3 4 5 6
i1 1 1 1 1 1 1 2 3 4 5 6
2 2 2 2 2 2 2 2 2 3 4 5 6
3 3 3 3 3 3 3 3 3 3 4 5 6
W4 4 4444 4 L4 o4 4 5 6
5 5 5 5 5 5 &5 5 5 5 5 5 §
5 6 6 6 6 6 6 H 6 B 6 B €
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The corresponding rule for the minimum function is
obvious, and the minimum table appears as follows:

MIN«Io, LI
MIN
"6 6 6 B B 6 6 6 6 6 6 B 6
"6 5 5 5 5 75 75 75 75 75 75 "5 7g
6 75 Tuo Ty T4 Tu Tu Tuo Ty Tuo Ty TuoTy
6 5 T4 "3 73 73 73 73 73 737373 73
6 75 Ty T3 T2 T2 T2 T2 T2 T2 T2 T2 72
e 75 T T3 72 7171 71 7171717171
5 75 4, 737271 0o 0 0O O 0O 0O O
"6 75 4 "3 7271 0 1 1 1 1 1 1
6 TS5 4 37271 0 1 2 2 2 2 2
6 75 4 "3 7271 0 1 2 3 3 3 3
6 5 4 7372 71 0 1 2 3 4 4 4
6 5 4 "3 271 0 1 2 3 4 5 5
6 5 4 "3 7271 0 1 2 3 4 5 6

4.8. RELATIONS

In the work thus far we have observed a
_________ For example,
8+3, and in general X+Y is equal to Y+x.
have also been observed between whole tables.
if ¥ 1is any multiplication table it is

transpose QM.

number of
3+8 is equal to
Such relations
For example,
equal to its

The symbol = is used to denote equality, and it will
be used as a function which vyields a 1 if the arguments are
equal, and a ¢ if they are not. For example:

B8-11

S«Io,-T
S
071 "2 73
1 0 "1 "2
2 1 0 1
3 2 1 0
43 2 1
’S
0 1 2 3
10 1 2
271 0 1
"3 72 71 0
w73 T2 1
S5=QS
10000
01000
00100
00010
0000 1
S+8S
0 00O0O
0000 O
0000 O
0000 O
0000 O
0=5+&S5
111 11
11111
11111
11111
11111

The symbol = is used

For example:

3z8
1

323
0

Sz&S
01111
101 11
1101 1
111 0 1
11110

O R N W F

O RN wF

[=N el Ne) [

[ = =Y

M=k

O C O OO [l et ol

[ = Y

w0 F oW N

CE W R

co oo oX

[

= = =

O o O O0O0L N

SN I e

OO O OO et el il

[ =

G N WL D W

IR

n

12
16
20

12
16
20

5
10
15
20
25

10
15
20
25
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From the foregoing it should be clear that a result of
1 implies that the indicated relation holds (that is, it is
true), whereas a result of 0 implies that the relation does
not hold (that is,

There
not-equal.
less—than:

are other useful
Thus the symbol <

relations besides equal and
denotes the function

3<3

o

N<{19)-5
y
Y 3 2 1 0 1 2 3 4

N

4 3 2 1 0 "1 "z T3 Ty
N<dN

11 1 1 9 0 0 0 0
(dy)y<w

o] 0 0 0 © 1 1 1 1

"less-than"
{such as W

It should be clear that one integer is
another if it precedes it in a list of integers
arranged in the usual ascending order.

The symbol > denotes the function greater-than. For
example:

N>¢N
0 0 0 0o 0 1 1 1 1

(dN)>N
i1 1 1 0 0 0 0 0

To remember which of the symbols < and . denotes
"less—than" and which denotes "greater-than", it may be

helpful to note that the large end of the symbo} po%nts to
that argument which must be larger if the relation is to be
true (that is, have the result 1).

f12
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Two further relations will also be employed - the
(denoted by <) and the
(denoted by 2). Their definitions

should be clear from their names and from the following
examples:
I<(xv7)-4
I
3 T2 10 1 2 3
R« I
R
3 2 1 0 T1 T2 T3
IR Iz2R
1 1 1 1 0 0 0 0 0 0 1 1 1 1
I <R I>5
11 1 0 0 0 0 o 0o 0 o 1 1 1
=R =R
0 o] 0 1 0 0 0 0 4] 0 1 0 0 ¢}

4.9. LOGICAL VALUES

From all of the examples in the preceding section it
can be seen that every result of a relation function is
either a 1 or a 0, or a vector or table of 1's and 0's. Tt
will be convenient to use the term logical result or logical

vector or logical table to refer to such results which
consist of only 0's and 1's. The term "logical" arises
from the fact that a 1 can be thought of as representing

"true" and a 0 as representing "false".

The functions [ and | (maximum and minimum) have
interesting properties when applied to logical results. The
maximum table

restricted to such arguments appears as
follows:
0 1o.[0 1
1
1 1

[13-14



-47-

From this it appears that the result of L[X (when [
and ¥ are both logical values) is 1 if either one of the
arguments (or both) is 1. In other words, L[K is true if
either [ is true or X is true. Hence the maximum function
applied to logical results can be said to be the function
or.

The following example may clarify the matter:

X«1 2 3 & 65
Y«5 4 3 2 1
X<Y

1 1 0 0 0
X=Y

0 0 1 0 Q
(X<¥)I(Xx=Y)

1 1 1 0 Q
X<y

1 1 1 0 o]

For these values of ¥ and Y it can be seen that the
expression (X<Y) [ (X=Y) has the same result as X<Y. The
expression X<Y¥) [ (X=Y) may be read as "X is 1less than Y or
X equals Y" and therefore the conclusion can be phrased as
follows: "The expression X is less than Y or X equals Y has
the same result as X<y."

In a similar manner it can be shown that the minimum
functions applied to logical results is equivalent to "and".

0 10,10 1

In other words, the result LlLK is true only if [ is

true and Kk 1is true. For example, (x<y) L (x2Y) is
equivalent to X=Y.
The function L|/V (minimum over V) applied to any

vector V yields the value of the smallest element in V.
Hence if V is a logical vector, the expression L/V yields a
0 1if there is any zero in Vv, and the expression L /V
therefore is true (i.e., 1) only if all elements of V are
true. Therefore L/V can be thought of as "all of V".
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Similarly [/V is true if at least one element of V is true.
For example:

W<l4 6 2 3 7

1<W

1 1 1 1 1
L/1<W

1
[/1<W

1
3<W

1 1 0] 0 1
L/3<W

0
[/3<W

1
8 <W

0 0 0 0 o]
L/8<W

0
[/8<W

o]

4.10 THE QVER FUNCTION ON TABLES

The gover function has been frequently used on vectors

in earlier chapters. For example:
+/2 4 3
9
x/2 4 3
24
[/2 u 3
I
L/2 4 3

it is also useful to apply the gver function to tables, and
the method of doing this will now be defined.

B15
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A few examples will be given first:

T«1 2 3 b4o,-1 2 3
p

o "1 2
1 0 1
2 1 0
3 2 1
+/T

"3 0 3 b
x/T

0 0 0 6
r/r

The rule should be clear from the foregoing
examples -~ apply the indicated function over each of the
vectors formed by the rows of the table.

Sometimes one would like to apply a function over each
of the vectors formed by the columns of a table. This can

be done by first transposing the table. For example:

QT
0o 1 2 3
10 1 2
2 71 0 1
+/QT
6 2 2
x/QT
0 0 0
[/&T
3 2 1
L/&T
0o "1 T2

Another over function can of course be applied to any
vector resulting from an over function applied to a table.
Hence one would obtain the sum of all elements of I Dby the
following expression:

+/+/T
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Similarly, the expression x/+/I yields the product of
the sums of the rows of 7:

x/+/T

In particular, the expression L/L/L applied to any
logical table 7 will yield a result of 1 (true) only if
every element of L[ is true. This is useful in comparing
tables. For example:

I«~1 2 3 4 5
S«lv, -1 A<lo.+T1
5=Q5 A=QA
10 0 0 0 11111
010 09 11111
00 100 1711 11
00010 11111
00 0 0 1 11111
L/L/5=88 L/L/A=84

.

Bl6
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Chapter 5
THE RATIONAL NUMBERS
5.1. INTRODUCTION

In Chapter 3, the subtraction or minus function was

introduced as a function which undid the work of addition,
that is, for any positive integers, X and 4, the expression

(X+4)-4

would yield the result X, Subtraction was therefore said to
be inverse to addition.

Since addition was also inverse to subtraction, it
followed that the expression

(X-A)+4
would also yield X, However, if A is larger than X, then
X-A is not a positive integer, and the negative integers and
zero were introduced to ensure that every subtraction would
have a result.

In this chapter the gdivision function will be
introduced in a similar way, as a function which will undo
the work of multiplication, that is,

(XxA):A

yields the result X, Since multiplication will also wundo
the work of division, it follows that

(X+4)xA
also yields X. That is:
READ AS

(XxA):4A is X Quantity X times 4 divided by 4 is X
and

(X+A)=x4A is X Quantity X divided by A times 4 is X

For example:

3x8
24

(3x8)+
8

24+ 3
8

3x(24+
24

ST+

S

3 2 101

B Sx3
3 6 30 3
£SX3)%
3 72 T10 1
M+«S5x3
M

372 710 1

_ o (M=3)x
9 76 "3 0 3

Maps
follows:

3

3)

7

2

6

2

3
6

for

9
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3%
T2y
_ (3x78):3
8
_ T241:3
8
3x(72433)
T2u
examples $x3

(5x3):3 appear

as

B1-2
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The examples for w»:3 and (M:3)x3 can be mapped
similarly:
T9 T8 "7 s 1 5 6 7 8 9

3 72 7
3 72 71
3 72 7
) In discussing the expression 4:3, the first argument 4
is called the dividend (that which is to be divided), the
second argument B is called the divisor (that which
divides), and the result is called the guotient (how many
times). For example, in the expression 12:3, the number 12

is the dividend, 3 is the divisor, and the result 4 is the
quotient.

-5 "y "
-5 Ty

(o))
~
@
Vo]

QO Q—— O

1 2 34
1 2 3.4 5
1 2 34

1 5 b 7 8 El

Just as the expression X-4 would sometimes
result which was not a positive integer, so the expression
¥+A will sometimes yield a result which is not an integer,
and it becomes necessary to introduce a new class of numbers
which are neither positive nor negative integers. These
numbers are called rational numbers because they arise as a
_____ integers. They are also ractions
because a number such as 1:3 is considered to be cne piece
of a whole which is divided into 3 equal parts, that is, it
is a fraction or "fractured part" of a whole. Howeyer, the
question of these new numbers will be deferred until we have
considered methods for performing division.

vield a

5.2, LONG DIVISION

To divide a small number such as 8 into
number such as 56, one can simply quess at the answer and
then check the guess by multiplying it by the divisor (that
is, 8) and comparing the resulting product with the original
dividend s6. Thus if the guess is 7, the product 7x8 is 56
and the guess is correct; the quotient of 56 divided by 8 is
7. More generally, if DD is the name of the dividend, DR is
the name of the divisor, and G is the name of the guess,
then the product DRxG must agree with the dividend DD in
order that the guess be the correct quotient resulting from
DD:DR.

another small

=54-

For somewhat larger numbers one 1is less likely to
guess right the first time, and the comparison of the
product DR xG with the dividend DD can be used to determine

whether the next guess should be larger or smaller. For
example, in the division 40548+%124, the value of DD is
40548, the value of DF is 124, and the first guess ¢ might

be slightly over three hundred, The product of ¢

and DR may then be computed:

say 305.

124
*305
520
000
372
37820

Since the product 37820 is less than the dividend 4#05u8, the
next guess should be somewhat larger than 305.

One might take the next guess to be 330, in which case
the product 124x330 would be 40920 and therefore too large.
The third guess should be somewhere between 305 (which was
too small) and 330 (which was too large). Guessing in this
way will eventually lead to the desired guotient, but may
take a lot of work.

It would help to know not only that the next guess
should be larger (or smaller) but by how much. It is easy
to find how much the product J7xG should be increased; one
merely subtracts it from the dividend. Thus in the example

40548+124 and the guess 305:

124 40548
x305 -37820
620 2728
000
372
37820

The product should be increased by 2728. This can be done

by increasing the gquess by 2728:124.

We are thus faced with a new division problem (that
is, 27283124), but this time with a smaller dividend.
Making a gquess of 22 for the gquotient would prove correct

B4
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since 22x124 is eugal to 2728, The correct quotient is the
sum of the first guess (305) and the correction to it (22),
that is, 327. The whole process is shown below:

405482124
124 40548 124 2728 305
x305 -37820 x22 -2728 +22
620 2728 248 0 327
000 248
372 2728
37820

The work can be organized more conveniently as shown
on the left below; the necessary multiplications are shown
separately on the right and their results are transferred to
the appropriate places on the left:

327

+22
305 124 124
124 40548 x305 X272
-37820 620 248
2728 000 248
-2728 372 2728

0 37820

In the foregoing, the final result 327 is entered at the top
of the column of guesses (305 and 22) of which it is the
sum.

If the second guess is not correct a third can be
made, and if that is not correct a fourth can be made, and
so on. The final result is the sum of the guesses. For
example, to compute 6704+:16:

419 16 16
+2 x402 x15
+15 32 80
402 00 16
16 {6704 64 240
-6432 6432
272 16
-240 X2
32 32
-32
0
The quotient is 419, This result can checked by

multiplying it by 16 to

to the dividend 6704,

see that the product is indeed equal

85
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If one chooses each guess to be a single digit, or a
single digit followed by one or more zeros {that is, one
chooses guesses which are single-digit multiples of 1, 10,

100, 1000, etc.) then the necessary multiplications become
much simpler, For example, the division 40548:124 (used in
an earlier example) might begin with a quess of 300, Since
300x124 is equivalent to 3x124 followed by two zeros, this
multiplication can be carried out on a single line and need
not be done off to the side as was the case with the guess
305 used in the previous example:

300
12&‘405#8
-37200
3348

The next guess will be a multiple of 10, say 20:

+20

300
12440548

-37200

3348

-2480

868

The next guess is a multiple of 1, say 7:

327

+7

+20
300
124[ 40548
-37200
3348
-2480
868
-868

0

This method of choosing multipliers not only
simplifies the necessary multiplications, it also simplifies
the addition of the guesses. In the previous example, the
addition of 300 and 20 and 7 involves no carries, because
each digit position has a single non-zero entry. This will
always be the case provided that the leading digit in each
guess is chosen as large as possible,
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The preceding example (for the division u0548:124) is
repeated below on the left. It is also reproduced on the

right but with all of the trailing =zeros dropped from the
calculations:

327 327

7 Ty
20 2z
300 3

124 u0ous 12440548
-37200 -372
3348 BRI
2480 -248

868 868

868 -3868

0 Ty

From this it appears that the
right will suffice to record the
In fact, the sequence
written on the same
unnecessary.

simpler scheme
sequence

on the
of calculations.

of guesses 3, 2y and 7 could be
line, making the final addition
The steps of this final scheme (called long

3 32 327
1zufaosug 12440548 124 [Lo5LE
372 372 z372
33 334 33u
-248 -248
86 869
-868
0

5.3. RATIONAL NUMBERS

In the preceding examples and exercises, each dividend
used was an integer multiple of the divisor and the guotient
was therefore an 1nteger. However, the division 21:% cannot
have an integer result since the quotient 5 is too small and
the quotient 6 is too large. Rational numbers will now be

introduced to ensure that every quotient of two integers has
a result.

Ei6-7

-58-
Consider the example
P« 10+119
p

g "8 77 "6 "5 "4 T3 7271 0o 1 2 3 4 5 6 7 8 9

7:3 and (P:3)x3

W

g B L5 5 7 8 9

_/////l\\

9 >3 o4 s e U7 e o

and the following map for

b7 8 9

From this example, it appears that the number 6:3 is
less than 7:3 which is less than 8:3, and so on. In other

words, the following sequence of four numbers is in
ascending order:

£33 7:3 31i3 3:3
Since 6:3 is 2 and 9:3 is 3, the above sequence may be

written as:
2 73 B3 3

In other words, the numbers 7:2 and 8:3 occur between the
integers 2 and 3 and therefore cannot be integers. They are
called rational numbers.

The negative integers and =zero (introduced to make
every subtraction have a result) are a set of numbers which
precede the positive integers; the rational numbers

(15E£55uced to make every division have a result) are a set

Just as names were introduced for the negative numbers
(for example S v 1), names can be 1introduced for
rationals as follows: the result of 2:3 is often written as
2/3, the result of 5:2 is written as 5/2, etc. 1In this book
we will make very little use of such names, but will instead
simply write the expression which produces the rational
number (for example, 2:3 or 52, or /2 3 or :/5 2), or
else write the rational number as a decimal fraction.

Decimal fractions will be discussed later in this chapter.
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Since the integer 2 is equal to 2:1 or to 432 or to
6:3, etc., then the integer 2 itself can be considered to be
a rational number. Similarly, 3 is equal to 3:1 or 6:2,
etc. Therefore every integer can also be considered to be a
rational number.

In discussing a rational such as 4:B, the terms
dividend and divisor were introduced to refer to the parts 4

________ etc. number
of things named, as also illustrated in the examples of the
preceding sentence.

5.4. ADDITION OF RATIONAL NUMBERS HAVING THE SAME DIVISOR
Consider the following pairs of examples:
(6:3)+(9+3) (6+9)+3
5 5
(20:5)+(25%5) ((20+25)+5
] 9
(32:4)+(83y) (32+8)=3u4
10 10
Since each of the results in the first column agree
with the results in the second column, it appears that the
expressions in each pair are equivalent, that 1is,
(9+3)+(633) is equivalent to (8+6):3, and so forth, The

general rule illustrated by the examples is this:
and ¢ arxe any three integers, then

If 4, B,

(A:C)+(B:C) 1is equal to (4+B):i(C
The first example may be diagrammed as follows:

+9

!
'

10 11 12 13 14 35 16

e —

10 11 12 13 14 15 16

E8-11
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Each division in the foregoing examples produces an

been shown to hold for such cases. It will,
assumed to hold for all rational numbers.

however, be
For example:

(5:3)+(8:3) is equal to 13:3

The diagram for this example follows:

+8

It should be clear from the foregoing that similar
rules apply to the subtraction of rationals having the same
divisor, that is:

(A:C)-(B:C) is equal to (A4-B):(C
For example:

(13:3)-(8:3) is equal to 5:3.

If the addition or subtraction of two rationals
produces a dividend which is evenly divisible by the

divisor, then the result may be
single integer. For example:

further simplified to a

(8:3)+(7+3)
15+3
5

[(8+3)-(5%3)
3+3

;
The vertical lines above indicate, as usual, that the
expressions to the right are equivalent. From here on the
vertical lines will be omitted; that is, any list of
expressions 1is to be read as a statement that the
expressions are equivalent.

£12-14
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5.5. MULTIPLICATION OF RATIONAL NUMBERS

The rules for multiplying two rational numbers will be
explored by first considering a number of cases in which the
division can actually be performed. Compare the
corresponding examples in the following two columns:

(10:5)x(12:3) (10x12):(5%3)
2%y 120:15

(18:3)x(12:6) (159%12):{3x»c)
62 71618

(32:8)x(3537) (32%35):(8x7)
Y5 1120356
20 >0

Since the results in the two columns agree, it appears
that (10:5)»(12:3) is equivalent to (10x12):(5x3) and so on.
In general, if 4, B, ¢, and 7 are any integers, it appears
that (4:5)x(7:7) is equivalent to (A>7):(H5xD). The above
examples illustrate this only for cases where A:3 and (C:D
each produce integer results. However, the rule will be
assumed to apply for all rational numbers. For example:

(3:4)x(5:2) is equal to 15:8
(4:3)x(2:5) is eqgual to 8315
(3:4)x(u:3) is equal to 12:12 (that is, 1).

The rule for multiplying rationals can therefore be
stated as follows:

(Ax3)= (D)

(Ax):(ExD)
In words, the dividend of the result is the product of the
dividends and the divisor of the result 1is the product of

the divisors.

Applying this rule to the case where 4, B, (¢, and D
are equal to 4, 5, 3, and 3, respectively, yields

(43+5)x(3:3)
(4x3)2(5%x3)
12+15

~-62—
However, since 3:3 is 1, then

(435)x(3:3)
(b:5)»1

435

Therefore, all members of the two sets of expressions
above are equivalent, and 12:15 is equal to #:s5.

It therefore appears that for any three integers 2, %,
and C:

A+R
(AzB)Yx(C:()
(AxC)(BxT)

In words, if the dividend and divisor of a rational number
are multiplied by the same quantity 7, the resulting
rational number is equal to the original rational number.

5.6. MULTIPLICATION OF A RATIONAL BY AN INTEGER

Consider again the general rule for the multiplication
of two ratios, that is:

If 5 has the value 1, we obtain the following simpler
rule:

Ax(C:D)
(A+1)x(0:D)
(AxC)=(1=D)
(AxC)=D

In other words, 1f a ratio (¢:D is to be multiplied by
an integer 4, the result is obtained by simply multiplying
the numerator 7 by A. For example:

5x(3:27)
15+7

[#15-18

£19
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5.7. MULTIPLICATION EXPRESSED IN TERMS OF VECTORS

Since 3:i4 can be written as /3 4, and 5%2 can be
written as :/5 2, etc., then any rational can be written as
/v, where V is a two-element vector. The first examples

used in the multiplication of rational numbers will now be
repeated but written in this new form:

(/10 5)x(=/12 3) +/10 5x12 3
2xlh $/120 15
8 8
(+/18 3)x(3:/12 6) +/18 3x12 6
6x2 +/216 18
12 12
(:/32 8)Yx(:/35 7) +/32 8x35 7
Lx5s +/1120 56
20 20

From the foregoing it appears that the rule for
multiplying rationals can be written very neatly in terms of
vectors: if v and ¥ are each two-element vectors, then the
product of the rationals (:/V)x(:/W) 1is equivalent to the
rational :/VxW. For example:

V<10 5
W«12 3
(+/V)x(/W)
2xi

8
VxW

120 15
o/ VxW

8
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5.8. ADDITION OF RATIONALS
The method for adding rationals given in Section

applied only to the addition of two rationals sharing
same divisor, that is,

(LYl
jon

(A:C)+(B=C) is equal to (A+B):C

It cannot be applied to add a pair of rationals such
as 2:3 and 435. However, the results of the preceding
section can be applied as follows:

2:3 1is equal to (2x5):(3x5)
4:5 is equal to (4x3):(5x3)

Therefore 2:3 and 4:5 are equal to 10:15 and 12:15,
respectively. But the 1last two rationals have the same
divisor and can therefore be added as follows:

(10+15)+(12:15) is equal to 22%15.
Therefore

(2:3)+(4:5) 1s equal to 22+15.
Similarly:

(2:7)+(4+5)
((2+7)x(5:5))+((4:5)x(7:7))
(10:35)+(28%35)

38+35

(1:2)+(123)+(1:6)
((1+2)x(3+3))+((1:3)%x(2:2))+(1:6)
(3:6)+(2:6)+(126)

646

1

In general, two rationals, (A:B) and ((3:D) may be
added as follows:

(A+B)Y+(CD)
((A+B)x(D:D))+((C:D)*(B:B))
((AxD):(BxD))+((CxB):(DxB))
((AxD)+(CxB))+(BxD)
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5.9. ADDITION OF RATIONALS IN TERMS OF VECTORS

Recall the rule for the addition of two rationals as
follows:

(A:B8)Y+(C:D)
((AXD)Y+(Bx0))(BxD)

Recall also that if V is a two element vector, then
+/V 1s the ratio V[1]:V[(2]. Consequently, the rule for the
addition of two rationals :/V and /¥ can be expressed as

follows:

(:/V)+( /W)
(+/7VxdW) s (VI2)xW{2])

For example:

V<3 5

7 2

(/3 5)+ (/7 2)
(+/3 5x2 7):(5x2)
(+/6 35):10

4110

5.10. THE QUOTIENT OF TWO RATIONALS

Consider the following examples of division:

12+4
3
(12x5)+(4x5)
3
1332
g
(18x7):2x7
3

F22

-66-—

They illustrate the fact, developed earlier, that the
multiplication of both numerator and denominator by the same
quantity leaves a fraction unchanged. That is:

P
(PxR)+(@xR)

Consider now the division of the rational number A:B
by the rational number :0, that is,

(A:B)=(CxD)

The result will remain unchanged if the numerator 4:8 and
the denominator ¢:" are each multiplied by the same number
D:C. That is:

(4BY(CsD)
((ABYX(D20))YE((CDY*(D=:C))

The last half of the above expression (that is, ({:D)x(D:C))
can be simplified by applying the rule that the product of
two rationals is the product of their numerators divided by
the product of their denominators:

(C:D)x(D=3C)
(CxD) 2 (DxC)

Since ¢xD and D~C are equal, their quotient is 1. Therefore
(C:D)x(D:C) makes 1.

Finally, then:

(A:B):(C:D)

(CABY* (D)) = ((C:DYyx(D:0))
((A:B)x(D=C)) 1

(A:BYx(D3:(C)

Therefore the quotient (4:B):(C:D) 1is equivalent to
the product (4:8)x(D:(). For example:

(36:3):(2434)

(3633)x(4:24)
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This
vectors as follows.
two-element vector,

relation can also be expressed 1in terms of
If vV is a two element vector and ¥ is a
then:

(+/V)( /W)
(:/V)x+ /bW

For example:

(2/36 3):(:/24 u)
(£/36 3)x(3/4 24)
DECIMAL FRACTIONS

5.11.

100 or 1000,
in the manner illustrated below:

1386+10
138.6

13863100
13,86

138631000
1.386

1386+10000
.1386

13863100000
,01386

The period occurring in a decimal fraction is called a
decimal point. If the decimal point in a decimal fraction
is followed by one digit, then the rational it represents 1is
the integer represented by the same digits without a decimal
point, divided by 10. If the decimal point 1is follgwed by
two digits, the rational represented is the same integer
divided by 100, and, in general, if the decimal point is
followed by X digits, then the rational represented is the
same integer divided by the integer formed by a 1 followed

by Xk zeros.

@23

£24-26
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5.12. ADDITION AND SUBTRACTION OF DECIMAL FRACTIONS

The following examples show the addition of some pairs

of decimal fractions in which the fractions in each pair
_________ that is, they have

the same number of digits following the decimal place:

21.,34+16.55
(2134:100)+(1655%100)
(2134+1655)+100
3789:100

37.89

13.659+82,546
(13659+82546):1000
362051000

96,205

12.700+39.615
(12700+439615)31000
52.315

In other words, a pair of decimal fractions having the
decimal point in the same place can be added just as if they
were integers (i.e., by ignoring the decimal point), and
then placing the decimal point in the same place in the
result. This rule may be applied to the foregoing examples
as follows:

21.34 13.659 12.700
16.95 B2.546 39.61%
37.89 96,205 52,315

By the same reasoning, subtraction of such a pair of
decimal fractions can be carried out in a similar manner.
For example, the subtraction 21.34-16.55 can be carried out
as follows:

21,34

It remains to add two decimal
have the same number
The value of

fractions which do not
of digits following the decimal point.
a decimal fraction is not changed by appending

zeros to the right of it; thus 12.7 and 12,70 and 12.700,
etc., are all equal. This follows from the fact
(established earlier) that the wvalue of a rational is
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unchanged if the numerator and denominator are each
multiplied by the same number., For example:

12.7

127210
(127x10)£(10x10)
1270+100

12.70

1270%100
(1270x10)+(100x10)
12700+1000

12,700

Therefore, zeros may be appended to the right of any
decimal fraction without changing its value. To perform the
addition 12.7+39.615, one appends two zeros to the right of
12,7 (getting 12.700) and then adds them by the method for
adding decimal fractions having the decimal point in the
same place:

12.700

5.13. THE DECIMAL FRACTION REPRESENTATION OF A RATIONAL

Many rational numbers having denominators which are
not of the form 10, 100, 1000, etc., can still be expressed
as decimal fractions by simply multiplying both numerator
and denominator by some integer which produces a denominator
which is of the form 10, 100, 1000, etc. For example:

132 3+5
(1x5)3(2x5) 6:10
5+10 .6
.5
7%+2 1325
35+10 4+100
3.5 .o
38+4 1+125
950+%100 8+1000
9.5 .008
1316 14625
625310000 16+10000
L0625 L0016
From these examples, it should be <clear that the

ordinary long division process may be used to convert such

-70-

rationals to decimal fractions; all that is needed 1is to
append to the integer numerator a decimal point followed by
a sufficient number of zeros. For example, since 38 is
equivalent to 38.0 then 3834 may be written as 38.0%4 and
the long division may be carried out as follows:

9.5
4]38.0
-36
20
-20
0

Similarly, /1 16 may be converted to decimal fraction
as follows:

L0625
16[1.0000
-96
40
-32
80
-80

0

5.14. DECIMAL FRACTION APPROXIMATIONS TO RATIONALS

The rational number 75364 can be converted to a
decimal fraction by long division as follows:

1.171875
6475000000
-64
110
-64
460
-448
120
-64
560
-512
480
-448
320
-320
0

Therefore, 75+64 is equivalent to 1.171875.

Suppose that one stopped the long division process
just before the last digit, obtaining the quotient 1.17187
and leaving a non-zero remainder, that is, 320, The decimal

29



-71-

fraction 1.17187 1is not equal to 75:64, but it is very
nearly equal to it and is therefore said to be a good
approximation to 75:64. To see how close 1.17187 is to

75:64 one may subtract the approximation 1.17187 from the
true value of 1.171875 as follows:

1.171875
-1.171870

0.000005

The difference is therefore .000005 or 5:1000000. This is
only 5 millionths, a very small quantity.

The decimal fraction 1.17187 is said to be a 5-place
approximation to 75364 because it is close to 75:64 and has
5 digits following the decimal place. It is also a best
5-place approximation to 75:6u4, since no other decimal
fraction with only 5 places can be closer {although 1.17188
is just as close and is also a best approximation).

The decimal fraction 1.171 (obtained by stopping the
long division after 3 places) is a three-place approximation
to 7564, and is smaller than 75:64 by the amount .000875.
It is not, however, the best approximation, since the
fraction 1.172 is larger than 75:64 by only .000125 as may
be seen from the following subtraction:

1.172000

-1.171875

0.,000125%
Therefore, to get a best approximation to a rational, one
should continue the long division one place beyond the
desired number of places. If the additional digit is less

than 5, the additional digit should be discarded; if not,
the additional digit should be discarded but a 1 should be
added into the last place kept. For example:

1.1718
64175,0000
-64
110
-6
460
448
120
~6u
560
-512
48

The best 3-place approximation is 1.171+.001, or 1.172.
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Similarly, the best two-place approximation to 115364
can be obtained as follows:

1.796
64[115.000
-6l
510
-u48
620
~576
IR}
-384
56

The best two-place approximation to 115:64 1is therefore
1.79+.01, which is 1.80, or simply 1.8,

For many rationals, the long division process never

terminates with a zero remainder. For example, for the
rational 1:3, the remainder is always 1:

.333
3]1.000
-9
10
-9
10
-3
1

For such a case, the long division process can also be used
to give a best approximation to the rational, thus ,333 is
the best three-place approximation for the rational 1:3 and
differs from it by only 1%#3000. For,

.333+(1%3000)
(33321000)+(133000)
(999+3000)+(1%3000)
100043000

1+3

Similarly, .667 may be obtained as the best three-place
approximation to 2:3 as follows:

.6666
3]2.0000
-1 8
20
-18
20
-18
20
-18

2
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Since the fourth digit of
three—place approximation is

the result exceeds 5,
.666+.001, or .667,

The following table shows the four-place decimal frac-

tion approximations to the rationals resulting from the
expression (17)e.%17:

1 0.5 0,3333 0.25 0.2 0.1667 0.1429

2 1 D.6667 0.5 0.4 0.3333 0.2857

3 1.5 1 0,75 0.0 0.5 D,4286

Y 2 1.333 1 0.8 0.6667 0D.57140

5 2.5 1.667 1.2% 1 00,8333 D,7143

G 3 2 1.5 1.2 1 0.8571

7 3.5 2.333 1.75 1.4 1.167 1

5.15. MULTIPLICATION OF DECIMAL FRACTIONS
The following example shows the multiplication of two
decimal fractions:

L.3x2.,14
(13+10)x(214+100)
(13%x214)+(1000)
2782+1000
2,782
From this it is clear that the following rule can be used:
multiply the numbers as integers (ignoring the decimal
point) and place a decimal point in the result so that the
numbex of digits following it 1is equal to the sum of the

number of digits following the decimal points in the two
factoxrs, For example:
2,014 (2 decimal places)
1.3 (1 decimal place)
cu2
214
2,782 (2+1 decimal places)

the best

B30

F31-32
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5.16, DIVISION OF DECIMAL FRACTIONS
The following procedure can be used to find the
quotient where the dividend and divisor are decimal
fractions:

1. Perform the division as if the numbers were integers,
ignoring the decimal points.

2, In the resulting quotient, move the decimal point as
many places to the left as there are decimal places

3. From there move the decimal point as many places to
the right as there are decimal places in the original
divisor.

For example, to evaluate the expression 11.025:1.2G,
we first divide the integer 11025 by the integer 126:

87.5
126 11025
1008
L5
-yB2
T 630
-G 30
0

The decimal point in the quotient 27.5 is now moved three
places to the left (because the dividend 11,025 has three
decimal places) to obtain .087%, and the decimal place 1is
then moved two places to the right (because the divisor 1.°26
has two decimal places) to obtain 8.75. This result can be
checked by evaluating 3.75x1.26 to see that it vyields
11.025 as required.

The Jjustification for this procedure should be clear
from the following equivalences:

11.025+1,26
(11025%1000)+(126%+100)
(11025+1000)x(100+126)
((11025+126)x(100%1000)

B33
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5.17. EXPONENTIAL NOTATION

Numbers such as 120000000 and .0000000017 are awkward
to read and write because of the large number of zeros to be
counted. = Exponential notation to write these
numbers instead as 12gr7 and 17EF 10.

More generally, one may write any decimal number (or

integer) followed immediately by an E followed immediately
by an integer. The value this denotes may be determined as
follows: take the number before the EF and move its decimal

point by an amount determined by the integer following the
E, moving it to the right if the integer is positive and to
the left if the integer is negative. For example:

1.34E5 1.34E"5
134000 .0000134
134E3 134E° 7

L134FE6 L134E 4

5.18. DIVISION WITH NEGATIVE ARGUMENTS

A study of the map used in introducing rational
numbers should make it clear that ( 1):3 1is the negative of
1:3, that (72):3 is the negative of 2:3, etc. The result to
be obtained when the divisor is negative is not so clear.

Consider the rational 3: 4 which has a negative
divisor. We have seen that it is equivalent to the rational
(3x4):( ux4), where A is any integer. If we choose 4 to be
T1, then (3x4):( 4x4) is equal ( 3):4. Similarly, (73):( u4)
is equal to 3:u, From this it appears that the sign of the
quotient B:( is determined from the signs of the arguments B
and ¢ in exactly the same way that the sign of the product
Bx(C is determined.

5.19. DIVISION BY ZERO
The result of the division A4:B is a quotient ( such
that (¢xB is equal to 4. If 24 is 4 and B is zero, then ¢

must be a number such that (x0 is u.
is 0, there is no such number (.
not possible,

Since 0 times anything
Hence division by zero is

B34-35

E36
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Chapter 6

FUNCTION TABLES WITH RATIONAL NUMBERS

6.1. INTRODUCTION
In Chapter 4 we used function tables to examine the
function of subtraction newly introduced in Chapter 3, and

to re-examine familiar
numbers also introduced in Chapter 3. In this chapter we
will pursue a similar course with respect to the division
function and the rational numbers introduced in Chapter 5.

functions applied to the negative

In this chapter, the results of divisions are
represented as decimal fractions correct to three places.
6.2. CATENATION

Catenation is a simple new primitive which will be
needed in this and later chapters; it is denoted by the
comma. "Catena" is a Latin word meaning "chain", and
cgatenation is a function which chains its arguments
together. For example:

X+1 2 3

Y+u4 5

X,Y
12 3 4 5

Y, X
4 5 1 2 3

+/X,Y
15

X,7
12 37

7,X
71 2 3

7,8
7 8

B1
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6.3. DIVISION TABLES

If I«18, then the body of the division table for the
arguments 1 to 8 is given by the expression Io.:I as
follows:

I+18

De¢lo,*T

D
1.000 0.500 0.333
2,000 1.000 0.667
3.000 1,500 1.000
4,000 2,000 1.333
5.000 2,500 1.667

.250 0,200 0.167 0,143 0.125
.500 0.400 0,333 0.286 0,250
.750 0.600 0,500 0.429 0.375
.000 0.800 0.667 .571 0.500
.250 1,000 0.833 L7140 0,625

[ N = = =)

R P OO0OO

6,000 3,000 2,000 .500 1,200 1,000 .857 0,750
7.000 3,500 2,333 .750 1,400 1.167 .000 0.875
8,000 4,000 2.667 2,000 1.600 1.333 .143  1.000

This table has a number of interesting properties.
For example, each row can be seen to be in descending crder
and each column can be seen to be in ascending order.
Moreover, the main diagonal consists of all 1's,
illustrating the fact that N:VN is equal to 1 whatever the
value of W. Moreover, many other duplications occur in the
table, showing that the same value may result from the
division of different pairs of numbers. Thus the decimal
fraction 0.333 occurs in two places, resulting from 1:3 and
236,

The division table can be extended to negative
arguments as well., However, as pointed out in Chapter 5,
the number 0 is not permitted as the right argument of
division:

J«(19)-5
J

4 372 1.0 1 2 3 4
K«(0-014),14

X
Ty T3 T2 0T101 2 3 4

Jo, tK
1,000 1.333 2,000 4%.000 ~ 4,000 ~2.000 ~1.333 ~1.000
0.75%0 1,000 1,500 3.000 ~ 3,000 ~1.500 ~1.000 ~0.750
0.500 0,667 1,000 2,000 2.000 ~1.000 "0.667 0.500
0.250 0.333 0,500 1,000 ~1.000 0.500 "0.333 0,250
0.000 0,000 0.000 0.000 0,000 0.000 0.000 0.000

T0.250 T0.333 ~0.500 ~1.000 1.000 0.500 ©0.333 0,250
T0.500 T0.667 ~1.,000 ~2.000 2.000 1,000 0.667 0.500
T0.750 1,000 ~1.500 ~ 3,000 3.000 1.500 1.000 0.750
71.000 T1.333 T2.000 4,000 4,000 2.000 1.333 1.000

B2
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6.4. COMPARISON

Two rationals such as 3¢7 and 4*9 can be compared to
see which is the larger by first converting them each to a
decimal representation. For example:

3:7
0.429

4:g
0.4y

(3:7)<(4+9)
1

It is also possible to compare two rationals without
actually carrying out any division.

If two rationals have the same denominator, they can
be compared by simply comparing their numerators. For
example, 27363 is less then 283:63, Moreover, for any pair
of fractions one can find an equivalent pair which do have
the same denominator. For example, 3+7 is equivalent to
(3x9)+(7x9) (that 1is, 27+63) and 4+%S 1is equivalent to
(7x4)+(7x9) {that is, 28%63).

In general, if ¥1, D1, N2, and D? are any integers,
then #¥1:P1 and ~N2:D2 can be compared by forming the
equivalent pair (N1xD2):(D1xD2) and (D1xN2):(D1xD2), which
have the same denominator. Hence it is only necessary to
compare the numerators N1xD2 and D1xN2, For example:

N1<3

D1<7

N2+<U

D2+3

N1:D1

N2:D?
(N1+D1)<(N2%D?2)

(N1xD2)<(D1xN2)
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The same relations

and D2 are vectors. For example:
Ni«1 1 1 2 2 2 3 3 3
Di«1 2 31 2 31 2 3
N2«4 4 4 5 5 56 6 6
D2«4 5 6 4 5 6 4 5 6
N1:D1

1 0.5 0.333 2 1 0,667 3 1.5
N2:D?2

1 0.8 0.667 1,25 1 0,833 1.5

(N1:D1)<(N2:D2)
11 1 0 1 1 0 0 1

(N1xD2)<(D1xN2)
1 1 1 0 1 1 0 0 1

Moreover, if one wants
N1:D1 with each element of N2:D2,
comparison tables agree as well:

fiiry

B OO O
o]

OO0 P OO R, RO
[N

P OORR ORERL P oo

~

R R ORRP, ORRLPE oo

(#2:D2) (

PO ORRPORRL R =

N2
1
1
1
0
1
1
0
0
1

P OORP P OR Rk
O OORrOORr PO
C OO OO Rk O
R OO R P~ O R P P A
P OOR P QR
O OO, O OKre= O
OO ORr OOR PO
RO ORRPL ORRLRPL =

L/L/((N12D1)o.<(N2:D2)) =

OO Ok OORREL O

1

R P OR RO

to compare

will of course hold if w1,

each

D1, w2,

element of

then the corresponding

1

RO O R P OR K

.xD2)<s(D1o,

1

RO ORRKL ORP

xN2)

((N1o,xD2)<(D1lo,xN2))

B
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6.5. THE POWER FUNCTION FOR NEGATIVE ARGUMENTS

In Chapter 4 the functions +, x, r, and | were
re-examined to determine how they applied to the negative
arguments introduced in Chapter 3. This was not done for
the power function because the result of an expression such
as 2* 3 is a rational number, and rational numbers had not
yet been introduced.

We will begin by recalling the definition of the power
function as the product over a number of repetitions of a

certain factor, that is, 4*B is equivalent to x/BpA. For
example:
3p?2
2 2 2
x/3p2
8
2*3
8
The power table for positive integers therefore
appears as follows:
I<2 3 4 5 6
J€«2 3 4 56 7
To,xJ
4 8 16 32 64 128
9 27 81 243 729 2187
16 64 256 1024 4096 16384
25 125 625 3125 15625 78125
36 216 1296 7776 46656 279936
A simple pattern emerges 1in each row of the
table - any element of a row can be obtained from the
element which precedes it by multiplying by a certain
factor, that factor being the value of the left arqument

which produced that row.
produced by the expression:

For example, the third row was

4x2 3 4 5 6 7

16 64 256 1024 4096 16384

and the third element in the row can be obtained from the
one before it by multiplying by 4.
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This same pattern can be stated in a different
way - each element can be obtained from the one following it

In this way the pattern can

be extended to the left to obtain results for right
arguments less than 2:
I+<2 3 45
J<(17)-4
J
3 "2 "1 0 1 2 3
T o, %xJ
0.125 0.250 0.500 1.000 2,000 4,000 8,000
0.037 0.111 0.333 1,000 3.000 9.000 27,000
0.016 0.062 0,250 1.000 4,000 16,000 64,000
0,008 0,040 0.200 1.000 5.000 25.000 125,000
Two important results emerge from these
patterns: (1) Any number 4 raised to the power 1 is equal
to 4, and (2) Any number raised to the power 0 is equal to

1. For example:

1 2 3 4 5 ox1
1 2 3 4 S 6

1 2 3 4 5 6%0
1 1 1 1 1 1

The case of a =zero left argument has not been
considered. From the foregoing we may conclude that 0x0

should be 1 and that 0*1 should be 0. Further entries in
the expression 0*0 1 2 3 4 will be obtained by multiplying
by the factor 0 and are all zero:

0%x0 1 2 3 4 5
1 0 0O 0 0 0

Recalling that 4* 1 was obtained from 40 by dividing
by 4, we may now attempt to define a result for 0x 1 by
dividing the wvalue for 0=x0 (that is, 1) by the appropriate
factor. But this factor is o0, and division by 0 is not
allowed. Hence the function 0#R is not defined for negative
values of the right argument R.

