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PREFACE 

The present text treats the usual topics expected in a 
second course in high school algebra. It differs from 
conventional treatments in the following respects: 

1. The notation used is simple and precise and applies 
to arrays (vectors and matrices) in a simple and uniform 
manner. 

2. Arrays are used extensively to give a graphic view 
of functions by displaying the patterns produced by 
applying them to vectors. They are also used to clarify 
topics which use vectors directly, such as linear 
functions and polynomials. 

3. The precision of the notation permits an algorithmic 
treatment of the material. In particular, every 
expression in the book can be executed directly by 
simply typing it on an appropriate computer terminal. 
Hence if a computer is available, it can be used by 
students for individual or collective exploration of 
relevant mathematical functions in the manner discussed 
in Berry et al [7J. Even if a computer is not 
available, the algorithmic treatment presents the 
essentials of computer programming in a mathematical 
light, i.e., as the precise definition and application 
of functions. 

4. The algorithmic approach is the same as that used in 
my gl~m~ntg~ fYn~tiQn~ [3J, a text which can be used as 
a continuation in topics such as the slope (derivative) 
of functions, and the circular, hyperbolic, exponential, 
and logarithmic functions. 

5. The organization of topics follows a pattern 
suggested by considering algebra as a language; in 
particular, the treatment of formal identities is 
deferred until much work has been done in the reading 
and writing of algebraic sentences. These matters are 
discussed fully in the Appendix blg~Q£9 9§ 9 19n9g9g~, 

and any teacher may be well-advised to begin by reading 
this appendix. 
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The pace of the text is perhaps best suited to a 
second year course, but it can also be used for a first year 
course since the early chapters contain all of the 
essentials such as the introduction of the negative and 
rational numbers. When used as a second year text, these 
early chapters can serve not only as a brief review, but 
also as an introduction to the notation used. 

This text grew out of a summer project undertaken in 
1969 in collaboration with my colleagues Adin Falkoff and 
Paul Berry of IBM, and with five high school teachers-- Mr. 
John Brown, now of Dawson College, Montreal; Mr. Nathaniel 
Bates, of Belmont Hill School, Belmont, Massachusetts; Miss 
Linda Alvord, of Scotch Plains High School, Scotch Plains, 
N.J.; and Sisters Helen Wilxman and Barbara Brennan, of Mary 
Immaculate School, Ossining, N.Y. I am indebted to all of 
these people for much fruitful discussion, and particularly 
to Messrs. Falkoff and Berry for helping to set and maintain 
the direction of the project. 
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Chapter 1 

THE LANGUAGE OF 11ATHEl1ATICS 

1.1. INTRODUCTION 

Algebra is the language of mathematics. It is 
therefore an essential topic for anyone who wishes to 
continue the study of mathematics. Moreover, enough of the 
language of algebra has crept into the English language to 
make a knowledge of some algebra useful to most 
non-mathematicians as well. This is particularly true for 
people who do advanced work in any trade or discipline, such 
as insurance, engineering, accounting, or electrical wiring. 
For example, instructions for laying out a playing field 
migh t include the sentence, "To verify that the corners are 
square, note that the length of the diagonal must be equal 
to the square root of the sum of the squares of the length 
and the width of the field," or alternatively, "The length 

of the diagonal must be tV12 
+ W':" In either case (whether 

expressed in algebraic symbols or in the corresponding 
English words), the comprehension of such a sentence depends 
on a knowledge of some algebra. 

Because algebra is a language, it has many 
similarities to English. These similarities can be helpful 
in learning algebra, and they will be noted and explained as 
they occur. For instance, the integers or counting numbers 
(1, 2, 3, 4, 5, 6, ...) in algebra correspond to the 
concrete nouns in English, since they are the basic things 
we discuss, and perform operations upon. Furthermore, 
functions in algebra (such as + (plus), x (times), and­
(subtract) correspond to the verbs in English, since they QQ 
something to the nouns. Thus, 2+ 3 means "add 2 to 3," and 
(2+3)x4 means "add 2 to 3 and then multiply by 4." In fact, 
the word "function" (as defined, for example, in the 
American Heritage Dictionary), is descended from an older 
word meaning, "to execute," or "to perform." 

When the language of algebra is compared to the 
language of English, it is in certain respects much simpler, 
and in other respects more difficult. Algebra is simpler in 
that the basic algebraic sentence is an instruction to do 
something, and algebraic sentences (usually called 
expressions) therefore correspond to im2~r9tbY~ English 
sentences (such as "Close the door."). For example, 2+3 
means "add 2 and 3," and YEAR+1970 means "assign to the name 
YEAR the value 1970," and Y+1970 means "assign to the name Y 
the value 1970." Since imperative sentences form only a 
small and relatively simple part of English, the language of 
algebra is in this respect much simpler. 
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Algebra is also simpler in that it permits less 
freedom in the ways you can express a particular function. 
For example, "subtract 2 from 4" would normally be written 
in algebra only as 4-2, whereas in English it could be 
expressed in many ways such as "take the number 2 and 
subtract it from the number 4," or" compute the difference 
of the integers 4 and 2." 

The most difficult aspect of traditional 
presentations of algebra is the early emphasis on 
iQ~~titi~§, or the equivalence of different expressions. 
For example, the expressions (5+7)x(5+7) and 
(5x5)+(2 x5 x7)+(7 x7) are ~g~iy~l~~t in the sense that, 
although they involve a different sequence of funtions, they 
each yield the same result. English also offers equivalent 
expressions. For example, "The dog bit the man" is 
equivalent to "The man was bitten by the dog." It is not 
that the rules for determining equivalence in algebra are 
more difficult than in English; on the contrary, they are so 
much simpler that their study is more rewarding and 
therefore more attention is given to equivalences in algebra 
than in English. 

In the present treatment this aspect of algebra (that 
is, the study of identities or equivalence of expressions) , 
is delayed until the student has devoted more attention to 
the reading, writing, and evaluation of algebraic 
expressions. 

The exercises form an important part of the 
development, and the point at which the reader should be 
prepared to attempt each group of exercises is indicated in 
the right margin. For example, the first such marginal note 
appears as ~1-6 and indicates that Exercises 1 to 6 of this 
chapter may be attempted at that point. 

1.2. EXPRESSIONS AND RESULTS 

The expression 2+3 when evaluated produces the result 
5. Such a fact will be written in the following form: 

2 + 3
 
5
 

and will be read aloud as "2 plus 3 makes 5." The following 
examples would be read in a similar way: 

7+12
 
19
 

8x4
 

32
 



Where there is more than one function to be executed, 
parentheses are used to indicate which is to be done first. 
Thus the expression 

(2+3)X4 

is evaluated by first performing the function wi thin the 
parentheses (that is, 2+3), and then multiplying the result 
by 4. The final result is therefore 20, as shown below: 

(2+3)X4 
2,1 

The foregoing is read aloud as "quantity 2+3, times 4." The 
word "quantity" indicates that the first expression 
following it is to be executed first. That is, you are to 
find the result of 2+3 before attempting to execute the 
function "times". 

The steps in the execution of an expression may be 
displayed on successive lines, substituting at each line the 
val ue of part of the expression above it as illustrated 
below: 

(2 + J ) x LJ, 

I ~I xu 

20 

The vertical line drawn to the left of the first two lines 
indicates that they are ~g~iY~l~~t statements, either of 
which wo u l d produce the result 20 shown on the final line. 
The whole statement would be read aloud as "Quantity 2 plus 
3 times 4 is equivalent to times LJ which makes 20. The 
following examples would be read in a similar way as shown 
on the right: 

(2+3)x(5+4) Quantity 2 plus 3 times quantity 5 
pl us 4 

is equivalent to 
9 5 timesJ 

4 S which makes 45 

«2 x3)+(5 x4»x2 Quantity 2 times 3 plus quantity 5 
times 4, all times 2 

is equivalent to 
6 + 20 )x2 quantity 6 plus 20 times 2 

is equivalent to 
26 x2 26 times 2 

52 which makes 52 

The last example illustrates the difficulty of 
expressing in English the sequence of execution that is 
expressed so simply by parentheses in algebra, that is, when 
parentheses are "nested" within other parentheses even the 
use of the word "quantity" does not suffice and one resorts 
to expressions such as "all times 2". The main point is 
this: in learning any new language (such as algebra) it is 
important to re-express statements in a more familiar 
language (such as English); however, certain things are so 
awkward to express in the old language that it becomes 
important to learn to "think" in the new language. 

[:]1-6 

The expression 2t'xLJ, written without parentheses, 
could be taken to mean either (:'+,) x., (which makes 20), or 
2 + ( 3·4) (which makes 1 ") • To avoid such ambiguity we make 
the following rule: when two or more functions occur in 
succession with no parentheses between them, the rightmost 
function is executed first. For example: 

I~~l'~ 
1 

1"; 

LJ7 

1+2x3+Ux5 

1+2 x3+ 20 

1+2x 23 

1+ 46 

(1+2x3 )+4<) 

(1+ 6)+ 20 

7 +20 
27 

[B7-12 

1.3. NAl1ES 

50 

75 

100 

Consider the following 

(1+3+5+7+9 )x2 

(1+3+5+7+9 )x3 

(1+3+5+7+9 )X4 

statements: 
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Since the expression 1+3+5+7+9 occurs again and again in the 
foregoing statements, it would be convenient to give some 
short name to the result produced by the expression, and 
then use that short name instead of the expression. This is 
done as follows: 

I 1'<-1+3+5+7+9 
ITx2 

50 
ITx 3 

75 
ITx4 

100 
IT 

25 

The foregoing would be read aloud as follows: "The name IT 
is assigned the value of the expression 1+3+1+7+9. IT times 
2 makes 10. IT times 3 makes 75. IT times 4 makes 100. IT 
makes 25." 

Names can be chosen at will. For example: 

LENGTlI+5 
iYIDTH+'+ 
LENGTHxWIDTlI 

20 
AREA +LENGT J!xWI DTH 
AREA 

20 

PRICE+5 
QUANTITY+4 
PRICExQUANTITY 

20 

Mathematicians usually prefer to use short names like L or W 
or X or Y, 
structure 
different 
sequence: 

perhaps because this 
or similarity of expre
names. Consider, 

brings out 
ssions which 
for example, 

the 
may 

the 

underlying 
deal with 

following 

X+5 

20 

Y+4 
Xxy 

-6­

If X is taken to mean length and Y is taken to mean 
width, then the result is the area of the corresponding 
rectangle; but if X is taken to mean price and Y is taken to 
mean quantity, then the result is the total price. This 
makes clear that there is some similarity hetween the 
calculations of an area from length and width and the 
calculation of total price from price and quantity. 