E5-6
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The application of
left argument is
equivalent to x/4p3,

the power function to a negative
straightforward. Recall that 3x4 is
and that in general A4+*4 is equivalent

to x/4pA. Hence if 4 is ~ 3 we have:
4p 3

3 T3 T3 73
x/U4p 3

81

T 3%y

81
5p 3

73 3 73 3 73
x/50 3

Tou3
T3%5

243

The foregoing results can now be wused to construct a
table of the power function for both positive and negative
arguments, including 0 in the right argument only:

I<(0-d1t),1u
J«(17) -4

To , xdJ
T0.016 0,062 0. 250 1.000 ~4.000 16.000 64,000
T0.037 0,111 70,33 1,000 ~2.U000 9.000 ~27.000
T0.125 0.250 0. ou 1.000 ~2.000 4.000 < 8.000
T1.000 1.000 ~1.000 1,000 ~1.000 1,000 ~1.000
1.000 1.000 1.000 1.000 1.000 1.000 1,000
0,125 0.250 0,500 1.000 2,000 4,000 8.000
0.037 0.111 0.333 1.000 3.000 9.000 27.000
0.016 0.062 0,250 1.000 4,000 16,000 64.000
It should also be recalled that 0x4 is defined for

non-negative values of 4:

0x0 1 2 3 4 5
1 o ¢ 0 0 O

)
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6.6. THE POWER FUNCTION FOR RATIONAL ARGUMENTS

When the power function is applied to a right argument
consisting of successive integers, the successive elements
of the result increase by a fixed factor. For example:

4x0 1 2 3 4 56 7 8
1 4 16 64 256 1024 4096 16384 65536

The multiplying factor is 4, This same pattern is
observed when the elements of the right argument are equally
spaced, even though the spacing is not equal to 1. For
example:

4x0 2 4 6 8
1 16 256 4096 65536

The multiplying factor is now 16.

The first pattern above can be thought of as being
obtained from the second by sgueezing the odd integers
between the even integers. Hence if the multiplying factor
for the pattern 2*x0 1 2 3 4 56 7 8 9 is 4, the factor for
the pattern 2+*0 2 4 6 8 must be uxu, which agrees with the
earlier observation.

Similarly the pattern u4%0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
can be thought of as being obtained by squeezing the entries
.5, 1,5, 2.5, 3.5, and 4.5 between the integers 1, 2, 3, 4,
and 5. In this case the multiplying factor must be 2, since
the product of two factors (that is, 2x2) must be equal to
the factor 4 which obtains for the pattern for the integers.
There fore:

4*0 ,5 1 1,5 2 2,5 3 3.5 4 4,5 5
1 2 4 8 16 32 64 128 256 512 1024

Similarly:

9«0 1 2 3 4 5
1 9 81 729 6561 53048
9%*0 .5 1 1.5 2 2,5 3 3.5 4 4,5 5
1 3 g 27 81 243 729 2187 6561 19683 59049
25%0 1 2 3 4 5
1 25 625 15625 390625 2765625
256x0 .5 1 1.5 2 2,5 3 3.5 4 4.5
1 5 25 125 625 3125 15625 78125 390625 1953125

=8
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Each of the left arguments used above is a perfect
square a number which is equal to some integer
multiplied by itself. Thus 4 equals 2x2 and 9 equals 3x3
and 25 equals ©5x5. Because of this property, the
multiplying factor in each of the "sgueezed" patterns is an
integer. Since 3 is not a perfect square, a left argument
of 3 gives a pattern in which the fractional powers are not
integers:

3*0 ,5 1 1.5 2 2.5 3
1.000 1.732 3.000 5.196 9.000 15.588 27.000

Nevertheless, the pattern 1is maintained, the
multiplying factor is 1.732 (correct to 3 places) and
1.732x1,.732 1is (approximately) equal to 3.

From this it appears that 3x.5 1is a number which
multiplied by itself gives 3; uare
of 3. Similarly, 2%.5 is the square root of 2, and
(2%.,5)x(2*.5) must eqgual 2.

The square root of a number can be obtained by
"guessing and testing" much like the method described for
division at the beginning of Chapter 3. For example, to
obtain the square root of 2 we might try 1 (which is too
small because 1x1 is less then 2), and 2 {(which is too large
since 2x2 is greater than 2), and then 1.5. Since 1.5x1.5
is 2.25, this is also too large. The next trial might be
1.4 {(which is slightly too small), and the next might be
1.42. Better methods are developed in later chapters.

We can now produce a table of powers using right
arguments of the form (1/V):2:

J«1 2 3 456 783
J«0 .5 1 1.5 2 2.5

To *xJ
1,000 1.000 1.000 1.000 1.000 1.000
1.000 1.414 2,000 2,828 4,000 5,657
1.000 1.732 3.000 5.196 3.000 15,588
1.000 2.000 4,000 8.000 16,000 32.000
1.000 2,236 5,000 11.180 25,000 55.802
1.000 2.449 6,000 14.687 36.000 88.182
1,000 2.646 7.000 18,520 49,000 129.8642
1,000 2.828 8.000 22.627 64,000 181,019
1,000 3.000 3.000 27,000 81,000 243,000
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can be applied to

of the form (#):k for any value of K:

(16)+3
0.333 0.667 1 1.
To,x(16):3
1.000 1.000
1,260 1.587
1.442 2.080
1.587 2.520
1,710 2,924
1.817 3.302
1.913 3.659
2,000 4,000
2.080 4,327
(16) 24
0.25 0.5 0.75 1
To.x(16) 4
1.000 1.000
1.2189 1.414
1.316 1.732
1,414 2.000
1.495 2.236
1.565 2.449
1.627 2.646
1.682 2.828
1.732 3.000
(16)3:5
0.2 o.4 0.6 0.8
To,*x(16)35
1.000 1,000
1,149 1.320
1.246 1.552
1.320 1,741
1.3890 1.904
1.431 2.048
1.476 2,178
1.516 2.297
1,552 2,408

333

1.000
2,000
3.000
4,000
5.000
6.000
7.000
8,000
39.000

.000
.682
. 280
. 828
L 344
. 834
.20
. 757
.196

OF FQONNPE R

1.000
1.516
1.933
2.297
2.627
2,930
3,214
3.482
3.737

1.667 2

1.000
2.520
4,327
6.350
8.550
10.903
13.391
16.000
18.721

1.000
2.000
3.000
4,000
5,000
£.000
7.000
8,000
9.000

1.000
1,741
2,408
3.0312
3.624
4,193
4,743
5,278
5.800

1.000
3.175
6,240
10.079
14,620
19.812
25.615
32.000
38.941

1.000
2.378
3.948
5.657
T.ou77
9.391
11.386
13.454
15,588

1.000
2,000
3,000
4,000
5,000
6,000
7.000
8,000
9.000

The foregoing results have all in
to non-integer rig

power

non-negative left arguments,

function

to apply it to non-integer righ

would be
equals
number,

Ty,

necessary to determine a result R

It i
since the

non-negative.

S'
pro

For ex

however,
duct of

t arguments

ample,

1.000
4.000
9.000
16.000
25,000
36.000
49,000
64,000
8§1.000

1.000
2,878
5.196
8.000
11.180
14,6397
18.520
22,627
27.000

1,000
2,297
3.737
5,278
6,899
8.586
10,330
12,126
13.967

volved applying
ht arguments

right arguments

the
and

In general it is not possible.
together with

to evaluate 4x.,5 it

such that RxR

impossible to find such a
any number with itself

is

#9-10
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Chapter 7

THE RESIDUE FUNCTION AND FACTORING

7.1. THE RESIDUE FUNCTION
Consider the following expressions:

3x0 1 2 3 4 56
0 36 9 12 15 18

1+3x0 1 2 3 4 5 8
1 4 7 10 13 16 19

2+3x0 1 2 3 4 56
2 58 11 14 17 20

From the first expression, it 1is clear that the
numbers 0, 3, 6, 9, 12, 15 and 18 are each the product of 3
and some integer; they are therefore said to be integer

multiples (or simply npultiples) of 3. A number which is an

The numbers 1, 4, 7, 10, 13, 16, and 19 are not
divisible by 3; when divided by 3 they each yield an integer
quotient and a remainder of 1. Similarly the numbers 2, 5,
8, 11, 14, 17, and 20 each vyield a remainder of 2 when
divided by 3. The remainder when dividing an integer by 3
must be either 2 or 1 or 0. If the remainder is 0 the
number is, of course, divisible by 3.

The remainder obtained on dividing an integer B by an
integer 4 is a function of 4 and B. This function is called
the remainder or residue and is denoted by a vertical line
as follows: AlB. For example:

3ts

301 2 34 56 789 10

sfo 1 2 34 586 7 8 9 10
0012 3 4 012 340
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A function table for residue is shown in Figure 7.1.
From this table it should be clear that the results of the
expression 4|B must be one of the integers o, 1, 2, 3, etc.,

up to 4-1. That 1is, the results belong to the vector
T1+14.

| 11111
| 1 0123456 78901234
T
11 0000000000O0OO0O0O Left Domain:18
2} 0101010101010 10 Right Domain:ii4
3 o0o120120120122012 Body:(18)e°. 114
¥y | 0123012 30123012 Symbol:|
s | 0123401234012 34y
6 | 012 345012345012
7] 0123456012 3%4%5¢60
8 | 0123456 701234586

Table of Residues
Figure 7.1
El-2

7.2. HEGATIVE RIGHT ARGUMENTS

The following examples show how the residue function
applies to negative right arguments:

S+« B+111
S

5 4 73 271012 345

3x5

15 712 "9 "6 3 0 36 9 12 15

3]3x85
00 O0O0O0OO0OO0OOO OGO

1+3x5
T44 T11 T8 75 T2 1 4 7 10 13 16

311+3x%S8
11111111111

2+3xS
T13 T10 77 T4 "1 2 5 8 11 14 17

3|12+3xS
2 2 222222222

-88-

It should be clear from these examples that the 3-residue of
B (that is, 3|B) 1is obtained by adding or subtracting some
integer multiple of 3 so that the result is the smallest
non-negative number that can be so obtained. In general,
the result 4|B is the smallest non-negative integer that can
be obtained by adding to, or subtracting from, B some
integer multiple of 4.

7.3. DIVISIBILITY

The integer B is divisible by the integer 4 only if
the A-residue of B is zero, that is, only if (4]B)=0. Since
the expression (18)-./0,114% produced a table of residues
(Table 7.1), the expression 0=(18)°.!0,114 will produce the
body of the corresponding divisibility table:

I 1
1 012345678890

® GO U FE wN R
[EN N N Y SN
CO OO0 0O OR
CO OO0 OR R
CO 00O R OR
COOO R OR KL
CoOORr OO OR
CO R OO RRR
ORr OO0 O OR
PO OOR ORKR
CooO0O0ORr OoOR
CooRrOoOORR
CO 00O O OR
CORORRL R
COoO 000 O OR
ORr OO0 OoOR R

It is also interesting to arrange the integers 0 to 99
in a 10 by 10 table and then observe the patterns produced
by first taking residues and then determining divisibility.
For example:

M« (10x0,19)°0,40,19
M
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
49 41 42 43 Ly 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 T4 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 9y 95 96 97 98 99

E3-4
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sl ) 0=514 From these examples it is clear that the factors of
6012348061234 10000106000 any number B occur in pairs such that the product of the
012 34%0123H 10060010000 pair is equal to 5. Thus, if 3 is a factor of 12 then 12:3
0123401234 1000010000 (that is, %) 1is also a factor and 3x4 is equal to 12. In
01 234012 3Wu 1000010000 general , if A4 is a factor of B, then 5:4 is also a factor
0123401234 1000010000 and the product of the pair of factors 4 and B:4 (that is,
01 2 34012 34 1000010000 (B:A)x4) is equal to B.
012 340172 3wy 1000010000
0 1.2 3 9 123 n 1000 Q 10000 All possible factors of a number B can be found by
0123401234 100001600 Q simply trying to divide it by each of the integers from 1 up
0123450212 3% 1000010000 to and including 3. For example, the number 24 has the
following 8 factors:
3 M 0=3}#4
012 0120120 1001001001 12 34 6 8 12 24
120 1201201 00 10010010
201 2912012 0100100100 The factor pairs of 24 can be obtained by simply dividing 2u
8120120120 1001601001 by the vector of its factors as follows:
12 01201201 6010010010
20120120122 0100100100 241 2 3 4 6 8 12 24
012 0120120 1001001001 24 12 8 6 4 3 2 1
1290 120612 01 00 10010 010
201 2012012 01001900100 Thus 1 and 2% are a pair; 2 and 12 are a pair, and so on.
01 2 0120120 1001001001
@5-12 The residue function can be used to determine which of
the integers 1F are factors of 5. For example, 1if B is s,
then:
7.4. FACTORS 12 34 566
00 0 2 1
If B is divisible by 4, then 4 is said to be a factor
of B. For example, 3 is a factor of 12, and 5 is a factor 021 2 3 4 5 6]6
of 15, and so on as shown below: 11100 1
The positions of the 1's in the 1last vector indicate which
123 3112 of the integers 1 2 3 4 5 ¢ are factors of 6. For example,
4 0 since the third element is 1, +then 3 is a factor, and since
the fourth element is 0, then 4 is not a factor. The vector
1535 5115 11 10 0 1 can be used to pick out the actual factors 1 2 3
3 o & by means of the compression function discussed in the
following section.
9:3 3l9 F13-16
3 0
243y 424
6 0
2448 B l2u
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7.5. COMPRESSION

The following examples show the behavior of the
compression function:

1010 1/1 2 3 4 5

1010 1/2 35 7 11

0=(16)1|6
111 0¢0 1

(0=(16)16)/16
1 2 3 6

(0=(124)|24)/124
1 2 3 4 6 8 12 24

The left argument of compression must be a vector of 1's and

0's and forms a "sieve" which picks up the element of the
right argument wherever a 1 occurs in the left argument.

7.6. PRIME NUMBERS

The following expressions yield all factors for each
of the integers from 1 to 8:

(0=(11)11)/11 (0=(15)15)/15

(0=(12)12)/12 (0=(16)|6)/16
(0=(13)]3)/13 (0=(17)17)/17

(0=(l)iu)/ 4 (0=(18)18)/18
124 124 8
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Any number which has exactly two distinct factors is
called a prime number. From the above examples it is clear
that 2, 3, 5, and 7 are primes, but 1, 4, 6, and 8 are not.
Thus a prime has no factors other than itself and 1.

If X is a vector of 0's and 1's, then +/K gives a
count of the number of 1's in X. For example:

+/1 1010 0 0 1

mn
0=(18)]|8
11010001
+/0=(18)]8
n

The conditions for a prime number stated above in words can
therefore be stated algebraically as follows: B is a prime
number if the expression 2=+/0=(1B)[B has the value 1. For
example:

2=+/0=(11) 1 2=+/0=(15)]5

2=+/0=(12)12 2=+/0=(16)1|6
2=+/0=(13)|3 2=0+/=(17)17

2=+/0=(14) |y 2=+/0=(18)1[8
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This same test can be used to obtain all of the primes The last result above gives the number of factors for
up to a certain value by applying it to a divisibility each of the numbers | to 12. = Therefore the expression
table. Consider, for example, the following tables: 2=+/Q0=(112)0.]112 determines which numbers are primes:

b 11 2 3 % 5 o 7 & 910 11 12 2=+/Q0=(112)0. 1112
e 011019100 C¢ 1)

1/a 0 O o 0 0 O 0o 0 0O W ) Left D:11> .

2t 0 1 6 1 0o 1 o 1 © 1 u Right D:i1. This vector of o's apd 1's can be used to compress the
311 2 0 01 2 o 1 2 0 1 2 0 Body:(112)+. 112 vector 112 to finally pick out all of the primes up to 12:
4li 2 3 0 1 2 50 1 2 3 0 Symbol:l| .

sf202 3 0% o0 12 3 4 0 1 2 (2=+/Q0=(1v12)o. () /112

51 2 3 4% % 3 1 2 3 &% 5 0 2.3 5 7 11

701 2 3 4 5 B 0 1 2 3 4 5 §19-24
8/t 2 3 4 S & 7 0 1 2 3 4

afr 2 35 4+ 5 6 7 8 0 1 2 3
1011 2 3 4 5 b 7 8 9 0 1 2

111 2 3 5 5} 78 9 10 0 1

1211 2 3 4 5 6 7 8 310 11 0O

D1 2 3 § 5 b 7 4 3 10 11 1

ST TSt

111 1 1 1 1 1 1 1 1 1 1 1 Left D:v12

2fo 1 9 1 0 1 > 1 2 1 0 1 Right D:11?2

3o D 1 0 0 1w 9 1 2 0o 1 Body:0=(1i. ).l

49 o 9 1 2 0 9 1 © 9 0 1 Symbol:l

5fo 0 0o o 1 0 o 0 0 1 0 9

610 o} 0 0 J 1 9 9] 0 0 0 1

710 0 o o0 0 O 1 0 O O O O

gl 0 0 o 0 0o 3y 1 9 0 0 0

910 0 0 0 0 0 0 6] 1 Q 0 0

10]0 0 0 0 0 0 0 0 0 1 0 0

1110 0] 0 0 0 0 0 0 0 0 1 0

1210 0 0 0 0 0 o] 0 0 0 0 1

The last table shows divisibility. For example, the

1's in the 6th column show the position of the 4 factors of
6. Therefore the sum of the 6th column tells how many
factors 6 has, and similarily for each column. The sum of

the columns is obtained by summing the rows of the transpose
of the table, Thus:

+/80=(112)o.|112
12 2324 244 34 268
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Chapter 8

MONADIC FUNCTIONS

8.,1. INTRODUCTION

Each of the
to two guantities,

functions discussed thus far have applied
Thus in the expressions 3x4 and 3+4 and

3, each of the functions x, +, and [ apply to the two
quantities 3 and 4. These quantities are called the
arguments of the function; the one to the left of the

function is called the first or left argument, and the one
to the right is called the second or right argument.

A function having two arguments is said to be adic
the prefix dy meaning two. There are also functions which
apply to one argument; they are
The following examples show a monadic
called the fagctorial function:

function which 1is

11 !5
1 120

12 16
2 720

13 7
6 S04 0

'y '8
oy 40320

From the examples it should be clear that factorial 3
is the product of the factors 1 2 3, factorial 4 1is the
product of the factors 1 2 3 4, and so on. The examplgs
also illustrate a point which applies to all monadic
functions - the symbol for the function (in this case, ')
precedes its single argument.

monadic function may (like the
For example:

The argument of a
arguments of a dyadic function) be a vector.

123456 78
1 2 6 24 120 720 5040 40320

H1-2
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8.2, NEGATION

Negation is a
-. For example:

monadic function denoted by the symbol

-3 X<3
"3 -X
-5 73
75 S«2 3 5
-7’5 -5
5 "2 73 s
~=-5 --S
5 2 35
-2 3 5.8
"2 73 Ts5.8
From these examples it should be clear that negation

of a number B is equivalent to subtracting B from zero; that
is, -B is equivalent to 0-B. In other words, negation
changes the sign of its argument.

It is also apparent from the
used for the monadic function of negation is the same as
that already wused for the dyadic function of subtraction.
This might be expected to cause confusion, but it does not.
For example:

examples that the symbol

4-3

Ux-3
12

4--3
7

Thus the symbol - denotes subtraction if it is
an argument, but denotes negation if it is
function,

preceded by
preceded by a

This double use of symbols (once for a dyadic function
and once for a monadic function) will be applied to many
other symbols as well as the -. For example, +, x, *+, [, L,
and |, already used for dyadic functions, will be used to
denote monadic functions as well.

B3



8.3. RECIPROCAL

by <+ and defined as follows:
example:
2
0.5
oo
0.25
S«110
2
1 2 3 4 56 78 9 10
Re:S5
R
1 0.5 0

SxR

1111111111

8.4. MAGNITUDE

The numbers 5 and 5 are said to have the same size or
the magnitude of a

namely 5.

For example:

[ 5

I3,

S« B+111
s

5 4 3 2 71012 345

S
5% 321012 345

T<6 3 2 "5 4

In other words,
number is a function which ignores

is a monadic function
is equal to 1:8

.3333 0.25 0,2 0.1667 0,1429 0.125 0,1111 0.

the sign of the

1

denoted
For

number.

£14-5

Eeé
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8.5. FLOOR AND CEILING

integer just below or equal to the argument. = The c¢eilin
function is denoted by [ and yields the next integer just
above or equal to the argument. For example:

L3 [3
3 3
L3.14 [3.14
3 n
L™ 3.0 [73.14
Ty 3
L73 ) r7s
73 3
[71.5 "1 .5 0 .51 1.5 [T1.5 "1 0 .5 1 1.5
2071 7100 11 1710112

The floor and ceiling functions are easily visualized
by drawing the integers as the floors (and ceilings) in a
building as follows:

3+ [2.6
- 2.6
74 L2,
1 — ro Lt
0 H
1 r1 L1
T2+ [T2.4
= 2.0
T3 4= L 2.4
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The following examples illustrate how the monadic

17%5

L17:5

(17-5117)+5

8.6. COMPLEMENT
The complement function is denoted by ~ and applies
0 and 1). When applied
and when applied to 1 it produces 0.

to 0 it produces 1,
For example:

~1
o}
~0
1
~1 01011
010 100
0=3]112
001 001001001
~0=3]112
110110110110
(~0=3f112)/112
12 4 5 78 10 11
(0%3]|112)/112
124 5 78 10 11

87

g8-10
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8.7. SIZE
The number of elements in

size of the vector.
and is denoted by p.

a vector V is called the
Size is therefore a monadic function
For example:

V<2 3 5 7 11
oV

X117
pX

pX[2 3 5]

pX[121]

When applied to a table, the function p yields a
two-element vector giving the number of rows in the table
followed by the number of columns. For example:

T+2 3 So.x17
o T

p&T

B11
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Chapter 9

FUNCTION DEFINITION

9.1. INTRODUCTION

The expression 0=3!X% was shown (in Chapter 7) to
determine whether the arqument X was divisible by 3. For
example:

0=319
1

0=3[10

0

The expression 0=3]X is therefore a monadic function of ¥ in
the sense that for any particular value assigned to X, the
expression yields a particular corresvonding value.

Unlike the functions floor, ceiling, and magnitude
(which have the symbols L, [, and 1), the function
determined by the expression 0-3|X has no special single
symbol to denote it. It would, of course, be impractical to
assign a special symbol to every possible such expression,
However, it i1s important to be able to assign a name to any
such expression which happens to be of interest at the
moment , and then be able to use that name for the function
just as L, I, and | are used for the floor, ceiling, and
magnitude functions.

The name DT 1is assigned to the function determined by
the expression 0=3{X in the following manner:

VIZi<DT X
Z+0=3|X ¥

The above is called definition of the function DT. Once the
function PT has been so defined, it can be used 1like any
other monadic function as follows:

DT 9
1

DT 10
0

DT 110
0010010010
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The symbol ¥V which begins and ends a function
definition is called del.

Any number of such functions may be defined, but they
must, of course, be given distinct names. These function
names, like the names introduced for values in Chapter 1,
must begin with a letter but may include both letters and
digits. For example:

vZ+«D4 X
Z«0=4|X ¥

D4 110
000 1000100

V Z2«D5 X
Z+«0=51X V

D5 119
0000100001

VZ<d X
Z«(X-3)x{Xx-5) V

[
Q7

g 17
8 3 0 1 0 3 8

The rules for determining the meaning of a function
definition are very simple: when the function is applied to
an argument, that argument 1is substituted for each
occurrence of the name ¥ in the second line of the function
definition, and the result thereby assigned to the name <& is
the result of the function. For example, to evaluate @ 7,
the 7 is substituted for ¥ to yield

Z+(7-3)x(7-5)
This is evaluated to yield the result 8. Hence:

Q 7

F1-4
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Functions such as floor and ceiling which have been
assigned special fixed symbols will now be called primitive

defined functions just introduced. A defined function can
be used within expressions, just as primitives are. For
example:
Q b
3
4xQ 6
12
DT 12
1
DT uxgQ 6
1
Qa6
0

9.2. DEFINITION OF DYADIC FUNCTIONS

The expression 0=X|{Y was shown (in Chapter 7) to
determine whether the argument X is a factor of the argument
Y. For example:

0=5]9
0

0=7]21
1

The expression 0=X|Y is therefore a dyadic function of the
arguments X and Y in the sense that for any particular
values of X and Y the expression yields a particular
corresponding value.

The name F is assigned to the dyadic function
determined by the expression 0=X|Y in the following manner:

V<X F Y
Z«0=X|Y V
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The function F can now be applied to pairs of arguments as
illustrated below:

5 F 9
0

7 F 21
1

5¢+7 F 21
6

(5%x7) F (5x21)

E8-13
9.3. A FUNCTION TO GENERATE PRIMES
In Chapter 7 it was shown that the expression
(2=4/80=(1N)e. [N/ N
would produce a vector of all the primes up to the integer
N. Therefore a function PR can be defined to generate
primes as follows:
VZ+«PR X
Z+(2=+/80=(1X)e. |1 X)/1XV
The following examples show the use of the function
PR:
PR 12
2 35 7 11
+/PR 12
28
PR 55
2 35 7 11 13 17 19 23 29 31 37 41 43 47 53
B14
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9.4. TEMPERATURE SCALE CONVERSION FUNCTION

The Centigrade scale and the Fahrenheit scale are two
different scales for measuring temperature. For any given
temperature reading 1in Centigrade there 1is therefore a
corresponding value in Fahrenheit; in other words, the
Fahrenheit wvalue is a function of the Centigrade value.
This function will be expressed as a defined function called
¢roF (for Centigrade TO Fahrenheit).

The Centigrade scale has 100 degrees between the
freezing and boiling points of water, whereas the Fahrenheit
scale has 180 degrees between these same points. Therefore
any Centigrade reading x must be multiplied by 180 and
divided by 100: that is, 180xX:100. Moreover, 0 degrees
Centigrade (the freezing point of water) corresponds to 32
degrees Fahrenheit and so it is necessary to add 32 to the
foregoing expression, giving 32+180xX:100. The conversion
function ¢70F may therefore be defined and used as follows:

VZ<«CTOF X
Z<32+180xX+100 V

CTOF 0
32
CTOF 100
212
CTOF 40 ~20 0 20 40 60 80 100
40 4 32 68 104 140 176 212

The function (¢T0OF determines the Fahrenheit value as a
function of the Centigrade value. It is, of course, also
possible to define a function FrT0Cc which determines the
Centigrade value as a function of the Fahrenheit value:

VZ<FTOC X
Z2<100x(X-32)+180 ¥

FTOC ~40 4 32 68 104 140 176 212
“40 T20 0 20 40 60 80 100

CTOF FTOC ~40 4 32 68 104 140 176 212
T40 4 32 68 140 176 212

FTOC CTOF ~40 20 0 20 40 60 80 100
T40 T20 0 20 40 60 80 100

The last two lines above illustrate the fact that the
function F70¢ undoes the work of (¢T0F, and the preceding two
lines illustrate that ¢7T0F undoes the work of FTOC. The
functions F70C and (¢TOF are therefore inverse functions.

BH15
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9.5. FUNCTIONS ON RATIONALS

If ¥ is a vector of two integer elements and ¥ is a
vector of two integer elements, then +/X is a rational and
:/Y is a rational. Moreover, as shown in Section 5.7, the
product (:/X)x(3/Y) is equal to :/(XxY). Therefore, the
following function multiplies two rationals to produce the
two element vector which represents their product:

VZ<X P Y
Z+«XxY W

For example:

3 4 P 75
21 20

/3 4 P 75
1.05

(2/3 4)x(=/7 5)
1.05

Similarly, the following function will add rationals:

V Z+X A Y
Z«(+/Xxx¢y ), x[2]1xy[2] ¥

For example:

344 75
43 20

/3 4 A 75
2,15

(+/3 4)+(%/7 5)
2.15

B16-18

9.6. TRACING FUNCTION EXECUTION

A function can be defined by a single expression (as
in the examples thus far), or it can be defined by a
sequence of expressions. For example:

V Z«R X
[11] T1«4xX
[2] T2«3xX*2
[3] T342xX*3
[4] Z«T1+T2+ T3V

R 2
36

R 2 3 4
36 93 192
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The statements are executed 1in the order in which they
appear on the page, and each is identified by its number
appearing in brackets on the left.

To understand the behavior of a function it is often
helpful to examine some of the intermediate results produced
by each of the individual statements in its definition. To
indicate that each intermediate result produced in executing
the function R is to be displayed, we would write

TAR«1 2 3 &

Thereafter, the execution of R would be accompanied by a
display of the intermediate results as follows:

Q<R 2
[11] 8
[21] 12
£31 16
[u4] 36
Q
36
Q«R 2 3 4

[11] 8 12 18
[2] 12 27 us8
[3] 16 54 128
[4] 36 93 192

Q
36 93 192

Such a display of the steps of execution of a function
is called a trace of the function. The name TAR used in

initiating the trace of the function Rk denotes the trace

control vector for R. In the preceding example, TAR was set

to trace every line of g, but it could be set to trace only
some of them. For example:

TAR<«1 3

g<«R 2 3 4
£11 g8 12 16
£3] 16 54 128

Moreover, if TAR is set to 0, no tracing is performed:

TAR<0
@«R 2 3 4
&

36 93 192
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Chapter 10

THE ANALYSIS OF FUNCTIONS

10.1. INTRODUCTION

The problem of converting temperatures from the
Centigrade to the Fahrenheit scale, which was handled by the
function CTOF of Chapter 9, is often handled by simply
providing a table covering the values of interest, For
example, Table 10.1 would suffice for a range of
temperatures just above the freezing point of water:

SOOI FWNNRL O

=

50

A Table Representation of the Function
CTOF for Centigrade Values Near Zero
Table 10.1

Such a table is often more convenient to use than to
evaluate the expression 32+180%x(C+100 (used in the definition
of the function CTOF) for each conversion. However, such a
tabular representation of a function also has 1its
disadvantages; it provides only a limited set of values and

could not, for example, be wused directly to find the
Fahrenheit equivalent of 25 ¢ (which 1lies outside of the
tabled values) or of 5.64 degrees Centigrade (which lies
between two of the tabled values). For this reason it is

often desirable to determine from such a table the algebraic
expression which would produce the same function as that
represented by the table.

To appreciate the problem of deriving an algebraic
expression for a function represented only by a table,
suppose that the expression 32+180x($100 is pot known and
that the only information known about the function is that
contained in Table 10.1. One might begin by observing that
each Fahrenheit wvalue 1is at 1least 32 more than the
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corresponding Centigrade value, and therefore guess that the
desired function is approximately 32+(, The next step is to
append to Table 10.1 a column of values for the function
32+C so that they can be compared with the tabled values of
F.

co F | 32+C
9 | 32 [ 32
1 | 33.8 | 33
2 | 35.6 | 3y
3 ) 37.4 | 35
4 | 39.2 | 36
5 | 41 | 37
6 | 42,8 | 38
7 | Ny, 6 | 39
8 | uw6.4 | yo
9 ! 48.2 | 41
10 | 50 [

Although the first entries in the columns # and 32+(C
agree (both are 37), the second entry falls short by 0.8,
the third entry by 1.6, etc. It therefore appears that one
should add 0.8x( to the expression 32+(, vyielding 32+C+.8x(C
or, more simply, 32+1.8xC, If a column of values for
32+1.8xC is appended to the foregoing table and compared
with the column F it will be seen that this is the required
expression,

The process of determining an expression for a
function from a table of the function will be referred to as
analyzing the table or, alternatively, as gnalyzing the
function represented by the table. The analysis of tables
is not only an interesting puzzle, it is also a problem of
the greatest importance, since it underlies every scientific
discipline. The reason is that in every area of science and
technology, one attempts to determine the functional
relationships between various quantities of interest, Thus
one wishes to know how the acceleration of an automobile
depends on the power of the engine, how the gasoline
consumption depends on the speed, how the length of life of
the brakes depends on the area of the brake-shoes, how the
electric current supplied to the headlamps depends on the
battery voltage, how the weight limit of a suspension bridge
depends on the size of the cable used, and so on. Moreover,
it is important to be able to express these relations
algebraically so that it becomes easy to calculate any new
values needed.

However, the relationships between two quantities are
normally determined by experiments in which the
corresponding values of the quantities of interest are
measured. Such experiments can only yield a table of
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values--they do not yield an algebraic expression for the
function. The algebraic function must be determined by
analysis of the table.

In practice one might do a few experiments, make a
small table, derive from it an algebraic expression for the
functional relationship, and then do a few more experiments
to test (and perhaps revise) the derived expression. in a
book this process cannot be simulated completely since we
can only give fixed tables resulting from certain
experiments, and cannot allow the reader to choose the
values to be included 1in these tables, However, if a
computer is available, one person (the teacher) can enter
the definition of any function so that another person (the
student) can "experiment" with the function at will by
simply applying it to any desired arguments., If the student
is not permitted to see the original definition of the
function, then he can be given the problem of experimenting
with the function, determining a table, and deriving from it
his own definition of (i.e., algebraic expression for) the
function.

The remainder of this chapter will be devoted to the

analysis of tables. Three methods are treated: maps,
graphs, and difference tables. Difference tables provide
the most powerful method, but maps and graphs are treated

first because they are easier to comprehend and because maps
have already been wused for other purposes 1in earlier
chapters. A fourth and more powerful method (called

10.2. MAPS

If one first makes a map of a table, then the map can
be used as a guide in the analysis of the table. In order
to see what guidance the map can provide, it is useful to

recall the maps of two simple functions.

If ¥«0,14, then the map of the function 4+X against X
appears as follows:

1 2 3456

N

O

01 2 34 5%6 78

FProm this it is clear that the addition of a constant (in
this case 4) appears in the map as a uniform translation,
that is, each point is moved by the same amount, and the

mapping arrows all have the same slope.

Bl
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If, as before, X«0,14, then the map of the function
3xX appears as follows:

0 9 10 11 12

NS

3 10 11712

o

From this it is clear that multiplication by a constant (in
this case 3) appears in the map as a uniform spreading, that
is, the distance between the successive arrowheads (in this
case 3) is the constant of multiplication.

Consider now the mapping of a function which involves
both addition and multiplication, say 4+3xX:

0 102 3 4 5 6 7 8 9 10 11 12 13 14 15 16

o 1 2 3 4 5 6 7 8 9710 11 12713 14 15 16

The effects of uniform translation and uniform spreading are
now superimposed, but it is still possible to recognize the
individual effects of each, These observations will now be
applied to the analysis of the function shown 1in Figure
10.2.

X | Y
2 | 1 102 3 10 11
3 | 3
y | 5
5 | 7
& | 9 1 2 9 10 11
7 ] 11

Table and Map of a Function

Figure 10.2

It is usually best to try to account for the
multiplication (spreading) first. In this case adjacent
arrowh eads are separated by 2 units and so the
multiplication factor is 2, Therefore we make a map of the
function 2xX¥ as follows:

9 10 11 12 13 14

NS

9 10 11 12 13 14
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The map of 2xX is now combined with the map of the original
table as follows:

9 10 11 12 13 14

7 8 9 10 11 12 13 14

In this map, the original table is represented by normal
lines as usual, and the approximating function 2xX is
represented by broken lines. The scored lines lead from the
results of 2xXY¥ to the results of the tabled function and
therefore represent the function that must be applied to the
function 2xX to yield the tabled function. Since the scored

lines all have the same slope, this function must be a
translation (by ~3), that is, the addition of 3. The
required function is therefore ~3+2xX, as may be verified by
computing the values for the case X«2 3 4 5 6 7 and

comparing them with the second column of Figure 10.2.

The functions analyzed by maps thus far have all been
of the form A+BxX where 4 and B are constants, In the
analysis of mo re complex functions (such as
3+(5xX)+(2xXx2)), maps are of little help and one of the
other methods should be used.

10.3. GRAPHS

Each row of a function table such as Table 10.1
consists of a pair or numbers representing an argument and a
corresponding function value. Any other way of showing the
pairing of the numbers in each of the rows is obviously a
possible way of representing the function. For example, in
a map, each pairing is shown by an arrow from the argument
to the corresponding function value.

Any single number can be represented by marking off
the integers at equal intervals along a line and then
placing a cross on the line to show the desired value. For
example 4 might by represented as follows:

B2
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A whole set of numbers could be represented by a set of

crosses on such a line. Consider, for example, the function
table of Table 10.3.

Table of a Function
Table 10.3

The set of arguments shown in the first column would be
represented as follows:

—————— X=X =X ~X=— =X === === — —

| [ | | [ l |
o 1 2 3 4 5 6

If the set of function values Y are now represented
similarly along a vertical line rising from the 0-point of
the first line, the picture appears as follows:

6 -

————— X=X=XmXm ==X m—mmmm o ——

l [ | l l |
1 2 3 4 5 8

O——— X —— ———— — X ——— X — — — X ——— X — —
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If vertical lines are drawn through the crosses on the
and if horizontal lines are drawn through

horizontal line,
the crosses on the vertical line,
follows:

6

the

picture appears as
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The pairing of each argument with its particular

function value can now be shown by placing a point at the
intersection of the lines through them as follows:

6 - | [ [
| LT I
e LR kT
| [ |
5 - | [ |
| [ |
e R e it
| [ |
4 - [ |
| (N |
X—=---- tot-0-t-—mpommm— o
| P |
3 - | [ |
| Pl |
X—==== L e e
f [ |
2 - [ |
I [ |
f [ |
| [ !
1 - | P |
| [ |
X—---- tot-t-t--—o0----m- -
| [ |
0 - +—--=--- XeX=X=Xm=m =X —m = — = = — —
f | | | | | |
0 1 2 3 4 5 6
In practice, one actually draws neither the lines nor
the crosses, but simply marks the points of intersection,

producing the following less cluttered picture:
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This picture is «called a graph or plot of the function of
Table 10.3. Negative values are included by simply
extending the horizontal line leftward from the zero and the
vertical line downward from the zero.

The vertical line of the graph (which passes through

the zero point of the horizontal 1line) is called the
vertigcal axis or Y-axis, and the horizontal line (through
the zero of the vertical line) is called the horizontal axis
or X-ayis. The names are derived from the (arbitrary)

convention that the argument of a function is often called X
and the result is often called Y, so that the expression for
a function is in the form Y<«F X,

10.4. INTERPRETING A LINEAR GRAPH

If a ruler is laid along the points in the preceding

graph, the points will be seen to lie in a straight line.
If one graphs a number of functions of the form A+BxX (where
A and B are fixed values), it will be seen that the points

in the graph of any such function lie in a straight line.
Conversely, every graph whose points all lie in one straight
line represents a function of the form A+BxX. Moreover, the

E13-4
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Consider, for example, Figure 10.4 which shows the
graph of the function of Table 10.3 with a line drawn
through the points. Any point on the line (not only the
five +taken from the table) represents a point of the

function. For example, if the argument X is 1, then the
function value Y is 6.5, and if X is 0, then Y is 8.5. But
if X is 0O, the value of the expression A4+BxX is simply 4.

Hence, for this function 4 must have the value 8.5.

Graph of Function of Table 10.3

Figure 10.4
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Moreover, B 1s clearly the amount that the function
changes when the argument is changed from some value to a
value greater by 1. Since the function is equal to 4.5 for
X=2 and is equal to 2.5 for X=3 this change is equal to
2.5-4.5 or 2. Therefore B is equal to 2. Finally, the
expression for the function must be 8.5+ 2xX. This may be
verified by evaluating the expression for the values
X«1,5 2 2.5 3 4 and comparing the results with the second
colunn of Table 10.3.

To summarize, the values of 4 and B can be determined
from a straight-line graph as follows:

(1) The value of 4 is the height at which the graph line
crosses the vertical axis (where X=0).

(2) The value of B is the change in height corresponding
to a change of 1 on the horizontal axis.

A function table whose graph does not form a straight
line is not as easy to interpret as a straight line graph.
However, the graph can still provide some guidance.

Consider, for example, Figure 10.5 which shows a
function table and the corresponding graph. The points do
not lie in a straight line, but have been joined by a smooth
curve which suggests the function values which should be
obtained between the points included in the table itself.

A number of interesting characteristics of the
function can be seen clearly in its graph. For example, it
is clear that the function reaches a 1low point for an
argument value of X equal to approximately 3.5 and that it
reaches a high point for a value of X a little less than 2,
Moreover, it is easy to spot those argument values for which
the function has a zero value, namely for X equal to 1.4 or
2.6 or 4.2,

Since X-1.4 is zero for X=1.4 and X-2.6 is zero for
X=2.5 and X-u4.2 is zero for X=4.2, then the expression

(X-1.4)yx(X-2.6)x(X-4.2)

is zero for X equal to either 1.4 or 2.6 or 4.2, Hence it
will agree with the given function at least for these three
values of the argument X. In order to see how well this
expression agrees with the given function for all points, it
can be graphed together with the given function as shown in
Figure 10.6.

El15-6
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-0

T

1 2 3
X Y
1.2 5,20
1.6 2.60
2.0 3.96
2.4 1.80
2.8 T1.96
3.2 T5.40
3.6 T6.60
u.,0 T3.64
Y.y 5.40

Table and Graph of a Function

Figure 10.5
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A comparison of the two curves in Figure 10.6 shows
that they have the same general shape, that is, the values
for the given function appear to be larger than those of the

expression by a fixed ratio. A value for this ratio can be
determined from two corresponding points, say for an
argument value of 2.u, The two corresponding function
values are seen to be 1.8 and .36, and the ratio 1is

therefore 1.8:.36, that is, 5.

A better approximation to the given function is
therefore given by 5 times the expression just tried, that
is:

Sx(X-1.4)x(X-2.6)x(X-4.2)

Evaluation of this function for each of the arqument values

appearing in the first column of Table 10.5 shows that it
agrees exactly with the function given in the second column.

10.5. THE TAKE AND DROP FUNCTIONS

The dyadic functions take and drop are denoted by +
and +, respectively. The following expressions illustrate
their use:

Y«<0 1 4 9 16 25 36

3ty 3vY

0 1 u g 16 25 36
24Y 24Y

0 1 4 9 16 25 36
T34y T34y

16 25 36 0 1 4 9
T24Y T2vY

25 36 C 1 4 9 16

The take function takes from its right argument the

number of elements determined by the left argument,
beginning at the front end if the left argument is positive
and at the back end if it is negative. The drop function

behaves similarly, dropping the indicated number of elements
from the right argument.