The names used in algebra are also called y~~ig~l~~, 

since they may Yg~ in the sense that the same name may 
represent different values at different times. For example: 

X+3 
XxX 

9 
X+5 
XxX 

25 

This ability to vary distinguishes a name like X from a 
symbol like 5 which always represents the same value and is 
therefore called a gQnst~t. 

It is interesting to note that the Yg~iggl~§ in 
algebra correspond to the grQnQ~n§ in English. For example, 
the sentence "close it" is meaningless until one knows to 
what "it" refers. This reference is usually made clear by a 
preceding sentence. For example, "See the door. Close it" 
is unambiguous because the first sentence makes it clear 
that "it" refers to "the door". Similarly, in algebra the 
expression IT+1 cannot be evaluated unless the value to 
which IT refers is known. In algebra this reference is made 
clear in one way, by the use of the assignment represented 
by the symbol +. For example: 

IT+3 
IT+ 5 

8 

The same name IT can stand for different values at different 
times just as the pronoun "it" can refer to different things 
at different times. 

f1J13-IB 



-7­

1.4. Q~B NOTATION 

It is often necessary to take the sum over a whole
 
list of numbers. For example, if the list consists of the
 
numbers 1 3 5 7 9 11, then their sum could be written as
 

1+ 3+5+7+9+11
 
36
 

It is more convenient to use the following notation: 

+/1 3 5 7 9 11
 
36
 

The foregoing is read aloud as "Sum over 1 3 5 7 9 11", or
 
as "Plus over 1 3 5 7 9 11."
 

The QY~K notation can be used for other functions as 
well as for addition. For example: 

READ AS 

xli 2 3 Times over 3
 

6 makes 6
 

x /1 2 3 I) Times over 1 2 3 4
 
24 makes 24
 

+/1 2 34 Plus over 1 2 3 4
 
10 makes 10
 

(+/1 2 34)X6 Quantity plus over 1 2 3 4
 
times 6
 

60 makes 60
 

6x +/1 2 3 4 6 times plus over 1 2 3 4
 
60 makes 60
 

N+ 1 2 3 4 N assigned 1 2 3 4
 
+III Plus over N
 

10 makes 10
 

xl N Times over N
 
24 makes 24
 

ffil9-21
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1.5. THE POSITIVE INTEGERS 

The natural numbers 1 :' 3 4 5. • • are also called
 
the 2Q§i1iy~ i~i~g~K§. They may be produced as follows:
 

1 3
 
1 2 3
 

1 5
 
1 2 3 4 5
 

116
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 

N+-6 

IN 
123456
 

The symbol 1 is the Greek letter iQi~ which corresponds to 
the English letter i. The expression IN is read aloud as 
"the integers to N." Thus: 

READ AS 

+/1 5 Plus over the integers to 5
 
15 makes 15
 

x / 1 5 Times over the integers to 5
 
120 makes 120
 

!iJ22-25
 

1.6. VECTORS 

A list of numbers such as 3 5 7 11 is called a vector.
 
The numbers in the list are called the ~l~m~~i§ -of-the
 
vector. Thus the first element of the vector 3 5 7 11 is
 
the number 3, the second element is 5, the third element is
 
7 and the fourth is 11. The number of elements in the
 
vector is called the size of the vector. Thus the size of
 
the vector 3 5 7 11 is-4~
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Vectors can be added and multiplied as shown in the 
following examples: 

READ AS 

3 5 7+1 2 3 vector 3 5 7 plus vector 1 2
 
4 7 10 make s 4 7 10
 

2 3+3 2 1 Vector 1 2 3 plus vector 3 2 1
 
444 makes 4 lj 4
 

1 2 3x3 2 1 Vector 1 2 3 times 3 2
 
3 4 3 makes 3 4 3
 

From this it should be clear that when two vectors are added 
the first element is added to the first element, the second 
element is added to the second, and so on. Multiplication 
is performed similarily. 

Like any other result, a vector can be assigned a 
name. For example: 

READ AS 

V·- 1 2 3 4 The name V is assigned vector 1 2 3 4
 

W<-ll 3 2 1 The name I'; is assigned vector 4 3 2 1
 

V+W V plus W
 
5 5 makes 5 5 5 5
 

Vxlv' V times I';
 

4 6 6 lj makes u 6 6 4
 

VxV V times V
 
1 4 9 18 makes 1 4 9 16
 

The following examples may be read similarly:
 

READ AS 

N<-15 N is assigned integers to 5
 

N N
 
1 2 3 4 5 makes 1 2 3 lj 5
 

NxN N times N
 
1 4 9 16 25 makes 1 4 9 16 25
 

(16)X16 Quantity integers to 6 times
 
quantity integers to 6
 

1 4 9 16 25 38 makes 1 4 9 16 25 36
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The addition of two vectors V and .v means that the 
first element of V is to be added to the first element of ;.;, 
the second element of V is to be added to the second element 
of W, and so on, and that an expression such as 

1 3 5 +6 8 1 'I 

cannot be executed because the vectors are not of the same 
size. 

However, expressions of the following form ~gD be 
executed: 

READ AS 

3 +1 3 5 7 3 plus vector 1 3
 
lj 6 8 10 makes 4 5 8 10
 

1 2 3 4 5 +6 Vector 1 2 3 4 5 plus l) 

7 8 9 10 11 makes 7 8) 10 11 

In other words, if one of the quantities to be added is a 
single number, it is added to each element of the vector 
quantity. The same holds for multiplication as follows: 

READ AS 

3X1 3 5 7 3 times vector 1 3 5 7
 
3 9 15 21 makes 3 9 15 21
 

3 x 1 5 3 times integers to
 
3 6 9 12 15 make s 3 5 9 12 1 5
 

2+3 xlS 2 plus 3 times integers to 5
 
68111417 makes 5 8 11 ill 17
 

1+2 x16 1 plus 2 times integers to 8
 
3 7 9 11 13 makes 3 5 7 9 11 13
 

+/1+2 x16 plus over 1 plus 2 times integers to 6
 
48 makes 48
 

1++/1+2X16 1 plus plus over 1 plus 2 times
 
integers to 6
 

49 makes 49
 
ffi26-2B 



1.7. REPETITIONS 

Consider the following statements and their 
verbalization: 

READ AS 

3p 2 3 repetitions of 2
 

2 2 2 makes 2 2 2
 

2p3 2 repetitions of 3
 

3 3 makes 3 3
 

Sp 7 5 repetitions of 7
 

7 7 7 7 7 makes 7 7 7 7 7
 

The symbol p is the Greek letter £bQ which corresponds to 
the English r , 

The following two columns of statements show some
 
interesting properties of repetitions, including the
 
relation between multiplication and a sum of repetitions:
 

-t 13 p 2 2x3
 

6
 6
 

+I lj P 2 2x4
 

8 8
 

+/5p7 7 '(~)
 

35 35
 

+/15p20 20x15
 

300 300
 

x/2p2 x /2 p 3
 

4 9
 

x/3 p 2 x /3 p 3
 

8 27
 

x/4p2 x/4 P 3
 

16 81
 

x/5p2	 x/5p3 

32 243
 
1B29-31
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1.8. SUMMARY 

This chapter has been concerned primarily wi th the 
language or notation of algebra, and the uses of the 
notation have been kept simple. Now that the language has 
been mastered, succeeding chapters can turn to more 
interesting uses of it. This does not imply that 911 the 
notation of algebra has now been covered, but rather that 
the main ideas have been introduced and that any further 
additions will be easy to grasp. The situation may be 
compared to the learning of a natural language such as 
French. Once the main ideas of the language have been 
learned (in months or years of study), the new French words 
needed for some particular purpose can be picked up more 
easily. 

For example, the next chapter will treat the mg~iill~m 

function, represented by the symbol I and defined to yield 
the larger of its two arguments: 

READ AS 

21 3 2 maximum 3
 
3 makes 3
 

214 2 maximum 4
 
4 makes 4
 

215	 2 maximum
 
makes 5
 

512	 5 maximum 2
 
makes 5
 

The important point is that this new function is treated 
exactly like the functions plus and times, thus: 

2112 34
 
2 2 3 4
 

31 \ 5
 
3 3 3 4 5
 

I 18 1 7 10 3 10
 
10
 

1 2 3 4 51 5 4 3 :' 1
 
5 4 3 4 5
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Chapter 2 
The main points of the notation introduced in this 

chapter will now be summarized in a few examples which FUNCTION TABLES AND MAPS 
should be useful for reference purposes: 

§~~~§ ~~!? ~§ ~Q~~!i'!'§ 2.1. INTRODUCTION 

(2+3)x4 Quantity 2 plus 3 Function in parell­ In Chapter 1, addition was spoken of as a "function" 
times 4 theses is execut­ because it "does something" to the numbers it is applied to 

20 makes 20 ed first and produces some result. Multiplication was also referred 
to as a function, but the notion of function is actually 

2+3x4 2 p Lus quanti ty Righ tmos t function much broader than these two examples alone might suggest. 
3 times 4 is executed first For example, the average or DQkIDgl weight of a woman depends 

14 makes 14 if there are no on her height and is therefore a function of her height. In 
intervening fact, if one were told e1at the normal weight for a height 
parentheses of 57 inches is 113 pounds, the normal weight for a height 

N+3 N is assigned 3 Name N is assigned 
of 58 inches is 115 pounds, 
evaluate the function "normal 

and so 
weight" 

on, 
for 

then one could 
any given height 

the value of the by simply consulting the list of corresponding heights and 
expression to weights. 
the right of + 

It is usually most convenient to present the necessary 
Nx4 N times 4 information about a function such as "normal weight" not by 

12 makes 12 a long English sentence as begun above, but by a ig~l~ of 
the form shown in Figure 2.1. 

+/3 5 7 Plus over vector 
3 5 7 H 57 113 W 

15 makes 15 E 58 115 E 
I 59 117 I 

x/2 3 5 2 Times over vector G 60 120 G 
2 3 5 2 H 61 123 H 

60 makes 60 T 62 126 T 
63 130 

1 2 3x3 2 1 vector 1 2 3 times Element-by-element I 64 134 I 
vector 3 2 1 multiplication N 65 137 N 

3 4 3 makes 3 4 3 66 141 
I 67 145 P 

3 xI 2 3 3 times vector Single number multi­ N 68 149 0 
1 2 3 plies each element C 69 153 U 

3 6 9 makes 3 6 9 H 70 157 N 
E 71 161 D 

1 5 Integers to 5 S 72 165 S 
1 2 3 4 5 makes 1 2 3 4 5 

Table of Normal Weights 
5p 4 5 repetitions of 4 Versus Heights 

4 4 4 4 4 makes 4 4 4 4 4 
fB32 Figure 2.1 
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The quantity (or quantities) to which a function is 
applied is (are) called the ~~ggm~~~ (or ~~g~~~~~~) of the 
function. For example, in the expression 3'4 the number 3 
is the l~f~ (or fi~§~) argument of the function x and 4 is 
the ~igb~ (or §~gQ~g) argument. Evaluation of the "normal 
weight" function (represented by Table 2.1) for a given 
argument (say 68 inches) is performed by finding the 
argument 68 in the first column and reading the weight (149 
pounds) which occurs in the same row. 

The QQIDgin of a function is the collection of all 
arguments for which it is defined. Addition is, of course, 
de fined for any pair of numbers, but the function "normal 
weight" is certainly not defined for heights such as 2 
inches or 200 inches. For practical purposes, the domain of 
a function such as "normal weight" is simply the collection 
of arguments in the table we happen to possess, even though 
information for other arguments might be available 
elsewhere. For example, the domain of the function of Table 
2.1 is the set of integers from 57 to 70, that is, the set 
of integers 56 +114. 

7he rgng~ of a function is the collection of all the 
results of the function. For example, the range of the 
function of Figure 2.1 is the set of integers 113, 115, 1 -t 7 

120, etc., occurring in the second column. 
t:n-2 

A table of normal weights often shows several columns 
of weights, one for small framed people, one formediumn, 
and one for large. Such a table appears in Figure 2.2. In 
such a case the weight is a function of two arguments, the 
heigh t and the "fraI:1e-class"; the first argument determines 
the row and the second argument determines the column in 
which the result appears. Thus the normal weight of a 
small-boned, 66-inch woman is 133 pounds. 

-16­

Frame 

Small Medium Large 

H 57 105 113 121 \'1
 
E 58 107 11 5 123 E
 
I 53 109 117 125 I
 
G 50 112 120 128 G
 
H 61 11 5 12 3 131 H
 
T 62 11 8 126 13 5 T
 

63 122 130 139
 
I 64 126 134 143 I
 
N 65 129 137 147 N
 

66 133 141 1 51
 
I 67 137 11~ ~ 155 P
 
N 68 141 158 0
1', s 
C 6 cJ 145 1') 3 162 U 
H 70 149 1 5 7 165 N 
E 71 153 161 109 D 
S 72 157 16 5 173 S 

Normal Weight as a Function 
of Two Arguments 

Figure 2.2 
ijJ3-4 

An arithmetic function can also be represented by a 
table, as is illustrated by Figure 2.3 for the case of 
multiplication. Since the domain of multiplication includes 
all numbers, no table can represent the entire 
multiplication function; Figure 2.3, for example, applies 
only to the domain of the first few integers. The 
multiplication sign in the upper left corner is included 
simply to indicate the arithmetic function which the table 
represents. 

1 2 3 4 5 6 7 8 9 10 
1 1 2 3 4 5 b 7 8 9 10 
2 2 4 6 8 10 12 14 16 18 20 
3 3 6 9 12 15 18 21 24 27 30 
4 4 8 12 16 20 .?4 28 32 36 40 
5 5 10 15 20 2 5 30 35 40 45 50 
6 6 12 18 24 30 36 42 48 54 60 
7 7 14 21 28 35 42 49 56 6 3 70 
8 8 16 24 32 40 48 56 64 72 80 

Multiplication Table
 

Figure 2.3
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In any table, the first column represents the domain 
of the first argument and the first row represents the 
domain of the second argument; the rest is called the QQQY 
of the table. For example, in Figure 2.2, the body of the 
table is that part bordered on the left and top by the solid 
lines. 

In any table representing a function of two arguments, 
anyone column of the body (taken together with the column 
of arguments not in the body) represents a function of one 
argument. For example, if one takes the second column of 
the QQQY of Figure 2.2, it represents the same function of 
one argument as does Figure 2.1. 

Thus any function of two arguments can be thought of 
as a collection of functions of one argument. For example, 
the second column of the body of Figure 2.3 represents the 
"times two" function, the third column represents the "times 
three II function, etc. 

Similarly, one ~Q~ of the body of a function table 
represents a function of one argument. For example, the 
fifth row of the body of Figure 2.2 gives weights as a 
function of "frame" for r~ 1 inch women. 

[;15-10 

2.2. READING FUNCTION TABLES 

The basic rule for reading a function table is very 
simple - to evaluate a function, find the row in which the 
value of the first argument occurs (in the first column, not 
in the body of the table) and find the column in which the 
second argument occurs (in the first row) and select tile 
element at the intersection of the selected row and the 
selected column. However, just as there is more to reading 
an English sentence than pronouncing the individual words, 
so a table can be "read" so as to yield useful information 
about a function beyond that obtained by simply evaluating 
it for a few cases. 

For example, can the table of Figure 2.2 be "read" so
 
as to answer the following questions:
 

1.	 Can two women of different heights have the same 
normal weight? 

2.	 For a given frame type, does normal weight always 
increase with increasing height? 

3.	 For a given height, does normal weight increase 
with frame type? 

4.	 How many inches of height produce (about) the same 
change in weight as the change from small to large 
frame? 
Does this change remain about the same throughout 
the table? 

Arithmetic functions are more orderly than a function 
such as that represented by Figure 2.2, and the patterns 
that can be detected in reading their function tables are 
more striking and interesting. Consider, for example, an 
attempt to read Figure 2.3 to answer the following 
questions: 

5.	 The second column of the body (which was 
previously remarked to represent the "times two" 
function) contains the numbers 2 ,+ I), etc., which 
are encountered in "counting by twos". 
Can a similar statement be made about the other 
columns? 

6.	 Is there any relation between corresponding rows 
and columns of the body, e.g., between the third 
row and the third column? 

7.	 Can every result in the body be obtained in at 
least two different ways? 
Are there any results which can be obtained in 
only two ways? 

Similarly, one can construct a function table for 
addition and read it to determine answers to the following 
questions: 

8.	 In how many different ways can the result 6 be 
obtained by addition? 
Does the result I) occur in the table in some 
pattern and if so does a similar pattern apply to 
other results such as 7, 8, etc.? 

9.	 What is the relation between two successive rows 
of the table? 

Because of the patterns they exhibit, function tables 
can be very helpful in gaining an understanding of 
unfamiliar mathematical functions. For this reason they 
will be used extensively in succeeding chapters. 

!ill! 



2.3. EXPRESSIONS FOR PRODUCING FUNCTION TABLES 

If 

A+1 2 3 4 5 6 7 8
 
B+1 2 3 4 5 6 7 8 9 10
 

then the expression A. 0 »e yields the body of the function 
table of Figure 2.3 as follows: 

A o. xB 

1 2 3 4 5 6 7 8 9 10
 

2 4 6 8 10 12 14 16 18 20
 

3 6 9 12 15 18 21 24 27 30
 
4 8 12 16 20 24 28 32 36 40
 

10	 15 20 25 30 35 40 45 50
 
6 12 18 24 30 36 42 48 54 60
 
7 14 21 28 35 42 49 56 63 70
 
8 16 24 32 40 48 56 64 72 80
 

Similarly, the body of an addition table for the same 
set of arguments can be produced as follows: 

A o. +B 
2 3 4 5 6 7 8 9 10 11
 
3 4 5 6 7 8 9 10 11 12
 
4 5 6 7 8 9 10 11 12 13
 

5 6 7 8 9 10 11 12 13 14
 

6 7 8 9 10 11 12 13 14 15
 
7 8 9 10 11 12 13 14 15 16
 
8 9 10 11 12 13 14 15 16 17
 
9 10 11 12 13 14 15 16 17 18
 

The	 general rule is that the symbol (pronounced0 

!}~:!::!:) followed by a period followed by the symbol for a 
function produces the appropriate function table when 
applied to any arguments A and B. The expression lOA o. +B" 
may be read as "the addition table for A and B" or as "A 
addition table B", or even as "A null dot plus B". 
Similarly, "A 0 xB", may be read as "A times table B", etc.• 

It is important to note that the expression Ao.+B 
produces only the QQ9Y of the addition table to which one 
may add a first column consisting of A and a first row 
consisting of B if this is found to make the table easier to 
read. 

It is also important to note the difference between 
the expressions Ao.xB, which yields the multiplication 
table, and the expression AxB, which yields the 
element-by-element product of A and B. For example: 

A+l 3 5
 
B+2 4 6
 

AxB 
2	 12 30
 

A o. xB 
2 4 6
 
6 12 18
 

10 20 30
 
m12-13 

The body of a table alone does not define a function. 
For example, the following tables define two distinct 
functions although the bodies of the tables are identical: 

4 5 F 2 3 5 7
 
6 7 6 4 5 6 7
 
7 8 5 5 6 7 8
il~--i

4 6 7 8 9 4 6 7 8 9
 
5 7 8 9 10 3 7 8 9 10
 

The name of the function represented by the first 
table is + (as shown in the upper left corner), and the 
table can be used to evaluate expressions as shown on the 
left below: 

5 + 3 is 8 5 F 3 is 6
 
4 + 5 is 9 4 F 5 is 8
 
3 + 3 is 6 3 F 3 is 8
 

The function represented by the second table is called 
F (as indicated in the upper left corner) and the 
expressions on the right above shown the evaluation of the 
function F for the same arguments used on the left. Since 
the results differ, the two tables represent different 
functions. 

The complete specification of a function table 
therefore requires the specification of four items: 

1.	 The l~It 9Qm~in (L, e. , the domain of the left 
argwnent) . 

2.	 The ~igbt 9Qm~in. 
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J. The body of the table. experiments in some systematic way, and the function table 

4. The name of the function. 
provides precisely 
example: 

the sort of organization needed. For 

From these four items the table can be constructed and 1-<-1 2 3 4 5 6 7 8 
used as illustrated below: 1 0 . 11 

1 2 3 4 5 6 7 8 
Left domain: 2 + 1 4 2 2 3 4 5 6 7 8 
Right domain: 11 9 7 5 3 1 3 3 3 4 5 6 7 8 
Body: 5 + (3X14)0.+(2 x16) 4 4 4 4 5 6 7 8 
Name: G 5 5 5 5 5 6 7 8 

6 6 6 6 6 6 7 8 
G 11 9 7 5 3 1 7 7 7 7 7 7 7 8 
3 10 12 14 16 18 20 8 8 8 8 8 8 8 8 
4 13 15 17 19 21 23 
5 16 18 20 22 24 26 From the foregoing the reader should be able to state 
6 19 21 23 2 S 27 29 the definition of the function and from that be able to 

'+ G 5 is 19 
apply it correctly to any pair of arguments. 