If the left argument 1is greater than the number of
elements of the right argument, then the extra positions are
filled with zeros. For example:

X<«2 3 5 7
64X

2 3 5 7T 0 O
TB4X

e ¢ 2 3 5 7

E7-8
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.00
.30
.52
.67
.77
.80
.78
.73
.64
.51
.36
.00
0.19
0.39
0.58
0.77
0.93
1.08
1.20
1.28
1.32
1.32
1.26
1.15%
0.97
.00

0

(X-1.4)

.00
.48
.60
.37
. BU
4,02
.96
.67
.20
.56
.80
.93
.00
0.97
1.96
2.92
3.84
4.67
5.40
5.98
6.40
6.61
6.60
6.32
5.76
4.87

B0
.50
.60
1.70
.80
.90
.00
.10
.20
.30
B0
.50
.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80
3.90
.20

Figure 10.6

| I I | l
1 2 3

|

Table and Graph of a Function
and an Approximating Function

-0
-u—
-8
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10.6. DIFFERENCE TABLES

The first difference of a vector Y is defined as the

vector obtained by taking the difference between each of the
pairs of adjacent elements of Y. For example, if Y is the
vector

01 4 9 16 25 36 b4 81 100
then the first difference of Y is the vector

1357 9 11 13 15 17 19

More precisely, the first difference is the function D
defined as follows:

vZi<«D Y
Z«(14Y)-(T14+Y)V

For example:

DY
1357 9 11 13 15 17 19

To understand the behavior of the function D, it may
help to observe the effects of the terms 1+Y and "1+Y as
follows:

1+vY

1 4 9 16 25 36 49 64 81 100

T14Y
01 4% 9 16 25 36 49 64 81

The subtraction of the second of these from the first
clearly vyields the differences between each of the adjacent
elements of Y.

If Y«F X for some function F and some set of equally
spaced arguments X, then the first difference of Y is also
said to be the first difference of the function F. For
example, if X<«0,110 and Y<«x*2 (that is, Y is the sguare of
X), then the vector

DY
135 7 9 11 13 15 17 19
is said to be the first difference of the square function
(for the arguments X).
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Viewed in terms of a function table, the vectors X and
Y used in the preceding paragraph are the first and second

columns of a function table. Attention will now be limited
to function tables whose first column X is of the form 0,7,
that is, of the form 0 1 2 3 etc., up to some integer ¥. 1In

the first section of Chapter 11, it will be shown how the
methods developed can be applied to any set of equally
spaced arguments such as 1.2 1.6 2.0 2.4 2,8 3.2, etc.

Since attention is being confined to argument sets of
the form ©0,V, the argument column can be dropped from
function tables without introducing ambiguity. For example,
the single column on the left of Figure 10.7 shows this
simplified form of the function table (for the function
CTOF) of Table 10.1. The right side of the same figure
shows a two-column table containing the function vector #
and its first difference I F; such a table is called a

F F | D F
32 32 | 1.8
33.8 33.8 | 1.8
35.6 35.6 f 1.8
37 .4 37 .4 | 1.8
39.2 39.2 | 1.8
41 41 | 1.8
42,8 42.8 | 1.8
Yy, 6 uy, [ 1.8
46 .4 46,4 | 1.8
48,2 ug.2 | 1.8
50 5 | 1.8

Abbreviated Difference Table

for the Function
CTOF of Table 10.1

Function Table
for Table 10.1

Function and Difference Table

Figure 10.7
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10.7. FITTING FUNCTIONS OF THE FORM A+BxX

In using maps to analyze functions, it was found that
any function of the form A+5xX could be recognized by the
uniform spread between adjacent arrow points, and that the
actual values of the constants 4 and B could be determined
from the map. This type of function is analyzed even more
easily with the aid of the difference table; the uniform
spread is recognized by the fact that the elements of the
first difference (which give the spacing between adjacent
function values) are all the same. The constants 4 and B
are simply the first row of the difference table, that is,
32 and 1.8 in Figure 10.7.

10.8. FACTORIAL POLYNOMIALS

In analyzing certain functions it will be found that
the elements of the first difference are not all alike, and
the function is therefore not of the form A+BxX, In such a

case one may take a second difference, that 1is, the
difference of the first difference. If this second
difference is not constant, one takes a third difference,

and so continues until a constant difference is reached.

For example, Table 10.8 shows a function table in
which a constant difference 1is reached at the third
difference.

Yy | pyY |DpYDDDY
5 0 T2 g | 6
3 | 6 | 2] 76
g | 8 | T4 | T8
17 | 4} T10 | s
21 | "6 | "16 | "8
15 | T22 | T22
7 Tuu !
51 | | |

A Constant Third Difference

Table 10.8

£13-14
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The first row of the table is the vector V<5 ~2 8 6. The
expression for the function is determined from the vector Vv

as follows: V is first divided by the vector ! 0 1 2 3
(that is, 1 1 2 6) to obtain the vector ¥ as follows:

We<lV:t0 1 2 3

W
5 T2 4 "1
The elements of ¥ are then used to form the following
expression:

B4 (T2x X))+ (UxEx(X-1))+( T 1xXx(X-1)x(X-2))

This expression represents the function exactly,
determined by evaluating it for the argument
comparing it with the first column of Table 10.8.

as may be
0,17 and

The method can be stated in
Calculate the successive columns
until a constant column is obtained.
of the first row as follows:

general as follows:
of the difference table
Then use the elements

Divide the first element by
Divide the second element by

'0 (that is, 1).
1 and multiply by X.

Divide the third element by !2 and multiply by
Xx(Xx-1).
Divide the fourth element by !3 and multiply by

Xx(X-1)x(X-2),
and so on.
Finally, add the expressions so obtained.

In other words, if the vector V is the first row of
the difference table, then the expression

(VII1:1I-1)x x/X-"1+171-1

is evaluated for each value of I from 1 to »pV, and the
results are then added together.
The functions X and Xx(X-1) and Xx(X-1)x(X-2), etc.,

are called fagtorial polynomials; X is called a factorial
polynomial of degree 1, and Xx(X-1) is called a factorial
polynomial of degree 2, etc, In general, the factorial

polynomial of degree ¥ is given by the expression x/X-"1+14.

An explanation of why the method works will now be
developed. The method is based on the fact that each of the
functions X and Xx(X-1) and Xx(X-1)x(x-2), etc., produce
difference tables with particularly simple first rows, and
on the fact that difference tables can be added and
multiplied by constants in certain useful ways.

B15-19
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10.9. MULTIPLICATION AND ADDITION OF DIFFERENCE TABLES
The first difference of a vector has two very useful
properties. If Y is any vector, if D Y is its first
difference, and if 4 1is any constant, then the first
difference of the vector AxY is equal to A times the first
difference of Y; that is, D AxY is equal to AxD Y. For

example:

Y«<0 1 4 9 16 25 36 49
DY
1357 911 13

6xY
0 6 24 54 96 150 216 294

D 6xY
& 18 30 42 54 66 78

6xD Y
6 18 30 42 54 66 78

Clearly the same would be true of second differences,

third differences, and so on. That is:
D AxY D D AxY D D D AxY
[AxD Y AxD D Y AxD D D Y
Therefore, if every element 1in a difference table is

multiplied by some constant 4,
difference table,
column.

then it is still a proper
but for the new function AxY in its first

Similarly, if Y1 and Y2 are two vectors and if D Y1
and D Y2 are their first differences, then the first
difference of the sum Y1+Y¥2 is equal to the sum of the first
differences; that is,

D Y1+Y?2
(D Y1)+(D ¥Y2)

Again, the same results apply to entire difference
tables. Consequently, difference tables may be multiplied
by constants and added together at will and the result is
always a proper difference table.

H20-21
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10.10. DIFFERENCE TABLES FOR THE FACTORIAL POLYNOMIALS

The factorial polynomials of degrees 0 through 5 are
shown below:

Degree Polynomial
0 1
1 X
2 Xx(Xx-1)
3 Xx(X-1)x(X-2)
4 Xx(X-1)x(X-2)x(X-3)
S Xx(X-1)=x(X-2)x(X-3)x(X-4)
The polynomial of degree 2 has 2 occurrences of X, the
polynomial of degree 3 has 3 occurrences of X, and so on.

The function with a fixed value of 1 has been introduced as
the polynomial of degree 0 in order to complete this
pattern; it has o factors of X.

The difference tables for these factorial polynomials
are shown in Figure 10.9. Previous tables shown have
stopped at the first constant column, but these tables have
been continued so that all have the same number of columns.
Having the same number of columns, they can be added
together. However, it is clear that any columns following a
constant column will consist entirely of zeros.

Degree: 0
Function:1

Y DY
1 0
1 0
1 0
1 0
1 0
1 0
1 ¢]
1

Degree:

Function:Xx(X-1)

D D

o o O

<

2

DX (X-1)x(X-2)x(X-3)

Y D Y DD
0 o it
0 2 2
2 n 2
6 6 2
12 8 2
20 10 2
30 12
42
Degree:u
Function
Y DY DD
0 0 0
0 0 0
0 0 24
0 24 72
24 36 14y
120 240 240
360 480
840

Y

¥

[l el o)

0
24
48
72
96

The
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Degree:1
Function:x

DDy

o O C

OO OO
oo o

Function:xx(X-1)x(¥X-2)

Yy DY
0 0 0 1
0 0 1 1
0 0 2 1
@] 3 1
4 1
5 1
6 1
7
Degree: 3
Y DY
0] 0 0 0
6] 9] o} ¢}
0 O 0 6
0 6 18
24 36
60 60
120 90
21¢
Degree: 5

¥
24 0 0
24 0 0
2y 0 0
24 0
0

120

720

2520

DY

[elwiNe)

120
600
1860

D DY

12
18
24
30

ay gy o O
< O OO

Function:Xx(X-1)x(X-2)

x(X¥-3)x(X-u4)

D DY

0

0

0
120
480
1200

Factorial Polynomials

Figure 10.9

0 0

0 120
120 240
360 360
720

O O

<

< O Q

120
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The first row from each table is shown below,

together
with the degree of the polynomial it is taken from:

Regree

gFE W NP O
OO0 OO
o OO O o

Except for final zeros, the first row of the difference
table for the factorial polynomial of order & is (Np0),!¥,
that is, N zeros followed by !W.

Consider now the
zeroth order polynomial
polynomial,
function:

function obtained as 4 times the
added to B times the first order
added to ¢ times the second, etc.; that is, the

A+ (BxX)+(Cx
+(Fx

x/X-0 1)+(Dx
x/X-0 1 2 3 u)

x/X-0 1 2)+(Ex x/X-0 1 2 3)

The difference table for this
difference table for order 0, plus B

table for order 1, etc. 1In particular,
difference table will be the sum of the

be A times the
times the difference
the first row of the
following vectors:

function will

DO W
X X X X X x
©C OO0 O~
o0 o0 ro
OO0 oON OO
[eNol N el ]
o Foooo
ool eNeNoNel

12

This sum is clearly equal to (4,B,C,D,E,F)x1 1 2 6 24 120,
or more simply (4,B,C,D,E,F)x!0,15. Conversely, the values

of 4,B,C,D,E,F can be determined from the first row V of a
difference table as follows: A,B,C,D,E, and F are the
elements of the vector V:!0,15. This is the rule which was

used in Section 10.8.

B22

10.11.

in Figure 10.10.
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EXPRESSIONS FOR GRAPHS

Consider the function F defined and used as follows:

VZ<F X
Z«{X-5)x(X-3)V

X+«1 2 3 4 5 6 7
V«F X

4

0 1 o] 3 8

A graph of the function F for the arguments X is shown
The pattern shown by the points of this

graph is also shown by the 1's in the following result:

OO O O0OOCO OoOC0C ok

leNeNeolNeol eleolsNoNs)

O O O0O0CO0O0OO0COoOOo

R<8 7 6 5 4 3 2 1 0 1

Reo .=V
0 0 01
00 00
00 00
0 0 00
0 0 00
00 10
00 00
0 0 00
0100
10 00

Figure 10.10
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The vector R is simply the range of the function for
the argument X, and the comparison between it and the set of
values V will clearly yield a 1 at each point to be plotted
in the graph.

A bar chart for the same function can
replacing the comparison for equality by a

less-than-or—-equal:

be obtained by
comparison for

Re.<V
100 0001
100 0001
100 0001
100 0001
1 00 0001
11 0 0011
110 0011
1100011
111 0111
111 1111

The expression Fe.=V will identify only those elements

of V which agree exactly with elements of the range. For
example:
YeX+.1
Y
1.1 2,1 3.1 4,1 5.1 6.1 7.1
We F Y
W
7.41 2,61 0.19 70.99 0.21 3.41 8.61
Reo.=W
000 0O0O0CO
0 00 0O0O00O0
00 0 0000
000 0O0O0COCO0
000 0O0O0O
0 00 0O0O0O
000 O0CO0OOCO
000 0O0O0TO
0 00 0O0CO0OO
00 0 00O0CO

BF23-26
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However, one might want to plot points where the argument is
close. This could be done by taking the integer parts of
the function values as follows:

Lw
7 2 "1 0 3 8

Ro.=LW
0 000O0O0T1
1000000
0 00O0O0O0OO0
0D 0O0DO0O0O0O
00000000
0000010
0100000
000O0O0O0O
0000100
0011000

The comparison can also be made as loose or as tight

as desired by simply computing the table [Ro.-¥ and then
comparing it with any desired gquantity. For example:
T« |Ro ., -W
T
0.59 5.39 8.19 8.99 7.79 4.59 0.61
g.41 4,39 7.19 7.99 6.79 3.59 1.61
1.41 3.39 6.19 6.99 5.79 2.59 2.61
2,41 2,39 5,19 5.99 4,79 1.59 3.61
3.41 1.39 4.19 4.99 3.79 0.59 4,61
4,41 0.39 3.19 3.99 2.79 0.41 5.61
5.41 0.61 2.19 2.99 1.79 1.41 6.61
6.41 1.61 1.19 1.99 0.79 2.41 7.61
7.41 2,61 0.19 0.99 0.21 3.41 8,61
g.u1 3.61 0.81 0,01 1.21 4,41 9,61
. 527 12T 22T
0000 O0O0O 100 0 0 01 100 0001
1000000 1000000 1000001
00 0O0O0CO0OO 000 O0CO0OO0O 10 00000
0000 O0O0OQ 00 0O0O0O0O 0 00000 1O0
00 0O0O0O0COGC 0000010 0100010
0100010 0100010 0100010
000 0 0O0C0O0 01 00 0O00 0100110
00 0O0O0CO0GCO 00 00 1CO00 00111100
0010100 00111 00 00011100
0001000 0011000 0011100
10.12. CHARACTER VECTORS

If P is a vector of the first five prime integers,
then one can index it as shown in the following examples:

BH27
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P[2] The last example above illustrates how the space may
3 be used as a character.

P[3 1 2] H29
5 2 3

P[2 5 4]
3 11 7

Indexing of a character vector can also be used to
P display the graphs produced in Section 10.9 in a more
2 3 5 7 11 pleasing and more readable form. For example, if R and V

are the vectors defined in Section 10.9, then:
Similarly, if L is a vector of the first five letters

of the alphabet it may be indexed as follows:

R
8 7 6 5 4% 3 2 1 0 1
Lf2] 14
B 8 3 0 "1 0 3 8
L[3 1 2] M<Ro .=V
CAB M
L[2 5 &] 1000001
BED 0 00O0CO0COO
L 0000C0CO0O
ABCDE C 00000 O
0 0OC OO0 O0 O
The original value of the vector [ could be assigned 0100010
by the following expression: 0 00O0OODO0OG
0 0000 OGO
L«"ABCDE" 60 01 01 00
00 01 000
The quotes are necessary to indicate that the result
is to be the actual string of characters ABCDE rather than 1+4M
some value which has been assigned to the name ABCDFE. For 2111112
example: 1111111
1111111
PRIMES+2 3 5 7 11 1111111
A«<PRIMES 1111111
B«'PRIMFES! 1211121
Al 3 2 5] 1111111
7 5 3 11 1111111
B[4 3 2 5] 1121211
MIRE 1112111
pA
5 Yokt [1+M]
pB * *
6
g28
Characters other than letters can also be used. For
example: * *
C+'"«+ABCD'
c[2 21513168612 2] *x *
++*xC*A xDx++ *

v xt[2 21 221 2 2]

*kx Kk *x
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In order to make such graphing easy we might even
define a graphing function Gk as follows: Chapter 11
VZ<GR X INVERSE FUNCTIONS
{11 Z«' *'"[1+X 1V
GR M 11.1. INTRODUCTION
*x *

The functions C70F (for Centigrade TO Fahrenheit), and
FT0C, introduced in Chapter 10, are an example of a pair of
mutually inverse functions; that is, FT0C undoes the work of
CTOF, and (CT0OF undoes the work of FT0C. This may be stated
* * as follows:

FTOC CTOF X yields X for any X.

x CTOF FTOC X yields X for any X.
*
Examples of the foregoing for particular values of X appear
GR (18)c.218 in Chapter 10.

*
* % Inverse functions are very important. The reason is
* XX that whenever one needs to use a certain function, the need
*k x K for the inverse almost invariably arises. Suppose, for
ok ok kK example, that F is a function which yields the amount of
Kk kK KK heat produced by an electric heater as a function of the
KKk K KKK voltage applied to it. Then for any given voltage V one can
Kk Kk kKKK determine the heat produced by using the expression r 7V,
H30-31 However, if one wants to produce a specified amount of heat
i, it will be necessary to determine what voltage will
produce it. This requires the use of the function inverse
to F which will yield the voltage as a function of the heat,.
If this inverse function is called ¢, then the necessary

voltage is given by G H. Moreover:

G F X yields x for any X.

F ¢ X yields x for any X.

It is therefore important to investigate methods for
determining the inverse of any given function 7. If F is
represented by a function table, then the inverse function
is represented by the same table, but with the argument and
function columns interchanged. For example, Table 10.1
(reproduced in the left side of Figure 11l.,1) represents the
function CTOF for a certain set of arguments, To apply the
function ¢TOF to the argument 3, one locates the value 3 in

the first column of the table and then takes the second
value in that row (that is, 37.4) as the result, To apply
the inverse function FT70C, to the argument 41, one locates
41 in the second column and takes the first element in that
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row {(that is, 5) as the result. In other words, the
appropriate function table for the inver§e'functlon is
obtained from the function table for the original fgnctlon
by interchanging the two columns as shown on the right of
Figure 11.1.

c | F F | C
o | 32 32 | 0
1 | 33.8 33.8 | 1
2 | 35.86 35.6 | 2
3| 37.4 37.4 | 3
4 | 39.2 39.2 | 4
5 | w1 41 | 5
5 | u2.8 u2.8 | 6
7 | 4u.e6 44,6 | 7
8 | u6.h4 ue. 4 | 8
g | us.2 ug.2 | 9
10 | 50 50 [ 10

A Pair of Inverse Functions

Figure 11.1

11.2. INVERSE OF THE FUNCTION A+BxX
If F is the function 4+X, that is:

VZ<+F X
Z+A+X ¥V

then the inverse function is given by Xx-4 or, .equiva;ently,
by (-4)+X. Thus the inverse function G is defined as
follows:

VZ<G X
Z+<(-A)+X ¥

It is easy to see that F and G are inyerse, for GF X
is equivalent to (-4)+4+X and since (-A)+4 is zero, Fhls is
equivalent to 0+X, or simply X as rqulred.. Similarly,
F 6 X is equivalent to A+(-4)+X which is equivalent to 0+X
or Xe.

If ¥ is the function BxX, the inverse function X is
the function X:B, or (:B)xX. Thus:

VI<«Kk X
Z<(:B)xX V

VZ<H X
Z«BxX V
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From the foregoing results for addition and
multiplication, it should be clear that the inverse of the
function A4+BxX is the function (:B)x(-4)+X. Thus if [ and ¥
are defined as follows:

VA<l X V2l X

LeA+BXX NV Ze(+B)x(-A)+X V
then:

L M X ML X

A+Bx(:B)x(-4)+X (#B)x(-A)+A+BxX

A+1x(-A)+X (+B)x0+BxX

A+(-4)+X (:B)xBxX

0+X 1xx

X X

11.3. DIFFERENCE TABLES

These results will now be applied to extend the
applicability of the difference table method of function
analysis developed in Chapter 10. Recall that the method
developed applies only to a set of arguments of the form
0, 1, 2, 3, etc. Thus the difference table for a function
whose values are 4 1 ~2 1 8 19 would appear as follows if
the argument column was added:

X | Y | DYy |DDY
ol 4| "5 ] &
1] "1 T1 | w4

2 1 T2 | 3l
31 1] 71 wu
b8 | 11

5 1 19 | |

The function F represented by the table is obtained by using
the first row of the difference table (that, is 4 75 u)
divided by the vector 1 1 2 to obtain the coefficients
4 75 2  for the following expression: L+ (T5xX)+2xXx(X-1).
Therefore, the required function F is defined as follows:

VZ<«F X
Zh+ (TExX)+2xXx(X-1) V

Evaluation of the expression F 0,15 serves as a check as
follows:

NSRS
_O
X =

BH1-2
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Suppose now that the desired arguments were the
equally spaced values P<«2.0 2.2 2.4 2.6 2.8 3.0. The
following table shows these arguments appended to the
difference table as a leftmost column:

P | x| Y|l DY IDDY
2 f o | 4| Ts | ou
2,2 1| "1 "1 =&
2.4 12| T2 3 1 &
2.6 | 31 1| 70 u
2.8 | w | 8 | 11}

3 i 5 1 19 | |

Suppose that one were able to determine a function &
which yields the column X as a function of P, that is:

G 2 2.2 2.4 2,6 2.8 3
0 1 2 3 45
Then F ¢ P would yield Y; that is:
F G 2 2,2 2.4 2.6 2.8 3
4 71 T2 1 8 19
In other words, the function ¥ defined as follows 1is the

required function:

P

N <
oy X

7 X
<F X v

It remains to determine the function G which vyields

the column ¥ as a function of the column P. Since X is of
the form 0 1 2 3 4 5, it is easy to determine P as a
function of x, that is, to determine the function inverse to
Ge This is done by forming the difference table for P as
follows:

X | P | 0P

ol 2 [ .2

1| 2.2 1 .2

2 | 2.4 | .2

31 2.6 | .2

L] 2.8 | L2

5 1 3 |

-140-

The coefficients 2 .2 in the first row yield the expression
2+.2x%X for the function inverse to G. This is of the form
A+BxX and its inverse (that is, ) is therefore (:B)x(-4)+X.
Hence ¢ is defined as follows:

V <G X
Z<5x 24X ¥
Finally:
G 2 2.2 2.4 2,6 2.8.3

o
5
N
w
=
w

~ F G2 2,2 2.4 2,6 2,83
4 71 T2 1 8 19

H 2 2.2 2.4 2.6 2.8 3
4 71 T2 1 8 19

Instead of defining and using the separate functions F
and ¢, their effect could be combined in a single (but
cumbersome) expression by substituting for each occurrence
of X in the expression for F, the expression occurring in
the function ¢. Thus, for each ¥ in the expression

b+ (ToxX)+2xXx(X-1)
substitute the expression

5x 24X
to obtain the single expression

U4 (T5x (5% 2+4X))+2x (5% 2+4X)x((5x 2+4X)-1)

11.4. MAPS

In Chapter 10, it was shown how maps and graphs could
be useful guides in the analysis of functions. They can
also be useful guides in determining inverse functions.

If F and ¢ are each monadic functions, then we will
write F G to denote the function defined by applying F to
the result of ¢. That 1is, the function r ¢ applied to ¥
vields F ¢ x. If F and (¢ are inverses, then F ¢ must be the
identity function, that is, the function which applied to

any argument X yields X.
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Consider a function G represented by the following

function table and the corresponding map:

2 map of the identity furnction clearly consists of a
set of vertical arrows. Therefore, if the identity functicn
is represented by broken line arrows and superimposed on the
preceding map, the picture appears as follows:

|
l N |
\ \ \)éﬂ i”HJ
| | | [ N | |
12 3 4 5 & 7 9 10 11 12 1

W —

The function F represented by the crossed lines 1is clearly
the inverse of G, since the application of F to the results
of & produces the equivalent of the identity function.

11.5. GRAPHS

In a graph, the wvalues of the argument X are
represented by distances measured along a horizontal line,
and the values of the function values Y are represented by
distances measured along a vertical line, Since an inverse
function is obtained by exchanging the roles of argument and
result in the original function, the graph of the inverse is
obtained from the graph of the original function by
interchangirg the horizontal and vertical 1lines in the
graph.

-1l42-
This interchange is easily visualized as follows:

(1) Draw the graph of the original function on
translucent paper (which can be read through from
the obverse side of the paper).

(2) ©Label the top two corners of the paper with 4 and
B, and the bottom two corners with ¢ and D (both
pairs in order from left to right).

(3} Grasp the paper by corners & and ¢ and flip it
over without changing the positions of the two
corners held.

The result is a graph of the inverse function.

For example, the left side of Figure 11.2 shows a
function table and the corresponding graph. The right side
shows the table for the inverse function together with the
graph obtained by the process just described. The broken
line midway ketween the X¥-axis and the Y-axis shows the line
through the points E ¢ about which the paper is flipped. It
is the one 1line in the graph whose position remains
unchanged.

A R arv—-g\

:
]
= —
)
1
1
]
™M — 1
]
:
1
w—1
1
1
1
]
I—r—:/
[
'y
o__lé ____________
1 1 ) 1
© o %] + o300 -4
x|y XY
2 | 6 6 | 2
3 | u 4 ] 3
y | 2 2 | &
5 1 0 015

Graphs of a Pair of Inverse Functions

Figure 11.2
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The graph of an inverse function can, of course, be
obtained without using translucent paper, by simply plotting
it from the table for the inverse function. One advantage
of this is that the scales (the numbers along the horizontal
and vertical axes) do not appear lying on their sides and
printed backwards as in Figure 11.2. Figure 11.3 shows a
pair of functions (the square function Xx2 and its inverse)
in which the graph of the inverse has been drawn in this

manner.
| ° |
AR 2.4~
| |
2.0-] ° 2.0~
| [
1.6~ 1.6-] °
| o | o
1.2-] 1.2-| °
| ° | o
.8~ . 8-
| ° | 0
- o L4-1 o
| ° |
[ I [ I I i
! | | [ \ ! | | | | | | | |
0 I 8 1.2 1.6 2.0 7.4 o " 8 1.2 1.6 2,0 2.4
X1 Y X b
0 | 0 0 | 0
.2 Lo Lou | L2
4o .18 .16 1 L4
.6 | .36 .36 | .6
.8 | .64 L4 .8
1.0 | 1.00 1,00 | 1.0
1,2 | 1.44 1,04 | 1.2
1.4 | 1.96 1.96 | 1.u4
1.6 | 2.56 2.56 | 1.6

Inverse Graph by Reflection

Figure 11.3

The function inverse to the square function is called
the square root function. It was treated briefly in Section
6.6 where it was shown that the square root of X 1is
equivalent to Xx.5.

El6-9
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11.6. DETERMINING THE INVERSE FOR A SPECIFIC ARGUMENT

For any function whose graph is a straight line, it 1is
easy to find an expression for the function since it is only
necessary to determine the values of the constants 4 and B
in the expression A+3xX. It is equally easy to obtain the
expression for the 1inverse function since this is given by
(:B)<(-A)+X. For example, the function graphed on the left
of Figure 11.1 is given by the expression 10+ 2xX and the
inverse on the right is given by ~.5x 10+X.

For a function whose graph is not a straight line, it
may be impossible to obtain an expression for the inverse
function. However, it is possible to determine the inverse
function in the following sense: for any given argument in
the domain of the inverse function it 1is possible to
determine the corresponding value of the result of the
inverse function.

For example, in the case of the square function (xx2)
graphed on the left of Fiqure 11.3 we have no expression for
the inverse function, the square root, graphed on the right.
However, for any particular argqument it is possible to find
the result approximately from the graph of the inverse; for
example, if the argument is 2, the result of the inverse
function is clearly slightly greater than 1.4, Moreover,
one can achieve the same without the graph of the inverse,
by working directly from the graph of the original function.
Thus one locates the argument 2 on the vertical axis and

determines the approximate correspondiné__}égﬁit on the
horizontal axis.

Finally, one can work directly from the expression for
the original function without even graphing it. For
example, the expression for the function on the left of
Figure 11.2 is JXx2. To obtain the value of the inverse
function applied to the argument 2, one must determine a
value of ¥ such that X*2 is equal to 2. If one determines a
value ¢ such that ¢*2 is less than 2 and another value D
such that Dx2 is greater than 2, then the required value of
the square root of 2 must lie between ¢ and D.

Thus, if ¢ is 1.4 and D is 1.42, then (Cx2 is 1.96 and
Dx2 is 2.0164 and the required value 1lies between 1.4 and
1,42, The point midway between them is (1.u4+1.42):2, that
is 1.41. Since 1.u41*2 1is equal to 1.9881, the required
value is greater than 1,41, Since it is already known to be
less than 1.42, we now choose the value midway between 1,41
and 1.42, that is, 1.415. The value of 1.415x2 1is 2,012225
which is very near to 2. Hence 1.u415 1is a very good
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approximation to the wvalue of
applied to the argument 2. Moreover, the same process could
be continued to determine better and better approximations
as long as desired.

the square root function

Although we have not obtained an expression for the
square root function, we have devised a process which
determines the value of the square root when applied to the

particular argument 2. Moreover, the process could be
applied for any argument other than 2 which 1lies in the
domain of the square root. Finally, the process uses only

the expression for the original square function.

The procedure used to determine the square root had to

be repeated or iterated a number of times to obtain a

sufficiently good approximation to the desired result. Such

_________ Functions which are defined

by iterative procedures will be discussed more fully in the
succeeding chapter.

11.7. THE SOLUTION OF EQUATIONS

If ¢ is the function inverse to 7, and one wishes to
obtain the value of ¢ ¥, then the required value y must be
such that F ¥ is equal to V. In other words, the following
expression must be true (that is, have the value 1):

N=F Y

Such an expression which is required to be true is called an
and a value of Y which makes it true is called a

The problem of determining the wvalue of the inverse
function ¢ applied to the argument ¥ is therefore eguivalent
to finding a solution to the equation w=f yY. It is for this
reason that the solution of equations is a very important
topic in the study of algebra. For example, finding the
square root of 2 1is equivalent to solving the equation
2=X%2, and finding the square root of 10 is equivalent to
solving the equation 10=x=x2.

The origin of the term "square root" for the function
inverse to the square function should now be clear; the
square root of the argument ¥ is the solution or root of the
equation W#=X+*2 in which the square function occurs to the
right of the equal sign.

£10-11

F12-13
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Chapter 12

ITERATIVE PROCESSES

12.1. INTRODUCTION

The iterative process used in Section 11.6 for finding
the square root of 2 is only one of meny possible itcrative
processes for achieving the same end. The followirg
procedure is, 1in fact, more effective than the procedure of
Chapter 11 in the sense that it closes 1in on the desired
value in fewer iterations.,

Suppose that 5 is the square root of a given number ¥,

that  is any other number, and tlrat Y is equal to ¥v::Z.
Then . xY is equal to ¥, and x5 is also equal to X. Hence
if Z is less than 5, then ¥ must be greater than §, and if 7
is greater than S, then Y must be less. In any case, the
correct square root S5 must lie betwecen 7 and Y.
Consequently, the point midway between 2 and Y (that is,
O+ should furnish a good new approximation to the
square root S. Since Y is equal to Y:Z, this expression can

be written simply as .5x72+X:2.

Suppose, for example, that we wish to find the square
root of 3, that is, X has the value 3, 1If we choose a vaiue
of 1 for Z, then the next approximation is give:n as followe:

X+3
Z<1
L5xZ+X2
2
Using the new approximation 2 for Z yields the next
approximation:
742
LEXZ+X 2
1.75
Again:
Z«1.75
LExZ+ X2

1.732142857

Z2+1.732142857

1.73205081
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Squaring this last result yields:

1.73205081%*2
3.000000008

showing that it is a good approximation to the square root
of 3.

The foregoing procedure can be made clearer by simply
assigning the value of the new approximation to the name 2
each time as follows:

X<3

Z2+1
Ze.5xZ+X%2
7

VAR VA D &N/
Z

Z+.5xZ+X27
7
1.732142857

Z+.5x2+X%7
Z
1.73205081

From this it 1is clear that the iteration consists of
repeating the execution of the expression Z+.5xZ+X:Z enough
times, the 1line containing only the expression Z being
inserted solely to allow us to see the successive values of

the approximation 7.

Such iteration can be specified in a function
definition as follows:

VZ<SQRT X
[1] Z+1
[2] Z.5x2+X37
[3] -2V

-148-

The right-pointing arrow on 1line 3 of the function
definition is called a branch; the only effect of the
expression »2 1s to cause statement number 2 to be executed
next. Hence statements 2 and 3 are executed again and again
in sequence. This behavior can be seen from a trace of the

function as follows:

TASQRT«1 2 3
P«SQRT 3
S@RT[1]1 1
SQRTL2]
SQRTL3] 2
SQRTL2] 1.
S@RTL 3] 2
SQRT[ 2] 1.732142857
2
1.

e

75

SQRTL 3]

SQRTL2] 73205081

The trouble with the function SQRT is that it never
terminates. It would be desirable to make it terminate when

a certain condition becomes satisfied, say when the
magnitude of the difference between 7*2 and the argument X
becomes less than .00001. This is achieved in the function

SQT defined as follows:

VZ<5QT X

[1] Z+1

(21 Z«.S5x0+X30

[3] +2%,00001<|X-2%2¥

As long as X and Zx2 differ by .00001 or more, the
expression following the branch arrow is equal to 2x1 and
statement 2 is executed next. When Z*2 becomes close enough
to %, the expression has the wvalue 2x0, (that 1is, 0),
indicating that statement 0 should be executed next. Since
there is no statement 0, the process terminates.

The function SQT can now be applied to any
non-negative argqument. For example:

ST 2
1.41452156862745

(SQT 2)=*2
2,0000060073048

ST 10
3.1622776651757

(SQT 10)=*2
10.000000031668

#H1
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The detailed behavior of the function 57 can be seen

in a trace as follows:

SQTl1]
SQTrL 2]
5Q103]
STl 2]
SQT[3]
S5QTl 21
SQTL 3]
5Tl 2]
SQI03]

3.1622

its uses are
remaining sections of this chapter

uses.

12.2.

the square root of
function definition by using branching.
of using two

value

TASQT«1 2 3
P«<5QT 10

1
.5
.65909090909
.1960050818746

.1622776651757

QW W WU,

P
776651757
Iteration is of great importance in mathematics and
by no means limited to root-finding. The
illustrate a few of its
Others occur in later chapters.

GENERAL ROOT FINDER

The iterative method used in Section 11.6 to determine
2 can now be expressed as a formal
The method consists
D which bound the desired

Cx2 is less than 2 and Dx2 is

quantities (¢ and
in the following sense:

greater than 2, and the desired value therefore lies between

¢ and D. The

method procedes by computing the point 2

midway between ¢ and D and then computing Z*2 to see whether

it lies above or below 2. If it lies below 2,

then ¢ is

respecified by 2z (that is, (+Z) and the process is repeated;
otherwise D is respecified by 7 and the process is repeated.

It will be more convenient to combine the bounding

guantities ¢ and D in a single vector B so that 2
respecifies either B[1] or B[2]. The complete definition
follows:
92«Q X
[11] B«1.,4 1.42
[2] A<,5x+/B
[3] T«1+X<Z%2
4] BLI]<2Z

[s]

>2x,00001<}X-2x2V

B2
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The behavior of the function is illustrated by the following
trace:

TAQe15

g 2
Q1] 1.4 1,u2 Ql2]1 1.41421875
QL2] 1.41 Qr3]1 2
dL3] 1 Q4] 1.41421875
Qlu] 1.11 QL5] 2
QLs]1 2 Q2] 1.414140625
QL21 1.u415 Qr31 1
Qrsl] 2 QLu4] 1.414140625
@Lul 1.415 QL51 2
Q51 2 Ql2] 1.4141796875
QL2 1.4125 RL31 1
@l3] 1 Qlu] 1.14147396875
QLs3] 1 QL4] 1.4141796875
QLu]l 1.u125 Q051 2
QLsl 2 @021 1,41419921875
Q21 1.41375 203] 1
szl 1 Glul 1.41419921875
QLu] 1.41375 Qlsl 2
Qls] 2 g[2] 1.41420898u4375
QL2] 1.414375 Ql3l 1
&dL31 2 Ql4] 1.,414208984375
QL4] 1.414375 Qrsl1 2
QLs] 2 2021 1.4142138671875
@L2] 1.u41430625 gr31 2
L3l 1 gQlul 1.4142138671875
Qlul 1.4140625 Qls] o
QL51 2 P

1.4142138671875

The foregoing function will determine a root of the
eqguation X=7Z%2, that is, for a given value of X it will
determine a value of Z such that the equation is true. In
order to obtain a general root finder which would solve the
equation X=F Z for any desired function 7, it is necessary
to replace every occurrence of the expression Zx2 in the
function ¢ by the expression F 7.

It will also be convenient to have the bounding vector
B as an argument of the function so that one can specify
suitable initial bounding values. The general root-finder
is therefore defined as follows:

V2«B GRF X

£1] Z+.5%x+/B

[2] Bl 1+X<F Z1+2Z
[3] +>.00001<{X-F 2V
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Suppose, for example,
defined as follows:

that F is the cube function

VZ«F X
£11 Z«X*3V

Then, since 4*3 is less than 100
100, the expression 4% 5 GRF 100
equation 100=Z*3 as follows:

and 5%3 is greater than
yields a solution of the

4 5 GRF 1060
4,6415887878967

(4 5 GRF 100)%3
99.999990581929

There are two reasons for
values 5 as an argument of the general root finder function
GRF, The first is that for some functions F it is very
difficult to compute suitable initial bounding values and it
may be necessary to provide them, possibly from information
obtained from a rough graph. The second reason is that for
some functions F the equation X=F Z has more than one
solution, and the initial bounding values permit us to
isolate any one of the several roots as desired.

including the bounding

For example, suppose that F is defined as follows:

v

I

«F X

T 76,44 +(102,2xX)+(TH1xA%2)+(5xX%x3) ¥

18

Then several different
which 7 ¥ is zero:

values of ¥ can be determined for

1 2 GRF ©
1.4

3 2 GRF O
2.6

4 5 GRF O
b.2

H3
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It can be verified that this function is
function 5Sx(X-1.4)x(X-2.8)x(X-4.2) whose
Figure 10.5. This
appreciating how the
different roots.

equivalent to the
graph appears in

graph will therefore be helpful in
different bounding values lead to
Two further solutions appear below:

1 2 GRF 3
1.656389

3 2 GRF 3
2.23409

12.3. GREATEST COMMON DIVISOR

The integer 7 is a divisor of 42 and a divisor of 63
and is therefore said to be a common divisor of the pair of
integers 42 and 63.
divisor of a pair of integers is said to be their greatest
common divisor. Thus 7 is a common divisor of the pair
42 63 but is not their greatest common divisor since 21 is

also a common divisor and is greater than 7.

An interesting and efficient method for finding the
greatest common divisor of a pair of integers i and Y is
based on the following fact: If _ is the remainder obtained
on dividing A into Y (that is, Z<xly), then the greatest
common divisor of X and Y is also the greatest common
divisor of X and Z. For example, 1if %X is 48 and Yy is &¢,
then Z is 18 and the greatest common divisor of 48 and 66 is
the same as the greatest common divisor of 18 and us. The
process can now be repeated since the greatest common
divisor of 18 and 48 is the greatest common divisor of 18

_____ which is 12. Thus we look for the
greatest common divisor of 12 and 18. The remainder 12|18
is 6 and we now look at the pair 6 and 12. The remainder
6112 is zero. This indicates that 6 is a divisor of 12 and
therefore 6 is the greatest common divisor of 6 and 12.
Hence, 6 is also the greatest common divisor of the original
pair 48 and 66.

The foregoing 1is an iterative which can
obviously be defined as follows:

process

VZ<X GD Y
1] Z+X
[2] X<X|Y
[31] Y<z
[ul +>X=QV

B4-6
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following trace:

GplL11
GplL 21
Gpl 3]
GDL 4]
Gpl11
Gpl2]
GD[ 31
GDL 4]
Gpl1]
GD[ 2]
GDL 31
Gplul
GD[1]
GDpL21]
GDL 31
GDL 4]

v

TAGD+ 14
P+48 GD 66
L8

18

58

1

18

12

18

1

12

6

12

HMOOOOR

The greatest common
defined in terms of a single argument
be a two-element vector) as follows:

Z«GCD X
Z+X[1]
X<(1/X),X[1]
>X[1]20 V¥

For example:

Gepl]
¢epl 2]
Gepl 3l
Geol1l
¢epl 2]
GeplL 3l
Gepli]
Genl 2]
GeD( 3]
GCD[1]
GeD[2]
GCDL3]

6

TAGCD+1 3
P«GCD 48 66

48

18 48

1

18

12 18

1

12

6 12

1

o o O
[02)

function GD

expected to

87
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The function GCD can be used in the treatment of
rational numbers as follows. If V is any two-element vector
of integers it can be used to represent the rational number
T/ V. Moreover, 1if V is multiplied by any scalar integer S
it still represents the same rational number. For example:

V«u8 66
a4
0.727273

3IxV
144 198

+/3xV
0,727273

Similarly, if vV is divided by any integer which is a
divisor of both elements, the result is a pair of integers
which also represent the same rational number. For example:

Va2
24 33

T/VE2
0.727273

Moreover, if V is divided by the greatest common divisor of
V(1] and V[21], one obtains the smallest pair of integers
which represent the same rational. For example:

V+GCD Vv
8 11

+/ViGCD V¥
0.727273

12.4, THE BINOMIAL COEFFICIENTS

Binomial coefficients are of importance in many areas
of mathematics., In this section they will be introduced as
a further example of the use of iteration in the function
which defines them. They will be used and studied more
thoroughly in 1later chapters in the treatment of
polynomials.,

@8-11
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The binomial coefficients of order

elements of the vector produced by the
using the function BI#¥ defined as follows:

VZ«BIN X

(1] Z+,1

(2] +3xX207

(32 Z«(0,2)+(2,0)
(4] +2 v

The following examples illustrate the
function:

BIN ©
BIN 1
BIN 2

BIN 3
13 31

BIN 4
1 4 6 41

BIN 5
15 10 10 5

BIN ©
16 15 20 1

1
56 1

TABIN<14

P<BIN 3
BIN[1] 1
BIN[?2]
BIN[3]
BIN[4]
BIN[2]
BIN[3]
BIN[4]
BIN[3]
BIN[ 4]
BIN[2]

O P NP WP W

P
13 21

N are

the

N+1

expression BIN N

behavior

of

the

El12-19
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Chapter 13

INNER PRODUCTS AND POLYNOMIALS

13.1. INTRODUCTION

Each of the expressions +/DxW and L|/4+B and [/ALB
involve a dyadic function applied to the two arguments,
followed by a reduction of this result by a second dyadic
function applied over the result. These expressions are
therefore said to be of the same form, although they do
differ in the actual dyadic functions employed. Thus the
first uses + and x, the second uses | and +, and the third
uses [ and |.

Expressions of this form are so important that they
will be assigned a special notation known as inner product.
Their importance is due largely to the fact that they arise
very frequently in practical problems. Consider, for

example, the following expressions:

D«5 2 Y4
W«36 12 1
+/DxW

208
A«8 13 10 15
B«14 7 16 9
Ll /A+B

20

The expression +/DxKW may arise from a practical
problem as follows. Suppose that the elements of D express
a certain distance in terms of yards, feet, and inches, that
is, D represents the distance 5 yards, 2 feet, and 4% inches.
One could express tha same distance in inches alone by
multiplying the first element by 36, the second by 12, the
third by 1, and then summing the results. In other words,
if W is the weighting vector as specified above, then the
distance in inches is given by the expression +/DxW.