6 G 9 is 21 The function I is called the maximum function because 
2x6 G 9 is 42 

m4-16 
it yields 
function 

the larger of 
is denoted by 

its two arg;rnents. The ~~~~mgm 
L and is defined analogously. Its 

function table appears below: 

1 0 LI 
2.4. THE FUNCTIONS DENOTED BY I AND L 1 1 1 

• 

1 1 1 1 1 
1 2 2 2 2 2 2 2 

The advantages of the function table can perhaps be 1 2 3 3 3 3 3 3 
better appreciated by applying it to some unfamiliar 1 2 3 4 4 4 4 4 
functions than by applying it to functions such as addition 1 2 3 4 5 5 5 5 
and multiplication which are probably already well 1 2 3 4 5 6 6 6 
understood by the reader. For e1is purpose we will now 1 2 3 4 5 6 7 7 
introduce several simple new functions which will also be 1 2 3 4 5 6 7 8 
found to be very useful in later work.	 m7-18 

It is sometimes instructive to introduce a new 
function as a puzzle - the reader must determine the general 
rule for evaluating the function by examining the results 2.5. THE POWER FUNCTION 
obtained when it is applied to certain chosen arguments. 
For example, the function I can be applied to certain Another very useful function is called the EQ~§f 
arguments with the results shown below: function and is denoted by *. Its function table is Shown 

below: 
3 I 8 

8 1-<-1 2 3 4 5 6 7 
32 I 47 1 *10 • 

47	 1 1 1 1 1 1 1 
2 4 8 16 32 64 128 

If one performs enough such experiments it should be 3 9 27 81 243 729 2187 
possible to guess the general rule for the function. In 4 16 64 256 1024 4096 16384 
attempting such a guess it is helpful to organize the 5 25 125 625 3125 15625 78125 

6 36 216 1296 7776 46656 279936 
7 49 343 2401 16807 117649 823543 
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The power function is defined in terms of 
multiplication in much the same way as multiplication is 
defined in terms of addition. To appreciate how 
multiplication is defined as "repeated additions", consider 
the following expressions: 

2p2
 
2 2
 

+ / 2p 2 2x 2
 
4 4
 

3p2
 
2 2 2
 

+ / 3p 2 2x3
 
6 6
 

4p 2
 
2 2 2 2
 

+ / 4p 2 2x 4
 
8 8
 

+ /5 p 2 2x5
 
10 10
 

+ / 6p 2 2x6
 
12 12
 

+ /8 p 3 3 x 8
 
24 24
 

Comparing the results +/2p2 and 2x2 and the results 
+/3p2 and 2 x3, etc., it should be clear that MxN is 
equivalent to adding N quantities each having the value M. 

The corresponding definition of the power function * 
can be obtained by replacing each occurrence of + in the 
foregoing expressions by x and each occurrence of x by *: 

2p2
 
2 2
 

x /2 p 2 2*2
 
4 4
 

3p2
 
2 2 2
 

x / 3p 2 2* 3
 
8 8
 

4p2
 
2 2 2 2
 

x / 4p 2 2*4
 
16 16
 

x /5 p 2 2*5
 
32 32
 

x / 6p 2 2*6
 
64 64
 

x /8 p 3 3*8
 
6561 6561
 

In general, M to the power N (that is, M*N) is 
obtained by multiplying together N factors each having the 
value M. 

ill19-22 

2.6. MAPS 

Figure 2.4 shows a !!!~12 which represents the "times 
two" function. The rule for evaluating a function 
represented by a map is very simple: locate the specified 
argument in the top row, then follow the arrow from that 
argument to the result at the head of the arrow in the 
bottom row. For example, the result for the argument 3 is 
6. 

1 2 3 4 5 ~~1 12 13 14
 

\~~~121 2 3 4 5 6 1314
 

Map of "Times Two" Function 

Figure 2.4 

The rules for constructing a map are also simple. 
First consider all of the values in the domain of the 
function together with all of the results. Choose the 
smallest number and the largest number from this whole set 
of numbers. Write a row of numbers beginning with the 
smallest and continuing through each of the integers in 
order up to the largest. Repeat the same numbers in a row 
directly below the first row. For each argument in the top 
row now draw an arrow to the corresponding result in the 
bottom row. 

Just as it is often helpful to read tables, so is it 
helpful to read such maps. Consider, for example, the four 
maps shown in Figure 2.5. From the first it is clear that 
in the map of addition of 2, the arrows are all parallel. 
From the map below this it is clear that the same is true 
for addition of 3, and that the slope of the arrows depends 
on the amount added. The maps on the right show 
multiplication. Here the slopes of the arrows are not 
constant, and the distance between successive arrowheads is 
seen to be equal to the multiplier. 
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4 5 6 7 8 9 10 11 12


1~~~~~7 
1234567
 \:~" 

1 2 3 4 5 6 7 8 9 10 11 12
 

:~: 1~ 12
 

Maps for Addition and Multiplication 

Figure 2.5 

It is sometimes useful to show the maps of a sequence 
of functions such as the following: 

I+-l 2 3 4 5 6
 
2xI
 

2 4 6 8 10 L.'
 
8+(2 xI) 

10 12 14 16 18 20
 

The appropriate maps are shown in Figure 2.6. The 
broken lines show the map of the overall result produced, 
that is, the map of the function 8 + (2 xI) 

1 2 - 3 4 5~8 9 10 11_ 12 13 14 15 16 17 18 19 20
 

\~~6~~~-------910~~1314 15 16 17181920

12~~~~
 

- . -~~14151617181 20
123456789
 

Maps of a Sequence of Functions 

Figure 2.6 

Maps will be used in the next chapter to introduce the 
function ~~t~ggt1QD and the new D~ggt1yg numbers which this 
function produces. 

1B23-24 
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Chapter 3
 

THE NEGATIVE NUMBERS 

3. L SUBTRACTION 

The ayQirg~tiQD function is denoted by the m1DY~ sign 
I-I. For example: 

READ AS 

8-3 8 minus 3
 
5 makes 5
 

(5+3)-3 Quantity 5+3 minus 3
 
makes 5
 

(5-3)+3 Quantity 5-3 plus 3
 
5 makes 5
 

The following examples illustrate the relation between 
addition and subtraction: 

5+ 3 5+4
 
8 9
 

8-3 9-4
 
5 5
 

6+ 3 6+4
 
9 10
 

9-3 10-4
 
6 6
 

7+ 3 7+4
 
10 11
 

10-3 11-4
 
7 7
 

1 2 3 4 5+3 1 2 3 4 5+4
 
4 5 6 7 8 5 6 7 8 9
 

4 5 6 7 8-3 5 6 7 8 9-4
 
1 2 3 4 5 1 2 3 4 5
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5 

8- 3 

From these examples it 
the work of addition. 
produce 8, and 3 is then 
is the original value 5. 
subtraction is therefore 
Thus for any number X 
(X+A)-A will yield X. 

appears that subtraction will undo 
That is, if 3 is added to 5 to 

subtracted from 8 the final result 
This is true in general, and 

said to be the inY~~§~ of addition. 
and any number A, the expression 

The converse is also true; that is, addition will undo 
the work of subtraction, and addition is therefore the 
inverse of subtraction. For example: 

can 
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This inverse relation between addition and subtraction 
also be exhibited in terms of maps as follows: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

i , " s e , 8~:: " 
1,,"s 8., 8~:: " 

8 

5 

8 

6 

9 

5+3 

8 9 
7 8 9 

5 6 
10 11 

10 11 
10 

7 8 9 
12 13 

12 13-3 

10+3 

1 , 

o 

1 8 ;~t: 1" r s 

188~:: '" r s 

" 

Lf 
" 

to 

In other words, (X-A)+A will also yield X. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
ffi4 

In summary then: 

(X+A)-A makes X 
3.2. NEGATIVE INTEGERS 

For 

(X-A) +A 

example: 

makes X 
Consider a similar map for 

9-5)+5 which should yield 3 4 5 6 7 
the case (34 5 6 78 

8 9 as a final result: 

8 9 
( 8 9 10 11 

10 11 12 13 
12 13+3)-3 

~:H 
8 9 

( 8 9 10 11 
10 11 12 13 

12 13-3)+3 

ffil-3 

~::: 
A problem arises in some of the subtractions, since 3-5 and 
4-5 and 5-5 do not yield positive integers. However, the 
map shows that if we keep track of the unnamed positions to 
the left of the first positive integer, the overall mapping 
for adding 5 and then subtracting 5 yields the correct final 
result. 
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The problem is resolved by assigning names to each of 
the new positions as follows: 

4 ,-,~::::
 
~8910
 

The first number to the left of 1 is named O. This is read 
aloud as "zero," and means "nothing" or "none." The other 
new numbers, -1, -2, -3, and -4 are called Q~g~tiy~ 

inte.g:e.:r:s., and are read aloud as "negative 1, neqative 2, 
neqative 3, and negative 4." Of course, the negative 
Lnt.e qe rs continue as far to the left as desired, just as the 
positive integers continue as far to the right as desired. 
The wh o l.e pattern including the negative integers, zero, and 
the positive integers, will be called the i~t~g~~~. 

The effect of all this is to introduce new integers so 
that ~y~ry subtraction has a proper result. Addition and 
subtraction are still defined as before by moving the proper 
number of places to the right or left in the pattern of the 
integers, hut the pattern has now been expanded to include 
the negative integers and zero. 

IiIS-6 

3.3. ADDITION AND SUBTRACTION 

The expression 7+-3 can be considered either as adding
 
7 to 3 as follows:
 

5 6 7 8

"~" 
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

or as adding 3 to 7 as follows: 

-4 3 2 - 1 0 1 2 3 4 5 6 7 8 

/+-3 

4 3 2 1 0 1 2 3 4 5 6 7 8 
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The following examples each show an expression on the 
left and the corresponding map on the right for a variety of 
additions and subtractions involving both positive and 
negative integers: 

5+-2 o 1 2 

5 4 

5+3 

5 4 :-:~: 
5- 3 -3"~ 

3 4 

- -4 J 2 : 0 1 2 3 4 

3 4 5 

5+-3 + 35~:
 
3 4 5 

54321012345 

5--3 _~~3 
54321012345 

The last example illustrates that subtraction of a negative 
number (-3 in the example) is equivalent to ~QQing the 
corresponding positive number (3 in the example). This 
follows from the fact that subtraction of -3 is inverse to 
addition of -3 which is equivalent to subtraction of 3. 
Hence subtraction of -3 is inverse to subtraction and is 
therefore equivalent to the addition of 3. 

1i17-9 

3.4. EXPRESSIONS FOR THE INTEGERS 

The function 1 introduced in Chapter 1 produces the 
positive integers as illustrated below: 

1 5 
From the ahove it is clear that g99iD9 a D~9gtlY~ number is 1 2 3 4 5 
equivalent to ~uQ~rggtiD9 the corresponding UQ21tiyg number; 
that is, 7+-3 yields the same result as 7-3. 1 7 

1234567 
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The same function can 
positive and negative integers 

be used to 
as follows: 

generate both 
Chapter 4 

4 

1(19)-5
1 2 3 4 

3 2 1 0 
5 
1 

6 
2 

7 
3 

8 
4 

9-5 

4.1. 

FUNCTION TABLES 

INTRODUCTION 

WITH NEGATIVE INTEGERS 

- 5 +19 
4 3 - 2 

-
1 0 1 2 3 4 

The ~Q~=D~g~tiy~ integers (that is the 
integers and zero), can be generated as follows: 

(16)-1 
012345 

positive 

Function tables were used in Chapter 2 to explore the 
behavior of the functions ~lug and time~. We can now apply 
them in the same manner to explore the new function 
agQtrg~tiQn introduced in Chapter 3. Moreover, they will be 
useful in re-examining the behavior of ~lyg and tiID~g when 
applied to the new negative numbers also defined in Chapter 
3. 

1+16 
012345 4.2. SUBTRACTION 

8+18 
6 5 -4 3 2 1 0 

Non-positive integers can be generated 

5+ 5+19 
5 

4 3 
- 2 - 1 0 1 2 3 4 

1+5 
2 

- 1 0 1 2 3 4 5 

The following examples illustrate some 
a vector 5 of integers: 

o 1 2 
2+5 

6 -5 -4 -3 2 

as follows: 

functions applied to 

then the body of a subtraction table for the 
9 is given by the expression Io.-I as 

I+19 
I 

1 2 3 4 5 6 7 8 9 
5+Io. -I 
5 

0 - 1 - 2 - 3 4 5 6 7 8 
1 0 - 1 - 2 - 3 - 4 - 5 - 6 -

7 
2 1 0 - 1 - 2 3 4 - 5 6 
3 2 1 0 - 1 - 2 - 3 - 4 - 5 
4 3 2 1 0 - 1 - 2 - 3 - 4 
5 4 3 2 1 0 - 1 -

2 
- 3 

6 5 4 3 2 1 0 - 1 - 2 
7 6 5 4 3 2 1 0 - 1 
8 7 6 5 4 3 2 1 0 

If I+19, 
arguments 1 to 
follows: 

5-5 
o 0 000 0 

5+5 
8 -

6 
- 24 

2xS 
6 4 - 2 

0 

0 

0 

0 

2 

2 

0 

4 

4 

6 

6 

8 

8 

The subtraction table 5 has a number of interesting 
properties. For example, the zeros down the ID~iD 9!~gQDgl 

of the table show that any number subtracted from itself 
yields o. Moreover, each diagonal parallel to the main 
diagonal contains the same number repeated. For example, 
the diagonal two places below the main diagonal consists of 
all 2's. 

12 
S+5+5 - 9 - 6 - 3 0 3 6 9 12 

12 
3«s 

- 9 -
6 

- 3 0 3 6 9 12 
ffilD 



- -

- - -
- -

- - - -
- - - - -

- - - - -
- - -

- - -
- - -
- - - -

- - - -
- - -
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Consider the arguments 5 and 3 in the expression 5 - 3. 

The result 2 is found in the circled position in the 
following subtraction table: 

-
0 1 2 3 4 5 6 7 8
 

1 0 1 - 2 3 4 5 7
[) 

2 1 0 1 2 3 4 5 6
 

3 2 1 0 1 2 3 5
q 

q 3 ® 1 0 1 2 3 q
 

5 q 3 1 0 1 2 3
ill - ­q6 5 3	 2 1 0 1 " 
q7 6 6 3 2 1 0 1
 

8 7 6 6 3 2 1 0
q 

If each argument is increased by 1, the result is 
found in the next row and next column; in other words, one 
place down the diagonal as shown by the square in the above 
table. Since every entry in this diagonal is the same, we 
conclude that (5+1) - (3+1) yields the same result as 5-3. 
More generally, if we increase each argument by any number 
N, the result is found by moving N places down the diagonal. 
lienee we can conclude that (5+N) - (3+N) yields the same 
result as 5-3. 

The conclusions made above for the arguments 5 and 3 
will apply to arguments having any values whatever. Hence 
we conclude that (X+N) - (Y+N) yields the same result as 
X-Y. 

The subtraction table 5 has another interesting 
property. If we choose the element in the third row and 
seventh column (which represents the result 3-7), we find 
that it is the negative of the result in the seventh row and 
third column (which represents 7-3). Hence the result of 
3-7 is the negative of the result of 7-3. If any other pair 
of numbers is substituted for 7 and 3, the same relation 
will be observed in the table. We can therefore conclude 
that for any numbers X and Y, the result of X-Y is the 
negative of the result of Y-X. 
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From the above we may conclude the following: if we 
take the subtraction table 5 and form a new table T each of 
whose <;::Ql~!DD~ is equal to the corresponding KQ~ of 5, then 
each element of T will be the negative of the corres ponding 
element of S: 

5	 T 
q0 1 2 3 4 5 6 7 8 0 1 2 3 5 6 7 8 

1 0 1 2 3 4 5 6 7 1 0 1 2 3 5 6 7q 
q2 1 0 1	 2 3 4 5 6 2 1 0 1 2 3 5 6 

q3 2 1 0 1 2 3 q 5 3 2 1 0 1 2 3 5 
q 3 2 1 0 1 2 3 /+ q 3 2 1 0 1 2 3 q 

5 q 3 2	 1 0 1 2 3 5 q 3 2 1 0 1 2 3 
q	 q6 5 3	 2 1 0 1 2 6 5 3 2 1 0 1 2 

q7 6 5	 3 2 1 0 1 7 6 5 q 3 2 1 0 1
 
q
G 7 6 5 3 2 1 0 8 7 6 5 q 3 2 1 0 

-The sum of q and q is zero, and in general the sum of 
any number and its negative is zero. Hence we can state the 
foregoing result in another way; the sum of the tables 5 and 
T must be a table of all zeros: 

5+1' 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

4.3. FLIPPING TABLES 

In the previous section the table T was obtained from 
the table S by interchanging rows and columns. This 

sn 



- - - - -
- - - - - - -

- - - - -
- - -
- - - -

- - - - - -

- - - - - - - -
- - - - - -
- - - - - - -
- - - -
- - - - - -

- - -
- - - - -

- - - - -
- - - - - - -

- - - - - - -

- - - - - - - - -

- - - - - - - - - - - - - -
- - - - - - - - - - -

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - -

- - - - - -
- - - - - - - -

interchange can be stated in a simple graphic way as Each of these three methods of flipping a table is a 
function which takes a table as argument and producesfollows: flip the table over about the axis formed by the 

main diagonal: another table as a result. The symbols for each of these 
functions is a circle with a line through it which indicates 

S the axis about which the table is flipped, thus: ~, ¢, and 
e. For example:1 2 3 4 5 6 7 8
 

1 1 2 3 4 5 6 7
 
~S ¢S2 1 1 2 3 4 5 6 -­- - - - - 0 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 03 2 1 1 2 3 4 5 - - - - 1 0 1 2 3 4 5 6 7 7 6

- 5 4 3 2 1 0 14 3 2 1 1 2 3 4 - - - 2 1 0 1 2 3 4 5 6 6 5 4 3 2 1 0 1 25 4 3 2 1 1 2 3 - - 1 - - - - ­- - 3 2 0 1 2 3 4 5 5 4 3 2 1 0 1 2 36 5 4 3 2 1 1 2 
- 4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 47 6 5 4 3 2 1 1 

5 4 3 2 1 0 1 2 3 3 2 1 0 1 2 3 4 58 7 6 5 4 3 2 1 :) 6 5 4 3 2 1 0 1 2 2 1 0 1 2 3 4 5 6 

~ 7 6 5 4 - 3 2 1 0 1 1 0 1 2 3 4 5 6 7 
8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8
 

1 0 1 2 3 4 5 6 7
 - eS e¢S2 1 0 1 2 3 4 5 6 - - 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 83 2 1 0 1 2 3 4 5- - 7 6 5 4 3 2 1 0 1 1 0 1 2 3 4 5 6 74 3 2 1 0 1 2 3 4 - - - 6 5 4 3 2 1 0 1 2 2 1 0 1 2 3 4 5 65 4 3 2 1 0 1 2 3 - - - 5 4 3 2 1 0 1 2 3 3 2 1 0 1 2 3 4 56 5 4 3 2 1 0 1 2 - - - - - - 4 3 2 1 0 1 2 3 4 - 4 3 2 1 0 1 2 3 47 6 5 4 3 2 1 0 1 - - - - - - - 3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 38 7 6 5 4 3 2 1 0 - 32 1 0 1 2 4 5 6 6 5 4 3 2 1 0 1 2 - - - - - - 7 - - - ­1 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1In examining the patterns exhibited by tables it is - 30 1 2 4 5 6 7 8 8 7 6 5 4 3 2 1 0also convenient to flip them in a similar way' about a 
vertical axis and about a horizontal axis as follows: 

The last of these four examples illustrates how the flipping
0 functions can be applied in succession.S S 

0 1 2 3 5 6 7 8 0 1 2 3 4 5 6 7 8- - The function ~ is called t~gn§QQ§itiQn (because it1 0 1 2 4 5 6 7 1 0 1 2 3 4 5 6 7 - - - - - - 6 - - - - - transposes rows and columns), the function ¢ is called ~Q~2 1 0 1 3 4 5 2 1 0 1 2 3 4 5 6 - - - - - - - - -5 ~~Yet:§gl (because it reverses each row vector in the table),3 2 1 0 2 3 4 5 3 2 1 0 1 2 3 4 - - - - - - and e is called gQ1YIDD t:~Ye~~gl.4 3 2 1 1 2 3 4 L+ 3 2 1 0 1 2 3 - - - - ='1)
5 4 3 2 0 1 - 2 3 5 4 3 2 1 0 1 2 3 - - - - A vector can be thought of much as a one-row table,6 5 4 3 1 0 1 2 6 5 4 3 2 1 0 1 2 - - and reversal can therefore be applied to it. For example:7 6 5 4 2 1 0 1 7 6 5 4 3 2 1 0 1
 
8 7 6 5 3 2 1 0 8 7 6 5 4 3 2 1 0
 

t -, 9 
I~ {} 1 2 3 4 5 6 7 8 9 

- - - - ¢I8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0- - - - - - 9 8 7 6 5 4 3 2 17 6 5 - 4 3 2 1 0 1 7 6 5 4 3 2 1 0 1
 
6 5 4 3 2 1 0 1 2 6 5 4 3 2 1 0 1 2
 
5 4 3 2 1 0 1 2 3 5 4 3 2 1 0 1 2 3
 
4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
 
3 2 1 0 1 2 3 4 5 3 2 1 0 1 2 3 4 5
-2 1 0 1 2 3 4 5 6 2 1 0 1 2 3 4 5 6 
1 0 1 2 3 4 5 6 7 1 0 1 2 3 4 5 6 - 7 
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 
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The relation between the subtraction table 5 and its From the fourth it appears that a column index alone selects 
transpose T 
section can 

which was noted 
now be stated as 

at the 
follows: 

end of the preceding the entire column. 
horizontally, not as 

However, 
a column. 