The second expression |/4+B may arise as follows,
Suppose that one wishes to travel from station P to station
¢ and has a choice of four different routes, via the four
different intermediate stations, I1, I2, I3, and T4 as shown
in Figure 13.1. Suppose further that the distances from P
to the four intermediate stations are given by the four
elements of the vector 4, and that the distances from the
intermediate stations to the destination @ are given by the
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vector 3. Then the expression A+7 gives the total distances
for each of the four possible routes, and | /A+8 gives the
smallest of these distances, that is, the shortest distance
possible by the available routes.

Minimum Distance

Figure 13.1

#1-2

13.2, THE INNER PRODUCT OF TWO VECTORS

If ¥ and Y are vectors of the same dimension, then the

and Y,
+/XxY,

dyadic functions. For example:

X«2 3 5 7 11

Y+2 1 2 0 1

X+,xY +/XxY
28 28

XlL.+Y L/X+Y
n 4

Xx , *xY x/X*Y
3300 3300

X+.-Y +/X-Y
22 22

X+.2Y +/X=2Y
4 4

XI.=Y [/7Xx=Y
1 1

E3-5
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13.3. MATRICES

What we have been calling a table is in mathematics
______ we will call it so from now

on. We will also generalize the dyadic repetition function
(introduced in Section 1.7 and denoted by o) so that it will
permit the specification of a matrix with any shape and

having any desired elements.

The dyadic repetition function p was defined only for
scalar arguments, but it will now be defined for vector
arguments as well. For example:

305
R 5 5
5p3
3 3 3 3 3
3p1 2 3 4
1 2 3
10p1 2 3 4
1 2 3 U 1 2 3 - 1 2

From these examples it 1is <clear that the 1left argument
determines the size of the result and that the elements of
the result are chosen from the right argument, repeating
them over and over if necessary.

If the 1left argument 4 is a two-element vector it
again determines the size of the result, that is, the result
is a matrix / such that :’ (that is, the size of M) is equal
to 4. In other words, )M has Al1] rows and A[2] columns.
For example:

2 3p1 2 3 4 5 ¢
1 2 3
4 5 &
3 Upri2
1 2 3 y
5 9] 7 8
9 10 11 12
3 5p0 1
01 010
101 01
01010

H6-7
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13.4. INNER PRODUCT WITH MATRIX ARGUMENTS

The inner product also applies to matrix arguments.
For example:

M<3 4p3 0 4 2 4 6 51 05 2 4
N<4 S5p6 7 2 1 756 5 05 7 236 312213
M
3 0 4 2
i (6} 5 1
5 2 [
N
6 7 2 1 7
5 6 5 o] 5
7 2 3 6 3
1 2 2 1 3
M+.xN ML .+N
48 33 22 29 39 3 4 4 0 5
90 76 55 35 76 2 3 3 2 [
43 42 39 16 43 5 4 2 1 5
M+, =N M+ . 2N
0 1 1 1 o] 4 3 3 3 4
1 1 o} 1 o] 3 3 4 3 [
1 1 1 o] 1 3 3 3 ) 3
(M+.=N)+(M+.2N)
U4 uoo4Lu
L oou o4 oy b

L4 4 44

The result of an inner product applied to matrices M
and /¥ is a matrix having the same number of rows as the
first argument and as many columns as the second argument.
The elements of the results are the results obtained by
applying the inner product to each row vector of the first
argument paired with each column vector of the second
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argument, More specifically, 1if pr«wm+.x#, then the element
RF[I;J] 1is given by the expression M[T;J]+.xN[;J]. For
example:
R<M+.xN
R
48 33 22 29 39
90 76 55 35 76
43 42 39 16 43
R[2;3]
55
ML25]
L 6 5 1
N[;3]
2 5 3 2
ML253]+.,x0[;3]
55
(ML.+N)[3;5]
5
MLE351L.+N035]
5
E18-10
If X is a vector and ¥ 1is a matrix, then the inner

product M+.xX is defined by simply treating X much 1like a
l-column matrix. For example:

X«0 3 2 u
M+ . xX

16 32 35
ML.+X

3 4 o]
M+, 2X

4 o4 1
M+, =X

o] Q 3

If Y is a vector and M is a matrix, then the inner
product Y+.xM is defined by treating Y much like a 1-row
matrix. For example:

Y«0 4 2
Y+ . xM
16 34 24 12
YL.+M
2 o] 4 2
Y+.=2M

2 2 2 3
Ell-18
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13.5. POLYNOMIALS

If ¢ is a vector and X is a scalar, then an expression
of the form +/0xX+* 1+1pC is a function of ¥ which is called
a polynomial of degree " 1+pC. For example, if ¢«2 s 73 1,
then +/CxX+« 1+1pC 1is a polynomial of degree 3 and is
equivalent to the expression +/2 5 ~3 1xXx0 1 2 3. This
expression is clearly equal to the sum of the following
gquantities:

2xX*0
SxXx1
T3xXx2
1xX*3

Each of these quantities is called a term of the-polynomial;

Figure 13.2 shows a graph of each of the terms of the
polynomial +/2 5 ~ 3 1=X%0 1 2 3, together with a graph of

their sum, that is, of the polynomial itself.

Since a polynomial may have any number of terms and
since each of the coefficients may have any value, these
graphs suggest (correctly) that coefficients can be chosen
so as to make a polynomial which approximates any function
of practical interest. This ability to approximate a wide
variety of functions is one of the main xreasons for the
overwhelming importance of polynomials. A second reason is
the ease of evaluation, which involves only addition,
multiplication, and powers. A third reason is the ease with
which polynomial functions can be analyzed.

13.6. POLYNOMIALS EXPRESSED AS INNER PRODUCTS

Since Pxg is equivalent to ¢xP, the expression
+/Cx(Xx 1+1pC) for a polynomial can be written equivalently
as +/(Xx " 1+1pC)xC. Moreover, since +/xP can be written in
the inner product form as ¢g+.xP, the polynomial can be
written as the inner product (X* 1+1pC0)+.xC.

It should be clear that none of these equivalent
expressions for a polynomial apply correctly to a vector
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argument X 1in order to evaluate the polynomial applied
separately to each element of X. For example:

C«1 2 1

X<3

+/CxX* 1+1pC
16

X4

+/CxX* 1+1pC

M
w

X<5
+/CxXx 1+1pC
36
X<«3 4 5
+/CxX*x 1+10C
34
X<3 4
+/CxX* 1+1p0C
(cannot be evaluated because the vectors X and -1+i1p(C are
not of the same size)

To obtain the correct result of 16 25 36 when
applying the polynomial with coefficients ¢«1 2 1 to the
vector argument 3 4 5, it requires a different expression
for the polynomial. This can be obtained by a slight
modification of the inner product expression (X*x 1+1pC)+.x(C,
namely, (Xe.x 1+1pC)+.xC. For example:

c«1 2 1
X«3 4 5

Xo.x 14+1pC

1 3 9
1 4 16
1 5 25

(Xo.*x"1+10C)+.xC
16 25 36

The following definition will therefore be adopted for
the polymonial function:

VZ<+( POL X
A<(Xo * 1+1pC)+.%xCV

The following examples illustrate its use:

121 POL 3 4 5 6
16 25 36 48

133 1POL 3 4 56
64 125 216 343

THIS PAGE INTENTIONALLY LEFT BLANK
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Chapter 14

IDENTITIES

14.1. INTRODUCTION

Two expressions are said to be equivalent if they
represent the same function, that is, if they both yield the
same value for any specified argument (lying within their
domains). For example, XxY and YxX are equivalent, as are
X[Y and YIX, but X-Y and Y-X are not equivalent,

If two equivalent expressions are joined by an equal
sign, the resulting single expression is true (i.e., has the
value 1) for every possible value of the argument or
arguments, It is therefore called an identity. For
example, the expression (¥x7Y)=(YxX) is always true, as are
(XTY)=(YTX) and (XL(¥Lo))=(CxLY)LZ).

For convenience in discussion, many of the more useful
identities are given names. For example, the identity
(XxY)=(¥xX) is said to express the commutativity of times,

and (X[ (YLz))=({xL¥)L ") expresses the assocjiativity of

minimum. The following 1list shows (together with their
names) a number of identities which the reader should either
find already familiar, or be able to verify by evaluating

them for a few sample values of the arguments:

Identity Name
(X+Y)=(Y+X) Commutativity of plus
(CXTY)T2)=CX[(XTX)) Associativity of maximum

(Ax(7+2))=((Xx¥)+(Xx~Z))Distributivity of times
over plus

(XT(YL2y)y=((XTY)L(XxI2))Distributivity of maximum
over minimum

(XTY)=(-(-X)L(-7)) Duality of maximum
(XLY)=(-(-X)T(-Y)) and minimum

(XvY)=(~(~X)A(~Y)) Duality of and
(XAY)=(~(~X)Vv(~Y)) and or

Identities are very useful in mathematics, primarily

because they allow one to easily express the same function
in a variety of ways, each of the different ways possessing
some particular advantage such as being easy to evaluate, or
providing some particular insight into the behavior of the
function. Consider, for example, the function +/(t1X)=*_
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which yields the sum of the squares of the integers up to
and including X. The difference table for this function
appears as follows:

X A4+/CiX)y*2 | D +/(vX)*x2 | DD +/(1X)*2 | D D D+/(1X)=*2

o | 0 | 1 | 3 | 2
1] 1 | 4 | 5 ! 2
2 | 5 f 9 | 7 | 2
3 | 14 | 16 | 9 | 2
u 30 | 25 | 11 |
5 55 | 36 | |
5 91 | | |

According to the method of analyzing a function by
difference tables developed in Chapter 10, the first row of
the difference table (that 1is, n 1 3 2) can be divided by
'01 2 3 (that is, 0 1 2 6) to obtain the coefficients
9, 1, 332, and 2:6 used in the following expression:

O+ 2+ ( (322 xX(¥=1)V4(236)xXx(X=-1)xX=-2

The expression is eguivalent to +/(i1X)=x2. Moreover,
for large values of ¥ it is much easier to evaluate than
/(X )x2, For example, the sum of the squares up to 100 is
given by:

0+100+((1:2)x100%99)+(226)x200x20x98
U+100+14850+323400
338350

Moreover, by methods to be developed in this chapter,
the expression O0+X+((3:2)xXx¥-1)+(2:6)xXx(X~-1)=xX-2 can be
shown to be equivalent to the polynomial:

(+6)x(X*x0 1 2 3)+.x0 1 3 2
This can be evaluated even more easily. For example:
X«<100
(#6)x(X*0 1 2 3)+.x0 1 3 2
(#6)x1 100 10000 1000000+.%x0 1 3 2
(#6)x0+100+30000+2000000
(+6)x2030100
338350
14,2, COMMUTATIVITY

Since X+Y yields the same result as Y+X¥, the function

+ is said to commute, or to be commutative. The word
commute implies that the two arguments can be commuted
(i.e., interchanged) without changing the result. The

function x is also commutative; that is, (XxY)=(YxX). To



see why this is so, consider the way in which multiplication
is defined as repeated addition, that 1is, 3xl4 can be
considered as the addition of three groups of objects each
containing four items.

This can be pictured in terms of the array

34 p '
0oon
0ono
onoon

which consists of three rows, each containing four boxes.
The total number of boxes is then 3x4. It is clear that the
array

&3 4 o 'O
aon
0oo
0oo
0oa

contains the same number of boxes. It is equally clear that
this is the same array as

0oo
aog
aio
0on

which represents the product 4x3. Hence, (3x4)=(4x3),

The functions maximum and minimum are both
commutative, that is,

(XTY)=(YTx)

and
(XLy)=(rvLx)

It is equally clear that equality is commutative, that is,
(¥=Y)=(r=x).

To show that a function is pot commutative, it is
sufficient to exhibit one pair of arguments for which it
does not commute. For example, 4-3 yields 1 and 3-4 yields

1, Since these results differ, it is clear that
subtraction is not commutative. Similarly 3<4 yields 1 and

43 yields 0 and the function < therefore does not commute.

The results thus far can be summarized in a table as
follows:

[N
o
[
=
(&)

A zero lying below a function symbol indicates that the
function is not commutative, and a 1 indicates that it is.

The 1's and 0's in the foregoing table can be thought
of as the results of a function 0¥ which determines the
commutativity of its argument, that is, <¢oM '+' yields 1,
and COM '-' yilelds 0, and so on. This function could be
defined as follows:

VZ«COM X
Ze(X="4+-x[l<=")/1 0 1 1 1 0 1

For example, in the evaluation of the expression COM '[!,
the argument X has the wvalue 'l', and the expression
X="+-x[l<=' therefore has the wvalwve 0 0 0 1 0 0 0.
Consequently, (X="4-x[]l==*)/12 0 1 1 1 ¢ 1 vyields 1,
indicating that the function maximum is commutative.

_____________ Consider the subtraction table S5 and its
transpose 7+<&S shown in Figure 1l4.1. The circled element in
S is the result of the subtraction 5-3. The corresponding
element of ¥ (enclosed in a square) is clearly the result of
3-5. More generally, if one uses table S5 to evaluate any
subtraction ¥-Y, then the corresponding element of table T
is the result of the commuted expression Y-X. Consequently,
a function is commutative only 1if its function table A4
agrees with its transpose ®4.

S T
0 71 "2 "3 "4 "5 78 0 1 2 3 4 5 8
1 0 1 72 73 "4 "5 10 1 2 3 4 5
2 01 0 "1 T2 T3 Ty 271 0 1 2 3 y
3 2 1 0 "1 "2 73 3 72 7100 1 2 3
4y 3 2 1 0 "1 "2 4 73 7271 0 1 2
5 4 3 2 1 0 "1 s Ty T3 72 71 0 1
6 5 4 3 2 1 0 6 75 T4 T3 "2 71 o0

Se(17)o.-17 T+&S

Function Tables for Subtraction

Figure 14.1

ElL
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Most functions of interest are defined on a limitless
domain (e.g., all numbers) and any function table therefore
represents only a part of the domain. Consequently, the
fact that a function table agrees with its transpose does
not prove that the function is commutative, since an
enlarged table might show that it is not. However, some
important functions are defined for a limited domain {(i.e.,
for only a small number of argument values), and for such a
function it is possible to make a complete function table
and determine the properties of the function directly from
the table.

We will illustrate this by defining four important
logical functions, i.e., functions whose domains are limited
to logical values 0 and 1I. They are called and, or,

______ and are denoted by A, v, &, and ¥,
respectively. They are completely defined by the function
tables of Figure 14.2. These tables are all symmetric
(i.e., agree with their transposes), and these functions are
therefore all commutative.

Alo1 A ! ~ o » | 01

0 0 0 0 01 0 11 0 1 0

1 01 1 11 1 10 1 00
and or not-and not-or

Function Tables for Logical Functions

Figure 14.2

The Method of Exhaustion The process of examining all

possible cases to determine some property of a function
(used above on the logical functions) is called the method

It can often be applied even if the number

of possible values of the arguments is unlimited. For
example, the arguments of the function < can take on an
unlimited number of values, but it 1is only necessary to

consider three cases: if the arguments are arranged in
ascending order according to value, then the order is either

B3
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X Y, 1in which case the result of the function X<Y is 1, or
the order is Y X in which case the result of X<y is 0 or

the two are equal, in which case the result is 1., This may
be summarized in a table as follows:

Case | X<y

Xy | 1

Yy X | o

Y=X | 1
Moreover, if a column for the expression Y<X is added, the

table appears as shown in Table 14,3. This table shows that

the function < is not commutative.

R
(e}
[

Non-Commutativity of <
Tablel4.3
The same scheme of exhaustion can be used to determine
the commutativity of the other relations < = =2 > and =,

and of the functions [ and L. For example, Table 14,2 shows
that maximum is commutative.

Commutativity of [

Table 14,4

B4



14,3, ASSOCIATIVITY

Since X+(Y+Z) yields the same result as (X+Y)+Z, the
function + is said to be associative. Multiplication is
also associative, that is,

(Xx(¥YxZ))=((XxY)xZ)

It is easy to show that subtraction and division are not
associative. For example, 4-(3-2) yields 3 and (4-3)-2
yields 1.

The associativity of the maximum function can be
established by examining all possible cases. If three names
X, Y, and Z are arranged in non-decreasing order according
to their values, they can occur in exactly six possible
arrangements. These are shown in Table 14.5, together with
columns showing the evaluation of the expression X[(YlZ) and

(xTyY)rz. This evaluation proceeds as follows. The first
column shows the values of the expression X[7Y, and the
second shows the maximum of these values and Z; the third

column shows the values of Y[Z, and the fourth column shows
the maximum of X and these values, Since columns 2 and 4
agree, the function [ is associative.

Case | X[y | (xTy)rz | ¥Yrz | xr(xrz)
X Y 7| Y | VA | Z | Z
x z ¥yt vy | Y [ v | Y
Y X Z | X | Z | Z | Z
Y z X | X | X | Z ] X
Z X Y | Y | Y | Y | Y
z2 Y X x | X | v X

Associativity of [

Table 14.5

14,4, DISTRIBUTIVITY
The identity
(Xx(Y+2))=((XxY)+(XxZ))
____________ multiplication

shows that the effect of
(shown to the left of the

equal sign) can be said to distribute
the arguments Y and Z as shown on the right.

B5-7

To see why multiplication distributes over addition,
it is helpful +to wuse the picture of multiplication
presented in the discussion of commutativity, that is, the
product of two factors P and @ is pictured as the number of
elements in the array (P,2) o '0O'. The left side of the
identity of the preceding paragraph is then represented by
the array (X,¥+Z)p'0', and the right side by the sum of the
arrays (X,Y)p'0" and (X,2)p'Q'. For example, if X«u and Y«9
and Z«5, then:

(X,Y+Z2)p 'O
00000000000000
0000000000000
d0000000000000
0000000000000

(X,¥)p '’
toooooooD
000000000
000000000
tobooooon

(X,2)p'Q’
gaoaa
00000
00000
0oooo

If the 1last two arrays are pushed together they form an
array identical to the first and therefore contain the same
total number of elements as the first.

The function and distributes over or, that is:
(XA(YVZ))=((XAY)IV(XAZ))
Since the arguments X, Y, and Z are each 1limited to the
values 0 and 1, this identity can be examined by evaluating

the expressions for each of the eight possible cases as
shown in Table 14.6.

X ¥z | yvz | XAQYVZ) | XaY | XaZ | (XAY)V(XAZ)
o 0o o | o | 0 | o | 0o | 0
o o 1] 1 | 0 | o | o | 0
o 1 o | 1 | 0 | o | o | 0
o 1 11 1 | 0 | o | o | 0
1 0 o] o | 0 Il o | o | 0
10 1] 1 | 1 | o | 1 | 1
1 1 0o | 1 | 1 | 1 | o | 1
11 11 1 1 1 1 1 1

Distributivity of a over v

Table 14.6

E8-9
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The function [ distributes over |, that is,
(XT(YLZ))=((XTY)L(XT2Z))
To examine this putative identity, it 1is necessary to
considexr the six possible arrangements of the arguments

X, Y, and 2 when arranged in non-decresing order according
to value. This is shown in Table 14,7

__Case | ¥lz | xM(ylz) | x[y | xlz | (xry)l¢xrz)
x Y z | v | Y [y | z | v
X Z Yyl z | z |y | z | z
Yy x 21| v | X x| X
Y 2z x4V vy | X I x 1 x| X
2 X x| 7 | X [y | x | X
2oy x| 7z | X box x| X

Distributivity of [ over |

Table 14.7

A function may distribute over itself.
the function | does so:

For example,

CXLCYLZ) ) =C(xLyt)(xLz))

This fact can be examined by means of a table similar to
Table 14,7, It can easily be shown that plus does not
distribute over itself. For example, 3+(4+5) is not equal
to (3+4)+(3+5).

The distributivity properties of functions can be
summarized conveniently in a table. For example, for the
functions + x [ and L, the results derived thus far are
shown in Table 14,8, For example, the second row (labelled
), shows that x distributes over +. The blank entries of
the table could be filled in by further analysis. For
example, plus does not distribute over either itself or
times, but it does distribute over both maximum and minimum;
the complete first row of Table 14.8 would therefore be
0 0 1 1

Some distributivity properties

Table 14.8

14.5. IDENTITIES BASED ON COMMUTATIVITY, ASSOCIATIVITY, AND
DISTRIBUTIVITY

It is important to recognize that an identity such as
(XxY)=(YxX) applies not only to the simple names X and 7,
but also to any expression that may be substituted for them.
For example, if the expression (PxQ-R) is substituted for X,
and the expression (M+Ax3)) is substituted for 7, then the
foregoing identity (representing the commutativity of
multiplication) ensures that

(PxQ~R)*x(M+ExQ)
is equivalent to
(M+R<Q)x(Px4-R)

The combined use of the properties of commutativity,
associativity and distributivity leads to a host of
identities too numerous to list. For example, (A+B)x( is
equivalent to 7£~¥(4+B) (since ~ is commutative}, which is
equivalent to (7+A)+(CxB) (since » distributes over +t),
which is equivalent to (AxC)+(5x(C) (since x is commutative).
Consequently, (4+5)xC is equivalent to (AxC)+(Bx(C).

In order to show the derivation of such a result
clearly, it is convenient to simply list the successive
equivalent statements, one below the other, together with
notes to the right of them showing what property was used to

#13-15
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derive each new equivalent statement. For example, the
derivation used in the preceding paragraph would be shown as
follows :

(A+B)xC
Cx(A+B)
(CxA)+(CxB)
(AxCY+(BxC)

Commutativity of x
Distributivity of x over +
Commutativity of x

For convenience, the notes written to justify each
sStep in a derivation will be abbreviated; the symbols (C, 4,
and D will be used to denote commutativity, associativity
and distributivity. Thus (+ means that + is commutative, 4x
means that x 1is associative, and xD+ means that «x
distributes over +.

The following shows the use of these abbreviations in
the derivation of a rather important identity:

(A+B)Yx(C+D)

( (A+B)YxC)Y+((A+B)xD) xD +
(Cx(4+B))+(Dx(A+B)) x
(CCxA)+(CxB))+((DxAY+(DxB)) xD +
((AXC)Y+(BxC))+( (AxD)+(BxD)) Cx
(AxCY+((BxC)Y+(AxD))+(BxD) A+
(AxCY+((AxD)+(BxC))+(BxD) C+
(AxCY+(AxD)+(BxC)+(Bx=D) A+
Consequently, the first expression, (A+B)x(C+D), is

equivalent to the last, (AxC)+(4xD)+(BxC)+(BxD), that is:
(A+B)x(C+D)

(AXCY+(AxD)+(BxC)+(BxD)

In other words,
by each element of the second
terms are added together.

each element of the first sum is multiplied
sum and the four resulting

The foregoing result will be used in deriving further
results, and to make it easy to refer to, it will be given
the name Thegrem 1. One reason for the importance of
Theorem 1 is that it has some useful special cases, For

Bl6-18
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example, if A4 and ¢ both have the same value ¥, then
according to Theorem 1, the expression (X+B)x(X+D) is
equivalent to (XxX)+(X¥xD)+(BxX)+(BxD). This leads to the

following derivation:

(X+B)x(X+D)

(B+X)x(D+X) C+
(BxD)+(BxX)+(XxD)+(XxX) Theorem 1
(BxD)Y+((BxX)+(XxD))+(XxX) A+
(BxD)+( (XxB)Y+(XxD))+( XxX) gx
(BxD)Y+( Xx(B+D))+(XxX) xD +
(BxD)Y+((B+D)xX)+(XxX) gx

(X*2)=(XxxX)

(X*x1)=x

(X*0)=1

(P+Q+R)=+/P,Q,R

((PL1Ix@L11)+(PL21xQL2])
+(PL31xQL3]))=+/PxQ

(BxD)Y+((B4D)xXY+(X*2)
(BxD)+((B4+D)x(X*x1))+(X*2)
((BxD)xX*0)+((B+D)xX*x1)+(X*2)
+/((BxD)xX*x0) ,((B+D)xY*1),(X*2)
+/((BxD),(B+D),1)xX%x0 1 2

Finally then:

(X+B)x(X+D)
+/((BxD),(B+D),1)xX*0 1 2

In other words, (X+B)x(X+D) is equivalent to a polynomial in
X with the coefficients BxD and B+D and 1.

For example, if B is 2 and D is 3, the polynomial has
the coefficients 6, 5, and 1. In other words:

((X+2)x(X+3))=(+/6 5 1xX*0 1 2)

The product (X¥+2)x(X+3) can also be expressed in the
form x/X+2 3. In general if V is any two-element vector,
then x/X+V is equivalent to (X+VL1])x(X+V[2]). Moreover,
the coefficients of the equivalent polynomial are given by
x/V and +/V and 1, That is:

(/XYY =+/C(X/V), (+/V),1)xX%x0 1 2

14,6, IDENTITIES ON VECTORS

Thus far, the identities considered have been applied
only to scalar arguments. However, many of them apply
equally to vectors. For example, the commutativity of x

F22-23
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ssures that (AxB)=(Bx4) and that 3x5 is therefore equal to
x3, _ However, if A is the vector 3 5 7 and B is the vector
0 1, it is still true that (4xB)=(Bx4). For example:

A<3 5 7

B«5 0 "1

AxB
5 0 7

BxA4
5 0 7

mmutativity of
r each of
rguments.

x applies for vectors
the corresponding pairs of

because it applies
elements of the

and
For

For the same reason, the associativity
.stributivity of functions applies to vectors as well,
czample:

A+3
B«5

7
AT (Bl C)
5 7
Ax (B+(C)
3 20 7
(AxB)+(AxC)
3 20 7
ALB
o 1
C+(ALB)
4 1
C+A
9 9
C+B

1
(C+A)L(C+B)
1

There are also
1e reduction of vectors.
'A,B, For example:

some important identities concerning
Thus (+/4)+(+/B) is equivalent to

(+/1 2 3)+(+/4 5 6 7)

(1+2+3)+(4+5+6+7) Definition of +/
1+2+3+4+5+6+7 A+

+/1 2 34 56 7 Definition of +/
+/(1 2 3),(4 56 7) Definition of ,

B24-25

Moreover,
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if the vectors A and B are of the same dimension
so that 4+B is meaningful, then (+/4)+(+/B) is equivalent to
+/A+B. For example, if 4 is 1 2 3 and B is 4 5 6:

(+/1 2 3)+(+/4 5 6)

(1+2+3)+(4+5+6) Definition of +/

1+42+(3+4)+5+6 A+
1+2+(4+3)+546 g+
14(2+4)+(3+5)+6 A+
14(4+2)+(5+3)+6 c+
(1+4)+(2+5)+(3+6) A+

Definition of +/
Definition of vector addition

+/(1+44),(2+5),(3+6)
+/1 2 3+4 5 6

Since the only properties of addition used in the
foregoing derivations were its commutativity and
associativity, the same results hold for any function which
is both commutative and associative. For example:

[(r/B))=(r/A,B)
[(1/B))=(l/A+B)
x(x/B))Y=(x/A,R)
x(x/B))=(x/AxB)

(NN RN

Thus if F is associative

and commutative, then

any function which is both

((F/A)F(F/B))=(F/A,B)

Since this is a very useful result which will be referred to

again in later derivations, it will be given the name
Theorem 2.
Moreover, if F 1is any function which 1is both

associative and commutative, and A4 and B are vectors of the

same dimension, then
((F/AYF(F/B))=(F/A F B) (Theorem 3)

as indicated by the

note to the right of the identity.

Since x distributes over +,
expressed as a sum of products.
are two vectors, then

a product of sums can be
More explicitly, if Vv and ¥

(C+/VYX(+/W))=+/+/Vo . xi (Theorem u4)

B26-27
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For example:

V<3 1 4
W<5 0 2 6
(+/V)x(+/W)
104
Ve ,W
15 0 6 18
5 0 2 6
20 0 8 24
+/ Vo, xi/
39 13 52
+/+/ Vo xW
104

The preceding identity (Theorem 4) and the following
one will both be useful in the treatment of products of
polynomials:

(CAxP)o . (BxQ))=((Ao.xB)x(Po.xQ)) (Theorem 5)

For example:

A<«1
B<4
P<2
Q+3
AxP
2 0 )
Bxg
12 5 18 7
(AxP)o ,x(BxQ)
24 10 36 14
0 0 0 0
72 30 108 42

= o’ N
w N O w

Po , xg
65 2 6 2
0 0 0 0
6 2 6 2

(A, xBYx(Peo,xQ)
24 10 36 14
0 0 0 0
72 30 108 42
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Each side of the identity of Theorem 5 1is a table; the
identity will be derived by showing that (for any value of T
and any value of J) the element 1in the Ith row and Jth
column of the table on the 1left 1is identical with the
corresponding element of the table on the right:

((AxPo,x(Bx@))[I;J]
((AxPYLI1)x((Bx@)[J])
(ALAIxPLT1)x(BLJIIxQLJ])

Definition of o.x
Multiplication of vectors

ACTIx(PLIIxBLJ))=xQ(J] Ax
ALTIx(BLJIxP[I1)xQLJ] £x
(ALTIxBLJ))x(P[IT1xQLJ]) Ax

((Ae.xB)[IT3;J])x((Po.x@Q)[IT;J]1) Definition of o.x
((Ae ., xBYx(Po , x@))[I;J] Multiplication of tables

The only properties of the function x used in this

derivation are its associativity and commutativity.
Therefore, the same derivation would apply for any function
which is both assocative and commutative. Hence Theorem 5

remains true if any such function is substituted for x. For
example:

(CATP) o, T(BT@))=((4=.TB)[(P-.TQ))

§29-31

14.,7. THE POWER FUNCTION
Consider the following expressions:
2% 3
8
2% 4
16
(2%3)x(2%x4)
128
2%x(3+4)
128
(2% (3+4))=((2%3)x(2%4))
1
The foregoing result suggests the following identity:
(A*(B+C))=((A*B)x(Ax(C)) (Theorem 6)
It can be derived as follows:
(A*xB)Yx(A*C)
(x/BpA)x(x/CpA) (PxQ)=x/goP
x/(BpA),x(CpA) Theorem 2
x/(B+C)pA Definitions of p and ,
Ax (B+C) (PxQ)=x/QpP
B32
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Theorem 6 leads to a very useful identity on vectors.
If X is a scalar and F and F are any vectors, then:

((X*E)e x(X*F))=(X*Eo.+F) (Theorem 7)

For example:

E<«0 1 2
F+0 1 2 3
X2
XxE
1 2 4
XxF
1 2 b 8
(XxE)o ,x(XxF)
1 2 4 8
2 4 8 16
i 8 16 32

Eo,+F

0 1 2 3

1 2 3 4

2 3 ) 5
XxFo  +F

1 2 4 8
2 4 8 16
4 8 16 32

14.8. SUM OF POLYNOMIALS

The polynomial function introduced in Chapter 13 was
defined as the function P whose definition appears below:

VZ«C P X
Z«(Xo.* 1+1pC)+.x(V

Cons ider the polynomials 1 3 5 P X and 6 1 4 P X, Their sum
can be shown to be equivalent to the polynomial 7 % 2 P X
whose «coefficient vector is the sum of the coefficient
vectors of the given polynomials, that is:

((1 35 P X)+(6 1 4 P X))=((1 3 546 1 4)P X)

@33
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In general, if X is a scalar and A, B and E are
vectors of the same dimension, then

((+/AxX*E)+(+/BxXxE))=(+/(A+B)*xX*E)

In particular, if F is the vector " 1+i1pA, then the left side
of the foregoing identity is the sum of the polynomial with
coefficients 4 and the polynomial with coefficients B , and
the right side is the polynomial with coefficients A+B. The
derivation of the identity follows:

(+/AxX*EY+(+/BxX«xE)
+/(AxX*xE)+(BxX*E) Theorem 3
+/((X*xE)xA)+((XxEYxB) (x
+/(X*E)><(A+B) xD +
+/(A+B)Yx( X*E) Cx

The polynomials ¢ P X and (C,0) P X are clearly
equivalent, since an extra term in the polynomial with a
zero coefficient will contribute nothing to the sum. For
example, if ¢«1 2 3, and X+<u4, then:

c P X
+/1 2 3x4%x0 1 2
+/1 2 3x1 4 16
+/1 8 48
57

and
(¢c,0) P X

+/1 2 3 0x1 4 16 64
+/1 8 48 0
57

More generally, any number of zeros may be appended to
the right of a vector of coefficients without changing the
polynomial, that is, ((C,Np0) P X)=(C P X). Consequently,
two polynomials with coefficients ¢ and D of different
dimensions may be added by first appending enough zeros to
the shorter of the two to yield a vector of the same
dimension as the longer. For example, if (pD)<p(, then:

((C+(pC)4D) P X)=(C P X)+(D P X)



The following identity applies to every case,
(pD) less than, equal to, or greater than pC:

that is, for

M<(pC)[ (pD)
(((MAC)Y+(MAD)) P X)=(C P X)+(D P X)

14,.9. THE PRODUCT OF POLYNOMIALS

The product of two
another polynomial

polynomials is equivalent to
whose coefficients are easily determined

from the coefficients of the given polynomials. In other
words,

(E P X)=((C P X)x(D P X))
and the coefficients F can be determined from ¢ and D. The

method will first be described by
the derivation will be shown later.

means of an example and

Suppose that C+3 1 4 and D«2 0 5 3. First form the

multiplication table Ceo.xD:

Co.xD
6 o 15 9
2 ¢} 5 3
8 o 20 12
Then draw diagonal 1lines through the table and sum the

numbers on each diagonal, placing each sum at the end of its
diagonal as shown below:

P

5] 2723714723

The result is the vector of coefficients 6 2

that is:

23 14 23 12;

(6 2 23 14 23 12 P X)=(3 1 4 P X)x(2 0 5 3 P X)

E34-35

The reasons why the method works will now be examined.
The product of the polynomials ¢ P X and D P X may be
written as:

(+/CxXx " 1+1pC)Yx(+/DxX* 1+1pD)

In this form it is clear that the product is a product of
the sums of two vectors V and ¥, where V<«(CxX* 1+1pC and
W<DxX* 1+1pD, that is, (+/V)x(+/#W). The results of Theorem
4 can therefore be applied to express the result in terms of

the multiplication table for V and w:

CCH/ VI /W)) =4/ 4/ Vo  xW
Since V is the product of two vectors (that is, ¢ and
X* 1+1pC) and ¥ is the product of two vectors, Theorem 5 can
be applied to write the table Vo.x¥ as the product of the
two tables Co.xD and (X* 1+1pC)o.x(X*x 1+1pD). That is:

(Vo ., xW)=(Co,xD)x{(X*x 1+1pC)o,x{(X* 1+1pD))

But Theorem 7 allows us to
the second table; that is,

write X*( 1+1pC)eo.+( 1+1pD) for

(Vo ,xW)=(Co ,xD)xXx( 1+1pClo.+( 1+1pD)

For example, if ¢ and p are as defined in the earlier
example (that is, ¢«3 1 4 and D«2 0 5 3), then:

Co.xD (T1+1pCle.+( 1+1pD)
6 0 15 9 0 1 2 3
2 0 5 3 1 2 3 4
8 0 20 12 2 3 4 5

The table on the right gives the exponents of X.
To summarize:

(C P X)x(D P X)

(+/CxXx 1+1pC)x(+/DxX* 1+1pD) Definition of polynomial
+/4/(CxXx 1+1pC) o, x(DxX+ 1+1pD) Theorem 4

+/4/(Co . xDYx(X* 1+1pC)e.x(Xx 1+1pD) Theorem 5
+/4/(Co,xD)xXx{ " 1+1pClo.+( 1+1pD) Theorem 7

It is clear that the table of exponents
(T1+1pC)e.,+( 1+1pD) will always be of the form shown in the
example in the preceding paragraph, that is, it contains a
zero in the upper left corner, 1's in the next diagonal, 2's
in the next diagonal, and so on. Hence the element of the
table Co,xD that is multiplied by Xx0 is in the upper left
hand corner, the elements multiplied by X*1 are on the next
diagonal, etc. Hence the appropriate coefficients for Xx0
and Xx1, and Xx2, etc., in the product polynomial are
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obtained as the upper left corner of (eo.xD, the sum of the
next diagonal of Co.xD, the sum of the next diagonal, etc.
This 1is the pattern shown in +the rule given at the outset
for multiplying polynomials.

14,10, THE PRODUCT x/X+V

In Section 14.5 it was shown that the product
(X+2)x(X+3) could be expressed in the form x/X+2 3, and
that, more generally, if V were any 2-element vector, then
x/X+V was equivalent to (X+V[11)x(X+V[2]). Moreover, it was
shown that x/X+V was equivalent to the polynomial with
coefficients (x/V),(+/V),1. The case of a vector V of
arbitrary dimension will now be considered.

The expression X+2 1is equivalent to the polynomial
with coefficients 2 1, that is, (X+2)=4/2 1xX%*0 1.
Similarly, X+3 is equivalent to the polynomial with
coefficients 3 1, Therefore, the product (X+2)x(X+3) can be
treated as a product of polynomials. The coefficients of
the product polynomial may then be obtained by the method of
Section 14,9 as follows:

e
This result agrees with that obtained in Section 14.5.
Consider now the product x/X+4 2 3:
x/X+4 2 3
(X+4)x(X+2)x(X+3)

(X+4)x(6 5 1 P X)
(4 1 P X)x(6 51 P X)

Definition of x7
Preceding result
X+4 as a polynomial

This last product of polynomials can again be evaluated by
the method of the earlier section:

4 1s,x6 5 1
24 20 4
6/;5//1

e

Hence (x/X+4 2 3)=(24 26 9 1) P X

#36
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It should now be <clear that the product x/X+V is a
product of polynomials with coefficients V[1],1 and V[2],1
and Vv(31,1, etc, The coefficients of a polynomial
equivalent to x/X+V can therefore be obtained by multiplying
these polynomials together in turn. The following function
@ produces the desired coefficients as a function of the
vector V:

Vi< V
[1] Z+1
[2] I<«pV

[3] Z+(VLI1xz2,0)+(0,2)
(4] I+«I-1
[5] +>3xI=0V

For example:

TAQ+3

Q 4 2 3
@L31 3 1
Qrsl] 6 5 1
QL3]1 25 26 9 1
24 26 9 1

14.11. THE FACTORIAL POLYNOMIAlS

The factorial polynomials introduced in Section 10.7
for the purpose of fitting functions were defined as
follows:

Degree of
Factorial Factorial
Polynomial Polynomial

0 1

1 X

2 Xx(X-1)

3 Xx(X-1)x(X-2)

4 Xx(X-1)x(X=2)x(X-3)

Such a polynomial can alsa be written in the form
x/X+V, where V is the vector 1-1¥ and N is the degree aof the
polynomial.
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The coefficients of a polynomial equivalent to the
factorial polynomial of degree ¥ can therefore be obtained
by applying the function ¢ to the argument 1-14#. For
example:

Q@ -0
0 1

Q -0 1
o 1 1

g -0 1 2
0o 2 "3 1

g -0 1 2 3
0 6 11 "6 1
Hence:

(01 P X)=X
(0 71 1 P X)=Xx(X-1)
(02 72 1 P X)=Xxx(X-1)x(X-2)
(0 76 11 "6 1 P X)=Xx(X-1)x(X-2)x(X-3)

In the introduction to this chapter it was shown that
the function +/(1X)x2 (that is, the sum of the squares of
the integers to X) was equivalent to the following sum of
factorial polynomials:

O+X+((322)xXx(X-1)Y)Y+( 2B )xXx(X-1)x(X-2)

Moreover, it was stated that this expression was equivalent

to the polynomial (:6)x(Xx0 1 2 3)+.x0 1 3 2. This
statement can now be proven as follows:

O+ X+ ((332)xXx(X-1))Y+(2+6)xXx{X-1)x(X-2)

(26 ) =x6x (X+((322)xXx(X-1))+(236)xXx(X-1)x(X-2)) ((:6)x6)=1
(6 ) x((BxX)+(9IxXx(X-1))+(2xXx(X-1)x(X-2))) xD+
(:6)x((6x0 1 P X)+(9x0 ~1 1 P X)+(2x0 2 "3 1 P X))Note 1
(:6)x((0 6 P X)Y+(0 ~9 9 P X)+(0 4 "6 2 P X)) Note 2
(+6)=((0 6 0 0 P X)+(0 "2 9 0 P X)+(0 & "6 2 P X))Note 3
(:6)x(0 1 32 P X) Note U4
(:6)x+/0 1 3 2xX%0 1 2 3 Note 5
(26)x+/(X*0 1 2 3)x0 1 3 2 Cx
(:6)=(X*x0 1 2 3)+.%x0 1 3 2 Note 6

Note 1: Polynomial equivalent of factorial polynomials
Note 2: (Ax(C P X))=(AxC) P X

Note 3: ((C,0) P X)=C P X

Note u4: Sum of polynomials

Note 5: Definition of Polynomials

Note 6: Definition of +.x

E139-40
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14,12. MATHEMATICAL INDUCTION

The function +/1X can
difference table as follows:

be analyzed by constructing a

X | +/1X | D+/1X | D D+/X | DD D+/1X

The results of Section 10.7 may then
that the function +/1X was equivalent
of factorial polynomials:

be applied to conclude
to the following sum

0+X+(.5xXx(X-1))
In drawing this conclusion it is assumed that every one of
the third differences (in the last column) would be 0. This
happens to be +true for the function +/:14%, but the
calculations of this table do not prove it to be so.

For example,
function

suppose one attempted to analyze the

X+ 5xXxX=1y+Xx(X-1)yx(X=-2)x(X-3)yx(X-4)

The first five entries in the difference table would appear
exactly the same as the table shown for +/:X%, and one might
erroneously conclude that all third differences would be
zero., However, if one considered one further row, the table
would appear as follows:

X[ +/1X|D+/ 1 X{D D+/1X|D D D+/1X|D D D D+/\XID D D D D+/1 X

ol o | 1 | 1 f 0 | 0 ! 120
1] 1] 2 | 1 | 0 | 120 |
20 3 1 3 | 1 | 120 1 l
3 s | ] o121 ! ! l
4l 10 | 125 | | | |
51135 | [ | | |
A difference table can vyield the coefficients of a

polynomial which fits a given function exactly for a certain
number of values of the argument and which probabl

very nearly or exactly for all values of the argument, but
study of the difference table alone cannot ensure that it
fits for all points. It is therefore desirable to develop
other means of verifying that an expression derived from a
di fference table does in fact agree with the given function
for points other than those actually used in the table,
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Let wus suppose that the functions +/1X% and ¥+.5xXxx-1
do agree for some integer value K, that is, we suppose that

(+/1K)=K+.5+KxK-1

From this assumption alone, we will now show that they must
agree for the argument K+1.

We have undertaken to show that +/1%X+1 is equal to
(K+1)+.5x(K+1)x(X+1)-1, in other words to show that

(+/1K+1)-((K+1)+.5x(K+1)x{(K+1)-1)
is zero.
Let the functions F and ¢ be defined as follows:

VZ<F X VZ<G X
Z<+/1XV X+, 5xXxX-1V

We wish to show that F and G agree for all integer values of
their argument, that is, that (F X)-(G X) is zero for every
integexr X. We begin by expressing the difference for the
argument X+1 in terms of the difference for argument as
follows:

(F K+1)-(G K+1)
(+/1K+1)-((K+1)+.5x(K+1)x(K+1)-1) Definitions of ¥ and G
(C+/1K)+(K+1)) -((K+1)+.5x(K+1)xK) (+/1K+1)=(+/1K)+K+1
((+/1K)+(K+1)-(K+1))-.5%x(K+1)xK
((+/1K)+0)-.5x(K+1)xK
(+/1K)-.5%x(2xK)+(K-1)xK
(+/1K)-K+.5xKxK-1
(F K)-(G K) Definitions of F and G
Hence the difference between F XK+1 and G K+1 must be
the same as the difference between F K and G X. In other
words, if F XK and G K are equal, then F K+1 and G K+1 must
also be equal.