the column is displayed 
This emphasizes the fact 

that any single column or row selected from a matrix is 
S+QS simply a vector and is displayed as such. 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 Indexing can also be used to select an element from a 
0 0 0 0 0 0 0 0 0 vector, but in this case a single index only is required. 
0 0 0 0 0 0 0 0 0 For example: 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 P-<-2 3 7 11 

0 0 0 0 0 0 0 0 0 P[4J 

0 0 0 0 0 0 0 0 0 7 

0 0 0 0 0 0 0 0 0 P[ 2 J 
[]2-3 3 

2 35 711[2J 
3 

4.4. INDEXING TABLES Moreover, a vector of indices can be used to select a 
vector of elements as follows: 

In discussing a table it is often necessary to refer 
to a particular row of the table (e.g., the fourth row), or Pel 3 5 J 
to a particular column, or to a particular element. Such a 2 5 11 

reference will be called !~g~~!~g the table, and the row and P[ 14 J 

column numbers which refer to a given element are called its 2 3 5 7 

!~g!g~§. P[5 4 3 2 1 J 
11 7 5 3 2 

Indexing is denoted by brackets 
indicated by the following examples: 

in the manner 
Finally, vectors can be 

indices to a table as follows: 
used for both row and column 

M-<-(16)o.-,5 

- M - - - M[l 2 ; 2 4 6 J 

0 1 2 3 4 5 1 3 5 

1 0 
-

1 2 -
-

3 -
4 -

0 2 4 

2 
3 
4 

1 
2 
3 

0 
1 
2 

1 
0 

1 

2 -
1 
0 

3 -
2 -
1 0 

- M[ 1 3; J 
1 2 3 -

-
4 - 5 

5 4 3 2 1 0 2 1 0 1 2 3 

1 
M[3;4J 

M[ ; 2 - 4 6 J 

M[4;3J 1 3 - 5 

1 0 2 - 4 -

2 1 
M[ 3; J 
0 1 

-
2 

-
3 

1 
2 

1 
0 

3 -
2 -

2 
- M[ ; 3 J 

1 0 1 2 3 

3 
4 

1 
2 

1 
0 

ijJ4 

From the first two examples it should be clear that 
the row index appears first. From the third it appears that 
a ro~ index alone selects the entire vector in that row. 



- - -

- -
- - - - - - - -

- - - - -
- - - - - - - - - -

- - - - - - - - - - - - - - -
- - - - - - - - - -
- - - - - - - - -

- - - - - - - - - -
- - - - - - - - - -
- - - - - - - - -
- - - - - - - - - - -

- - - - - - - - -
- - - - - - - - -
- - - - - - -
- -
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4.5. ADDITION 

Consider the addition table A defined as follows: 

1+-\7 
A+Io.+I
 
A
 

2 3 4 5 5 7 8
 
3 4 5 5 7 8 9
 
4 5 5 7 8 9 10
 
5 5 7 8 9 10 11
 
5 7 8 9 10 11 12
 
7 8 9 10 11 12 13
 
8 9 10 11 12 13 14
 

It is clear that the transpose of the table A (that 
is, "'IA) is equal to A. From this we may conclude that for 
any numbers X and Y, the sum X+Y is equal to the sum Y+X. 
The diagonals and gQ~i§~=QiggQDgl§ (running from upper 
right to lower left) of the addition table also show 
interesting patterns whose meanings can be examined in the 
manner illustrated in the discus s i o n of the subtraction 
table in the preceding section. 

It is also interesting to examine an addition table 
made for negative as well as positive arguments as follows: 

J+-(115)-8
 
J
 

7 5 5 4 3 2 1 0 1 2 3 5 5 7" 
B+-Jo.+J
 
B
 

llf 13 12 11 10 9 8 7 5 5 If 3 2 1 0 
13 12 11 10 9 8 7 5 5 If 3 2 1 0 1 
12 11 10 9 8 7 5 5 4 3 2 1 0 1 2 
11 10 9 8 7 5 5 If 3 2 1 0 1 2 3-10 9 8 7 5 5 If 3 2 1 0 1 2 3 4 

9 8 7 5 5 4 3 2 1 0 1 2 3 If 5 
8 7 5 5

- 4 3 2 1 0 1 2 3 If 5 5 
7 5 5 If 3 2 1 0 1 2 3 If 5 5 7 
5 5 4 3 2 1 0 1 2 3 4 5 5 7 8 
5 If 3 2 1 0 1 2 3 4 5 5 7 8 9 
4 3 2 1 0 1 2 3 If 5 5 7 8 9 10 
3 2 1 0 1 2 3 If 5 5 7 8 9 10 11 
2 1 0 1 2 3 If 5 5 7 8 9 10 11 12 
1 0 1 2 3 4 5 5 7 8 9 10 11 12 13 
0 1 2 3 If 5 6 7 8 9 10 11 12 13 llf 
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One interesting point is that the main diagonal 
(consisting of all zeros) divides the positive numbers from 
the negative numbers. Other patterns noted in Table A can 
also be found in the extended Table B. 

4. 6. MULTIPLICATION 

Again it will be convenient to consider two 
multiplication tables, a table J.1 for positive arguments 
only, and a table N for negative arguments as well: 

I+-\ 7 
M+-Io. xl 
M 

1 2 3 4 5 5 7
 
2 4 5 8 10 12 14
 
3 5 9 12 15 18 21
 
4 8 12 15 20 24 28
 
5 10 15 20 25 30 35
 
5 12 18 24 30 35 42
 
7 14 21 28 35 42 49
 

J+-(115)-8 
,J 

7 5 5 4 3 2 1 0 1 2 3 4 5 5 7 
N+-Jo. xJ 
N 

1f9 1f2 35 28 21 14 7 0 7 14 21 28 - 35 42 49 
42 35 30 24 28 12 5 0 5 12 18 24 30 35 42 -
35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 
28 21f 20 15 12 8 4 0 4 8 12 15 20 24 28 
21 18 15 12 9 5 3 0 3 5 9 - 12 15 18 21 
14 12 10 8 5 4 2 0 2 4 5 8 10 12 14 

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 5 5 4 3 2 1 0 1 2 3 4 5 6 7 

1IJ 12 10 8 6 4 2 0 2 4 5 8 10 12 14 
21 18 15 12 9 5 3 0 3 5 9 12 15 18 21 
28 24 20 15 12 8 4 0 4 8 12 15 20 24 28 
35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 
42 35 30 24 18 12 5 0 5 12 18 24 30 35 42 
1f9 42 35 28 21 14 7 0 7 14 21 28 35 42 49 

IBS 



- -
- - - -
- -

- - - - -

- - -
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The zeros in N can be seen to divide the table into 
four 9~~Q~~~t~, one in the upper right corner, one in the 
upper left, one in the lower left, and one in the lower 
right. For convenience in referring to them we will call 
tllese quadrant 1, quadrant 2, quadrant 3, and quadrant 4, 
assigning the numbers in a counter-clockwise order beginning 
with the upper right-hand corner as follows: 

Lquadrant quadrant 1
 

quadrant 3 quadrant 4
 

Each of the quadrants of N contains only positive 
numbers or only negative numbers, and the signs reverse as 
we proceed counter-clockwise through quadrants 1, 2, 3, and 
4. It is also interesting to consider this change of sign 
by examining some row of the table. 

First consider the fourth row of table M, which 
represents the "four times" function for positive arguments: 

M[ it ; Jl, 
',

8 12 16 20 2 28
 

Reading this row from left to right is clearly 
"counting by 4' gil i in other words, each entry is obtained 
from the one before it by adding I, • Similarly, reading 
backward is equivalent to "counting down by Ii- • 5 II, and each 
entry is obtained from the one to the right of it by 
subtracting 4. 

Now consider the row of table N which represents the 
same "four times" function, that is, row 12 : 

N[ 12 ; ] 
28 24 20 16 12 8 4 0 4 8 12 16 20 24 28
 

Reading from right to left is again "counting down by 
fours" and so t.h e entry 4 is preceded by o which is in turn 
preceded by 4, and so on. Hence the zero entry separates 
the po sitive and negative entrys in this row. The same 
concl usion applies to any row, and a similar conclusion 
applies to any column. Hence the quadrants must alternate 
in sign, as already observed. 

[]6-7 
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4.7. MAXH1UM AND IHNIMUM 

Consider the following set of positive and negative 
numbers: 

I'-(113)-7 
I I, - -, ­

6 5 2 1 0 1 2 '3 4 5 6
 

For any pair of positive numbers such as 3 and 5, the 
value of their maximum 315 is the value of that one of the 
pair which lies farthest to the right in the vector T. The 
same rule applies to both positive and negative numbers. 
For example: 

J I 5
 

5
 
Ji- 5
 

3
 
31 I
 

3 3 3 J 3 3 3 3 3 3 4 5 6
 

31 I
 -
3 3 3 3 2 1 0 1 2 J 4 5 6
 

Therefore, the maximum table appears as follows: 

MAX+-Io.II
 
MAX
 

6 5 4 3 2 1 0 1 2 3 4 5 G
 

5 5 4 3 2 1 0 1 2 3 5
ii G 
-

Ii Ii 4 3 2 1 0 1 2 3 4 5 6
 
- - - -, ­

3 3 3 3 1 0 1 2 3 4 5
 
--

2 2 2 2 2 1 0 1 2 3 4 5 G
 

1 1 1 1 1 1 0 1 2 3 4 5 6
 

0 0 0 0 0 0 0 1 2 3 4 5 6
 

1 1 1 1 1 1 1 1 2 3 4 5 6
 

2 2 2 2 2 2 2 2 3 4 5 6
 

3 3 3 3 3 3 3 3 3 3 4 5 6
 
4 q 4 '+ 4 4 4 4 4 '+ 4 5 6
 

5 5 5 5 5 5 5 5 5 5 5 6
 
6 6 6 6 6 6 6 6 6 6 6 6 6
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The corresponding rule for the minimum function is 5+1 0.-1 u.-r «,«: 

obv:i..ous, and the minimum 

MI N+I - , LI 

table appears as follows: 
0 
1 

5 
1 

-
2 

0 1 
3 -
2 -

- lj 
- 3 -

1 
2 

M 
2 
lj 

3 
6 

lj 

8 
5 

10 

- MIN - - - - 2 1 0 1 2 3 6 9 12 15 
6 
6 

6 -
5 

-

6 -
5 -

6 -
5 -

6 
5 -

6 -
5 -

6 -
5 

6 -
5 -

6- 5 
6 
5 -

6 -
5 

6 
5 

6 
- 5 -

3 
4 

2 
3 

1 
2 

0 
1 

1 
0 

lj 

5 
8 

10 
12 
15 

16 
20 

20 
25 

6 
6 
6 
6 
6 
6 
6 
6 

5 -
5 -
5- 5 -
5 -
5 -
5 - 5 

4 
- lj 

4 
lj 

lj 
-

lj 
-

4 -
II 

-

4- 3 
3 
3 
3 - 3 
3 
3 

4 
3 -
2 -
2 
2 
2 -
2 

-
2 -

4 
- 3 -

2 -
1 -
1 -
1 
1 -
1 -

4 
- 3 -

2 -
1 
0 
0 
0 
0 

4 
-

3 
2 -
1 
0 
1 
1 
1 

4 - 3 
] 

1 
0 
1 
2 
2 

4 
3 -
2 
1 
0 
1 
2 
3 

lj 
- 3 -

2 -
1 
0 
1 
2 
3 

Ij 
- 3 

2 
1 
0 
1 
2 
3 

lj 
- 3 

2 -
1 
0 
1 
2 
3 

0 
1 
2 
3 
lj 

q5 
1 2 
0 1 -
1 0 
2 1 

- 3 2 

3 
2 
1 
0 -
1 

lj 

3 
2 
1 
0 

1 
2 
3 
lj 

5 

qM 
2 
lj 

6 
8 

10 

3 
6 
9 

12 
15 

lj 

8 
12 
16 
20 

5 
10 
15 
20 
25 

6 
6 

-
-

5 
5 

4 
- 4 -

3 - 3 
2 -
2 

-

1 -
1 

0 
0 

1 
1 

2 
2 

3 
3 

lj 

4 

lj 

5 

lj 

5 1 0 
5 =q5 

0 0 0 1 
M=qM 
1 1 1 1 

6 5 'I 3 2 1 0 1 2 3 4 5 6 0 1 0 0 0 1 1 1 1 1 
[[]8-11 0 0 1 0 0 1 1 1 1 1 

0 0 0 1 0 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 

4.8. RELATIONS 5+q5 M-qM 
0 0 0 0 0 0 0 0 0 0 

In the work thus far we have observed a number of 0 0 0 0 0 0 0 0 0 0 
~~1gt!Q~E among expressions. For example, 3+8 is equal to 0 0 0 0 0 0 0 0 0 0 
8+3, and in general X+Y is equal to Y+X. Such relations 0 0 0 0 0 0 0 0 0 0 
have also been observed between whole tables. For example, 0 0 0 0 0 0 0 0 0 0 
if M is any multiplication table it is equal to its 
transpose qM. 0=5 +q5 o=M-qM 

1 1 1 1 1 1 1 1 1 1 
The symbol = is used to denote equality, and it will 1 1 1 1 1 1 1 1 1 1 

be used as a function which yields a 1 if the arguments are 1 1 1 1 1 1 1 1 1 1 
equal, and a 0 if they are not. For example: 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

3=8 
o The symbol ~ is used to denote the ~Qt=~g~~1 function. 

3=3 For example: 

3=3 3~8 

o 1 
1+15 3~ 3 
I 0 

1 2 3 4 5 5~q5 

LjlI 0 1 1 1 1 
5 4 3 2 1 1 0 1 1 1 

I=H 1 1 0 1 1 
o 0 1 0 0 1 1 1 0 1 

1 1 1 1 0 



-45­
-46­

From the foregoing it should be 
1 implies that the indicated relation 
tf~~), whereas a result of 0 implies 
not hold (that is, it is i~l~g). 

clear that a result of 
holds (that is, it is 
that the relation does 

[l12 

Two further relations will also 
1~§~_thg!1_Qf_g9~~1_tQ (denoted by 5) 
gf~~t~f_th~!1_Qf_gg~~l_tQ (denoted by ~). 
should be clear from their names and 
examples: 

be employed - the 
and the 

Their definitions 
from the following 

There 
not-equal. 
l~§§=t-h~!1: 

are other useful relations besides equal and 
Thus the symbol < denotes the function 3 

1+(17)-4 
I 

2 1 0 
R+¢I 

1 2 3 

3<5 3 2 
R 
1 0 1 2 

4 

o 

o 

N+ ( 19 ) - 5 
N 

-3 -2 1 

3<3 

5<3 

0 1 2 3 4 

1 

1 

o 

1 

1 

0 
l~R 

IsH 
1 1 
I<R 
1 0 

0 o 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

I~R 

0 1 
1>11 
0 0 
I=R 
0 1 0 0 0 

1:B13-14 

¢N 
4 3 2 1 0 -1 2 3 4 

IJ<¢N 
11100000 

4.9. LOGICAL VALUES 

It should be clear that one integer is "less-than" 
another if it precedes it in a list of integers (such as N 
arranged in the usual ascending order. 

The symbol > denotes the function gf~~t~f=th~!1. For 
example: 

(¢N)<;'i 
o 0 0 0 0 

From all of the examples in the preceding section it 
can be seen that every result of a relation function is 
either a 1 or a 0, or a vector or table of l's and O's. It 
will be convenient to use the term lQg!g~l result Or lQg!g~l 
vector or lQg!g~l table to refer to such results which 
consist of only 0' sand t ' s , The term "logical" arises 
from the fact that a 1 can be thought of as representing 
"true" and a 0 as representing "false". 

1 

o 

1 

o 
N>¢N 
0 0 0 
(¢N»N 
1 1 0 

1 

0 

1 

0 0 0 

The functions rand 
interesting properties when 
maximum table restricted 
follows: 

L (maximum and minimum) 
applied to logical results. 
to such arguments appears 

have 
The 

as 

To remember which of the symbols < and denotes 
"less-than" and which denotes "greater-than", it may be 
helpful to note that the large end of the symbol points to 
that argument which must be 19r9~r if the relation is to be 
true (that is, have the result 1). 

o 
1 

1 
1 

o lo,rO 
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From this it appears that the result of LIK (when L 
and K are both logical values) is 1 if either one of the 
arguments (or both) is 1. In other words, LIK is 1r~g if 
either L is true or K is true. Hence the maximum function 
applied to logical results can be said to be the function 
Qr· 

The following example may clarify the matter: 

X+l 2 3 4 5
 
Y+5 4 3 2 1
 
X<Y
 
a a a 
X=Y 

a a 1 a a 
(X<Y)I(X=Y) 

1 1 1 a a 
X~Y 

1 1 1 a a 

For these values of X and Y it can be seen that the 
expression (X<Y) I (X=Y) has the same result as X~Y. The 
expression X<Y) I (X=Y) may be read as "X is less than Y or 
X equals Y" and therefore the conclusion can be phrased as 
follows: "The expression X is less than Y or X equals Y has 
the same result as X.;Y." 

In a similar manner it can be shown that the minimum 
functions applied to logical results is equivalent to "and". 

a lo.La 1
 
a a
 
a 1
 

In other words, the result LLK is true only if L is 
true <:!!!Q K is true. For example, (X.;Y) L (X:o-Y) is 
equivalent to X=Y. 

The function L/V (minimum Q~~r V) applied to any 
vector V yields the value of the smallest element in V. 
Hence if V is a logical vector, the expression LIV yields a 
a if there is any zero in V, and the expression L/V 
therefore is true (i.e., 1) only if all elements of V are 
true. Therefore LIV can be thought of as "all of V". 

Similarly IIV is true if at least one element of V is true. 
For example: 

W+4 6 2 3 7
 
l<W
 
1 1 
L/l<W 

I /l <W 

3<W 
a a 
L /3 <W 

a 
1/3<W 

8 <W 
a a a a a 

L18 <W 
a 

I I 8 <W 
a 

[illS 

4.10 THE QY~B FUNCTION ON TABLES 

The Qygr function has been frequently used on vectors 
in earlier chapters. For example: 

+I 2 4 3 
9 

x 12 4 3 
24 

I 12 4 3 
4 

L /2 4 3 
2 

it is also useful to apply the Qygr function to tables, and 
the method of doing this will now be defined. 
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A few	 examples will be given first: 

0.-12~"*-1 2	 34 3 
'J'1 

012
 
101
 
2 1 0
 
321
 

+/T 
3 0	 3 b 

x/T 

o	 0 0 6 

lIT 
o	 1 2 3 

LIT 
2 -1 0 

The rule should be clear from the foregoing 
examples - apply the indicated function over each of the 
vectors formed by the rows of the table. 

Sometimes one would like to apply a function over each 
of e1e vectors formed by the gQl~D2 of a table. This can 
be done by first transposing the table. For example: 

qT 
0 1 2 3
 
1 0 1 2
 -2 1	 0 1 

+/qT 
6 2 2 

x /qT 
0 0 0 

IiqT 
2 1 

L/qT-
0 1 2 

Another QY~~ function can of course be applied to any 
vector resulting from an QY~~ function applied to a table. 
Hence one would obtain the sum of all elements of T by the 
following expression: 

+/+/T 
6 
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Similarly, the expression x/+/l' yields the product of 
the sums of the rows of T: 

x/+/T 

o 

In particular, the expression L/L/L applied to any 
logical table L will yield a result of 1 (true) only if 
every element of L is true. This is useful in comparing 
tables. For example: 

I~l .'	 3 'I 5 
S~Iu.-I A+-Io.+I
 
S =~3 A=qA
 

1 0 0 0 0 1 1 1 1 1
 
0 1 0 0 o 1 1 1 1 1
 
0 0 1 0 0 1 1 1 1 1
 
0 0 0 1 0 1 1 1 1
 
0 o 0	 0 1 1 1 1 1 1 

L/L/S=qs	 L/L/A=qA 
o 

m6 
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Chapter 5
 

THE RATIONAL NUHRERS 

5.1. INTRODUCTION 

In Chapter 3, the ~llQtr~gtiQ~ or ~i~~~ function was 
introduced as a function which undid the work of addition, 
that is, for any positive integers, X and A, the expression 

(X+A)-A 

would yield the result X. Subtraction was therefore said to 
be iu~e~ae to addition. 

Since addition was also inverse to subtraction, it 
followed that the expression 

(X-A)+A 

would also yield X. However, if A is larger than X, then 
X-A is not a positive inteqer, and the negative integers and 
zero were introduced to ensure that every subtraction would 
have a result. 