But for k=1, F K and G K are obviously equal; that is
+/11 is equal to 1+.,5x1x0, Hence F 1+1 must equal G 1+1,
that is, F 2 equals G 2. Thus, for k=2, F K equals @ K.
Therefore F 2+1 equals ¢ 2+1, and so on for all possible
integer arguments. Hence F X equals ¢ X for all positive
integer values of X.
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To prove that two function F and G are equivalent, proceed
as follows:

1) Show that the difference (F X+1)-(G XK+1) is equal to
the difference (F K)-G K.
2) Show that F 1 is equal to G 1.

If items 1 and 2 can both be shown to be true then the
functions must agree for all positive integer arguments.

B4l



-189-
Chapter 15

LINEAR FUNCTIONS

15.1. INTRODUCTION

The expression 4+3xX is said to be a linear function.
The reason for the term "linear" becomes evident on plotting
the function; as shown in Figure 15.1, the plot forms a

straight line.

More generally, if A and B are any scalar constants,
then the expression A+BxX is a linear function. A plot of
several linear functions sharing the same value of B and
having different values of 4 (Figure 15.2) shows that the
graphs have the same slope (i.e., they are parallel), but
that they intercept the Y-axis at different points
determined directly by the wvalue of 4. That is, the
Y-intercept of the function 5+3xX is 5, the Y-intercept of
2+3%xX is 2, and so on.

A plot of the function A4+BxX for a common value of 4

and different values of B (Figure 15.3) shows that the
functions share the same Y-intercept but have different
slopes which are directly determined by B, that 1is, the

vertical distance between any two points on the graph is B
times the horizontal distance between them.

If 4, B, and ¢ are scalar constants, then the
expression A+(BxX)+((CxY) is a function of two arguments X
and Y. For any fixed value of X the expression is a linear
function of Y. For example, the function 1+(2xX)+(3xY) is
equivalent to 1+(2x4)+(3xY) if X is given the fixed value 4.
This in turn is equivalent to 9+3x7Y, which 1s clearly a
linear function of 7.

Similarly, for a fixed value of Y, the expression
A+(BxX)+((xY) is a linear function of X. Consequently it is

If the two arguments X and Y are combined in a single
two—-element vector V, then the linear function 1+(2xX)+(3xY)
can be written more concisely as 1+(2 3+.xV), more
generally, for any scalar 4 and any two-element vector B,
the expression A+B+.xV represents a linear function of the
two arguments V{1l and V[2].
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This vector form of writing linear equations possesses
three important advantages. First, the expression A+B+.xV
applies for a linear function of any number of arguments;
it is only necessary that B and V each have the same number
of elements as there are arguments. For example, the
expression 1+2 3 4+.xV represents a linear function of the
three arguments V(11, V[2], and V[3]. It could be written
in terms of these individual arguments as follows:

1+(2xVL11)+(3xVL21)+(uxVL 31)

or, 1if the three arguments are called X, Y, and Z it could
be written as:

14+(2xX)+(3xY)+(uxZ)

The second advantage of using the expression 4+B+.xV
is that it can express not only one linear function, but
several. For example, if B is the matrix

B«2 2p2 3 1 4

and 4 is the vector 5 7, then A+B+.xV yields two results:
S5+2 3+.xV

and
7+1 4+, xV

Hence A+B+.xV expresses two linear functions 1in two
arguments.

In general, if A is a vector of M elements and B is an
M by N matrix, then A+B+.xV expresses M linear functions in
N arguments.

BF1-3

Bu-6

15.2. MAPPINGS

If A is a two-element vector and
then the expression 4+B+.xV applies to
V and yields a two-element vector as a

A< 2 Tu
B«2 2p1 2 3 2
B
1 2
3 2
B+.x1 2
5 7
A+B+.x1 2
3 3

The vector 1 2 can be shown as a
can the vector 3 3 which results from
function 4+B+.xV to it. Hence the
function can be shown as a map by draw
point representing the vector 1 2 to
the result 3 3. This is shown in Figu

B is a 2 by 2 matrix,
a two-element vector
result. For example:

point on the graph as

applying the 1linear
effect of the linear
ing an arrow from the
the point representing
re 15,4,

A more complete picture of the effect of the linear
function 4+B+.xV can be obtained by computing and plotting

the results from applying it to a numb
15.5 shows the mapping from the points
and 5 2,

The effects of A and B can be
considering certain special cases.

er of points., Figure
12 and 1 5 and 5 5

studied separately by
For example, if 4 has

the value 0 0, then 4+B+.xV is equivalent to B+.xV,

The linear function B+.xV always leaves the origin

(the point ©0 0) unchanged, that is, B+
what B is. Apart from this simpl
produced by B+.xV can be guite complic

B<2 2p2.5 .5 1,5 .5

2 T0.5
1. 0.5

Wwuv oW

+.x1 7
Bt+.x2 6
B+.x3 5

B+.x4 4

.x0 0 is 0 0 no matter
e fact, the mapping
ated. For example, if

87
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A Linear Mapping
on One Point

Figure 15.4
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A Linear Mapping on Several Points

Figure 15,5
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then the mapping produced by B+.xV is shown in Figure 15.6.
From this figure it appears that the effects on different
points may be quite different. For example, the last point
S is "stretched" (that is, it maps into a point straight
away from the origin in the same direction as S), the second
point @ maps into itself, and the arrows from P and R lead
in opposite directions. Points (such as P, ¢, R, and 3)
which lie on a line do, as remarked before, map into points
which also lie on a line.

15.3. ROTATIONS

There is a certain class of matrices which vyield a
very simple and important mapping. If B is a 2 by 2 matrix
of the form

-C S

and C is equal to either (1-$%2)x,5 or -(1-S*2)%,5, then the
mapping B+.xV is a rotation about the origin. That is, each
point maps into a point the same distance from the origin
but displaced by rotation through a certain angle. Such a
matrix will be called a rotation matrix. For example, if
5+.5, then (1-5*2)%,5 1is equal to (3+4)*,5 (which is
approximately .866), and B is the matrix:

Figure 15.7 shows the mapping B+.xV applied to the following
set of points:

B+.,x0 0
0 ©

B+,x1 1
1.37 70,366

B+.x2 2
2,73 0,732

B+,x 1 1
0.366 1.37

B+,x0 1
0.866 0.5

B+.x1 2

2.23 0,134

B8
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A Linear Mapping

Figure 15.6
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A Rotation

15.7

Figure
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To see why this mapping is called a rotation, lay a
sheet of translucent paper over the plot and copy onto it
the original points V and the axes. Then place a pin

through the origin and rotate the translucent overlay until
one of the points V coincides with the point B+.xV into
which it maps. It will then be seen that all points in V
lie over the corresponding points B+.xV. Moreover, the
angle of rotation is the angle formed between the new and
old positions of the axes.

If S is equal to 1, then (1-5%2)x,5 is egual to zero,
and the rotation matrix B becomes

1 0

0 1
In this case it is clear that B+.xV yields V for any V. The
mapping B+.xV is therefore called the identity mapping, and
the matrix B is called the identity matrix.

15.4. TRANSLATION

The effect of the vector 4 in the 1linear function
A+B+.xV is most easily seen if B is chosen to be the
identity matrix. In that case B+.xV yields ¥V and the

expression A+B+.xV is therefore equivalent to the expression
A+V, This mapping is shown in Figure 15.8 for the case
A<2 T1. All of the mapping arrows are parallel and of the
same length. This sort of mapping is called a translation

If the first element of 4 is zero, the translation is
_______ moving upward if A[2] is positive and downward if
it is negative. Likewise, if the second element is zero the

and to the left if it is negative.

15.5. LINEAR FUNCTION ON A SET OF POINTS

It is often necessary to apply the expression B+.xV to
a number of points, that is, for a number of different
values of V. This can be done comveniently by assembling
the values into a single matrix M such that each of the
peoints appear as a column of M. Then the expression B+.,xM

B9-13

B1l4
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Translation

Figure 15.8

=202~
yields a matrix whose columns are the results of applying
the linear function to each column of M. For example, if the
reguired points are 2 3 and 4 2 and 1 5, then

M<®3 2p2 3, 4 2, 1 5

Moreover, if

B«2 2p1 2 3 2

B
1 2
3 2
then
B+.xM
8 8 11

12 16 13

The translation A+V does not extend to a matrix of
points quite so neatly as does the expression B+.xV. For
example, if A«1 2 and M 1is the matrix of the preceding
paragraph, then A+2 3 is a translation of the vector 2 3 but
A+M cannot be evaluated because A and M are not of the same
shape. What is needed is a matrix P of the same shape as M
and having each column equal to 4, that is:

Then Pt+M yields the desired translation of the columns of M;

P+M
3 5 2
& 5 8

The matrix P can be obtained by the expression
®($oM)pA, Hence the translation of a set of points can be
expressed as:

(R(dpM)pA)+M

and the general linear function A4+B+.xV can be expressed for
a set of points M as:

(9(dpM)pA) +B+ . xM

B15

H1le
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15.6. ROTATION AND TRANSLATION

If B is a rotation matrix, then the function B+.xV is
a rotation and the function A4+3+.xV 1is a rotation followed
by a translation. Similarly, B+.xA+V is a translation
followed by a rotation. A few experiments with these
express ions for some chosen values of 4 and B applied to a
number of points V will show that the two expressions are
not equivalent.

However, the same experiments will be seen to suggest
that B+.x4+V is equivalent to rotation by B (that is, B+,xV)
followed by some translation. The amount of the translation
will be found to be not 4 but rather B+.x4. In other words:

B+, x4+V
(B+.xA)+(B+.xV)

the fact that the

over +. This
it is not limited to
A proof of this for 2 by 2 matrices is
fairly simple and is outlined in an exercise. The identity
also holds for matrices B of any dimension. The proof of
this is more involved and will not be attempted here,
although the reader should be able to extend the method of
proof used for a 2 by 2 matrix to the case of a 3 by 3
matrix. Any reader not wishing to work through the proofs
may wish to shore up his faith in the identity by performing
a number of experiments.

The foregoing identity expresses
inner product function +.x distributes
identity holds for any matrix B (i.e.,
rotation matrices).

15,.7. STRETCHING
If B'is the matrix

3 0
o 3

then the expression B+.xV "stretches" the point V by a
factor of 3, since each element of the result is 3 times the
corresponding element of V. In a plot, such stretching is
equivalent to extending the 1line from the origin to the
point ¥ to 3 times its length. If I is the identity matrix
and T is any scalar value, then TxI is a stretching matrix
whose degree of stretch is equal to T.

H17
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A more general stretching is illustrated by the matrix
B below:

3 0
0 2
For such a matrix, the expression B+.xV stretches by a

different amount for each coordinate.

15.8. IDENTITIES ON THE INNER PRODUCT +. x

The inner product +.x has been
the treatment of linear functions.
involving the inner product are also important in the study
of linear functions. One of these has already been
established, namely, the distributivity of +.x over +:

seen to be central to
Certain identities

B+.xA+V
(B+.xA)+(B+.,xV)

A second important fact is that this inner product +,«x
is associative, that is:

M+, x(B+.xV)
(M+.xB)+.xV

A proof of this will be outlined in exercises for the case
of 2 by 2 matrices ¥ and B.

15,9, LINEAR FUNCTIONS ON 3-ELEMENT VECTORS

If V is a 3-element vector, B is a 3 by 3 matrix and 4

is a 3-element vector, then A4+B+.xV is again a linear
function of V which produces a 3-element result.
In order to get a clear picture of the mapping

produced by the function A+B+.xV for vectors V of dimension
3, it 1is necessary to devise a way of plotting a point
having 3 coordinates. This can be done as follows: Draw
the usual coordinates for a graph on a flat piece of thick
styrofoam and obtain a set of wires of various lengths.
Stick a wire into the point 3 4 on the graph so that it
extends straight up to a length of 5 units. The tip of the
wire then represents the point (that is, the vector) 3 u 5.
Other points can be represented similarly.

18

B19-21
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The points plotted in 3-dimensions will be easier to
see if the wires are tipped with colored beads. Moreover,
if two different colors are used to plot the points V and
the points A+B+.xV, then the effect of a linear mapping can
be observed easily. Light tape can be used to connect each
point to the corresponding point produced by the linear
function. Alternatively, numeric labels identifying the
points can be attached to them.

For example:

B<3 3p2 0 11 21111
M<§5 3p1 11, 2 2 2, 333, 011, 022
B 1

2 0 "1 12 3 0 0

1 72 1 12 3 1 2

101 1 12 3 1 2
B+.xM

1 2 37172

0 0 0 1 72

The plot of this mapping is shown in Figure 15.9.

Most of the properties of linear functions observed
for 2~element vectors carry over to the case of
3-~dimensions. For example, points lying on any line map
into points lying on a line. Since this is true for a line
in any direction it is also true for any plane, that is,
points lying in the same plane map into points lying 1in a
plane. performing and plotting experiments for various
values of B and V should make this clear.

The identity matrix for 3-dimensions is the matrix 7
shown below:

1 0 o0
0 1 o©
0 0 2

It is easy to show that this 1is the identity matrix by
showing that I+.xV yields V for any 3-element vector V.

B22-23
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ij

A Mapping in Three Dimensions

Figure 15.9
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15.10. ROTATIONS IN THREE DIMENSIONS

In an earlier section it was shown that the expression
B+.xV produced a rotation (in two-dimensions) if B was a
matrix of the form:

-C S
where (¢ is equal to (1-S%x2)*.5 or to -{(1-5x2)%*.5.

It was also shown (in Exercise 15.13) that for such a
matrix &, multiplication by 1its transpose yields the
identity matrix, that is: B+.x8B is equal to the identity
matrix. This is the essential property of a rotation matrix
and applies in 3-dimensions as well. Thus any 3 by 3 matrix
B such that B+.xQB yields the identity matrix is a rotation
matrix.

it is easy to assemble a matrix B which meets these
specifications. If § and C satisfy the requirements imposed
in the first paragraph, then the following matrix # 1is a
rotation matrix.

O QR
o o
oo

For ar is equal to

1 0 0
0o s -C
o C S

and R+.xQR therefore equals

1 0 0
0 (S*2)+(Cx2) (Sx=C)+(CxS)
0 (-Cx5)+(S5x() (C*x2)+(5*2)

which (since (5%2)+((C*2) equals 1) is the identity matrix.

Similarly,

S C 0 5 0 C
- § 0 and 0 1 0
o 0 1 - 0 S5
are rotation matrices. Moreover, if # and T are any two

rotation matrices then the product 7+.xT is also a rotation
matrix,
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Chapter 16

INVERSE LINEAR FUNCTIONS

16.1. INTRODUCTION

The importance of inverse functions was noted in
Chapter 11 where it was remarked that whenever one finds use
for a particular function, the need for the inverse of that
function usually arises. This is true of linear functions,
and this chapter will be devoted to methods for obtaining
the inverse of a linear function.

For a linear function of a single argument X, the
inverse has already been determined in Chapter 11, where it
was shown that the inverse of the function

A+ExX
was

(sBYx(-A)+X
For example, if 4 is 3 and B is 4 and X is 7, then 4+BxX
makes 31, Applying the inverse function to this result
yields:

(+4)x(-3)+31

(2u)x23

7

Hence the result is the original value of X as required.

An important point is that the inverse function

(#B)}x(-4)+X is itself a linear function, To show that this
is so, we write the expression in an equivalent form as
follows:

(#B)x(-A)+X
((3BYx(-A))+((+B)xX
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The last expression 1is a linear function since it 1is a
constant (that is, (#B)x(-4)) added to a constant (that is,
+B) times X, For example, if 4 is 8 and B is u4, then the
original linear function A+BxX is

B8+h4xX
and the inverse is

(Csu)x(-8))+((:B)xX)
T24+.25xX

Chapter 11 dealt only with the inverses of functions
of a single argument and, strictly speaking, the notion of
inverse functions applies only to such a case. However, as
shown in Chapter 15, a linear function of several arguments
X, Y, and Z can be treated as a function of the single
vector argqument V, where V«X,Y,Z, In this sense, a linear
function of several arguments does possess an inverse. As
was just shown for the case of a single argument J, the
inverse of any linear function is itself a linear function,

16.2., SOME INVERSE FUNCTIONS

As we did in the study of linear functions in Chapter
15, we will begin with a simple case in which 4 is zero,
that 1is, we will consider the 1linear function B+.xV.
Suppose that B and IB are defined as follows:

B<2 2p3 1 5 2

IB«2 2p2 1 5 3

Then the 1linear function IB+.xV 1s the inverse of the
function B+,xV, This can be tested on a number of examples
as follows:

B+.x1 2
5 9

IB+.x5 9
1 2

B+.x 3 4
5 77

IB+.,x 5 77
3y

B+.xIB+.x2 5
2 5

IB+.,xB+.x2 5
2 5
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Similarly, in 3 dimensions the following matrices B
and 7B define inverse functions:

B«<3 3p1 0 2 2 1 34 0 4
IB«3 3p 1 0 .5 11 ~.25 10 ~.25
B IB
1 0 2 1 0 .¢%
2 1 3 11 7,25
40 u 1 0 ~.25
B+.x1 2 4
3 16 20
IB+.x9 16 20
1 2 4

The foregoing illustrates how the linear function
B+.xV may have an inverse IEF+.xV which is also a linear
function. It does not show how to go about finding a
suitable inverse IB for any given matrix B. This is a
rather difficult matter which will be addressed in
subsequent sections.

In these later sections we will be considering the
problem of finding an inverse for the function B+.xV and
will ignore the more general problem of finding an inverse
to the general linear function A+B+.xV. The reason is that
the inverse to A+B+.xV can be easily obtained once we find
an inverse to B+,xV, This will now be shown.

Suppose a matrix IB has been found which is inverse to
B, that is,

IB+,xB+,xV yields V.

Then IB+.x(-A4)+V 1s the function inverse to A+B+.xV. For:

IB+.x(-A)+(A+B+.xV)
IB+,x((-4)+A)+(B+.xV)
IB+.,x0+(B+.,xV)
IB+.%xB+.xV

14 Because IB is inverse of B

Associativity of +

Consequently, attention will be restricted to the problem
of finding an inverse to the function B+.xV.
16.3. THE SOLUTION OF LINEAR EQUATIONS

In Section 11.7 it was remarked that even though a
general expression for a function G inverse to F could not

Bl1-2
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be found, yet one could find the value of ¢ »~ for any
argument ¥ by simply finding a value of Y such that

N=F Y

This value satisfies the only requirement on (, namely, that
F ¢ NV must be equal to ¥, for if G ¥ is Y, then F ¢ ¥ is F Y
which in turn is equal to ¥ since Y was so chosen,

Finding a value of Y such that ~¥=F Y 1is called
"solving the equation N=F Y". It is often easier to solve
such an equation than to find a general expression for the
inverse function &G. Moreover, solving such an equation for
several different values of ¥ may give some clues to an
expression for G.

In any case, we shall approach the problem of finding
an inverse to the function B+.xV by developing methods for
solving the equation WN=B+.xV. Since # is a vector, we
require a value of V such that each element of ¥ agrees with
each element of B+.xV. This can be expressed by saying that

the following expression is required to be true:
A/N=B+.xV
For example, if

B«2 2p1 2 2 3

N<3 4
V<1 1
B+ . xV

N=B+.,xV
1 0

A/N=B+,xV
0

then the first element of B+,xV agrees with the first
element of ¥, but V is not a solution of the equation
N=B+,xV since the elements do not all agree, as shown by the
zero value resulting from the expression A/¥=B+.xV,
However, the vector 1 2 is a solution as shown below:

V<"1 2

B+ .xV
3 4

N=B+.,xV
1 1

A/N=B+ xV
1

#H3-4
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16.4. BASIC SOLUTIONS
A solution of the equation
A/1 0 = B+.xV
or of the equation
A/O 1 = B+.xV

will be called a basic solution.

important properties:

Basic solutions have two

They are rather easy to obtain.

They can be used to determine solutions to the
equation A/N=B+.xV for any value of V.

The second matter will be explored first, that is, we will
first assume that we know two basic solutions V1 and V2 such
that

A/1 0=B+.xV1

A/O 1=D+.xV2

and will show how V1 and V2 can be used to determine a
solution to the general equation A/N=B+.xV, The matter of
how to determine V1 and V2 themselves will be deferred to
the succeeding section.

if V1 and V2 are basic solutions for a matrix B, then
the vector

Ve (N[1IxV1)Y+(N[2]IxV2)

is a solution of the equation A/N=B+.xV,
1s the matrix

For example, if B

L 2
1 3
then

Vi<.3 ~.1
Vo«eT. 2 .u

are basic solutions, for:
B+.xV1

B+.xV2
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Moreover, if N<«3 5, then:

V<(N[1] xV1)Y+(N[2] xV2)
14

0.1 1.7
B+.xV

3 5

and V is indeed a solution of the equation A/N=B+.xV.

The method is based on two simple facts:

1) B+.xSxV is equal to SxB+.xV for any scalar &

2) B+.xP+@ is equal to (B+.xP)+(B+.x@)
(Distributivity of +.x over +)

The first of these facts is

easily established and the

second was established in Exercises in Chapter 15.

The following arguments can now be used to show that
V«(N[11xV1)+(N[21xV2) is in fact a solution of the equation

A/N=B+ .xV:

B+.xV

Bt .x((N[11xV1)+(N[2]xV2))
(B+.xN[11xV1)+(B+.xN[21IxV2)
(N[11xB+.xV1)+(N[2]xB+.xV2)
(F[11x1 0)+(N[21x0 1)
(N[13,0)+C0,N[2])

N

16.5. DETERMINING BASIC SOLUTIONS

Definition of V

Fact 2

Fact 1

Definition of V1 and V2

We now address the problem of finding basic solutions,

that is,

of equations:
A/1 0 = B+.xV1
A/O 1 = B+.xV2

finding solutions V1 and V2 for the following set
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If one has a vector V4 such that B+.xVA is equal to
5,0 then Vi1«(:8)xV4 is a basic solution. For example:

B
1 3
4 2
V4
2 Tu
B+.xVA
“10 ©
Vi«(:710)xV4
V1
.2 .
B+.xV1
1 0

The foregoing is a simple application of Fact 1 of the
preceding section. Moreover, the expression (:S5)xVA4 can be
written equivalently as V43S,

To find a basic solution we can therefore begin with
the simpler problem of finding a vector VA such that B+.xV4
is equal to 5,0 for any value of S. It is easy to choose a
value of VA4 such that the second element of B+.xVA is zero;
simply take the second row of B, reverse the sign of its
first element, and then reverse the order of its elements.
In other words:

VA+d T1 1xB[2;])

For example, if B is the matrix

1 3
q 2
then
W2 Second row of B (that is, B[2;])
4 2 Reversal of sign (1 1xB[2;])
2 Tu Reversal of order (¢ 1 1xB[2;])
B+.x2 &4
T10 0

Hence if VA<2 "4, then B+.xVA is ~10 0. Moreover, V1«VA: 10
is a basic solution:

Vi«VA: 10
|41

L2 b
B+.,xV1

B7~9
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The following set of egquivalent statements show why
the second element of B+.xVA 1is zero when VA is determined
by the foregoing procedure:

(B+.xV4a)[2]
BL2:;1+.xVA
+/BL2; IxVA

Second element of B+.xVA
Definition of inner product
Definition of inner product
+/B{231x071 1xB[2;] Choice of V4
+/B[231xB[2;2],-B[2;1] Reversals of sign and order
+/(B[23;11,B[2;2])x(B[2;2],-B[2;11)
(B[23;11xB[2;2]1)+(B[2;21x-B[2;11)
0

The entire procedure for determining the basic
solution V1 can therefore be summarized as follows:

VA«b™1 1xB[2;]
R1+B+.xV4
Vi«VA+R1[1]

It should be clear that a similar procedure applies to the
second basic solution V2 such that A/0 1 = B+.xV2, It is

only necessary to interchange the roles of the first and
second elements as may be seen by comparing the pair of
procedures below:
VA<6™1 1xB[2;] VB«61 “1xB[1;]
R1<«B+.xVA R2+«B+.xVB
Vi«VA:R1[11] V2«VB+R2[2]
For example:
B
3 5
2 4
VA+¢~1 1xB[2;] VB+$1 T1xB[1;]
va VB
b T "5 3
R1«R+.,xVA R2«B+,xVB
R1 R2
2 0] 0 2
Vi«VA+R1[1] V2+VB+R2[2]
Vi V2
2 "1 2.5 1.5
B+.xV1 Bt.xV2
1 Q o] 1

#10
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16.6. SIMPLIFIED CALCULATIONS FOR BASIC SOLUTIONS

Examination of the procedures for determining basic
solutions shows that certain simplifications can be made.
For example, in calculating R1<B+.xV4, only the first
element of R1 need be calculated since it is the only one
used 1in the expression Vi<V4A:R1[1]. Thus R1[1] can be
computed as B[1;]1+.xV4, which requires only half as much
computing as does B+.xV4A. On the other hand, it may be wise
to do the whole calculation B+.xVA since the value of the
second element (which must be zero if VA has been computed
correctly) is a check on the work thus far.

to the calculation of »2{2] for
the second basic solution; that is, R2[27 is B[2;1+.xVE.
Moreover, E2[2] need not be computed at all since it is
equal to R1[1], as you may have noticed in previous examples
and exercises. The reason for this appears in the following
identity, in which the first line is the expression for
R1[1] and the second line is the expression for R2[2]:

Similar remarks apply

+/(B[1311,B[132])x(B[232],-B[2;11])
+/(B[23;11,BL2352])x((-B[1:;21),B[1;11)

Taking either of these expressions for r1[11], it is
clear that if B is a matrix having the elements P, ¢, R, and
S as follows:

P @

R S
then F1[1] is equal to (PxS)-(gxR). In other words, one
takes the product of the first element with the one

diagonally opposite and subtracts from it the product of the
remaining two elements., For example, if B is the matrix

5 2
7 4

then the value of R1[1] is (5x4)-(2x7), that is, 6

Continuing with this example, the whole computation of
V1 can be expressed as follows:

Vied “7+(5x4)-(2x7)
Similarly, V2 is obtained as follows:

Vo< 2 5:(5x4)-(2x7)

11
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THE DETERMINANT FUNCTION

The expression for Ri1[1]

the preceding section is

(or for R2[2]) developed in

a very ilmportant function called

It was also shown that if B is the matrix

then the determinant of B is the expression (PxS5)-(gxR).

follow

The
S:

determinant function may be defined formally as

V Z«DEFT B

[1]

Z«(B[1;11xBl[2;2]))-(B[1;2]1xB[2;1])V

For example:

of this chapter.
square matrices of dimensions higher than
must be emphasized that the function

B+«2 2p5 2 7 4

The function DET will be used throughout the remainder

by 2 matrices.

16.8.

and V2

MATRIX

It
as

is
a

whose second

3
2

5
n

FORM OF THE BASIC SOLUTIONS

convenient to
single matrix
column is V2.

The notion

of determinant is used for

2 by 2, but it

DET applies only to 2

represent the basic solutions V1
BS whose first column is V1 and

For example,

if B is the matrix

then Vi«2 "1 and V2« 2.5 1.5 and the matrix BS is

2
1

T2,
1.

5
5

E12-15

Since B+.xV1 is 1 0, the first column of B+.xBS is 1 0 and
similarly the second coclumn is 0 1. Thus
B+t.xBS
1 0
o] 1

Recalling the names VA and VB used in first deriving
basic solutions:

VA«<d™1 1xB[2;]
VB<«d 1 “1xB[1;]

and the fact that V1 and V2 are obtained by dividing these
vectors by the determinant of B:

V1<VA:DET B
V2«VBsDET B

Then if M is the matrix whose columns are the vectors VA and
VB, it follows that the matrix BS of basic solutions can be
obtained from M as follows:

BS«M:DET B

The matrix # can be determined as follows. Suppose
that the elements of B are called P, @, R, and S as follows:

P @

kR S
then the first column of ¥ is (S5,-R) and the second column
is ((-@),P). Hence M is

S -Q
-k P

In other words M is obtained from B by simply interchanging
the first element of B with the one diagonally opposite, and
reversing the signs of the remaining two elements. Finally,
the matrix of basic solutions BS is obtained by dividing M
by the determinant of B.

To summarize, if B is the matrix
P Q
kR S

form the matrix

and divide it by the determinant (PxS)-(@QxR) to obtain the
matrix of basic solutions.
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For example:

B M DET B BS
9 8 6 8 “10 ~.6 8
8 € "8 9 8 .9
B+.x8S
1 0
0 1
16.9. THE GENERAL SOLUTION FROM THE MATRIX OF BASIC
SOLUTIONS
In section 16.4 we saw that the solution of the
general linear equation
A/U=Bt.<V
could be obtained from the basic solutions V1 and V2 as

follows:
V(N[ 1]IxV1)+(N[2]xV2)

This can be written more neatly in
basic solutions 55 as follows:

terms of the matrix of

V+BS+.x¥

For example, if

N+5 &
Vi<2 3
V2«y 5

then BS is

2 4

3 5
and

N[1]1 xV1
10 15

N[2] xV2
24 30

(N[1] xV1)+(N[2] xV2)
34 45

BS+.xN
34 45

Ele-17

£18-19
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We will now show that S+, xN is equivalent to
(N[1IxV1)+4(N[21xV2) by showing that each of their two

elements agree. Beginning with the first element:
(BS+.xN)[1]

BS[1;1+.xN
(BS[1;1)x0011)+(BSL1521xN[2])
(VI01Ix#011)+(V2l11IxN02])
(N2 dxvail1)+(nr23=xval11)
CONL1IxV1)+(NL2]xV2))[1]

Definition of inner product
Definition of inner product
Definition of BS
Commutativity of x
Definition of indexing

A similar proof applies for the second element.

16.10, THE INVERSE LINEAR FUNCTION

In the preceeding section we saw that 1f BS is the
matrix of basic solutions for the matrix 2, then BS+.xN 1s a
solution of the general equation

A/N=Bt.xV

Consequently
yields V.

if Vv 1is any vector and N<«B+.xV then BS+.xN

In other words

BS5+.x{B+.xV)

yvields V. Therefore the function BS+.xV is the linear
function inverse to the function B+.xV,
Since the inverse relationship 1is mutual, the

expression
B+.x(BSt.xV)

also yields V.

16.11. PROPERTIES OF THE INVERSE LINEAR FUNCTION
As noted in the preceding section

BS+.x(B+.xV)
4

B+.x(BS+.xV)

Since the inner product +.x is associative, it also follows

that

(BS+.xB)+.xV
(B+.xBS)+.xV
14
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But the only matrix which multiplied by any vector V yields
V is the identity matrix I which has the value

1 0

0 1
Hence

BS5+.xB

B+.xBS

I

It 1is already clear that B+.xBS yields the identity
matrix, since the columns of BS are the basic solutions for

B and the columns of B+.xBS are therefore 1 0 and 0 1. The
reader may wish to verify that BS+.xB is also equal to the
identity matrix for each of the corresponding values of BS
and B determined in earlier examples and exercises.

16.12. ALTERNATIVE DERIVATION OF THE INVERSE LINEAR FUNCTION

The linear function BS+.xV inverse to B+.xV was first
determined by computing BS as the matrix of basic solutions
for B. The method used applies only for vectors V of
dimension 2 and cannot be applied for higher dimensions. We
will now develop an alternative method which is somewhat
more difficult but which has the important advantage that it
applies to higher dimensions.

Since BS+.xV is inverse to B+.xV only if BS+.xB is the
identity matrix, we can pose the problem as follows: find a
matrix BS such that BS+.xB is the identity matrix. We will
determine BS in several steps. Thus if H1 is a matrix such
that #1+.xB is "closer" to the identity than B itself, we
may find a second matrix A2 such that #2+.x(H1+.xB) 1is even
c¢loser to the identity. Suppose that in four such steps the
result

Hu+ x(H3+.,x(H2+.,x(H1+.%xB)))

is equal to the
associative):

identity matrix. Then (because +.x is

(HU+.xH3+ . xH2+.xH1)+.xB
is also egual to the identity matrix. Hence
BS<«Hu4+ . xH3+ . xH2+.xH1

is the required inverse matrix.

£22-23
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For example:
B«<2 2 o 5 3 4 2
B
5 3
L2
Hl«2 2 p .2 0 C 1
H1
.2 0
0 1
H1+.xB
1 .6
b2
H2<«2 2 p 1 0 4 1
H?2
1
TR
H2+.x(H1+.xB)
1 .6
0 .4
H3«2 2 p 1 0 0 ~2.5
H3
1 0
0 2.5
H3+.x(H2+.x(H1+.xB))
1 .6
o 1
Hu<2 2 p 1 ~.6 0 1
Hu4
1 7.6
0 1
Hu+ . x(H3+ . x(H2+.x{(H1+.xB)))
1 0

1
BS<«Hu+ ,xH3+.,xH2+,xH1

BS
1 1.5
2 T2.5
BS+.xB
1 0

0 1

There are a number of points to observe in the
foregoing sequence. Each of the matrices # themselves
differ from the identity in only one element. H1t+.xB 1is

closer to the identity than B in the sense that the first
element is 1; thus the first element of H1 was chosen as
the reciprocal of 5 so as to divide the first row of B by 5.
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The matrix H2 was chosen so that the second row of the
result would be obtained by adding 4 times the first row to
the second row, thus making the first element in the second
row of the result zero. Thus the element H2[2;1] was chosen
as -(H1+.xB)[2;1]. The result #2+.x(FH1+.xF) therefore
agrees with the identity in the entire first column.

The matrices H3 and K4 are chosen similarly to make

the second column agree; H3 multiplies the second row by
the reciprocal of the last element of the matrix
H2+.xH1+.xB, and HY4 adds the appropriate multiple of the

second row to the first so as to make the upper right
element of the result zero.

It will Dbe 1instructive to repeat the foregoing
sequence using a name BT for the intermediate results
produced so that we write BT<«B and BT<H1+.xBT and
BT<H?2+,xBT, etc, Moreover, if we first set BS to be the
identity matrix, and then write BS<«H1+,xF5 and BS<«H2+.xE5S,
etc., the final value of BS will be the required product of
the # matrices. Thus:

ET<«B BS«2 2 p 1 0 0 1
BT BS
5 3 10

4 2 0 1
BT<«H1+.xBT BS<«H1+.xEBS
BT BS

1 .6 .2 0

y o2 0 1
BT BT<«H?2+ .xBT B5+H2+,xBS
BT RS

1 6 L2 0

ooTLh .8 1
BT<«H3+ . xBT BS+H3+.xBS
BT BS

1 .6 .2

0 1 2 2.5
BT<Hu4+ . xBT BS<«Hu+ xBS
BT BS

1 0 1 1.5

0 1 2 T2.5
BS+.xB

1 0
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Finally, since Z; and BT are subjected to the same
sequence of multiplications, we can combine the matrices BT
and BS 1into a single matrix 3/ whose first two columns
represent BT and whose last two columns represent BS. The
foregoing computation then appears as follows:

J«<2 2 p 1 0 0 1
7
1 0
0 1
M<B,T
M
5 3 1 0
i 2 0 1
Me<H1+ . xM
M
1 6 ) 0
n e 0 1
M<H2+ . x}
1 .6 2 0
0 T.u4 .8 1
M<H3+ . xi{
1 .6 .2
1 2 "2.5
M<Hu+, xH
!
1 0 1 1.8
0 1 2 2.5

The last two columns of ¥ are the required inverse.

In other words, if we append the identity matrix to
the right of B and multiply the resulting matrix by any
sequence of matrices such that the first two columns become
the identity matrix, then the last two columns will be the
inverse of the matrix B.



It may be noted that each of the matrices F were
chosen such that each multiplication #+.x¥ affected only one
row and affected that row in one of two simple ways:

It multiplied the row by a scalar (chosen so as to
make the diagonal element of the row equal to 1

It added to the row some multiple of another row
(chosen so as to make one of the elements zero).

We can perform such a seguence of calculations without
actually writing out the matrices # which produce them. To
illustrate this we repeat the preceding example in this form
together with notes showing what calculations were

performed:
B,I
5 3 1 0
4 2 0 1
1 .6 2 0 Row 1 is multiplied by :5
4 2 0 1
1 . E .2 0
0 ~.u4 .8 1 "4 times row 1 is added to row 2
1 € .2 0
0 1 2 2.5 Row 2 is multiplied by : .4
1 0 1 1.5 7.6 times row 2 is added to row 1
0 1 2 2.5

The foregoing should be compared carefully with the
earlier example which used the matrices K1, F2, etc. This
method for determining the inverse of a matrix is called the

16.13. EFFICIENT SOLUTION OF A LINEAR EQUATION

A solution to the equation A/N=F+.xV can be obtained
by determining the matrix BS which is inverse to B and then
computing V<BS+.xN to obtain the solution. A modification
of the Gauss-Jordan method can provide the solution more
efficiently as follows: apply the Guass-Jordan method to
the matrix B,V instead of to B,I and the last column of the

E24

result will be the desired solution. For example, if ¥ is
the vector 4 6 and B is the matrix of the preceding example,
then:

B,N

S5 3 4
n 2 6
1 .6 .8
2 6

1 .6 .8
.4 2.8

1 .6 .8
0 1 77
1 0 5
0 1 7

The solution is therefore 5 ~7. This may be checked as

follows:

B+.x5 ~7
4 )

N
4 [

16.14, INVERSE LINEAR FUNCTIONS IN THREE DIMENSIONS

If Vv is a vector of 3 elements and B is a 3 by 3
matrix, then B+.xV is a linear function of V. The inverse
function BS+.xV can be determined by the Gauss-Jordan
method. The reason it works is the same as in the case of
two elements, namely, if B is multiplied by a sequence of
matrices until the result becomes the identity matrix, then
the product of that sequence of matrices is a matrix BS such
that BS+.xB is the identity. In other words, BS is the
inverse of B. The Gauss-Jordan method is simply an
efficient way of keeping track of the product of the
sequence of matrices applied to B.

The general scheme is to first reduce the first column
to 1 ¢ 0, then reduce the second column to 0 1 ¢, then the
third column to 0 0 1. The first operation for the first
column is to divide the first row by its first element. The
next is to add a multiple of the first row to the second,
and the next is to add a multiple of the first row to the
third. On the second column we first divide the second row
by its second element and then add multiples of it to rows 1



-227- -228-

and 3. On the third column we first divide the third row by 16.15. THE INVERSE FUNCTION
its third element and then add multiples to rows 1 and 2.
For example: We have seen that if BS+.xB 1is the identity matrix,
then the function BS+.xV is inverse to the function B+.xV.
B«<3 3p2 1 3 1 0 24 0 & For this reason the matrix 55 is said to be the inverse of
B the matrix 3. The inverse of a matrix is an important
2 1 3 function which will be assigned the symbol E. Thus if P<Bg,
i 8 ﬁ then P+.x& and &¢+.xP are both equal to the identity matrix.
B,3 3p1 00 01 00 01 Moreover, (B@)+.xV is the solution of the equation
2 1 3 1 0 0 A/N=BE+.xV, This is easily seen by substituting the solution
1 0 2 0 1 0 (BE@)+.x¥ for V obtaining:
u 0 4 0 0 1
A/N=g+ . x(BQ)+.x¥
1 5 1.5 5 0 0 Multiply row 1 by =2 A/N=(Q+. xEl@)+.x¥ Associativity of +.x
1 0 2 0 1 0 A/N=T+.xN Q+.xH@ is the identity I
0 4 0 1 A/N=N
1
1 .5 1.5 .5 0 0
0 .5 .5 L5 1 0 Add 1 times row 1 to row 2 The solution of the equation A/N=Q+.xV is also an
0 T2 T2 T2 0 1 Add "4 times row 1 to row 3 important function of ¥ and ¢ and will be assigned the
symbol £ as a dyadic function; that 1is, NBQ yields the
1 .5 1.5 5 0 0 solution of the equation A/N=Q+.xV. In other words:
0 1 1 1 2 0 Multiply row 2 by : .5
0 "o T2 T2 0 1 NEg
(Be)+.xw
1 0 2 1 0 Add T.5 times row 2 to row 1 Ej29-32
1 1 1 T2 0
0 0 Tu 0 T4 1 Add 2 times row 2 to row 3
1 0 _2 0 1 0 16.16. CURVE FITTING
1 1 1 2 0]
0 0 1 0 17,28 Multiply row 3 by =74 In Chapter 10, the problem of fitting a function F was posed
as follows: given a table of a vector of arguments X and the
1 0 0 o 1 .5 Add "2 times row 3 to row 1 corresponding vector Y<F X, determine a function E defined
1 0 1 1 T.2% Add 1 times row 3 to row 2 by some expression such that £ X is equal to Y. In Chapter
0 0 1 0 1 7.25 10 this problem was solved by constructing a difference
table and wusing its first row to determine multipliers of
The desired inverse is in the last 3 columns, that is: factorial polynomials whose sum became the required
expression. This solution applied only to a set of
B5+3 3p0 "1 .51 "1 7,25 0 1 ~.25 arguments X of the form 0,1V,
B3
0 1 .5 In Chapter 11 the method was extended to apply to any
1 1 T 28 set of equally spaced arguments, that is, to any set of
0 1 7,25 arguments X of the form A+Bx1/N. Moreover, in Chapter 14 a
B5+.,xB simpler equivalent expression was found which involved a
1 0 0 polynomial rather than the factorial polynomials, However,
0 1 0 the method still applied only to equally spaced arguments.
0 0 1
B+ ,xBS The inverse linear function can now be applied in a
1 0 0 simple manner to obtain a solution for any set of arguments
0 1 Q
0 0 1

£)26-28



X. We seek a vector of coefficients (¢ such that the
polynomial ¢ POL X is equal to the required set of function
values Y, that is:

A/Y=C POL X

Recalling the definition of the polynomial function
from Section 13.6, this requirement may be written as
follows:

A/Y=(Xo * 1+1pC)+.%xC

Furthermore, because ¢ must have the same number of elements
as X, the expression 10(C may be replaced by 1pX so that the
outer product in the foregoing expression becomes a function
of X only. Thus:

A/Y=(Xeo. % 1+1pX)+.7C

This is clearly a linear equation with a given value of Y, a
given matrix Xe.* 1+1pX, and an argument ( whose values are
to be determined. Hence the required value of (¢ is given by
the expression:

YE(Xo.* 1+1pX)
For example, if X<0 3 4 6 8 (not equally spaced) and

if 7 is the function +/(1X)*3, then ! has the value 0 36 100
441 1296, and the square matrix Xo.x 1+1p(C has the value:

0 0 0
9 27 81
16 64 256

36 216 1296
64 512 4096

N
@O F WO

The solution may then be obtained by appending the vector Y
as a final column on this matrix and applying the efficient
method of Section 16.13 to the resulting matrix shown below:

0 0 0 0
9 27 81 36
16 64 256 100

36 216 1296 441
ou 512 4096 1296

[
@ D F WO

The solution is:
C«0 0 0.25 0.5 0,25

This result may be checked by evaluating the polynomial
¢ P O 3 4 6 8.

Appendix

ALGEBRA AS A LANGUAGE

INTRODUCTION

Although few mathematicians would quarrel with the
proposition that the algebraic notation taught in high
school 1is a language (and indeed the primary language of
mathematics), yet little attention has been paid to the
possible implications of such a view of algebra. This paper
adopts this point of view to illuminate the inconsistencies
and deficiencies of conventional notation and to explore the
implications of analogies between the teaching of natural
languages and the teaching of algebra. Based on this
analysis it presents a simple and consistent algebraic
notation, illustrates its power in the exposition of some
familiar topics in algebra, and proposes a basis for an
introductory course in algebra. Moreover, it shows how a
computer can, if desired, be used in the teaching process,
since the language proposed is directly usable on a computer
terminal.

ARITHMETIC NOTATION

We will first discuss the notation of arithmetic,
i.e., that part of algebraic notation which does not involve

the use of variables. For example, the expressions 3-4 and
(3+4)-(5+6) are arithmetic expressions, but the expressions
3-X and (X+4)-(Y+6) are not. We will now explore the

anomalies of arithmetic notation and the modifications
needed to remove them.

Functions and symbols £for functions. The importance of
introducing the concept of "function" rather early in the
mathematical curriculum is now widely recognized,
Nevertheless, those functions which the student encounters
first are usually referred to not as "functions" but as
"operators", For example, absolute value (]-3|) and
arithmetic negation (-3) are wusually referred to as
operators. In fact, most of the functions which are so
fundamental and so widely used that they have been assigned
some graphic symbol are commonly called operators
(particularly those functions such as plus and times which
apply to two arguments), whereas the less common functions
which are usually referred to by writing out their names
(e.g., Sin, Cos, Factorial) are called functions,

This practice of referring to the most common and most
elementary functions as operators is surely an unnecessary
obstacle to the understanding of functions when that term is
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first applied to the more complex functions encountered.
For this reason the term "function" will be used here for
all functions regardless of the choice of symbols used to
represent them.

The functions of elementary algebra are of two types,
taking either one argument or two. Thus addition is a
function of two arguments (denoted by X+Y) and negation is a
function of one argument {(denoted by -Y). It would seem
both easy and reasonable to adopt one form for each type of
function as suggested by the foregoing examples, that is,
the symbol for a function of two arguments occurs between
its arguments, and the symbol for a function of one argument
occurs before its argument. Conventional notation displays
considerable anarchy on this point:

1. Certain functions are denoted by any one of
several symbols which are supposed to be synonomous
but which are, however, used in subtly different ways.
For example, in conventional algebra X~xY and XY both
denote the product of % and Y. However, one would
write either 3»Y or 3X or ¥x23, or 4x4, but would not
likely accept X3 as an expression for ¥x3, nor 3 u as
an expression for 3xu, Similarly, Y:Y and X/Y are
supposed to be synonomous, but in the sentence "Reduce
3/6 to lowest terms”, the symbol / does not stand for
division,

2. The power function has no symbol, and is denoted
f H"

by position only, as in X . The same notation is

often used to denote the Nth element of a family or

array X.

3. The remainder function (that 1is, the integer
remainder on dividing X into Y) 1is used very early in
arithmetic (e.g., in factoring) but is commonly not
recognized as a function on a par with addition,
division, etc., nor assigned a symbol, Because the
remainder function has no symbol and 1is commonly
evaluated by the method of long division, there is a
tendency to confuse it with division. This confusion
is compounded by the fact that the term "quotient”
itself is ambiguous, sometimes meaning the quotient
and sometimes the integer part of the quotient.

4. The symbol for a function of one argument
sometimes occurs before the argument (as in -4) but
may also occur after it (as in 4! for factorial u4) or
on both sides of it (as in |X| for absolute value of
X).
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Table 1 shows a set of symbols which can be used in a
simple consistent manner to denote the functions mentioned
thus far, as well as a few other very useful basic functions
such as maximum, minimum, integer part, reciprocal, and
exponential. The table shows two uses for each symbol, one
to denote a monadic function (i.e., a function of one
argument) , and one to denote a dyadic function (i.e., a
function of two arguments). This is simply a systematic
exploitation of the example set by the familiar use of the
minus sign, either as a dyadic function (i.e., subtraction

as in u4-3) or as a monadic function (i.e., negation as in
-3). No function symbol is permitted to be elided; for
example, XxY may not be written as X7I.
Monadic form B3 f Dyadic form AfRB

Definition Name Name Definition

or example or example
+3 > 043 Plus + Plus 2+3.2 > 5.2
-3 <> 0-3 Negative - Minus 2-3,2 > 1.2
x3 <> (3>0)-(3<0) Signum « Times 2%x3,2 <> 6.4
i3 > 133 Reciprocal : Divide 2:3.,2 «>0,625

B (B LB Ceiling [ Maximum 377 <-+ 7

3.14 4 3

3.1% 73 Ty Floor [ Minimum 3[7 <> 3
*3 <> (2,7182800)*3 Expon- *x Power 2%x3 <> 8

ential
Bx5 «> 5 > x@5 Natural @ Loga- 1083 <> Log 3 base 10
logarithm rithm 1083 +» (®3):e10
72,14 «> 3,14 Magnitude | Remain- 3|8 <> 2
der
TABLE 1

A little experimentation with the notation of Table 1
will show that it can be used to express clearly a number of
matters which are awkward or impossible to express in
conventional notation. For example, X:Y is the quotient of
X divided by Y; either |[(X:Y) or ((X-(Y|X)):Y yield the
integer part of the quotient of X divided by Y; and X7 (-X)
is eguivalent to |X.
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In conventional notation the symbols <, <, =, =2, >,
and *# are used to state relations among quantities; for
exanmple, the expression 3<4 asserts that 3 is less than 4.

It is more useful to employ them as symbols for dyadic
functions defined to yield the wvalue 1 if +the indicated
relation actually holds, and the value zero if it does not.
Thus 3<4 yields the value 1, and 5+(3<u4) yields the value 6.

Arrays. The ability to refer to collections or arrays of
items is an important element in any natural language and is
equally important in mathematics. The notation of vector
algebra embodies the wuse of arrays (vectors, matrices,
3-dimensional arrays, etc.) but in a manner which 1is
difficult to learn and limited primarily to the treatment of
linear functions. Arrays are not normally included in
elementary algebra, probably because they are thought to be
difficult to learn and not relevant to elementary topics.

A vector (that is, a l-dimensional array) can be
represented by a list of its elements (e.gq., 1 35 7) and
all functions can be assumed to be applied

element-by-element. For example:

1 2 3 4 x 4 3 2 1 produces

Similarly:
1 2 3 4 + 4 3 2 1
5 5 5 5
H 1 2 3 &
1 2 6 24
1 2 3 4 * 2
1 4 g 16
2 x 1 2 3 4
2 4 8 16

In addition to applying a function to each element of
an array, it is also necessary to be able to apply some
specified function to the collection itself. For example,
"Take the sum of all elements", or "Take the product of all
elements", or "Take the maximum of all elements". This can
be denoted as follows:

+/2 5 3 2
12

x/2 5 3 2
60

[/2 5 3 2
5
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The rules for wusing such vectors are simple and
obvious from the foregoing examples. Vectors are relevant
to elementary mathematics in a variety of ways. For
example:

1. They can be used (as in the foregoing examples) to
display the patterns produced by various functions
when applied to certain patterns of arguments.

2. They can be used to represent points in coordinate
geometry. Thus 5 7 19 and 2 3 7 represent two points,
5 719 - 2 3 7 yields 3 4 12, the displacement between
them, and (+/(5 7 13 - 2 3 7)*2)*.5 yields 13, the
distance between them.

3. They can be used to represent rational numbers.
Thus if 3 4 represents the fraction three-fourths,

then 3 4 x 5 6 yields 15 24, the product of the
fractions represented by 3 4 and 5 6. Moreover, :/3 4
and :/5 6 and /15 24 vyield the actual numbers

represented.

4. A polynomial can be represented by its vector of
coefficients and vector of exponents. For example,
the polynomial with coefficients 3 1 2 4 and exponents
0 1 2 3 can be evaluated for the argument 5 by the
following expression:

+/3 1 2 4 x 5 % 0 1 2 3

558
Constants. Conventional notation provides means for writing
any positive constant (e.g., 17 or 3.14) but there is no

distinct notation for negative constants, since the symbol -
occurring in a number like -35 is indistinguishable from the
symbol for the negation function. Thus negative thirty-five
is written as an expression, which is much as 1if we
neglected to have symbols for five and =zero because
expressions for them could be written in a variety of ways

such as 8-3 and 8-8.

It seems advisable to follow Beberman [1] in using a
raised minus sign to denote negative numbers. For example:

3 - 5 43 21
2 1 0 1 2

Conventional notation also provides no convenient way
to represent numbers which are easily expressed in
8 9
expressions of the form 2.14x10 or 3.265x10 . A useful
practice widely used in computer languages is to replace the
symbols x10 by the symbol E (for exponent) as
follows: 2.14FE8 and 3.265FE 9,
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Qrder af execution. The order of execution in an algebraic
expression is commonly specified by parentheses. The rules
for parentheses are very simple, but the rules which apply
in the absence of parentheses are complex and chaotic. They
are based primarily on a hierarchy of functions (e.q., the
power function is executed before multiplication, which is
executed before addition) which has apparently arisen
because of its convenience in writing polynomials.

Viewed as a matter of language, the only purpose of
such rules 1is the potential economy in the use of
parentheses and the consequent gain in readability of
complex expressions. Economy and simplicity can be achieved
by the following rule: parentheses are obeyed as usual and
otherwise expressions are evaluated from right to left with
all functions being treated equally. The advantages of this
rule and the complexity and ambiguity of conventional rules
are discussed in Berry [2], page 27 and in Iverson [3],
Appendix A. Even polynomials can be conveniently written
without parentheses if use i1s made of vectors. For example,
the polynomial in X with coefficients 3 1 2 4 can be written
without parentheses as +/3 1 2 4 x X = 0 1 2 3, Moreover,
Horner's expression for the efficient evaluation of this
same polynomial can also be written without parentheses as
follows:

3+Xx1+Xx2+X x4

Analogies with Natural Languange. The arithmetic expression

3x4% can be viewed as an order to do something, that is,
multiply the arguments 3 and 4. Similarly, a more complex
expression can be viewed as an order to perform a number of
operations in a specified order. In this sense, an
arithmetic expression is an imperative sentence, and a
function corresponds to an imperative verb in natural
language. Indeed, the word "function" derives from the

latin verb "fungi" meaning "to perform".

This view of a function does not conflict with the
usual mathematical definition as a specified correspondence
between the elements of domain and range, but rather
supplements this static view with a dynamic view of a

any specified element of the domain.

If functions correspond to imperative verbs, then
their arguments (the things upon which they act) correspond
to nouns. In fact, the word "argument" has (or at least
had) the meaning topic, theme, or subject. Moreover, the
positive integers, being the most concrete of arithmetical
objects, may be said to correspond to proper nouns.
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What are the roles of negative numbers, rational
numbers, irrational numbers, and complex numbers? The
subtraction function, introduced as an inverse to addition,
yields positive integers in some cases but not in others,
and negative numbers are introduced to refer to the results
in these cases. In other words, a negative number refers to
a process or the result of a process, and is therefore
analogous to an abstract noun. For example, the abstract
noun "justice" refers not to some concrete object (examples
of which one may point to) but to a process or result of a
process. Similarly, rational and complex numbers refer to
the results of processes; division, and finding the zeros
of polynomials, respectively.

ALGEBRAIC NOTATION

Names., An expression such as 3xX can be evaluated only if

the variable X has been assigned an actual value. In one
sense, therefore, a variable corresponds to a pronoun whose

referent must be made clear before any sentence including it

can be fully understood. In English the referent may be
made clear by an explicit statement, but is more often made
clear by indirection (e.g., "See the door. Close it."), or

by context.

In conventional algebra, the value assigned to a
variable name is usually made clear informally by some
statement such as "Let X have the value 6" or "Let X=6".
Since the equal symbol (that is, '=") is also used in other
ways, it is better to avoid its use for this purpose and to
use a distinct symbol as follows:

X<6

Y+«3x4

X+Y
18

(X-3)x(X-5)
3

Assigning Names to Expressions. 1In the foregoing example,
the expression (X-3)x(X-5) was written as an instruction to
evaluate the expression for a particular value already
assigned to X. One also writes the same expression for the
quite different notion "Consider the expression (X-3)x(X-5)
for any value which might later be assigned to the argument
x." This is a distinct notion which should be represented
by distinct notation. The idea is to be able to refer to
the expression and this can be done by assigning a name to
it. The following notation serves:

VZ-<+GX
Z+(X-3)x(X-5)V



The v's indicate that the symbols between them define

a function; the first 1line shows that the name of the
function is G. The names X and Z are dummy names standing
for the argument and result, and the second line shows how

they are related.

Following this definition, the name G may be used as a
function. For example:

G 6
3

G 12 34567
8 30 10 3 8

Iterative functions can be defined with equal ease
(Iverson [3]) but the mechanics will not be discussed here.

Form of Names. If the variables occurring in algebraic
sentences are viewed simply as names, it seems reasonable to
employ names with some mnemonic significance as illustrated

by the following sequence:

LENGTH+<6
WIDTH+5
AREA«LENGTHxWIDTH
HETGHT <4
VOLUME<AREAXHEIGHT

This is not done in conventional notation, apparently
because it 1i1s ruled out by the convention that the
multiplication sign may be elided; that is, AREA cannot be
used as a name because it would be interpreted as AxRxEx4,

This same convention leads to other anomalies as well,
some of which were discussed in the section on arithmetic
notation. The proposal made there (i.e., that the
multiplication sign cannot be elided) will permit variable
names of any length.

ANATOGIES WITH THE TEACHING OF NATURAL LANGUAGE

If one views the teaching of algebra as the teaching
of a language, it appears remarkable how little attention is
given to the reading and writing of algebraic sentences, and
how much attention is given to identities, that is, to the
analysis of sentences with a view to determining other
egquivalent sentences; e.g., "Simplify the expression
(X-4) x (X+4) " It is possible that this emphasis accounts
for much of the difficulty in teaching algebra, and that the
teaching and learning processes in natural languages may
suggest a more effective approach.

In the learning of a native language one can
distinguish the following major phases:

1. An informal phase, in which the child learns to
communicate in a combination of gestures, single
words, etc., but with no attempt to form grammatical
sentences.

2. A formal phase, in which the child learns to
communicate in formal sentences. This phase is
essential because it is difficult or impossible to
communicate complex matters with precision without
imposing some formal structure on the language.

3. An analytic phase, in which one learns to analyaze
sentences with a view to determining equivalent (and
perhaps "simpler" or "more effective") sentences. The
extreme case of such analysis 1is Aristotelian Logic,
which attempts a formal analysis of certain classes of
sentences. More practical everyday cases occur every
time one carefully reads a composition and suggests
alternative sentences which convey the same meaning in
a briefer or simpler form.

The same phases can be distinguished in the teaching
of algebraic notation:

1. An informal phase in which one issues an
instruction to add 2 and 3 in any way which will be
understood. For example:

2+3 Add 2 and 3
2 2
3 +3

Add two and three
add // and ///

The form of the expression is unimportant, provided
that the instruction is understood.

2, A formal phase in which one emphasizes proper

sentence structure and would not accept expressions
2

such as 6 x 3 or 6x( add two and three) in lieu of

6x(2+3). Again, adherence to certain structural rules

is necessary to permit the precise communication of

complex matters.

3. An analytic phase in which one learns to analyze
sentences with a view to establishing certain
relations (usually identity) among them. Thus one
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learns not only that 3+4 is equal to 4#+3 but that the
sentences X¥+Y and Y+X are equivalent, that is, vyield
the same result whatever the meanings assigned to the
pronouns X and Y.

In learning a native language, a child spends many
vears in the informal and formal phases (both in and out of
schocl) before facing the analytic phase. By this time she
has easy familiarity with the purposes of a language and the
meanings of sentences which might be analyzed and
trans formed. The situation 1is quite different in most
conventional courses in algebra - very little time is spent
in the formal phase (reading, writing and "understanding"”
foiriral algebraic sentences) before attacking identities
(such ~s commutativity, associativity, distributivity,
etc.). Tndeed, students often do not realize that they
might qiuchily check their work in "simplification" by
substitutingy certain values for the variables occurring in
the original and derived expressions and comparing the
evaluated results to see if the expressions have the same
"meaning", at least for the chosen values of the variables.

It is interesting to speculate on what would happen if
a native language were taught in an analogous way, that is,
if children were forced to analyze sentences at a stage in
their development when their grasp of the purpose and
meaning of sentences were as shaky as the algebra student's
grasp of the purpose and meaning of algebraic sentences.
Parhaps they would fail to learn to converse, just as many
siudents fail to learn the much simpler task of reading.

Another interesting aspect of learning the
nun—analytic aspects of a native language is that much (if
aot most) of the motivation comes not from an interest in
language, but from the intrinsic interest of the material
(in c¢hiidren's stories, everyday dialogue, etc.) for which
it is used. It is doubtful that the same is true in
algebra - ruling out statements of an analytic nature
(identi:ies, etc.), how many "interesting" algebraic
sentences does a student encounter?

The use of arrays can open up the possibility of much
more interesting algebraic sentences. This can apply both
to sentences to be read (that is, evaluated) and written by
students. For example, the statements:

21 2 3 4 5
2x1 2 3 4 5
231 2 3 4 5
1 2 3 4 532
12 3 4 5%2
1 2 3 4 5x5 4 3 2 1
produce interesting patterns and therefore have more

intrinsic interest than similar expressions involving only
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single quantities. For example, the last expression can be
construed as yielding a set of possible areas for a
rectangle having a fixed perimeter of 12,

More interesting possibilities are opened up by
certain simple extensions of the use of arrays. One example
of such extensions will be treated here. This extension
allows one to apply any dyadic function to two vectors 4 and
B so as to obtain not simply the element-by-element product
produced by the expression 4xB, but a table of all products
produced by pairing each element of A with each element of
B. For example:

A«1 2 3
B«2 3 5 7
Ao . xB Ao, +B Ao, *B
2 3 5 7 3 L 6 8 1 1 1 1
4 6 10 14 4 5 7 9 L 8 32 128
6 9 15 21 5 6 8 10 9 27 243 2187
If S«1 2 3 4 56 7, then the following expressions
yield an addition table, a multiplication table, a
subtraction table, a maximum table, an "equal" table, and a

"greater than or equal" table:

So ,+5 Se.[5
2 3 4 5 6 7 8 1 2 3 4 5 8 7
3 n 5 6 7 8 3 2 2 3 4 5 & 7
n 5 5 7 8 3 10 3 3 3 4 5 68 7
5 6 7 8 3 10 11 b o4 4 4 5 & 7
6 7 8 9 10 11 12 5 5 5 5 5 6 7
7 8 9 10 11 12 13 & 6 6 6 6 6 7
8 g 10 1 1?2 13 14 7 7 7 7 7 7 7
So.xX So, =
1 2 3 n 5 6 7 1000000
2 n 6 g8 10 12 14 0100000
3 6 g 12 15 18 21 001000090
n 8 12 16 20 24 28 0001000
5 10 15 20 25 50 35 0000100
6 12 18 24 30 36 42 0000010
7 14 21 28 35 42 49 000O0COO01
Se.-S So.%S
0 71 "2 "3 4 "5 76 1000000
1 0 1 "2 73 74 75 1100000
2 1 0 1 "2 73 Ty 1110000
3 2 1 0 1 72 "3 1111000
4 3 2 1 0 "1 "2 1111100
5 4 3 2 1 0 "1 1111110
6 5 4 3 2 1 0 1111111
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Moreover, the graph of a function can be produced as
an "equal" table as follows. First recall the function ¢
defined earlier:

VZ+G X

Z<(X-3)x(X-5)V
8 3 0 1 0 3 8

The range of the function for this set of arguments is

from g down to "1, and the elements of this range are all

contained in the following vector:

R+<8 7 6 54 32 10 "1

Consequently, the "equal" table Ro,=G S produces a rough
graph of the function (represented by 1's) as follows:
Ro,=G S
1000 0 0 1
0 0000O0O0
0 ¢ 00O0O0O0
0 ¢ 000O0O0
0 ¢ 00000
0100010
0 00 0O0O0O0
0 0 0 0O0O00
0010100
0 001000

A PROGRAM FOR ELEMENTARY ALGEBRA

The foregoing analysis suggests the development of an
algebra curriculum with the following characteristics:

1. The notation used is unambigious, with simple and
consistent rules of syntax, and with provision for the
simple and direct wuse of arrays. Moreover, the
notation is not taught as a separate matter, but is
introduced as needed in conjunction with the concepts
represented.

2. Heavy use is made of arrays to display
mathematical properties of functions in terms of
patterns observed in vectors and matrices (tables),
and to make possible the reading, writing, and
evaluation of a host of interesting algebraic
sentences before approaching the analysis of sentences
and the concomitant development of identities.
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Such an approach has been adopted in Iverson [4],
where it has been carried through as far as the treatment of
polynomials and of 1linear functions and linear equations.
The extension to further work in polynomials, to slopes and
derivatives, and to the circular and hyperbolic functions is
carried forward in Chapters 4-8 of Iverson [3].

It must be emphasized that the proposed notation,

- though simple, is not limited in application to elementary

algebra. A glance at the bibliography of Falkoff and
Iverson [5] will give some idea of the wide range of
applicability.

The Role of the Computer. Because *the proposed notation is
simple and systematic it can be c.ecuted by automatic
computers and has been made available on a number of
time-shared terminal systems. The most widely used of these
is described in Falkoff and Iverson [6], IBM Corporation,
1968, It is important to note that the notation is executed
directly, and the user need learn nothing about the computer
itself. In fact, each of the examples in the present paper
are shown exactly as they would be typed on a computer
terminal keyboard.

The computer can uvoviously be useful in cases where a
good deal of tedious computation is required, but it can be
useful in other ways as well. For example, it can be used
by a student to explore the behavior of functions and
discover their properties. To do ti'is a student will simply
enter expressions which apply the functions to various
arguments. If the t.rminal 1is equipped with a display
device, then such exploration can even be done collectively
by an entire class. This and oth:ar ways of wusing the
computer are discussed in Berry et al [7],
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EXERCISES

CHAPTER 1

1.1 Evaluate the following
gxpressions, entering the result
in the position indicated by the
underscore:

(3+4)x85

3+(ux6)

3+(4+6)

(3+4)+6

3x(Ux6)

3x4)x6

(3+5)x(6+4)

(9+19)x(42+48)

(18+10)+5

(16x13)+u49

49+4(16%x13)

3x((5x8)+4)

(3x(5%6))+4

((2+3)x(4+8))+(2x5)

1+(2x(3+(ux(5+6))))

((((142)%x3)+4)%x5)+6

1.2 Check vyour answers to
Exercise 1.1 and repeat each one
which is incorrect, filling in
the steps of the evaluation in
the manner shown in the text.
For example, the last exercise
would appear as follows:

((1+42)x3)+4)x5)+6
( 3 x3)+4)x5)+6

(«
((
(( 9 )+u)x5)+6
(

13 x5)+6
&5 +6
71
1.3 Enter numbers in the
underscored positions such that
each expression gives the

indicated result:

(3+ ) x6
42 -
3+( x6)
27 -
(7+ ) x3
30 -
(743)x
30 -
(u2+ ) xu
200 -
( +6 ) +u4
17 -
(2x )+19
49 -
+(45x%x8)
274 -
(4+ )x(5+6)
77 -
(3+(ux( +2))+7
38 -

(2x(((3+ Y+(2x2))+5))+3
33 -



1.4 Chec
Exercise 1.
is incorrec
the evalua
that you
underscored

1.5 W
algebraic
the followi

Quantity
3.

17 added
and 2.
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k your answers for
3. For each one that
t, show every step of

tion using the number
entered in the
position.
rite an equivalent
expression for each of

ng sentences:

7 plus 1 multiplied by

to the product of 6

5 times the quantity 17x6.

Add the
product o

The produ
6+10 and

The sum
the produ

29 plus

L.

Quantity
of 7 and

Increase
Add 15 to

Multiply
then add

Quantity
The produ
2 plus tw

Six more
and 8.

quantity 3+2 to the
f 8 and 5.

ct of the quantities
7+3.
of 4 and 14 added to

ct of 3 and 13.

the product of 13 and

9+20 added to the sum

6.

the quantity 8x3 by 7.

the sum of 14 and 8.
6 times itself and
3.

142+3 times 8.

ct of 3+4 and 8.
ice the quantity 9+5.

than the product of 2

1.6 Write an equivalent English
expression for each algebraic
expression in Exercise 1l.1.

1.7 Evaluate the
expressions:

following

2x3+4

24 3xy
142x34Ux5
1+(2x3)+4
1+(2x3)+ux5
(2+9+20)x16
14x15%x13+6+20
2x10+10
Ix(2+7)x3
23+7x2+1
14(9%x11)+11x%x1
1+(2x3+4)x5+6

1+(2x3)+(4%x5)+6

1.8 For each wrong answer
obtained in Exercise 1.7 take the
given expression and modify it by
inserting all of the parentheses
implied by the rule to evaluate
the rightmost function first.
Then evaluate the resulting
expression. For example:

1+(2%x3)+ux5
1+((2x3)+(4x5))
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1.9 Enter a number in each of
the underscored positions such
that the expression gives the
indicated result:

2+ x3+5
162 T
2+(___X3)+5
67
2x( 3+ )x5+3
144 -
2% ( +3)x5+3
14y -
1046 x4+ x2
130 -
10+(6x4)+ x 2
130 -
10x25+ +45
800 T
xXIx3Ix1x7
3072
(__ +u0+10)x2
118
10+17+ x17%x5
197 -
43+9x6+
160 —
1.10 For each wrong answer
obtained in Exercise 1.9, fill
into the given expression your

answer and all of the implied
parentheses and then evaluate the
resulting expression.

1.11 Using as few parentheses as
possible, write algebraic
expressions for each of the
English expressions of Exercise
1.5.

1.12 Write equivalent English
expressions for each of the

expressions of Exercise 1.7.

1.13 Evaluate each of the
indicated expressions:

A<2
B«3
A+B

AxB

A+3
4xB+8xA
(10+EB) x4
P<9
B2
A+Px3
(B+B)xP
A+B+B+B
A+(3x3)
A+3xB
A+(P+7)
SPEED«60
TIME<S
DISTANCE«SPEEDXxTIME
DISTANCE
SPEEDx 7

SPEED<40
SPEEDxTIME

3x(4xA)

(4xA)x3

(Axu)x3

Ax4x3

CAT+«1

KITTENS«U4
TOTAL«CAT+KITTENS
TOTAL
NEWKITTENS«KITTENS%S
TOTAL«TOTAL+NEWKITTENS
TOTAL

2xTOTAL+(4x7)
(5+(CATXTIME)+3) %3

CATxCAT+5
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CAT

17+ (17+T0OTAL) =2
T+l

V<7

Vx(T+3)

(I+3)xV
(TxV)Y+(3«V)
(VeTY+(Vx3)
Vxi+Vx3

DO<«3
PO+6x7

3+00x4+5
Do

A

X=X

X5
X=X

1.14 For each wrong answer in
Exercise 1.13, repeat the work
showing every step of the
evaluation.

1.15 Fill in the underscored
positions so that the expressions
give the indicated result:

WIDTH+9
( +WIDTH) %3
33 -
8+(___ xWIDTH)
Ly
LEN«
WIDTH+LEN
13
(LENx3)+(WIDTH+ )
22
10+ LENX
18 -
HEIGHT+5
20+HETGHT+_

37

VOLTUME<LENXNIDTH=EET JHT

«<VOLUME

360

(LEN+VOLUME ) +
1490

(3+4+ L)~
55

(3+4)+(LEN> )
55
1.16 For each wrong answer in

Exercise 1.15, write in vyour
answer and every step 1in the
evaluation of the expression.

1.17 Translate each of the
following sentences into a
sequence of algebraic

expressions:

The length of a playing field
is 100 yards. Its width is 50
yards. The area is the length
times the width.

A weightlifter has a steel bar
weighing 29 lbs. He also has
two weights, each weighing %0
lbs. The total weight that he
will be lifting is the sum of
the bar and the two weights.

A triangle has three sides.
Side a is 3 inches long, side b
is 4 inches, and side c is 5§
inches long. The perimeter of
the triangle is the sum of the
lengths of the sides.

A nickel has a value of five
cents. A dime is worth ten
cents. A quarter is worth two
dimes and one nickel.

An airplane 1is flying directly
east with a heading of 90
degrees. He turns right 30
degrees. The new heading will
be the sum of the old heading
and the amount that the plane
turned.
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On a trip across the country,
the Smiths travelled for six
days, covering 509 miles each
day. The total distance
travelled is the daily mileage
times the number of days in
transit.

John weighed 100 lbs. He then
ate three pieces of steak, each
weighing 1 1b. His new weight
is the sum of his old weight
and all that he ate.

1.18 Make up "word problems" to
correspond to each of the
following groups of algebraic
sentences:

1«100

Y<u0

ixy
5000

(YARDEX 36 )+ (FFFT=102 )+ NOHES
175
1.19 Evaluate the following

expressions:
+/9 7 13 13
x/4 2 1 6 3
x/20 5 7
18+(x/22 3 1)
(x/2 4)+39
(+/10 20)x3
+/43 7 13 21 28
+/16 15 50 3%
+/30 Y4

3+3+3

3+73

3

+/3 3 3
+/3 3
+/3

+/10 19
+/30 7 45

(+/73 4 1)x7

x/8 3 7
ABC<«1 3 5
DE<2 4 6 8 10
+/ABC
x/DE

*/AB{C

ARC

+/DE

3++/ABC

2x2 %2

x /2
x/13 19 5
+/9 10 1

T+x/3 5 7



x/3

(+/9 43 46 u4)+7
x/13 5

el

Eyx fARC
(+/DFYy~F

F«3+x/ABC
E+(+/ABCY+(+/DE)

(Ex3)++/4ABC
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Ten times the product over 8 3.
Four plus 3 plus 7.

Three times the sum over 1 2 3

4 5 6.

Six times seven times one times
three.
Quantity 4+3 times the sum over
pOo17 o8 7,

The sum of 2 4 and 5, all times
the product over 2 8 3 4.

+/ABC++/DE 1.21 Write an equivalent English
expression for each of the first
+/5 10 expressions in Exercise 1.19.
+/9 26 42 15 1.22 Evaluate the following
expressions:
x/2 6 9 27 19
14
(x/12 49 45)x8
+/14
+/15 34 14
x /1
x/9
15
1.20 Use the over notation to +/15
write an equivalent algebraic
expression for each the x/15
following sentences:
11
Plus over 4 6 8 9.
+/11
Times over 2 4 6.
N<3
The sum over 20 15 4. +/1 0
& plus the product over 4 1 2. +/1N+1
2 plus the sum over 3 12 4 20, +/1N+2
The product of 3 and 7. +/12%xN

of the

following

-250-
1.23 Fill in the underscored 1.25 Write an equivalent English
position so that each of the expression for each
expressions give the indicated expressions of Exercise 1.22.
results:
1.26 Evaluate the
1 expressions:
123
/v 357 4 + 6 29 15
10
+/1 T 4321 +12 34
15 -
/v T 35 7 9 + b4
55
v T 4/35 7 9 + a4
oo
/134 T 3573 + 3
724
VAR RS - 3+ 35 739
78 T
Ve - 3+ b
x/UN
100 - 5xql
+/1
1 T - 3+5x1b
v/l
1 — T (vwyx(uw)
x /1
3628800 T /0w x(an)
1.24 Write an equivalent = Ne3 5 7 9
algebraic expression for each of el
the following sentences: N8t
The first three integers. T N+
Iota 5. T mxu
The integers to nine. T MeMx
The sum of the first three +/3x16
integers.
T 3x+/16
Times over the integers to 4.
- 3xu+15
Plus over the integers to 7.
T 12+3x15

@ is assigned the value 4.
The integers to @.

The one digit integers.
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1.27 Fill in the underscored
positions so that each of the
expressions give the indicated

result (Note that each
be either a

entry may
vector or a scalar):

235 7 +
5 10 6 10
2 357 +
6 7 9 11
2.8 1
6 32 4 30
2 8 1 6 x
10 40 5 30
+1h
6 7 8 9
X4
20 40 60 80
_1—1
8 9 10 11 12
X1
4 21 28 35
_+ X1
8 13 18 23 28 33
3x +1
2427 30 33
x +1
16 20 24 28 32
+ X1
16 20 24 28 32

7

[EN

18 21

1.28 Write an
algebraic expression
English expression:

equivalent
for each

The first five

following u.

integers

Every
with 3

third integer beginning
and ending with 21.

Every
with 7

third integer beginning
and ending with 31.

1.29 Evaluate the

expressions:

following

3p5

x/2pH
x/10p4
(4p1)+2 3 5 7
1+2 3 5 7
(4p2)x1y
x/9p10
Uxx/3p7
3++/3p 7

16 9 13 10++/upl

1.30 Fill in the blanks so that
the expressions give the printed
result:
+/4p
12 -
8p
8 8888 8 8 8
+/8p
6U -
6p
6 6 6 6 6 6
x/ 03
243
x/5p
100000 -
2p
3 3 -
+/ p10
80 -
+/ ol
28 -
+/ p6
60 -
10p
2222222222
x/3p
343 -
p7
7777 77777
80
55655755 5 5
p2
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x/9p Vector 5 7 9 times 3
134217728 repetitions of 1.
05
55565 55 4 repetitions of 7 plus u
2p repetitions of 3.
10 10 -
03 3 times 6 repetitions of 5.
33333233333
x/ pu 1.32 Evaluate the following
262144 expressions:
1p
1 - N<2 3 5 7
70 M<8 7 6 5
33337333 M+N
p7
77777777 T M+ixy
e
12 T (Meu)xi
x/ o1
1 - - (M+N)xM
+/ p5
40 - - (M+14)xy
03
33373 - ((3xM)+(2xN))x2
09
9.9 9~ T +/3xM
08
8 88 8 8 8 T 3x+/M
+/ 05
5 - - +/MxN
1.31 Write an equivalent Mx+/N
algebraic expression for each of
the following sentences: - (+/M)xN

Three repetitions of 5.
5 repetitions of 3.
Plus over 6 repetitions of u.

The product of 3 repetitions of
7.

Seven repetitions of six.

The sum of ten repetitions of
four.
Times over vector 3 6 plus 2

repetitions of 5.

(+/M)x+/N
x/M+N
(x/M)+N
(x/M)+x/N
v+/ N

/1t /N
+/1+/13
+/1+/3p2

x/1x/2p3



r7M+H

[/ 8Mxy
Crron«r/n
(7)) &

+ /MW

< /N

ury
+/uly

x /4l
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CHAPTER 2

2.1 Use Table 2.1 to evaluate
the function "normal weight" for
the following arguments:

59 63 69 60

2.2 We will use the term "two
times” for a function whose
result 1is twice the argument.
Thus a table for this function
for the arguments 14 would appear
as follows:

Argument Result

oW =
oo E N

a) Make a table for the "two
times" function for the same
set of a-guments as used in
Table 2.1.

b) 1Is the "two times" function
a good approximation to the
"normal weight" function of
Table 2.17

Over what set of arguments do
the two functions differ by not
more than 2?

c) ©One could add a certain
"correction" to each result of
the "two times"” function to
obtain the exact normal weight.
For example, for the argument
63 the value of "two times" is
126 and a correction of 4 is
needed to give the actual
normal weight of 130. Make a
table to represent an
appropriate "correction"
function for the arguments from
60 to 70.

2.3 Evaluate the function
represented by Table 2.2 for each
of the following cases:

51 inches medium frame

58 inches large frame

63 inches small frame

65 inches all frames

68 inches small and large

2.4 Use the information in Table
2.2 to make tables to represent
each of the following functions:

a) Normal weights for large
frame and heights 60 to 66.

b) Normal weights for all
frames and heights 66 to 70.

c) Normal weights for small
frame and for even numbered
heights from 58 to 68, that is,
for heights 56+2x16,

d) Normal weights for height
67 and all frames.

2.5 a) Extend the table of

Figure 2.3 to include arguments
up to 12 (for both arguments).

b) Circle the result in the
table which results from the
expression 6x8,

c) Underscore the result of
the expression 8x6,

d) Pick out all occurrences of
the number 40 in your table and
label each with a different

letter of the alphabet. Then
write these letters in a column
and beside each write the
expression (e.q., 5x8) which

corresponds to that particular
entry in the table.
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e) Repeat part (d)
number 24,

for the

2.6 a) Construct an addition
table for the arguments 1 to
12.

b) Label each occurrence of
the result 9 1in the table with
a different letter. Then list
the letters and show with each
the expression which
corresponds to that entry.

c) Repeat part (b) for the
numbexr 20.

2.7 Let i denote the domain of
the first argument of the
multiplication table of Figure
2.3 (that is, X+18), and let Y
denote thc domain of the second
argument (that is, r<«110). Then
the function represented by the
third row of the body of Figure
2.3 can also be represented as
3xY, and the function represented
by the fourth column can be
represented as Ixu. Use this
scheme to write expressions which
represent each of the functions
represented by the following
parts of the body of Table 2.3:

a) Row 2.

b) Column 10.
c) Row 5.

d) Column 5.

2.8 Make a table whose body
consists of one column taken from
the 8th column of the body of the
multiplication table of Figure
2.3, and whose first column (that
is, the arguments lying outside
the body) is taken from the
second column of the body of
Figure 2.3. Call the function
represented by this table F.

a)

b)

<)

d)

2.9

row 9
the
table,

as

Evaluate the function
the arguments 4,

What is the domain of F?
What is the range of F?
Write an expression

manner of Exercise 2.7)
represents

Repeat
of the body of Figure
one-column body of

arguments.,

arguments in part (a)
in the domain
indicate

that

evaluated.

2.10
rows
constructed
rather than Figure 2.3.

2.11
2.12

B«l 2 3 4 5,
following expressions:

a)
b)
c)
d)
e)

)

Repeat

from

(Parts a-i)Answer the nine
questions posed 1in Section 2.2.

Let

Ae.

xB

. tB

XA

. tA

. xB

. t4

do not lie

cannot be

Exercise 2.9 using

Then evaluate the
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2.13 Evaluate the following
expressions:
a) (13)o.x(1h)
b) (2x15)0,+13
c) (2x15)e . +(2x15)
d)  2x(13)e.x(14)
e) S+(13)o . x( 1)
f) 2x(15)e.+15
2.14 a) Construct a function
table according to the

following specifications:

Left domain: i
Right domain: :
Body: (
Name: q

L
&
3xib4)o. Tl

b) Evaluate the
expressions:

following

3 H S

o
5

3
1 F 1
4 H (1 A 1)
4 H 1 H 1
2 1 H 2
2,15 a) Construct a function

table according to the
following specifications:

Left domain: 56+114

Right domain: 1 2 3

Body: Same as Fig. 2.2
Name: 1%

b) Evaluate the
expressions:

following

68 W 1

68 W 2

63 W 3
c) State clearly the relation
between the function ¥ and the
function represented by Figure

2.2.

2.16 a) Construct the following
function table:

Left domain: 18
Right domain: 18
Body: (18)e.+18
Name: PLUS
b) Evaluate the following
expressions:
3 PLUS 5
4 PLUS 6

3x4 PLUS 6

2 PLUS 2x3

4x2 PLUS 2x3
(4x2) PLUS 2x3
2+3 PLUS 4

2 PLUS 3+4
2+3+4

2 PLUS 3 PLUS &
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2,17 Evaluate the following 2.19 a) Evaluate the following
expressions: expressions:
3r3 +/3p 4
3L 8 4x3
83 +/5p3
813 5x%3
2x5[7 +/10p10
(5+2)[3 10%x10
(5x2)[9 b) Use multiplication to
evaluate the following
3[ 52 expressions:
(3rs)Lz +/6p3
2.18 Evaluate the following +/25p16
expressions:
+/100p13
1ofsfel1uf779
+/20p20
[/10 8 6 14 7 8
+/2000p512
L/10 8 6 14 7 9
2.20 Evaluate the following

A<10 8 &6 14 7 9
B<17 4 13 2 19

expressions:

[/B x/3p2
L /B 2%3
(L/A)Y+L /B x /5072
L /A+B 2%5
(+/4)1L+/B x/6pl
(+/4)[+/B Lx6
L/ATB x/10p2
[/ALB 2%x10
+/ALB x/2p10
Ae.{B 10%2
Bo.l4A

Be.lA4
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2.21 Evaluate the following b) Let G be the function
expressions: represented by the following
map :
A«2 3 4 5 6 7 8 9
4.5 6 7 8 9 10
- S5
2%/ 4 5 3] 7 3 3 10
3xA Then evaluate the following
expressions:
Lox A
G ou
Ao, x4
G 6
2.22 Evaluate the following
expressions: G 7
B+«1 2 3 4 5 6 G G 6
Bx?2 G 2%x3
Bx3 G 4 5 6 7 8 9 10
Bxu F G 4
2.23 a) Let F be the function G F u
represented by the following
map: F G 6
L 5 [#] 7 8 3 10 G F ©
}N F G456 789 10
4 5 6 7 g 3 10
G F 45 6 789 10
Then evaluate the following
expressions: c) How are the functions 7 and
G related?
F oy
d) Make maps of some other
F 6 pair of functions # and XK which
are related in the same manner
F 9 that F and ¢ are.
F F e) Construct a function table
to represent the function F.
F 2x3
f) Repeat part (e) for each of
2xF the functions ¢, #, and X.

F 45 6789810
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2.24 Let F and G be the
functions defined by maps in
Exercise 2.23. Then if X is any
argument value, the expression
F G X means to apply the function
G to X and then apply the
function F to the result.

a) Make maps to show the
sequence of functions 7 G X.

b) Make a single map to show
the overall result of the
expression F G X.

c)} State the overall effect of
applying F to the result of G.

d) Repeat parts (a-c¢) for the
expression G F X.

e) Repeat parts (a-d) for the
functions ¥ and X of Exercise
2.23.
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CHAPTER 3
3.1 Evaluate the following 2x+ /110
expressions:
- 10x11
8-6
T P<7+15
T 13-6 Po,-15

13-6 5 4 3 2 1
6 7 8 9 10-5

1 2 3 4 545
8-14

+/8-14

M<8 12 7 11 43

N«<6 7 2 1 20

M-N

M+N

(M-N)+N

(M+N)-N

Mo 4N

15

6-15

+/15

+/6-15

2x+/15
(15)+(6-15)

+/(15)+(6-15)

3.2 Fill in the blanks so that
the expressions will give the
indicated results. Note that
each entry may be either a scalar
or a vector:

8‘
: I
(8-__ )+6
10
(8+6)-
10
-2 3 %5
6 9 1 8
-15
2 46 8
+/8-1
25
M<«2 3 5 7
-M
8 7 14”2
-M
6 5371
3.3 In defining the over

notation it was shown that +/14
10 8 7 2 means 14+10+8+7+2.
Similarly, -/14 10 8 7 2 means
14-10-8-7-2, where the expression
is evaluated from the right as
usual. That is, -/14 10 8 7 2 is
equivalent to 14-(10-(8-(7-2))),
or 7. Use this fact to evaluate
the following expressions:

-/8 6 4 2
-/12 9 8 4 3

-/20 14 12 10 18 9



3.4
each

(20+412+418)-(14+10+9)
-/8 7 6 5 4% 3 2 1

(B+6+4+2)~-(7+5+3+1)
-/7 6 5 4 3 2 1

C745+3+1)-(6+4+2)

Make a map to represent
of the following

expressions:

7 8 9 10 11-5

2 3 % 5 b+5

10 11 12 13 14-8

2 3 4 5 6+8

((15)+6)-86

3.5

Evaluate the following

express ions:

5-8

5-18

1-18

8-18

0-18

S5+18
S+5

3.6
the

3.7

expressions:

blanks so that
expressions will
indicated results:

Fill in the blanks so
expressions
indicated results:

maps to represent the
following expressions:

+/0-1

+/0-1

3.10 Write algebraic expressions
for each of the following:

The integers from 8§ to 8
The integers from 4 to 15

Every third integer from 12 to
12

Every second integer from ~9 to
7

The positive integers to &

The positive integers to 6 in
descending order

The negative integers from 6
in ascending order (that is,
running from 6 to 1)

The negative integers greater
than ~7 in descending order



4.1 a)

Construct a
table with a left domain of
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CHAPTER 4
subtraction e) Write an expression using S
112 (but not 4 or BR) to vyield a

and a right domain of 112.

b) Make a
4.2 Let
A+<13
B+ 14

S«Ao,-B

a) Evaluate
expressions:

Qs

¢S5

b) Without wus

flipping functions &, s,
write an expression to

clear statement of
each property vyou
the table of Part

result equivalent to &S.

c) Eva}uate
expressions:

¢B

98

Ae.-0B

o4

(¢4)e.~B

CR
d) State any

observe among
of Part (c).

observe in

(a) .
the following
ing any of the
or ¢,
yield a
the following
relations you
the expressions

result equal to the result of
the expression (¢A4)o.-9B.

4.3 The following simple table M
will be wused to observe the
behavior of the flipping
functions:
M<Q 20,41 2
M
1 2
304
a) Evaluate the following
expressions:
deM
e
lelo)
duy
SoM
oM
dadM
b) The expressions of Part (a)
produce several different
results although some pairs
produce the same result. Using

sequences of flipping functions

as long as you like, how many
different results can you
produce?

c) Can any seguence of

flipping functions applied to ¥
produce the result

1 2
3
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d) Can you give
argument to show that the
different results you produced
in Part (b) are all that can be
produced?

a convincing

e) Write the shortest possible
expressions you can find for
each of the different results
produced in Part (b). For
example, the expression ¢&M
produces the result

3 1
42

and 1is therefore equivalent to

rotating ¥ clockwise by one
position. Hence a
re-application of the pair ¢&
(that is, o¢adam) will effect a
second rotation to produce the
result

4 3

2 1
However, this can also be
produced by the shorter

expression e¢M.

f) From the preceding parts of

this exercise it should be
clear that edM is not
equivalent to oM.
Nevertheless, for the
subtraction table 5 it was

obvious from the examples given
in the text that eds is
equivalent to &S. What 1is
there about the table S that
makes this so?

4.4 Let
A+<3+16
B+2x15
M<Ao,-B

a) Evaluate the

expressions:

following

Alw]

BL2]
ML3355]
ML5;53]
(q4)[3;5]
(qM)[5;3]
M(2;]

ML 4]
(ML3;1)051]

b} Evaluate the

expressions:

following

Al2 4]
Al 3]
Al2+13]
M2 431 3 5]
ML2 4]

M1 3]

AL3]

Blu]

AU37+B[4]

(Ao .+B)[3;34]
4,5 Consider the addition table
B given in the text. State any
patterns you observe 1in the
table. Where possible make your

statements in both English and
algebra. For example:
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&8 is equal to B.
0-¢BL2;]1 is equal to BI[2;1.

B[I;] is equal to B[;I] for any
value of I.

B[5;] is equal to 2+B[3;],

4.6 Repeat the work of Exercise
4,5 for the multiplication table
N given in the text.

4.7 Quadrant 2 of the
multiplication table ¥ given in
the text consists of the first
seven rows and first seven

columns of ¥, Hence Quadrant 2
is the table Q2 defined as
follows:

Q2«N [17317]

Quadrant 4 can be specified
similarly:
QRUu<N[8+17;8+17]
a) Write similar expressions
to define the remaining

quadrants &1 and &3.

b) State any relations you
observe among the quadrants.

4.8 Repeat the work of Exercise
4.5 on the table MAX defined in
the text.

4.9 Repeat the work of Exercise
4.5 on the table MIN defined in
the text.

4.10 Evaluate the following
expressions and compare the
results:

I<16

J«0-T

Io. [T
Jo.LJ
ITe. LT
Jo.[J

4.11 a) Repeat Exercise 4.10

with I<(113)-7.

b) Evaluate the following
expressions and comment on the
patterns in the table T:

K<18
R<Ko . [K
T<«R[obR

4.12 Evaluate the
exXpressions:

following

3=7

4.13 Evaluate the
expressions:

following

X+<17
Xo.>X

4.14

Evaluate the

expressions:

4.15

I«(111)-6
A«To ,+]

U</
16<4*2

S«Io,-T
u<g

Melo xT
122M
14u2M*2

Evaluate the

expressions:

X«8 4 3 5 7 6
Y«4 3 10 8 2 5
X<y

[/X<Y

L/X<Y

5<X+Y

[/5<X+Y
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following

4.16

L/5<Xx+Y
[/9<X+Y
L/9<X+Y
[/15<X+Y
L/15<Xx+Y

Evaluate the

expressions:

following

A<(16)o.+16
A=R4

L/A=84
L/L/74=84

S«(16)e,-16
5=Q05

L/L/5=&8
[/5=85
L/T/5=&5

C«(16)o.216
+/C

+/&C

following
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CHAPTER 5
5.1 Evaluate the following (P+Q)sR
expressions:
(P-Q)+R
4x8
324y 5.2 Fill in each underscored
position giving either the result
32:8 of evaluating the expression or a
value such that the expression
4g:8 will yield the indicated result:

(32:8)+(48:8)
(32+48):8

S+bx17
S

Si2

T«S-24
I

To,+1 2 3 6

P«™8 12 "10 21
@+16 15 35 49
R«2 3 5 7

P:R

QiR

(P:R)+(Q+R)

x 3
24 -
2433
- x15
300 -
300215
- 120
25 -
25%x20
_ .
32 -
32x7
- (25:5)[(35:5)
- (25[35)+5
- (28+ ):5
40 -
:5
40 _
(28+ ):5
4o -
("28+ N
40 -
(T28+ )35
4o _
22 21 323
2 7 16 -
22 21 323
22 21 32 -
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5.3 Make maps to
of the following

represent each
expressions,

where S«<16 and N« 4+17 and M+«u4xS:

Sx5

Sx5 followed by (5x5):5
Nx2 followed by (#x2):2
M:u4 followed by (Miu)xy

5.4 Evaluate each of the
following expressions wusing the
method of guessing, first
obtaining two guesses which
"bracket" the result (that is,
one is too high and the other is
too low), and then closing in on
the result by successive guesses
which 1lie between the guesses
which bracket the result most
closely. Make your guesses as
good as possible to shorten the
work, but show all of your work:

256+8

37837

4096216

5040342

40320+105

362880+ 144

36288027

362880+48

362880+36
5.5 Evaluate the following
expressions, using the method of
guessing at a guotient,
subtracting from the dividend the
product of this guess with the
divisor, making a guess at the
quotient of the new remainder

divided by the divisor, and so
on. Show all of your work.

40548124
51324378
9712033257
2511930+1095
5764896+2164
1505625+1375
751424:3184
5.6 Repeat the

Exercise 5.5
long division.

5.7 Fill in the
following, using
where necessary.

2417243178
- x314
853452

314x
1174046

( +15)x624
14414y~

( -48)x176
457248

( +3)2167
416331

examples of

using the method of

blanks in the
long division

2578647:(167%x3)

(268000+4)+250

2680002(250x4)

(238750x5):50

238702(5025)
1728+12
1728212%2

1728+12+3



5.8 Make maps to represent each
of the following, where S« u4+19:

S:4 followed by (S+u)xu
S$+3 followed by (5:3)x6
536 followed by (5:6)x3

5.9 State the wvalues of the
divisor, dividend, and quotient
for each of the following
expressions:

8 +4

1022
196+14
2048+64
1728144

5.10 State the wvalues of the
numerator and denominator for
each of the expressions of
Exercise 5.9.

5.11 Give an appropriate name
for each of the following
fractions:

IO F WRN NN P
)
L OO GUWN

~J3 el-

+12

5.12 Under each expression below
enter a simpler equivalent
expression of the form A+B (where
A and B are integers), as shown
by example in the first four
lines:

(2:8)+(528)
748
(7:3)+(8%3)
15:3

(10:7)+(u4=7)
(76+13)+(32:13)
(32:13)-(6%13)
(42:15)+( u2:15)
(26:3)-("22:3)
(38-47):19
(25+14)+7
(25+49)+(4+5)
(19+738):(7+8)
(3:9)-(25+9)+(720+9)
(10+27):(4-3)
(732:12)-("32:12)

(71:18)-(719:18)-(6:18)

(2:11)+(2:11)+(2+11)

(3x2):11
5.13 Review each of the results
obtained in the preceding
exercise and add a third 1line
giving an equivalent integer if
there is such an integer. For
example:

(7+3)+(833)
15:3
5

5.14 Fill in the underscored
expressions with integers such
that the indicated equivalences
will hold:

(5:13)+( +13)
19:13
(5213)+( +13)

2

(16:31)+( +31)
8:31

( $17)+4(21217)

2

(31:99)-¢( +99)
22399

(642:19)-( +19)
6419

(292 )+(19+ )
i - N

5.15 Under each expression enter
a simpler equivalent expression
of the form integer < integer:
(2:3)x(5:7)
(3:5)x(5:3)
(710:17)x(51:2)
(T2:3)x(7223)
(427)x(729)+(15+9)
(13:8)x(143:6)-(717:6)
((13:8)x(11:3))+((7:12)x(5:2))
((3+4)+4(10:4))x(35:52)-(19:15)
(T2:8)x(75%3)
(0:4)x(715%3)
(T7:5)x(5%5)
(3+u)x(12+12)
5.16 Review each result obtained
in the preceding exercise and
give an equivalent integer where

possible.

5.17 Fill 1in the underscored
positions appropriately:

(3:5)x( 12)
18260

(17:8)x (2% )
34+120

(15% ) x( $20)
120:80

(17224)x( B )
85396

(5% Ix(6+ )

20158
(53:3)x( g )
M -
(5+3)x( : )
1

(17:23)%( + )
1 _

( + )x(39:41)
—

Under each expression enter

an eqguivalent expression of the
form integer : integer:

(2:3)x(2:2)

(2:3)x(3+3)

(3+4)x(5+5)
(7:9)+(2:3)x(3:3)
(7%9)+(2:3)x1

(7:9)+(2:3)
((8:4)x(5:5))+(713:20)
((3:4)x(525))+((3+5)x(usL))

((2+3)x(2+2))+((122)x(3%3))
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5.19 For
an equivalent expression of
form integer + integer:

each expression write
the

3x(u43:5)

bx(3:5)

5x(325)

(7:9)x11

3x(729)x3

3x739x%3

(7:9)x(3:3)

Sx14+13%x2

1x233x4

1x(2+3)xi

4x332x1
5.20 As shown in the first
example, write equivalent
expressions of the form :/V where
V is a vector whose two elements
are integers:

(/3 5)x(+/2 3)

+/6 15

(+/16 28)x(*/10 20)

(16+28)x(10:20)

(10:7)x(712%3)

(+/23 w)x(+/4 23)

(+/12 25)xs/4 4)

(3312)+(5212)

(£/3 12)+(%/5 12)

(+/15 28)+(+/71 28)

(/17 29)-(:/732 29)

(/2 5)x(:/3 7)

+/2 5x3 7

2x3/4 5

$/2x4 5

5x%/2 3x4 7
5.21 For each expression write
an equivalent expression which
%nvolves not more than two
integers:

(2:7)+(425)

(3:5)+(4:6)

(12+2u)+( 3:17)

(12:24)-(3217)

(12224)-("3217)

(2:5)+(3:10)

(/2 5)+(2/3 10)

(/5 2)+(+/10 3)

2x (/5 2)-(:/710 3)

2 7x(:/5 2)+(+/3 11)

3 3x(2/5 7)-(+/711 8)

(1+2)+(3:4)+(5:6)

(122)+(2+3)+(334)

(2/12)+(2/1+412)+(3/2+12)

5.22 Under each expression write

a series of eguivalent
expressions showing the steps in
simplifying to a final expression
of the form X:7Y:

A<l 7
B+2 5
(:/4)+(+/B)
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(:/A4)-(3B) (+/4)x(+/B):(+/4)
(+/B)-(+/4) (2/78 23):(%/45 3)
(+/B)Y+(+/4) (4+7):(2/3 1)
(=/4)+(2/4) (4:7)+3
G<«10 9 (7:8):2
(+/B)-(3/03)
5.24 Write
(2/A)+(2/G)-(2/G) rational numbers
fractions:
(:/G)-(3/B)
5310
We(:s/A)+(2/05)
(=/W)-(3/4) 2:10
(+/W)+(2x(+/4)) g1
(2/B)+(:/W) 342100
(+/B)x(%/4) 34310600
(+/W)x(s/G) 34310
(+/W)x(:/W) 710000
(+/G)x(+/B) 234310
(+/W)+(=2/B) $/234 100
5.23 For each expression write a 234+1000
simpler equivalent expression
involving at most two integers: 45:10

(922)+(433)
(723):(4:9)
(T7:3)+(4%9)
3:(439)
5+(5%86)

A<«3 4

B<«5 b
(+/4)+(%/B)

(+/B)=(+/4)

/294 10000
38:10

50+10

+/23 100
+/78 1000
+/7567 1
00003100

4567+100

the

following
decimal



283451000

79+1000

+/778 1000

¥/293847 10

29

+1

9287654+100000

=273-

3+100000

23+100

36887310
5.25 Write decimal fractions
equivalent to each of the

following expressions:

(2/14 10)x(=/7 100)

(=
(=
(3
(=

/1y
/24
/14

/64

10)+(+/100 7)
100)x(2/74 10)
100)+(+/27 100)

100)+(2/136 100)

(:/164% 100)+(+/135 10)

(+13.6 10)

(+/14.82 10)

(+/15.66 10)x(+/256.4 100)

5.26

Evaluate

the

following

expressions showing each rational

result as a decimal fraction:

V<6 27 135
E«10x14

Vo,

E

F<10%(17)-4

Vo.

tF

5.27

5.28

Evaluate the following:
34.3+6.,3

2.5+5.6

19.4-3.2

38.6-710.3

(/48 10)+4.6
6.00+3.87
4.7300+9,4529+98.0000
T7.50+68,90- 548,21
5,78-2.40

"67.8+3.6
866.00+(4:100)

T13.6-"7.2

Evaluate the

expressions:

5.3+8.27
8.6+5.14+1.26
870.3458+ 78.2

(+/34 10)+21.7-"hHu.4
45,23+(3/37 10)
(/56 100)+(u4s10)
5.6-(45210)+ 4,12
19.5-279.69
58,3-23.45

T67.8+ 692.5678

(+/793 1000)+2.45

following

(:/98 100)+(

36.5-"578.4

77.777-66,66

5.29 Obtain

equivalgnts for

expressions:
324
1728+25
17283186
153:12
2 335 25
3+5 25
(18):8
(116)%16
(132):32
(125)225
(125)+4
1+2%x16
1:5%16
1:10%16
1-(18):8

1-(132)+32

5.30 Obtain

each of
expressions:

1+3

T46,9-26.879

decimal
the

the best
decimal fraction approximation to

the following
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12+1)-(+/98 10)

following

fraction

3-place

5.31

233
(19):9
(132):32
(110)e.2(110)
(65:24):(12+u4)
(71:3)+(7:8)
(4639):(11:19)
(32:221)+:(12:10)

(24:28):16

(4:9):(2128)2(32:6)

(7+12)+(25+71)
(8:1)x(6237)
(8513):(20:9)
(7:14):(31:6)
(66+2):(2:3)
(9:316):(6%6)

(722)2(8:3):(9z4)

Evaluate the

expressions:

2.41x1.,48

3.27x16.4

1.287x14,321

234.56x%x12,34

2.4%x3,5x4,6x5,7

13.287x4,8+5.6

1.125%x.32

following


http:19.5-279.69

-275-

-276-
5.32 Obtain the best 2-place
decimal approximation to each of CHAPTER 6
the expressions of the preceding
exercise.
6.1 Evaluate the following b) State any relations
5.33 Find the best 3-place expressions: observed among the guadrants.
approximation to each of the
expressions of Exercise 5.31 but A«2 3 5 7 6.4 a) Evaluate the following
with each multiplication replaced B+l 1 2 expressions:
by division. £+9 8
A,B A<6 7 & 9 10 11
5.34 Write each of the results B<7 8§ 9 10 11 12
of Exercise 5,31 in exponential B,A C+«9 10 11 12 13 14
notation. D+10 11 12 13 14 15§
(A4,5),C AzB
5.35 Write each of the results
of Exercise 5.33 in exponential A, (F,0) c:D
notation with the value 3 for the
integer following the #. (=dr4) 14 T+(A2B)o.,=(Cs2D)
5.36 Obtain the best 3-place 6.2 Let 7 be the 8-by-8 division b) Use the table 7 to
approximation to each of the table shown in the text. determine which is the larger
following expressions: of each of the following pairs
a) Evaluate the following of rationals:
2+3 expressions:
8:3 and 9%10
2+ 3 D=1 9:10 and 10+11
T2:3 D=1:2 c) Without using division
write an expression which will
T2:73 D=1:3 yield a table identical with 7.

Evaluate the expression and
b) Examine the results of Part compare the result with T.
(a) and state the pattern
produced by expressions of the 6.5 Evaluate the following
form D=R, where R is any value expressions:
which occurs more than once in

D. (if necessary evaluate 2 3e0.,%x1+110
further cases, possibly
extending the table 7 itself) 2% L4112
6.3 a) Give expressions of the 3% 44112
form used in Exercise 4.7 (for
the multiplication table ¥) to 2 3o0,% 44112
define four suitable gquadrants
of the division table Jo.:X 23 4 5 Bo,x H417

given in Section 6.3.



6.6 a)
expressions
places:

Evaluate ¢t
to

A<15
B+0-4A

2 x4

2%E
(2xA)x2*B

(2%18)x2x0-18

he
five

following
decimal

+/(2%1100)x2%0-1100

b) Evaluate th
expressions to
places:

A< b

3 x4

3%0-4

(3%x4)x(3%x0-4)

the
to

c) Evaluate
expressions
places:

A<l
5 %A

1 +5%4
S*0-4
(1:5%*4)=5%0-4

6.7 Evaluate
expressions:

the

A=« 5
10%x4
10%x0-4

T10#4

e
five

five

following
decimal

following
decimal

following

6.10
expressions:

T10%x0-4
20%4
T20%x4
G*xA
0x0-~-4

6.8 Evaluate
expressions:

the following

A«(16):2
3xA
B«0-4
9%pB
49x4
49xpB
6.9 a) Determine a number 4
which when multiplied by itself
yields 10 (correct to three
decimal places).
b) Use the result

to evaluate the
expressions:

of Part (a)
following

10*x(16)32

10%x0-(16)32

the

Evaluate following

A€16

3%x4A+3
3x434
3xA+5
3x4:6

S5xA:6
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CHAPTER 7

7.1 Evaluate
expressions:

the following

3117

3117 593 18 u2

9119

9]+/19

+/3{13

+/4] v

+/12]112

(8+7)|6 1 B54 u2 752 3104
(5177 5 24 2750 4 2)-660
3l+/6 8

(3+9<6) 1726 10 9 234 3064 36
21-/2 4 9 B53 1504 7

(4f6)]6 2522 5 5

515 1312 9 1 162x5 9 932 7 3
717 4394955 8513

(917418 26 887)+200 10 866
(3x6)|7 1 1 8 u+7 21 82 4 10
| /3 9 1365+10 258 3

7160 3

(6]2)x755

6|u=z3

613216 5 5172

/4 19
| /7 37
Evaluate the following:

1 2 3 o.|] 456 7

24 6 o, 6 12 18 24 72

1 4 o,) 10 4 520 831

4 7 8 10 920 6540 u2

o, |

7210 50 3 1 10 o, 3 360 2 5

8 8 10 89 3 o,| 9410 6 8

10 3 o, | 220 7148 14 910 7

10 56 2 4 388

o, )

70 1 17 1 4 26 o,+ 3 1

10 7 5 9 7 o.] 3 680 9030 26

22 5 4 6 89 o, 8 u8 67 7 2

7-8 9 10 8 320

oL
21 2 o,] 10 4 3 6922
(1+221 6 3 4) o, | 3 7
54 31 o.} 529 4 6{2 486 9

8 10 7 3 8 o,| 10 25 85 69 5

77 86 4365 7 585

o, |
6/6 7 34 1 o,+ 3 1 5 u58
70 S 3 o, |36 84 10 26 2516

5 8 o.| 69 4 9
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(3%x10 5) o.| 2u 66 2 8
6 2 9 45 o, | 3 2 373+8 1 45
7.3 Evaluate the following:
3|10
(3+47)]9 5270 "1 77 T4160
1017727 77 "9 "3
(u+2)| 61
6] +/ 465 0O
1] 78
618416L0 0 4 6 5
16 [x/1 5 3
6614998 14761 10
(10x5)|2L9 25 us
(26%x10)|350 46 9 94 6517
|/75+7023 393 ~10
8] 76 2 T451 990 " 216
(5+529)]-6164 1 "1
1§73 1x73899
(3]3 78198)x" 9 2
71=/"7 "1
(473<6)]79 9 6 0244 3 38 40
679402 3216
7.4 Make a table of the results

of the expression (19)o.| 10+119.
Do you notice any patterns in the
table? Are they similar to the
patterns in Table 7.1? Draw
circles around all the 0's in the
table. Connect groups of these
circles by straight lines. Does

it seem that one half of the
table is the mirror image of the
other half with respect to these
lines?
7.5 Evaluate the following
expressions:

0=3]116

0=5{125

M«(10%x0,19)°.+0,13

UM

9| M

7\M
7.6 Make the table
0=(110)e°,1110, Circle the

positions of all the 1's in the
table. Why are there no 1's in
half of the table? What is the
significance of the line of 1's
that divides the table in half?

7.7 In the table of the
preceding exercise, the number 3
will be seen to have exactly two
divisors (1 and 3). Find all the
other numbers in the table which
have exactly two divisors. Find
four more numbers not in the
table which have this property.

7.8 Make the table
0=(110)e.| 11+121, Note all of
the interesting properties of the
table that you can observe; for

example, is the 1left half a
mirror image of the right half?
Where does the split occur? Is
"8 divisible by the same numbers
as 8?2

7.9 Which of the following

numbers is divisible by 3:

T10 5 76543 76
T1u49 9378 345 83
T93754

12 45 34 87
567 9876543 39
86 237 873 3u82
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Add up the digits of each number.
Are these sums divisible by 3?
Can you find a rule that will
tell quickly whether a number is
divisible by 3 or not? Can you
find a relationship between the
3-residue of the number and the
residue of the sum of its digits?
Does this relationship hold for
integers other than 3?

7.10 Which of the following
numbers is divisible by 572

56 25 90
98765 234
2ug

7595
T390 u8

1234 1000
“3591 63 55 80

Is there any relationship between
the 5-residue of the number and
the S-residue of its final digit?

7.11 Which of the following
numbers is divisible by 2?

“237
Tu27 1445 92

8 24 86 456 9870 34592
162 1000 645 343 926

Is there any relationship between
the 2-residue of a number and the
2-residue of its final digit?

7.12 Write down 1in your own
words a definition for the |
function. According to your

definition, what would the result

of 0O|N be, where N 1is any
integer?

Now suppose you defined 4|B as
the repeated subtraction of 4

from B until a result is obtained
that is 0 or larger but also less
than 4. Will this definition
produce the same results as the
definition introduced in the
text? Using this new definition,
018 would be a never ending
process. Would it seem
reasonable to 1let 0!B have the
result B?

7.13 Evaluate the expression
(1¥)|N for each of the following
values of WN:

9 12 15 17 24 32 36

7.14 Use the results of the
preceding exercise to determine
all of the factors of each of the
numbers 9,12, etc., listed in
that exercise.

7.15 For each 1list of factors
obtained in the preceding
exercise write the list of

corresponding factor pairs. For
example, the factors of 6 are 1 2
3 6 and the corresponding factors
are 6 3 2 1.

7.16 From your answers to the
preceding exercise, does it seem
reasonable that every number has
an even number of factors? Can
you find any numbers that have an
odd number of factors? If a
number has an odd number of
factors, what are its factor
pairs?

7.17 Evaluate
expressions:

the following

1010 1/3 57 9 11

01 010/357 911

X+12 17 "4 5 73 0 "4 0
1111
(X>0)/%
(X20)/X
(0=21X)/X
(0=31X)/x

((0=21X)r(o=31x))/x



((o=21X)L(0=3[X))/X
((o0=21X)1L(0=3[X))/X
(0=5]125)/125
(1=5[125)/125
(2<5[125)/125
+/Xe.=X
(1=+/Xo.=X)/X
(1z+/Xe.=X)/X

7.18 Write expressions which

will select from the positive
integers up to /N those numbers
satis fying the stated properties.
For example, the expression
(0=4]14)/1¥ would be appropriate
for the property "all integers up
to ¥ which are divisible by u".

a) All integers up to ¥ which
are divisible by either 3 or 5
b) All integers up to N which
are divisible by both 3 and 5
c) All integers up to N which
are divisible by 15

d) All integers up to ¥ which
are greater than M

e) All integers up to N which
are greater than M and

divisible by 5

£) All integers up to ¥ which
are divisible by every element
of the vector V

g) All integers up to V which
are divisible by exactly X
elements of the vector V

7.19 Use the expression
(2=4/Q0=(1N)o, | \N)/ 1N to
determine all of the prime
numbers up to 20, Show each step
of the calculation,

7.20 Evaluate the
expressions:

following

Pe(2=4/Q(112)0.1112) /112
P*x2 0 2 0 1

x/P*2 0 2 0 1
x/Px0 0 0 0 ©
x/Px1 0 0 0 0
x/P*0 1 0 0 0O
x/Px2 0 0 0 ©
x/Px0 0 1 0 0
x/Px1 1 0 0 0

7.21 The expressions of the
preceding exercise were all of
the form x/PxE, and the last five
of them yielded the first five
positive integers. Determine
further values of £ to continue
the process for integers 7, 8, 9,
etc. What is the first integer
impossible to represent in this
way?

7.22 Take the first integer
which cannot Dbe represented in
the form x/2 3 5 7 11«F and
append it (it 1is a prime number)
to the list P and then continue
the process of Exercise 7.21 for
a few more integers. Can every

integer be represented as x/P*E
where P 1is a vector of prime
numbers?

7.23 a) If P is a vector of
primes and if M<x /PxE and
N«x/PxF and G+x/PxELF, then &
is a divisor of both ¥ and WN.
Choose a number of different
values of E and F and verify

that this is so for the cases
chosen.
b} Explain why ¢ is a divisor

of both ¥ and W.
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c) Is it possible to find a
number larger than ¢ which
divides both # and N? Why?

7.24 a) If p, M, and N are as
defined in the preceding
exercise, and if L«x/P=E[F,

then both ¥ and ¥ divide L.
Verify this for a few values of
E and F.

b) Explain why ¥ and N divide
L.
c) Is it possible to find a

number smaller than [ which is
divisible by both ¥ and #?
Why?
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CHAPTER 8
8.1 Evaluate the following X--X
expressions:
Xx-X
'3
Xr-x
x /13
XL-X
ty
8.4 Evaluate the following
x /14 expressions correct to 3 decimal
places:
110
T4
(15):(tu)
5
(re):(!5)
6
(11+110)+(!v10)
18
(1+110)x(t110)
~:18
(!110)110
i-18
1,19
115
8.2 Comparison of the last two
results of Exercise 8.1 suggests +/+115
a definition for the value of !0.
What is the value? Would its $2%15
adoption agree with the obvious
requirement that !#+1 is equal to +/32%15
(N+1)x1n? What value would the
same line of reasoning give for 8.5 Evaluate the expression
1712 +/+2% 1N for the first few
positive values of W, What
8.3 Evaluate the following integer do these results seem to

expressions:

be approaching? Can you choose a
positive value of N large enough
so that +/+2x1N is larger than 1?
8.6 a) Evaluate the
expressions:

following

3 4 7 9 10

X<3 u 7 9 10
| X

f-X
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-l x
XX
+/1X
[ +/%
X=1x
(X=1X)/X
(x=|X)/X
b) Evaluate the following
expressions:
P<7.2 T3.4 8.1 "6
| P
P[-P
c) What is the relation

between the expressions |7 and
P[-P appearing 1in Part (b)?
Would this relation remain true
for any value assigned to P?
8.7 Evaluate the
expressions:

following

L(110):2
[(110):2
L(110)=:3
[(110)=:3
X«1.8 72,7 "6 4.9 7
X=1x

(X=LX)/X

(X=LX)/X

Ne112
| N+3

(N-31N):3
(W)
(V-5|N)+5

8.8 Evaluate
expressions:

the

~1 1 01 01
~~1 101 0 1

X«<72 3 75 7 11

~0=5}112
0z5]112

8.9 Evaluate the

expressions and
results:

L«0 1

Lo.lL
~(~L)o,

[(~L)
Lo.[L
~(~L)o.L(~L)
Lo.z2L
~(~L)e,=(~L)
Lo.<L

~(~L)o,<(~L}

compare

following

following
their
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8.10 If I is any logical vector

(i.e., each of its elements is
either 0 or 1) of any dimension,
then the expressions L/L and

~[/~L yield the same result.

a) Verify this for a number of
values of L.

b) Perform a similar
verification of the equivalence
of /L and ~L/~L.

c) Find similar relations among
the functions <, <, =, 2, and
[ For example, z/L is
equivalent to ~=/~L.

8.11 Evaluate the following
expressions:

A+«2 3 5

B«1 3 5 7 8
p A

0B

+ /A=A

+/B=B

M<Ao.+B
oM

x /oM
o QM

pBeo.,+4
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CHAPTER 9

9.1 Define a function called D6
to determine divisibility of its
argument by 6. Then evaluate the
following expressions:

D6 12

D6 112

D6 (110)c.+(110)

D6 (110)e.x(110)

D6 (110)e.-(110)
9.2 Define a function called B
which determines the square of
its argument. Then evaluate the
following expressions:

B 16

B (16)o.+(16)
9.3 Define a function called R7
which yields the remainder when
its argument 1is divided by 7.
Then evaluate the expression R7
112,
9.4 Define a function called 7@7
which yields the integer part of
the guotient of its argument when
divided by 7. Then evaluate the
expression 1Q7 3 74 23 ug9,.
9.5 Using the functions defined
in the preceding exercises,
evaluate the following
expressions:

3xD6 110

+/06 110

L/D6 72 138 252

3xB 2+15

X«12+2x18

TxIQ7 X
(7xIQ7 X)+R7 X

9.6 a) Using the functions
defined in preceding exercises,
evaluate the expression D6 R7 B
18
b) Let ¢ be the function
defined as follows:

Vi<l X
Z«<D6 R7 B XV

Now evaluate the expression
C 18

9.7 Define monadic functions to
yield each of the following
results:

a) The area of a sguare as a
function of the length of its
side.

b) The area of a <circle as a
function of 1its radius (Use
3.1416 as an approximation to
pi).

c) The area of a circle as a
function of its diameter.

d) The volume of a sphere as a
function of its radius.

e) The 1length of a rope in
inches as a function of its
length in feet.
9.8 Use the dyadic function F
defined 1in the text to evaluate
the following expressions:
2 4 6 8 F 13 14 15 16
4 F 13 14 15 16

2 46 8F 13
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M<(15)o.,4(15)

M F 7+M
9.9 Define a dyadic function
called # which gives the area of
the rectangle whose length 1is
given by the first argument and
whose width 1is given by the

second argument. Then evaluate
the following expressions:

3 b

3 45 H 5 6 7

3 A5 86 7
3 45 H 5

9.10 Define a dyadic function X
which yields the volume of the
square cylinder, where the first
argument represents the height of
the cylinder and the second
argument represents the length of
the square base.

9.11 Define dyadic functions to
yield each of the following
results (the first argument
mentioned is to be the first

argument of the function):

a) The area of a triangle as a

function of 1its base and
altitude.

b) The perimeter of a
rectangle as a function of its
length and width.

c) The width of a rectangle as
a function of its area and
length.

d) The width of a rectangle as
a function of its length and
area.

e) The volume of a circular
cylinder as a function of its
height and the radius of its
base.

£) The altitude of a triangle
as a function of its area and
base.

9.12 a) A rectangular plot is

to be enclosed with 432 vyards
of fencing. Define a function
to give the area of the

enclosed plot (in square yards)
as a function of +the length of
one 0of the sides (in yards).

b) Evaluate the function for a
number of arguments to
determine that value which
yields the largest possible
area.

9.13 a) A rectangular plot is
to be enclosed with a fence of
length L. Define a function
which gives the area enclosed
as a function of I and of the
length &5 of one of the sides.

b) Evaluate the function for a
number of values of L and 5 and
determine the largest possible
value of the area for a given
fence length L.

c) How do the values of [ and
S compare when S has been
chosen to give maximum area for
some fixed value of I?

9.14 Using the function PR
defined in the text, determine
the value of the expression pPR X

for the following values of X:
10, 15, and 20.
9.15 Using the functions FT0C
and CT0F defined in the text,
evaluate the following
expressions:

FTOC 204110

CTOF FTOC 20+110

FTO0C 20+110

CTOF FTOC 20+110
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9.16 Using the function A
defined for adding rationals,
evaluate the following

expressions:
3441 2
+/3 4 4 1 2
(+/3 W)+(+/1 2)
5 7 A 4 6
21 3 A 15 8
27 7 A 1 10

14 13 A 26 29

9.17 Define a function ¥ which
multiplies rationals in the same
manner that the function 7 adds
then. Then evaluate the

following expressions:
34 M1 2
/3 40M 12

(/3 8)x(+/1 2)

S 7 M4 6

21 3 M 15 8

27 7T M1 10

9.18 Define a function D which
divides one rational by a second.
Then evaluate the following
expressions:

3 40D 21

/3 4D 21

(/3 4)s(s/1 2)

5 7D 4 6
9.19 Using the function F of the
text, show the results produced
by the following execution
traces:

TAR« 1 4

g«k 3

Q<R U

TAR«2 4

Q<R 3

Q<R 4



CHAPTER 10
10.1 Analyze each of the four 18 19.6 16 2.36
following function tables, that 17 19.9 17 1.73
is, determine a function to fit 18 20.0 18 0.92
each table: 19 19.9 19 0.01
20 19.6 20 71.00
0 Wb 0 3.9 21 19.1 21 71.99
1 2.1 1 2.7 22 18.4 22 72,92
2 3.8 2 1.5 23 17.5 23 73.73
3 5.5 3 T0.3 24 16,4 24 Tu4.36
i 7.2 b 0.9 25 15.1 25 4,75
5 8.9 5 2.1 26 13.6 26 4.8y
27 11.89 27 T4.57
28 10.0 28 73.88
0 47 0 15 29 7.9 29 T2.71
1 1.9 1 19 30 5.6 30 71.00
2 0.9 2 23 31 3.1 31 1.31
3 3.7 3 27 32 0.4 32 4,28
y 6.5 y 31 33 2.5 33 7.97
5 3.3 5 35 34 5.6 34 12.44
35 8.9 35 17.75
10.2 For each of the tables of 36 T12.4 36 23,96
Exercise 10.1 make a 37 T16.1 37 31.13
corresponding map and use it to 38 20,0 38 39.32
determine an expression 39 24 .1 39 48,59
representing the table, Compare
the results with the results of
Exercise 10.1, 10.5 Use the graphs of Exercise
10.3 to analyze each of the
10.3 Graph each of the functions functions they represent.

of Exercise 10.1,

10.4 Graph each of the following
two functions:
0 T12.4 0 61
1 8.9 1 750.59
2 5.6 2 41,32
3 2.5 3 733.13
I 0.4 n T25,96
5 3.1 5 T19.75
6 5.6 6 T4, 4y
7 7.9 7 79.97
8 10.0 8 6.28
9 11.9 39 73,31
10 13.86 10 T1.00
11 15,1 11 0.71
12 16.4 12 1.88
13 17.5 13 2.57
14 18.4 14 2.84
15 19.1 15 2.75

Compare the results with those of
Exercise 10.1.

10.6 Consider the function L as
defined below:

VZ«C L X

Z«CL1]+CL21xXV
When applied to any two-element
vector left argument and any

vector right argument it produces
a function which plots as a
straight line, For example, if

X<0,15, then ¥ 1is the first
column of the first table of
Exercise 10.1 and .4 1,7 L X is

the second column.

a) Write expressions using I to
produce the second column of
each of the tables of Exercise
10.1.
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b) Use the function I to
produce a number of new
function tables. Then graph

each function and use the graph
to analyze the function (i.e.,
determine an expression for
it). It is best if you do not
know or remember the expression

which produced the table -
either exchange tables with
fellow students or lay vyour
tables aside for a few days
before analyzing them.

10.7 Use the graphs produced in
Exercise 10.4 to answer the
following guestions about each of
the functions they represent:

a) For what value (or values)
of - the argument does the
function have the value 0?

b) For what values of the
argument is the function equal
to 3, to "3, to 100?

c) For what argument values

does the function reach a local
high point?

d) For what argument value does
the function appear to be
changing most rapidly.

10.8 For each of the function
tables of Exercise 10.4 attempt
to find an expression which
represents the function. For

each expression you try, evaluate
it for some or all of the
argument values in the table to
see how <closely your proposed
function fits the given function.
You may find some of the results
of Exercise 10.7 useful,.

10.9 Evaluate
expressions:

the following

3t 5

T3415

3¥15

3415

7415

T7415

A«l1 2 3 4 5
B«6 7 8

pA

pB

(pB)t4
B+(p5)+4A

A+(pA)+B

10.10 a) Evaluate the following
expressions:

Y<0 1 4 8 16 25 36
vy

T1vyY
Ve(14Y)-(71+Y)
1%
W<(1+V)-("1+V)
W
(1¥W)-("14W)
b) Repeat Part (a) with
Y«(0,16)*3

c) Repeat Part (a) with Y

specified as the column of
Fahrenheit values from Table
10.1.

d) Repeat Part (a) with Y

the second column
table of Exercise

specified as
of the first
10.4.

e) Repeat Part (a) with Y«18



-291-
10.11 Make a difference table When applied to any two-element
for each of the functions of vecter 1left argument and any

Exercige 10.1.

10.12 Make a difference
for each of the function
produced in Exercise 10.6.

table
tables

10,13 Use the difference tables
produced in Exercise 10.11 to
determine exXpressions to fit each
of the functions. Compare the

results with those of Exercise
10.1.
10,14 Use the difference tables

produced in Exercise 10.12 to
determine expressions to fit each
of the functions. Compare the
results with those of Exercise
10.6.

10.15 Make a difference table
for each of the functions of
Exercise 10.4. Be sure to
include enough columns in the
table so that the last column has
a constant value.

10.16 Use the difference tables
of Exercise 10.15 to determine an
expression for each of the
functions represented. Evaluate
your expressions for a few
arguments (say, 0 5 10 20 30) to
see if vyour expressions do
properly represent the functions.

10.17
difference
10.15 by

Extend each of the
tables produced in
appending two further
columns, What can you say about
any column which follows a
constant column?

10.18
function:

Consider the following

VZ+( QUADRATIC X
Z+(X-Cla)x(x-cl21)v

vector right argument it produces
a function called a guadratic
function. Choose various values
of the 1left argument and the
value 0,16 for the right argument
to produce tables for a number of
functions. Make difference
tables to analyze each of the
functions produced and apply each
of the expressions produced to
the argument 0,16 to see 1if the
expressions properly represent
the functions.

10.19 Repeat Exercise 10.18,
replacing the quadratic function
by the cubic function defined as

follows:

V2«(C CUBIC X
Z(X-Cl1)x(x-clz21)y=x(x-cL3])v

The left argument must, of couse,
be a 3-element vector.

10.20 Extend one of the
difference tables of Exercise
10.15 by one column (of zeros) to
make two tables of the same size
to be used as follows:

a) Multiply the first table by
3 and verify that the resulting
table 1is a proper difference
table.

b) Multiply the second table by
4 and verify that the result is
a proper difference table,

c) Add the two tables and
verify that +the result 1is a
proper difference table.

d) Add 3 times the first table
to 4 times the second table and
verify that the result is a
proper difference table.
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10.21 a) Use the difference
table produced in Exercise
10.20(a) to determine an
expression for the function it
represents. Compare this
expression with 3 times the
expression produced in Exercise
10.16.

b) Repeat Part (a) for each of
the difference tables produced
in Exercise 10.20, comparing
each result with an appropriate
expression from the results of
Exercise 10.16.

10.22 Evaluate the factorial
polynomial of order 7 for the
arguments 0,17 and from the

results form the difference table
for the polynomial.

10.23 Evaluate
expressions:

the following

VZ<G X
7« 3+X%x2V

X+ U417
X

VG X
14

L«{/V

S«L/V

R+$ (" 1+5)+11+4L-8
R

MeRo.=V
o

10.24 A logical table containing
many zeros can be displayed more
easily using squared paper,
drawing lines to enclose a
rectangle of the same shape as
the table and entering a 1 in
each square corresponding to a 1

The zeros
Display the
Exercise 10.23 in

element in the table.
need not be entered.
matrix M of
this manner.

10.25 a) Evaluate the following
expressions, using the scheme
of Exercise 10.24 to display
any logical tables produced:

VZ<+<H X
Z+«X%3V

X< 4+17

V<H X

R<b( 1+L/V)+11+(T/V)-L/V
M<Ro .=V

M

b) Repeat Part (a),
each use of

replacing
the function H by

use of the following function
K
VZ<«K X
Z+(X-1)x(X+2)V
10.26 Evaluate the following
expressions, using the scheme of
Exercise 10.24 to display the
logical tables produced:
X+79+117
2> Xe, -X
5<|Xo,-X
(2> Xoo=X)(5<|Xo.-X)
72} Xeo, -X
T<lXo.-X
6=Xo ,+X
12=Xeo ,xX
12=| Xo ., xX



10.27 Evaluate the following Bl1+61(17)e.+17]
expressions, using the scheme of
Exercise 10.24 to display any A+ALPH,BR

logical tables produced:
A[9 29 19 9 14 7 29 15 6]
X<0,.,1%x110

V<X%2 10.30 Use the graphing function
R<0,.05%x120 GR of Section 10.12 to evaluate
W<|Ro.-V the following expressions:
. 012W
X<18
.Q22W T+Xo . <X
GR T
LAz
GR QT
10.28 Evaluate the following
expressions: M<Xo [ X
GR 4<M
ALPH<'ABCDEFGHIJKLMNOPQRSTUVWXYZ"'
ALPH[8 9 7 8] GR 5<M
ALPH[1 4] GR od5<M
ALPH[$ 4] GR (5<M) [ ed5<M
GALPHL 14] 10.31 Evaluate the following
expressions:

ALPH[6p24]
M«(18)c.[18

10.29 Evaluate the following C«' o-+x0x['

expressions, assuming that ALPH ClM]

has the value assigned in

Exercise 10.28: Cl5LM]
Bets[] 4+-x" clslul
BL7p1 2]

CLM[ edM]

BL7p2 3]

CHAPTER 11

11.1 The phrase "define ¥ by the
expression 3+4xX" will be used to

mean "Define the function F as
follows":
Vi+F X
Z+3+4x XV
a) Define P by the expression
B+a4xX
b) Define ¢ as the function

inverse to P

c) Evaluate the
expressions:

following

Q@ 0,15
P g 0,15
P 0,15
& P 0,15

11.2 a) Define F1, F2, etc., by
the following expressions:

T3+2xX
T8+10xX
T2+710xX
443xX
bx X
5+X
b) Define functions G1, G2,

etc., which are inverse to the
functions F1, F2, etc.

c) Evaluate the
expressions:

following

X<« 3415
Fl1 X
Gl F1 X
Gl X
F1 G1 X

d) Repeat Part (c) for each of
the other function pairs F2 and

G2, F3 and (3, etc.
11.3 Take the four function
tables of Exercise 10.1 and
replace the first column of each

by the vector 2 2.2 2.4 2.6 2.8
3. Analyze each of the functions
represented by the new tables.
Verify your work by applying each
of the resulting expressions to
the arguments 2 2.2 2.4 2.6 2.8
3.

11.4 Repeat Exercise 11.3 but
replacing the first columns by
each of the following vectors:

7 "4 "1 25 8

2.5 71 0.5 2 3.5 5

11.5 Make maps to show the
application of each of the pairs
of inverse functions of Exercise
11.2,.

11.6 Draw graphs to represent
each of the pairs of inverse
functions of Exercise 11.2,
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11.7 Define @ by the expression
X*3, Graph the function ¢ for
argument values from ~2.5 to 2.5.
Draw the graph of the function R
which is inverse to @ and use it
to evaluate (approximately) the
exp~ession R 1.3 0 1.27 2.15.
Check these results by applying
the function @ to them.

11.8

Graph the function -X and

from it obtain the graph for the
inverse function, What is the
expression fr the inverse
function?

11.9 Repeat Exercise 11.8 for

the function :X.

11,10 The function Xx2 is called
the sguare function and its
inverse 1is called the uare
root. Determine the square root
of each of the arguments 3, 5, 6,
and 4096, Check your results by
applying the square function.

11.11 The
called the

expression X=*3 is
cube function and its

Determine the cube root of each

of the arguments 3, 5, 6, and
4096, Check your results by
applying the cube function.

11.12 Solve each of
following equations:

the

5=3+X

T=lUx)X

18=4+3xX
248=13+2xX-3
164="8+(2xX)-8
164="8+(2xX)+8

11.13 Solve each of
following equations:

the

5=X*2

6=X*3
4096=X*3
256=(X-u4)*2

343=(X+15)*3
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CHAPTER 12

12.1 Show the complete trace of
the first four iterations of the
function S@QRT (defined in the
text) when applied to each of the
arguments S and 25 and .25.
Check the results by applying the
square function to them.

12.2 show the complete trace of
the function S@T when applied to
the arguments 5 and 25 and .25
(carry all calculations to 7
decimal digits.)

12.3 Show the complete trace of
the execution of the expression 4
5 GRF 20 for the case where F is
the square function.

12.4 Show the complete trace of
the execution of the expression 3

2 GRF 3, where the function F is
defined as follows:
VZ<F X
Ze5x(X-1.4)x(X-2.6)x(X-4.2)
v
12.5 Write an expression using
the function GRF which would
yield a solution to the equation
17=Xx4
and show the appropriate

definition of the function F used
within GRF.

12.6 Repeat exercise 12.5 for
each of the following equations:

29=(X-2)x3

265=X*5

19=(3+2xX}=%?2

47=("24+.5xX) %6

12.7 Show the complete trace of
the execution of the following
expressions:
GCD 35 133
GCD 133 35
GCD 140 35
GCD 1728 BHO
12.8 a) Evaluate the expression
V+GCD ¥V for each of the
following values of the
argument V:
6 8
35 133
54 318
175 2025
1024 128
b) For each of the cases of
Part (a) verify that V and

V:+GCD V both represent the same
rational number, that is,
(2/V)=(:/V:GCD V)

c) Apply the function GCD to
each of the results of Part (a)
to verify that the elements of
the result have no common
factor, that is, their greatest
common divisor is 1.



12.9 a) Use the function 4
defined in Section 9.5 (to add
rationals) to evaluate the
following expressions:

74 100 4 13 50

b) Apply the function GCD to

each of the results of Part

(a).
12.10 a) Define a dyadic
function PLUS which adds two
rationals (in the manner of the
function 4 of Section 9.5), but
which yields the result in
"reduced form", that is, with
the smallest integers possible.
Ugse the functions 4 and GCD in
the definition.

b) Redefine the function of
Part (a) so that the functions
P and GCD are not used within
it but are each replaced by

statements like those in their
definitions.
12.11 Define a function TIMES
which multiplies rationals and
produces the result in reduced
form.
12,12 Evalute the expression

+/BIN N for integer values of ¥
from 0 to 7. Give a simple
expression which is equivalent to
the function +/BIN N and test it

by evaluating both expressions
for the case N<12.
12.13 Evaluate the expression

-/BIN N for values of ¥ from 0 to
7. Give a simple expression
which is equivalent to the
function -/BIN W.

12.14 Each of the following

functions is equivalent to some

primitive function. Evaluate

each for a few scalar arguments

and identify the equivalent

primitive function:

V Z<«X A Y V Z«B X

(1] Z+1 (1] Z<1

[2] >3xY=20 [2] I+<0

[3] Y+¥-1 [3] >uxT =X

[4] Z«Xx7 [u4] I<T+1

[5] >2 v [5] ARV
(61 »>3 v

V ZI<X C 7Y

[1] <X

[2] >3xX<Y

[3] Z<Y V¥

12.15 Without using the

complement function (~) itself,

define a function D which is

equivalent to the complement

function.

12.16 Repeat Exercise 12.15 for
each of the following functions:

Minimum (L)
Magnitude (|)
Not-equal (=)

12.17 a) Without using the
residue function (}) itself
define a function equivalent to
the residue function, at least
for non-negative right and left
arguments.

b) Modify the function defined
in Part (a) so that it is
equivalent to the residue
function for negative as well
as positive right arguments.

12.18 a) Use the ceiling
function (1) to define a
function equivalent to the
floor function ().

b) Without
ceiling,

using any of the
floor, or residue
functions, define a function
which 1is equivalent to the
floor function for non-negative
arguments.

c) Modify the function defined
in Part (a) to make it apply to
negative as well as
non-negative arguments.

12.19 Consider the function W

defined as follows:

V Z<W N

[1] 722

(2] I<2

[3] T«T+1

Lu] >5+3xI>N

[5] >6-3x[/0=2|T

[6] Z<2,1

[7] +>3 v

Evaluate W ¥ for a few different
values of ¥ and state in words
what the function W does. (For
integer arguments greater than 1
it 1is equivalent to a function
defined in an earlier chapter).



13.1
expres

13.2
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CHAPTER 13
Evaluate the following +/P<@
sions:
+/P=@Q
A«l 2 3 4 &5
B«5 4 3 2 1 L/P=g
+/4A%B
[/P=¢
+/A(B
x/P+4Q
L/AlB
[/P+Q
+/A<B
13.3 Rewrite each of the
L /A<B expressions of Exercise 13.1 in
inner product form.
[ /A<B
13.4 Evaluate the following
x/4-B expressions:
+/4 1|8 P<2 3 5 7 11
E«2 0 2 0 1
+/A*B Fel 11 1 C
Px,*E
+/Bx4A
Px ., xF
C«720 3 14 "8 0 2
D«S "7 2 76 13 Px *xELF
+/CxD
Px ,*xE[F
r/cLo
2 3 5 7 11x,x2 0 2 01
L/scro
1 01 1 O0+.x15
r/7creyLcrn) a L
11 1 1 1+.x15

L/sCleyLcln)

+/C<D

+/C=D

+/C-D

State in words what

following expressions mean.

example, the first one means
number of positions in which
elements of Q@ exceed

corresponding elements of P:

the
For
the
the
the

(T1%1 01 1 0)+.x1§
(T1%1 0 1 1 Q)+.xP
(P<7)+.xP

(P=5)+.xP
(T1%xP25)+.xP

PL.=E

PL.=P

13.5
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PL.=F
1 2 3 4L.=14

Evaluate each of the

following expressions:

13.6

1 3 3 1+.x(%%x0 1 2 3)
X<5S

C«1 3 3 1

E«0 1 2 3

Ctr.x(X*F)

(X* 1+10C)+.%xC
(X+1)x3

D«1 2 1
(X*x 1+1pD)+.xD

(X+1)*2

B<1 4 6 4 1
(X* 1+1pB)+.xB

(X+1)x4

X<7
(X "1+1pD)+.xD

(X+1)*2

(X* 1+1pC)+.xC

(X+1)x3

(X* 1+1pB)+.xB

the

Evaluate following

expressions:

X«1 2 3 4 5 ¢
A<«3pX

A

pA

B<8pX
B

0B

1,(5p4% 2),1

701 0O
13.7 Evaluate the
expressions:
X«1 2 3 4 5 6
M<2 3pX
M
ol
N<3 5pkX
N
ol
4 3p112
&3 4p112
o4 3pr1l12
oQ4 3p1l2
13.8 Let ¥ and
following matrices:
M N
4 "6 3 2 0
10 Ty 3 1
1 "2
Then evaluate the

expressions:
M+, <N

ML .+N
M+ . LN
M+.xN

RIQN) +.x( QM)

RIQN) +.=0M
M+ . <N

QAN) +.2(8M)
RIRN) +.>(8M)

following

following



13.9 State in words what each of
expressions of the

the first six
preceding exercise represent.

13.10 Let ¢ and ¢ be specified
as follows:
@«1 500 1 2 3 4 and
C«5 5p1 1111012340013
6 0 0 1 %0 000 1
Then ¢ and C are the following
matrices:
qQ c
01 2 3 4 11111
01 2 34
0 01 3 6
000 1 u
0 Cc 0 01
Now evaluate the
expressions:
X<3
(Xx@)+.xC
(X+1)=Q
X+b
(X*xQ)+.xC
(X+1)%Q
(7%xQ)+.x%xC
(7+1)%Q
13.11 Evaluate the

expressions:

M+(15)e.215
M

X+«2 3 5 7 11
X+.xM

(+/14X),(+/24X),(+/34X),
(+/44X),(+/54X)

M+, xX

following

(QM)+.xX
Xx . *M

(x/14X),(x/24X),(x/34X),
(x/44X),(x/54+X)

Xx ., xqQM
13.12 Let the matrices I and P
be defined as follows:

I D
10000 1 0 0 0 0
01000 11 0 0 O
00100 071 1 0 o0
00010 0 0 1 1 o
00001 0 0 0 "1 1
Then evaluate the following

13.13 a)

following expressions:

X+2%15
X

IT+,.xX
T+.x14 3 16 7 0
D+.xX
D+.x14 3 16 ~7 0O

Write an expression
using outer product to define
the matrix I of Exercise 13.12.

b) Write an expression using
outer products to define the
matrix D of Exercise 13.12.

c) Modify the expressions
derived in Parts (a) and (b) to
define similar matrices of any
specified dimension W.

d) The expression I+.xX is a
function of the vector X.
State in words what this
function is.

X<1 4 9 16 25
D+.xX

S+.x(D+.xX)
S+.xD
(S+.xD)+.%xX
S+.%xX
Dt . x(S+.xX)
D+.xS8
(D+.xS)+.xX
b) State in words the relation

between the functions D+.xX and
S+.xX,

13.16 a)

e) The function D+.xX is 13.15 Let M be the following
closely related to the matrix:
difference function defined in
Section 10.6. State exactly M
what this relationship is. 2314
01 2 0
f) State in words how the 2 3 24
matrix D should be modified to 0100
produce a matrix P21 such that 100 1
the function Di1+.xX is exactly
the difference function of a) Evaluate the following
Section 10.6. expressions:
g) Write an expression using P«<2 3 5 7 11
outer products to define the N<Px *xM
matrix D1 of part (f). v
13.14 Let D be the matrix GCD+Px x| /M
defined in Exercise 13.12, and GCD
let S be the following matrix:
N:GCD
S
10000 b) Verify that GCD 1is the
11000 greatest common divisor of the
11100 elements of V.
11110
11111 c) Choose any other value for
M, except that the matrix must
a) Evaluate the following have 5 rows and must contain
expressions: only non-negative integer
elements. Then repeat Parts

(a) and (b).

Using the matrix M of
Exercise 13.15, evaluate the
following expressions:

P<2 3 5 7 11
N<Px.xM
N

LCM«Px x[ /M
LCM

LCM=N

LCM is the
of the

b) Verify that
least common multiple
elements of N.

c) Choose another value for M
(as in Exercise 13.15 (¢)) and
repeat Parts (a) and (b).



13.17 Let M be the matrix:
)
2 3 g
0 1 2
y o T2 2
a) Evaluate the followinag

expressions:

Ae(MEs1Ix2)+(ML32]x1)+ (40 333x3)
B«M+ .x2 1 3

V<2 & 3
C« (MU IxVIa))+ (ML 2]xvE2 )
+(M[y30xv[lal)

DM+ . xV

b) Display and compare the
values of 4 and B and of (¢ and
D. State in words the
relationship this comparison

suggests.

c) Test the relationship you
expressed in Part (b) by
evaluating ¢ and » for several
different values of V and of M.

13.18 Follow the
Exercise 13.17 +to establish a
similar relationship between the
expression V+.x¥ and expressions
involving the rows of M.

steps of

13.19 a) Evaluate the following
expressions:

Xeu
Xx0 1 2 3
520

IxX*x0 1 2 3

+/5 2 0 1xXx0 1 2 3

E<0 1
+/5 0 0

[

3
OxX%xE
+/0 5 0 OxX*xE

SxX*1
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+/0 0 7 OxX=*F
TxX*x2

b) Identify each of the curves
of Figure 13.1, 1labelling each
as a "first term", "second
term", etc.

13.20
TERMS

Let the functions SUM ana
be defined as follows:

V Z<SUM X
[1] Z<+/XV
Y Z<(C TERMS X
[1] Z<«COxX* 1+1pCV
Evaluate the

expressions:

following

£ed
X<5
C TERMS X

1 014

SuM C TERMS X

13.21 Repeat Exercise 13.20 for
the following values of X and (:

R c

4 13 31

5 0 0 0 1

5 1 3 3 1

5] 00 01

0 1 3 31

1 0 0 0 1

2 1 4 6 4 1

3 00 0 01
13.22 Use the function POL
defined in Section 13.6 to
evaluate the following

expressions:

S 0 7 2 POL 0 1 2 3 4 5
"5 0 "7 2 POL 01 2
"5 0 "7 2 POL "4 "3 "2
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POL 0,15
POL 1+0,15
1 2 1 POL 0,5
1 POL 140,15
13 3 1 POL 0,15

0 0 0 1 PUL 140,15

13.23 Use the difference
function P defined in Section
10.6 to evaluate the following
expressions:

V<5 0 2 3 POL 9,15

%

nv

nov

D DDV

W5

W

DD

13.24

0 2

3 1

DD W

Use

the matrix S defined
in Exercise 13.14 to evaluate the

POL 0,17

following expressions:

V<

5

S+.xN

0 0.% 0.5 POL N
S+, xN*2

(0 1 3 2:6) FOL N
S+ xN*3

0 0 0.25 0.%

S+ xN=0

01

POL

N

0.25 POL N
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CHAPTER 14
14.1 For each of the dyadic the dyadic functions < < = > > =
functions + - x ¢+ A Vv << = | [ and L.
and |, state:
14.5 Make a table similar to
a) Whether you think it is Table 14.5 to prove that the

commutative or not.

b) An example proving that the
function is non-commutative for
each case you declare to be
non- commutative.

14.2 Modify the function COM
defined in Section 14.2 so as to
include in its domain all of the

function symbols appearing in

Exercise 14.1.

14.3 a) Make tables to prove
that the functions and and or
are commutative.

b) Evaluate the following
expressions:
onl
ovi
On1
Ov1
X«0 0 1 1
Y«0 1 0 1
XANY
AvY
XnY
AwY
14.4 Use the method of

exhaustion to examine the commut-
ativity (or non-commutativity) of

minimum function is associative.

14.6 Make a
labelled 0 0 0 and 0
0, etc., to 1 1 1)
show whether the and
associative.

table (of 8 cases
0 1 and 0 1
which will

function is

14.7 Repeat Exercise 14.6 for

each of the following functions:
vV oK v,

14.8 a) Write an example to show
that addition does not
distribute over multiplication.

to show
not

b) Write an example
that addition does
distribute over itself.

c) Write an example to show
that multiplication does not
distribute over itself.

d) Write a few examples to
illustrate that multiplication
distributes over addition
(include some negative numbers

in the example).

e) Complete the following table
so as to summarize the
foregoing results, using a 1 to
denote commutativity and a 0 to
denote non-commutativity:

[+ x

- -2
+1
!
I

x

-306-

14.9 Extend the table of Exercise
14.8 (e) to include the functions

+ x - [ and |l. You are not
expected to provide proofs of
commutativity, but test the

matter thoroughly by evaluating a
number of expressions looking for
values which will prove
non-commutativity. Be sure to
use some negative values in this
search. For each function stated
to be non-commutative, give an
example which proves it so.

14.10
whether:

Make tables to determine

a) v distributes over 4

b) v distributes over v

c) A distributes over a.
14.11 Summarize the results of
Table 14.6 and of Exercise 14.10

in a distributivity table of the
form

v A
|
v
|
|

A

row and
table if the

entering a 1 in the Ith
Jth column of the
function heading the Ith row
distributes over the function
heading the Jth column, and a 0
otherwise.

14,12 Extend the distributivity
table of Exercise 14.11 to
include the functions Vv A & and
¥, Make tables of the form of
Table 14.6 to develop any results
you may need for this table.

14,13
Table
addition
maximum,

a) Make a table similar to
14.7 to prove that
distributes over

b) make a table to test whether
subtraction distributes over
maximum.

c) If in Exercise 14.9 vyou
concluded that multiplication
distributes over maximum, then
evaluate the following pair of
expressions and compare the
results:

“exuf9
(Texu)[(76x9)

14.14 Repeat Exercise 14.13
substituting minimum for maximum.

14.15 Make a table of the form
of Table 14.8 to summarize all of
the results obtained thus far.
Enter 0's and 1's only for
results that have been proven

and leave other entries blank,
Include the dyadic functions + -

x + [ L v A » and #, Fill out
blank spaces in the table by
constructing further proofs if
you wish.

14,16 The proof (i.e.,
derivation) that (4+B)x(C is

equivalent to (4xC)+(Bx(C) which
was given in Section 14.5 can be
illuminated by evaluating each
expression occurring in it for
some chosen value of 4, B, and (.
For example, if 4«3 and B+«7 and
cel, the illumination would
appear as follows:

(3+7)xu
40

ux(3+7)
40

(4x3)+(u4x7)
40

(3x4)+(4x7)
40



-307-

Illuminate the proof for each of
the following values of 4, B, and
Cz
A B C
3 14 "8
"3 5 7
"3 75 T7

14,17 a) Prove that (PL@)[R is
equivalent to (R[P)L(QIR). Use
the first such proof in Section
14.5 as a model, writing the
justification of each step to
the right of it.

b} Choose values of P, ¢, and &

and illuminate the proof in the

mannexr defined 1in Exercise

14.16.
14.18 Repeat Exercise 14.17 to
show the equivalence of each of
the following pairs of
expressions:

AA(BAC)
CA(BAA)

A+(B+C)
C+(B+A)

AXBx(CxD
DxCxBxA

14.19 For each of the proofs of
Exercises 14,17 and 14.18 add the
abbreviated form of the note to
the right of each note in the
proof.

14.20 Choose values of 4, B, (,
and D and use them to illuminate
the proof (given in the text)
that (4+B)x((C+D) is eguivalent to
(AxC)+(AxD)+(BxC)+(BxD)

14.21 Make (and illuminate)
proofs for the following pairs of
equivalent statements:

(ALBY+(CLD)

(A+C)LCA+D)IL(B+C)L(B+D)
AA(BV(CVD)
(AAB)YV(AAC)IV(AAD)

14.22 a) Determine a value of
the wvector ¢ such that the
expression +/CxX %0 1 2 1is
equivalent to the expression
x/X+4 1.

b) Evaluate the expressions in
Part (a) for several values of
X and compare the  results
(which should agree).

14.22 for
following

14.23 Repeat Exercise
each of the
expressions:
(X+4)x(X+1)
x/X-4 1
x/X+1 1
x/X+1 0
x/X+0 1

(X+ 1)x(X+ 1)

(X-1)=(X-1)

R«3 5

x/X+k

x/X+(-R)

x/X-R
14.24 Choose vector values of
the arguments to illuminate the
proof illuminated in Exercise
14.16.
14.25 Chose vector values to

illuminate each of
Exercise 14.18,

the proofs of

14.26 Evaluate
expressions:

A+<3 T8 15 6

B«"5 0 18 43

+/A,B
(+/4)+(+/B)
[/A,B
(T/7A5T (I /R)
L/4,B
(L/7AXL(L/B)
x/A,B
(x/A)x(x/B)
-/A,B
(-/4)-(-/B)
C<+1 0 1 0 1
D«0 1 1
v/C,D
(v/C)v(v/D)

14,27 Evaluate
expressions:

A<3 "8 15 6
B<u4 2 "1 u
+/A+B
(+/4)+(+/B)
x/AxB
(x/A)x(x/B)
[/ATB

(F/74)1(1/8)

the

7

the
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following -/A-B
(-/4)-(-/B)
14.28 Use each of the following
pairs of values of V and ¥ to

following

illuminate the identity expressed
by Theorem 4:

v W
1 10 2 3 2 0 5
2 0 5 1 5 2 3
3 10 2 T8 2 0 "2 73 1

14.29 Use the following values
to illuminate Theorem 5:
A< 3 "1 0 4 2
B+« 5 "2 6
pP<"2 2 1 0 5
@< 7 2 Ty
14.30 a) Repeat Exercise 14.29,
substituting the function + for
every occurrence of x in
Theorem 5.
b) Repeat Part (a) using [

instead of +,

14.31 Use the values of 4, B, P,
and ¢ from Exercise 14.29 and the
values I+«y and J+2 to illuminate
the proof of Theorem 5.

14.32 Use the
values of 4, B,
illuminate Theorem 6:

following sets of
and (¢ to

A B c

3 2 4

2 3 5

3 4 Ty
14.33 Choose some values for x,
E, and F and use them to

illuminate Theorem 7.



14.34 a) For each of the
following pairs of values of 4
and B, determine a vector D
such that the expression D P X
is equivalent to (4 P X)+(B P
X) (where P is the polynomial

function defined in Section
14.8) :
A B
2 1 4 3 72 5
6 18 4 2 3 73 8 4
2 0 u4 8 0 0 0 2

b) Verify each of the foregoing
results by evaluating the
expressions p P X and (4 P
X)+(B P X) for X< 3+15.

14.35 Repeat Exercise 14.34 for
the following values of 4 and B:

A B
6 1 2 3 0 4L 8 2
213 "24 2 01

14.36 Repeat Exercises 14.34 and
14.35 but with the expression (4
P X)+(B P X) replaced by (4 P
X)x(B P X).

14.37 For each of the following
expressions determine the
coefficients of an equivalent

polynomial:
x/X+2 3
x/ X+4 7
x/X+7 4
x/ X+ (-7 4)
x/X=7 4
x/X+"7 "4
x/X+2 3 4
x/X+4 3 2

x/X+3 2 U

x/X-0 1
x/X-0 1 2
x/X-0 1 2 3
14,38 a) For each of the
following expressions determine
the coefficients of an
equivalent polynomial:
x/X+1
x/X+1 1
x/X+1 1 1
x/X+U4p1
x/X+5p1
x/X+6p1
b) Compare the results of Part

(a) with the binomial
coefficients of Section 12.4.

14.39 Let M be the following
matrix:
1 0 0 0
0 1 "1 2
0 0 1 73
0 0 0 1
a) Compare the columns of ¥
with the coefficients of
polynomials equivalent to the

factorial polynomials and state

how the columns correspond to
the degrees of the factorial
polynomials. (Note that final
zeros appended to a vector of
coefficients make no difference
to the value of the
polynomial).

b) Evaluate the following

expression:

V<«0,1,(3:2),(2%6)
A<M+ . xV
A

c) Use the results of Exercise

13.17 (in Chapter 13) to state
in words the relation between
the result of Part (b) and a
certain weighted sum of the
columns of ¥ (that is, of the
coefficients of polynomials
equivalent to the factorial

polynomials).

d) Use the vector 4 of Part (b)
and the polynomial function P
defined in the text to evaluate
the expression A P X for
several values of X. Compare
the results with the evaluation
of +/(1X)*2 for the same values
of x.

e) Explain the
obtained in Part (4d).

agreements

14.40 Exercise 14.39 illustrated
how the expression M+.xV would
vield the coefficients of a
polynomial equivalent to the sum
of V[1] times the 0-degree
factorial polynomials, V[2] times
the 1-degree factorial
polynomial, etc. Apply this
result to obtain the coefficients
of a polynomial equivalent to
+/(1X)*3 as follows:

a) Extend the matrix ¥ to be a
5 by 5 matrix incorporating the

coefficients for the next
factorial polynomial.
b) Evaluate +/(1X)*3 for a

number of values of X beginning
with 0.

c) Use the difference table
method of Section 10.8 to
determine an equivalent
function (expressed as a
weighted sum of factorial
polynomials).

d) Evaluate the expression

Q<M+, xR+'0 1 2 3 4, where R is
the first row of the difference
table.

e) Compare & P X and +/(1X)*3
for a number of values of X,

14,41 Use mathematical
induction to prove that the
functions +/(1X)*2 and (+/0 1 3
2xX*0 1 2 3):6 are equivalent.
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CHAPTER 15
15.1 For each of the followina 15.2 Take each result of
linear expressions, write an Exercise 15.1 and (without
equivalent expression in terms of looking at the original

a single vector argument V, where

VeX,Y or V<X,Y,Z Oor V<W,X,Y,%
appropriate:

3+(uxX)+(oxY)
Tu+(6xX)+T7xY

TUu+ (XY )+TxX

3+( 6xX)+0xY

3+( 6xX)
TE+(0xX)+ 9xY

T8+ 9xY

-(8+9xY)
0+(3xX)+( " 6xY)
(3xX)+(76xY)
(3xX)-(6xY)
Y-(3xX)+7xY
B+(2xX)+(5xY)+(10x2)
B+(2xX)+(0xY)+(10xZ)
T+ (2xX)+(10%x7)
18+10x2

U+ (3xX)+(0xY)+(0x2)
Y+ (3xX)

X+Y+2

Z+(2xY)+{4xX)

X-Y-Z

X+Y+72+W

as

expression in the exercise) write
an eqguivalent expression in terms

of the arguments X and Y (and if
necessary, Z and W). Compare
your results with the original

expressions.

15.3 Let X+3 and Y+«2 and Z<«4% and
W<15 and 1let V<«X,Y or V<«<X,V,? or
V<X,Y,Z,W as appropriate. Then
evaluate each expression of
Exercise 15.1 and evaluate each
equivalent expression which you
obtained and compare the results.

15.4 a) Determine a vector 4 and
a matrix B such that the
expression A+B+.xX,Y is
equivalent to the following

pair of expressions:

3+(2xX)+(Tuxy)
U+ (T3xX)+(2%xY)

More precisely, A+B+,xX,Y is
equivalent to the catenation of
these expressions, that is:

(3+(2xX)+( uxY)),u+( " 3xX)+(2x7Y)

b) Evaluate A+B+.xX,Y and
compare the result with the
result of evaluating the given
expressions for each of the

following pairs of values of X
and Y:

O WECOWN X

W I N WO U
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c) Take the result of Part (a)
and from it write the
equivalent expressions in terms
of ¥ and Y and compare with the
original expressions.

15.5 Repeat Exercise 15.4 for
the following pairs of
expressions:
T3+ (uxX)+(2xY)
E+(2xX)+(7xY)
T3-(Tuxx)y+(2xY)
E-(2xX)+( " 7xY)
(3xX)+(7xY)
(UxY)+(8xXx)
2+3xX
8+7xY
15.6 Choosing any values that
you wish for Z in the

evaluations, repeat Exercise 15.4

for the following set of

expressions:
1B+ (3xX)+( ux¥Y)+(7x53)
T13+(2xY)
2+(0xX)+(3xY)+( ux7)

15.7 a) Plot the mapping
produced by the expression
A+B+.xV for the following set
of values:

A B 14
3 75 2 1 2 1

b) Add to the plot of Part (a)
the mappings for each of the
following 7 wvalues of V (shown
in columns to save space):

c) Make other maps for any
values of 4 and B that you wish
to choose. For each case try

to find some value of V which
(like the 1last one in Part
(b) )maps into the origin (that
is, the point 0 0).
15.8 Repeat Exercise 15.7 but
with 4 assigned the wvalue 0 ©
in every case.
15.9 Let £ be the following
matrix:
.5 . 866
T.866 .5

a) Plot the mapping E+.xV when

applied to each of the set of
points V listed in exercise
15.7 (b).

b) Verify that this mapping is
a rotation.

15.10 Repeat Exercise 15.9 for
each of the following values of
the matrix B:

0 1 0 1 1 0 1 0
10 1 0 0 1 1
.707  .707 L7070 TL707

L7070 .707 .707 .707
15.11 a) Let B be the matrix of
Exercise 15.9. Then plot the
mappings produced by repeated
applications of B to the point
V«1 2, that is:
B+.xV
B+ .xB+.xV
B+ .xB+.xB+.xV
and so forth.
b) How many applications of B
are equivalent to the identity
function?



=313-

c) Write an expression of the
form B+.xB+.xB+.xB, with W
occurrences of B, where N
denotes the answer to Part (b).
Evaluate this expression and
compare the result with the
identity matrix.

15.12 a) Repeat Exercise 15.11
for each of the matrices of
Exercise 15.10.

b) Determine a rotation matrix
whose first and 1last elements
are equal to .2 and repeat
Exercise 15.11 for this matrix.

rotation
—Cl

15.13 a) Let B be a
matrix with elements 5, C,
and S as defined at the
beginning of Section 15.3.
Show that the product B+.x&B 1is
the identity matrix.

b) Show that (8§B)+.xB 1is the
identity matrix.

c) Test these results by
applying them to the rotation
matrices of Exercise 15.10

15.14 Plot the mapping produced
by the translation 3 ~5+V applied
to each of the points Vv of
Exercise 15.7 (b).

15.15 Let M be the matrix given
for V in Exercise 15.7 (b), that
is, the columns of M are the
values of V in the order shown.

a) Evaluate the expression
B+.xM, where B is the matrix of

Exercise 15.9. Compare the
results with those of Exercise
15.9.

b) Repeat Part (a) for the

matrices B listed in Exercise

15.10.

15.16 Define a matrix P to be
used with the matrices B and M of
Exercise 15.15 in the expression
P+B+.xM to produce the
translation 3 5.

15.17 Use the matrices P and M
of Exercise 15.16 and the matrix
B«2 200 1 ~1 0 and plot the

mappings produced by each of the
following expressions:

P+B+.xM

B+ .xP+M

(B+.xP)+(B+.xM)

15.18 a) Define a stretching
matrix B and apply it to the
matrix M of Exercise 15.15,
that is, evaluate the
expression B+.xM.

b) Compare the matrices ¥ and

B+.xM and state
between them.

the relation

c) Repeat Part (a) for a number

of stretching matrices which
you choose.
15.19 a) Choose a number of

matrices and use them to test
the distributivity of the inner
product +.x over +.

b) Choose a number of matrices
and use them to test the
associativity of the +.x inner
product.

15,20 Let 4,B, and ¢ be 2-by-2
matrices and give names to each

of the elements according to
the following scheme:
A11 A12 B11 B12 c11 C12
A21 A22 B21 B22 21 C22
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a) For each of the following
exXpressions write an equivalent

expression in terms of the
names 411, A12, etc:

B+.x(

A+.x(B+,x(C)

(A+.xB)+.xC
b) Prove that the expression

obtained for the second case of
Part (a) is equivalent to the
expression obtained for the
third case. (This proves the
associativity of +.x for 2-by-2
matrices.)

15.21 Repeat Exercise 15.20,
replacing the second and third
expressions of Part (a) by the

following expressions
A+.x(B+()
(A+ . xBY+(A+.xC)

(This proves that +.x distributes
over + for 2-by-2 matrices.)

15.22 a) Make a 3-dimensional
plot of the eight points
represented by the following
matrix M:

M

1 2 3 0 0 01 1
1 2 3 1 2 0 271
1 2 3 1 2 073 1
b) Evaluate the expression
B+.xM for the following matrix
B:

B
2 0o 1
1 72 1
1 1 1

c) Add to the plot the points
determined in Part (b) and show
the mapping produced by the
matrix B.

15.23 a) Choose any three 3 by 3
matrices ¢ D and F and use them
to test the associativity of
the +.x inner product in three
dimensions.

b) Use
test the
over +.

the same matrices to
distributivity of +.x

show
where B is
3-dimensional

15.24 a) Make a plot to
the mapping B+.x¥M,
the following
rotation matrix:

1 0 0
0 .707 . 707
0 T.707 .707
and M is the matrix of points

given in Exercise 15,22,

b) Repeat Part (a) for any
3=-dimensional rotation matrices
you may wish to construct.

15.25 a) Evaluate the following
expressions:

X<0 1 2 34 56 7 89 10
Y<ox
Y

Me(2xY)o , +(X-12)
M

N<Yo.+ 1xX

vtxt'[1+0=M]
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vox'[1+0=N]
(o=M)v(o=nN)
(0 =M)A(O=N)

b) Discuss the results of Part
(a), stating as clearly as you
can what each of the logical
matrices represent.

c) Repeat Part (a) for various
values of X and Y and for
various linear functions of
your own choosing.

~316-

CHAPTER 16

16,1 a) Test the fact that the
2-dimensional matrices B and IB
given in Section 16.2 actually
produce inverse functions by
applying them to the set of
points represented by the
following matrix M:

b) Evaluate the expressions
B+.xIB and TB+.xB and compare
them with the identity matrix.

16.2 Repeat Exercise 16.1 for
the 3-dimensional matrices B and
IB given in Section 16.2 and for
the following matrix M:

g 3 1 0 0O 8 0
i 5 0 1 0 1 O
20 7 0 0 1 5 0

16.3 a) Evaluate the expression
A/3 “7=B+.xV for the matrix B<?2
201 3 "2 4 and for each of the
following values of the
2-element vector V:

1 0,5 4.5 73,2 1 0
2 3.5 0.5 b,?2 0 1

b) Use the results of Part (a)

to determine which of the given

values of V is a solution of
the eguation 3 ~7=B+.xV.

16.4 Let M and N be the
following matrices:

Each column of ¥ (that is M[;1])
is a solution of the equation
N[ ;J)1=B+.xM[;I] for some Jth
column of ¥, where B 1is the
matrix B<«2 2p2 0 1 5, Determine
which column of ¥ gives the
solution of the equation for each
column of N.

16.5 If B+«2 2p2 3 3 5, then the
basic solutions V1 and V2 are
among the columns of the
following matrix:

1 1 3 0 _5 1.5 2
02 2 173 3.5 0
a) Determine the basic

solutions of B

b) Using the values of Vi and
V2 obtained in Part (a),
evaluate the following
expressions:

N<(4x0 1)+( 2x1 0)
N

Ve(uxV1)+( 2xV2)

4
B+ .xV
A/Nz=B+.xV

c) Use the scheme suggested by
Part (b) to determine a
solution to the equation
N=B+,xV for each of the
following values of N:

O NO wWy
F OO =
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16.6 The basic solutions for the
matrix B<«2 2p4 2 7 3 also occur
among the columns of the matrix
give in Exercise 16.5. Use this
fact to repeat the work of
Exercise 16.5 for this value of
B.

16.7
matrix:

Let B be the following

2 3
3 5

a) Determine a value for V4
such that the second element of
B+.xVA is zero.

b) Determine a wvalue of X such

that if Vi<«VA4:k, then V1 is a

basic solution of B.
16.8 The vector V4«0 0 would
satisfy the requirement imposed
in Part (a) of Exercise 16.7,
namely that the second element of
B+.xVA must be zero. Try to use
this value of V4 to determine a
basic solution Vi1 as in Part (b)

of the same exercise. Why does
it not work?
16.9 Repeat Exercise 16.7 for
each of the following values of
B
4 2 2 3 8 6
7 3 2 8 !
16.10 a) Repeat the steps of
Exercise 16.7 but modified to
determine the second basic
solution V2.
b) Repeat Part (a) for the

matrices of Exercise 16.9.

l6.11 Determine basic solutions
for each of the following
matrices:
2 7 4 3 16 5 6 9
13 8 11 78 10 35

16.12 a) Evaluate the
determinant of each matrix of
Exercise 16.11

b) Evaluate the determinant of
each matrix of Exercise 16.9

16.13 a) construct a matrix B
whose determinant is &4

b) If the determinant of B is
4, what is the determinant of
the matrix -B?

c) Modify the matrix B of Part
(a) to obtain a matrix whose

determinant is "4

d) Construct at least 3
different matrices whose
determinants have the same
value 100

e) Construct at 1least 3
different matrices whese

determinants have the value 1.
l6.14 What effect does each of
the following changes to a matrix
have on the value of its
determinant:

a) Interchanging its two rows?

b) Interchanging its columns?

c) Interchanging the rows and
then interchanging the columns?

e) Changing the sign of every
element?

16.15 a) Evaluate the
determinant of the following
matrix:

6 12
" 8

b) Is it possible to determine
basic solutions for this
matrix?
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c) Construct at least three
different matrices for which it
is impossible to determine

basic solutions.

l6.16 Determine the matrix B&S
which gives the basic solution in

matrix form for each of the
following matrices:

3 7 8 4

1 3 5 3
16.17 Determine the matrix of

each of
16.11
with

the basic solutions for
the matrices of Exercise
and compare the results
those of Exercise 16.11.

16.18 a) Use the results of
Exercises 16.16 and 16.17 to
determine the solution of the
equation 3 13=B+.xV for each of
the matrices B involved in
those exercises.

16.19 Find solutions to the
equation
A/N=(2 2p7 5 5 3)+.xV
for each of the following values
of wn:
10 23
14 12
17 3
1 0
0 1
16.20 a) Determine BS as the

matrix of basic solutions for
the matrix B«2 2p9 4 4 2

b) Evaluate the expressions:
B+.,xM

BS+.xB+.xM

BS+.xM
B+ .xBS+.xM

for the matrix M given below:

16.21 Repeat Exercise 16.20 for
each of the following values of
the matrix B:
7 13 "3 12 2
8 11 3 7 11 6

16.22 a) For the matrices B and
BS of Exercise 16.20, evaluate
the following expressions:

B+ .xBS

BS+.xB
b) Repeat Part (a) for each of
the pairs B and BS of Exercise

l6.21

16.23
basic

If BS is the matrix of
solutions for B, then
B+.xBS is always equal to BS+.xB
(since each is equal to the
identity matrix). This might
suggest that the function +.x is
commutative. Show that this is
not so by constructing at least
one pair of matrices ¢ and D such
that C+.xD is not equal to D+.xC.

l6.24 a) Use the Gauss-Jordan
method to determine the matrix
BS of basic solutions for the
matrix B of Exercise 16.20.
Show all of your work.

b) Repeat Part (a) for each of
the matrices of Exercise 16.21.
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16.25 a) Apply
method of Section
solving the equation

the efficient
16.13 to

A/3 T11=B+.xV

for the matrix
16. 20.

B of Exercise
Show all of your work.

b) Repeat Part (a) for each of
the matrices of Exercise 16.21.

16.26 a) Use the Gauss-Jordan
method to determine the matrix
BS which 1is inverse to the
following matrix B:

3 1 4
5 8 2
17 1

carry all calculations
decimal places.

to 4

b) Check vyour
evaluating the
B+.xBS.

result by
expression

c) Use the matrix BS to obtain
the solution to the equation
A/2 75 6=B+.xV

16.27 Repeat Exercise 16.26 for
each of the following matrices:

5 2 7

8 1 3 3
1 4 2 1 9

16.28 Apply the efficient method
of solution to solve the
following equation:

A/12 3 14=B+.xV

where B is the following matrix:

10 3 14

2 12 1

y 7 15
16.29 Evaluate the expression
BB, where B is the matrix of

Exercise 16.28,

16.30 Define a function F which
is egqguivalent to the function §
when applied to a 2 by 2 matrix
argument.

16.31 Define a function ¢ which
is equivalent to the function f
when applied to a 3 by 3 matrix
argument. Base the function
definition on the Gauss-Jordan
method and use iteration as much
as possible.

16.32 Modify the definition of
the function 6 of Exercise 16.31
so that it applies to a square

matrix argument of any dimension.

16.33 Apply the efficient method
of Section 16.13 to the 5 by 6
matrix given in Section 16.16,
Compare the result with the
solution ¢ given in the same
section.

16.34 Apply the general curve

fitting process to the following
function table:

X | Y
_____ |~
1 | 1
3 6
8 | 36
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NAME SYMBOL DEFINITION OR EXAMPLE |[SECTION #

D [Addition + 3+4++7 1.2

Y|Multiplication x 3xY++12 1.2

A|Subtraction - 3-4+>"1 3.1

D|Division B 3+le>. 75 5.1

| [Max imum [ 3[ 4>y 2.4

C|Minimum L 3L 4+=3 2.4
Power * 3*xL4<«>81 A*xB+>x/Epd 2.5 6.5-6

F|Remainder | 3| 4>l 7.1

U|Relations <<=2>2 [3<ler1 4<3+>0 u.8

N({Or v 14,2

C|And A vV 01 AD01%01~0 1[14.2

T|Not~or » 00100001001 1|14.2

| |Not-and * 11110110011 0j14.2

0 |Domino B BEM is soln of B=M+.xX [16.15

N

S|Repetition P 3p5+«+5 5 5 1.7 13.3
Catenation s 4 2,1 3 5+>4 2 1 3 5 6.2
Take + 244 5 B+>U4 5 10.5
Drop ¥ 244 5 b6+ 10.5
Compression / 011 0/1 2 3 u«>2 3 7.5

M|Negation - L4y 8.2

0|Reciprocal B tlUer, 25 8.3

N|Magni tude | | "Ly 8.4

A|Factorial ! TUe>r1x2x3xY 8.1

D|Ceiling [ [3.4+>4 8.5

I |Floor L [3.4+>3 8.5

C|Complement ~ ~14>0 ~0+>1 8.6
Matrix lnverse £ M+.xEM is the identity [16.15
Integers 1 T4e>1 2 3 4 1.5
Size o pU4 1 3 6 25 8.7
Flipping ¢ o & Flip table about axis 4,3

O|Assignment <« X+6 1.3

T|Indexing X(I1] 2 35 7[2 4]e>3 7 [

H MLI;J]

E|Function VI<F X 9.1

R| Definition VZ«X F Y 9.2
Parentheses 1.2
Execution order 3xU+5-T7+«+3x{(4+(5-7)) 1.2
Vectors 2 3 5x1 2 3«>2 b6 15 1.6
Tables, Matrices 2.1 13.3
Reduction (Over) f/ +/2 3 5+>10 x/3 4«>12 1.4 4,10
Quter Product o, f 2.3
Inner Product f.g 13,2 13.4

SUMMARY OF NOTATION
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