In this chapter the diyisiQil function will be 
introduced in a si~ilar way, as a function which will undo 
the work of multiplication, that is, 

(XxA ):A 

yields the result X. Since multiplication will also undo 
the work of division, it follows that 

(X~A )xA 

also yields X. That is: 

READ AS 

(XxA)~A is X Quantity X times A divided by A is X
 
and
 

(X~A)xA is X Quantity X divided by A times A is X
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For example: 

3x8 3x -
8
 

24 24
 

-(3 x8)+3 ( 3 "- 8 ) ~ 3
 
8 8
 

2 4 ~ 3 2 4 ~ 3
 -8 8
 

3x(24~3) 3x(-24~3) 

24 24
 

8+- -
4+ 17
 

5
 
3 2 1 0 1 2 3
 

5x3 
-

9 fJ 3 0 3 6 9
 

(Sx3)~3 

3 2 1 0 1 2 3
 

M+5x 3
 
M
 

9 6 3 0 3 6 9
 

,IH 3
 
-

3 2 1 0 1 2
 

(Md)X3 
9 6 3 0 3 6 9
 

Haps for the examples $x3 and (5 x3)+3 appear as 
follows: 

-:~/:l:\~ 
-~~";\ I/~9 

m-2 



-53­ -54­

The examples for M~3 and (M~3)x3 can be mapped

similarly:
 

'~~'!'/~C
 

~:~/:l>~~: 
In discussing the expression A~B, the first argument A 

is called the giyig~~g (that which is to be divided), the 
second argument B is called the giyi§Q~ (that which 
divides) , and the result is called the g~Qtl~Dt (how many 
times). For example, in the expression 12~3, the number 12 
is the dividend, 3 is the divisor, and the result 4 is the 
quotient. 

Just as the expression X-A would sometimes yield a 
result which was not a positive integer, so the expression 
X~A will sometimes yield a result which is not an integer, 
and it becomes necessary to introduce a new class of numbers 
which are neither positive nor negative integers. These 
numbers are called ~gtlQDgl D~Q~~§ because they arise as a 
~gtlQ of two integers. They are also called frg~tlQD§, 
because a number such as 1~3 is considered to be one piece 
of a whole which is divided into 3 equal parts, that is, it 
is a fraction or "fractured part" of a whole. However, the 
question of these new numbers will be deferred until we have 
considered methods for performing division. 

1E3 

5.2. LONG DIVISION 

To divide a small number such as 8 into another small 
number such as 56, one can simply guess at the answer and 
then check the guess by multiplying it by the divisor (that 
is, 8) and comparing the resulting product with the original 
dividend 56. Thus if the guess is 7, the product 7x8 is 56 
and the guess is correct: the quotient of 56 divided by 8 is 
7. More generally, if DD is the name of the dividend, DR is 
the name of the divisor, and G is the name of the guess, 
then the product DRxG must agree with the dividend DD in 
order that the guess be the correct quotient resulting from 
DD~DR. 

For somewhat larger numbers one is less likely to 
guess right the first time, and the comparison of the 
product DRxG with the dividend DD can be used to determine 
whether the next guess should be larger or smaller. For 
example, in the division 40548~124, the value of DD is 
40548, the value of DR is 124, and the first guess G might 
be slightly over three hundred, say 305. The product of G 
and DR may then be computed: 

124
 
». 305
 
520 
000
 

372
 
37820
 

Since the product 37820 is less than the dividend 405'+8, the 
next guess should be somewhat larger than 305. 

One might take the next guess to be 330, in which case 
the product 124x330 would be 40920 and therefore too large. 
The third guess should be somewhere between 305 (which was 
too small) and 330 (which was too large). Guessing in this 
way will eventually lead to the desired quotient, but may 
take a lot of work. 

1D4 

It would help to know not only that the next guess 
should be larger (or smaller) but by how much. It is easy 
to find how much the Q~Q9~~t JRxG should be increased: one 
merely subtracts it from the dividend. Thus in the example 
40548~124 and the guess 305: 

124 40548 
x 305 -37820 
620 ~ 

000 
372 
37820 

The product should be increased by 2728. This can be done 
by increasing the guess by 2728~124. 

We are thus faced with a new division problem (that 
is, 2728~124), but this time with a smaller dividend. 
Making a guess of 22 for the quotient would prove correct 
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since 22x124 is euqal to 2728. The correct quotient is the 
sum of the first guess (305) and the correction to it (22), 
that is, 327. The whole process is shown below: 

405487124 

124 40548 124 2728 305 
x305 -37820 x22 -2728 +22 

620 2728 248 o 327 
000 248 

372 2728 
37820 

The work can be organized more conveniently as shown 
on the left below; the necessary multiplications are shown 
separately on the right and their results are transferred to 
the appropriate places on the left: 

327 
+22 
305 124 124 

~ x l.Q..2 x22 
-37820 620 248 

2728 000 248 
-2728 372 2728 

o 37820 

In the foregoing, the final result 327 is entered at the top 
of the column of guesses (305 and 22) of which it is the 
sum. 

If the second guess is not correct a third can be 
made, and if that is not correct a fourth can be made, and 
so on. The final result is the sum of the guesses. For 
example, to compute 6704716: 

419 15 16 
~ x402 x15 

-3-2­+15 ~ 
402 00 16 

54 240 
- 6 4 32 6432 

272 16 
-240 x2 
~ 32 

- 32 

~ 

-0­

If one chooses each guess to be a single digit, or a 
single digit followed by one or more zeros (that is, one 
chooses guesses which are single-digit multiples of 1, 10, 
100, 1000, etc.) then the necessary multiplications become 
much simpler. For example, the division 405487124 (used in 
an earlier example) might begin with a guess of 300. Since 
300x124 is equivalent to 3x124 followed by two zeros, this 
multiplication can be carried out on a single line and need 
not be done off to the side as was the case with the guess 
305 used in the previous example: 

300 
~ 

-37200 
~ 

The next guess will be a multiple of 10, say 20: 

+20
 
300
 

~48 
-37200
 

3348
 
-2480
 
868
 

The next guess is a multiple of 1, say 7: 

327 
+7
 

+20
 
300
 
~ 

- 37200 
~ 

-2480 
--s58 

-868
 
o
 

This method of choosing multipliers not only 
simplifies the necessary multiplications, it also simplifies 
the addition of the guesses. In the previous example, the 
addition of 300 and 20 and 7 involves no carries, because 
each digit position has a single non-zero entry. This will 
always be the case provided that the leading digit in each 
guess is chosen as large as possible. 

The quotient is 419. This result can be checked by 
multiplying it by 16 to see that the product is indeed equal 
to the dividend 6704. 

tB5 
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The preceding example (for the division 40S118H21j) is Consider the example
repeated below on the left. It is also reproduced on the 
right but with all of the trailing zeros dropped from the P-<- 10+11g
calculations: P 

9 8 7 6 S 4 o 2 4 b 7 8 9
327 _~.LI 

7 1 and the following map for 1',3 and i >: 3) x 3 
20 ,)
 

'300
 3 
~lJjl+O 548 .11..lJ...f4Os 48 

-37200 -372
 
3348
 334 -~I~-2480 - 21j 8 

H6 8 868
 
- 8 6 [j
 

o o 
-868 

::~[~: 
From this it appears that the simpler scheme on the 

right will suffice to record the sequence of calculations. From this example, it appears that the number 6,3 is 
In fact, the sequence of guesses 3, :', and 7 could be less than 7~3 which is less than 8~3, and so on. In other
 
written on the same line, making the final addition words, the following sequence of four numbers is in
 
unnecessary. The steps of this final scheme (called lQDg ascending order:
 
giyi~iQD) are shown in the columns below:
 

6H 1 : 3 H:3 H3 
32 

l2."J 40 54!J 
-372--- ­

327 

12 4 1 4 0 S 4 J 
-372 

Since 
written 

b : 3 is 
as: 

2 and 9,:, is 3, the above sequence may be 

334 334 
-248 -248 2 7 : B ~ 

86 868 
- 86 8 In other words, the numbers 1,3 and B~3 occur between the 

o 
K16-7 

integers 2 and 3 and therefore 
called KgtiQDgl D~9gK§. 

cannot be integers. They are 

5.3. RATIONAL NUMBERS 

In the preceding examples and exercises, each dividend 
used was an integer multiple of the divisor and the quotient 
was therefore an integer. However, the division 21~4 cannot 
have an integer result since the quotient S is too small and 
the quotient 6 is too large. Rational numbers will now be 
introduced to ensure that every quotient of two integers has 
a result. 

The negative integers and zero (introduced to make 
every subtraction have a result) are a set of numbers which 
2~~~~9~ the positive integers; the rational numbers 
(introduced to make every division have a result) are a set 
of numbers which occur 9~t~~~D the integers. 

Just as names were introduced for the negative numbers 
(for example -S 4 -3), names can be introduced for 
rationals as follows: the result of 2~3 is often written as 
2/3, the result of 5~2 is written as 5/2, etc. In this book 
we will make very little use of such names, but will instead 
simply write the expression which produces the rational 
number (for example, 2~3 or 5~2, or ~/2 3 or ~/5 2), or 
else write the rational number as a g~gimgl fK~gtiQD. 
Decimal fractions will be discussed later in this chapter. 
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Since the integer 2 is equal to 2f1 or to 4f2 or to 
6f3, etc., then the integer 2 itself can be considered to be 
a rational number. Similarly, 3 is equal to 3f1 or 6f2, 
etc. Therefore every integer can also be considered to be a 
rational number. 

Each division in the foregoing examples produces an 
int~g~±, and so the rule for addition deduced above has only 
been shown to hold for such cases. It will, however, be 
assumed to hold for ~11 rational numbers. For example: 

In discussing a rational such as AfB, the terms 
g!~ig~~Q and 9i~i§Q± were introduced to refer to the parts A 
and B. The terms nYID~±gtQ± (for A) and g~nQIDiDgtQ± (for B) 
are also used. To g~nQIDim!t~ means "to give a name to," and 
the second part of a rational gives a name to the result in 
the following sense: 3+5 is called 3 iiith§, 5+7 is called 
5 §~~~~th§, etc. Similarly, the numerator gives the n~mQ~± 
of things named, as also illustrated in the examples of the 
preceding sentence. 

tB8-11 

5.4. ADDITION OF RATIONAL NUMBERS HAVING THE SAME DIVISOR 

Consider the following pairs of examples: 

5 

9 

(6+3)+(9+3) 

(20+5)+(25f5) 

5 

9 

(6+9)+3 

((20+25)f5 

It should be clear from the foregoing that 
rules apply to the §~t±g~tiQn of rationals having 
divisor, that is: 

(AfC)-(BfC) is equal to (A-B)+C 

similar 
the same 

10 
(32f4)+(8+4) 

10 
(32+8)+4 For example: 

(13+3)-(8+3) is equal to 5+3. 

Since each of the results in the first column agree 
with the results in the second column, it appears that the 
expressions in each pair are equivalent, that is, 
(9+3)+(6+3) is equivalent to (9+6)+3, and so forth. The 
general rule illustrated by the examples is this: If A, B, 
and C are any three integers, then 

(AfC)+(B+C) is equal to (A+B)+C 

If the addition or subtraction of two rationals 
produces a dividend which is evenly divisible by the 
divisor, then the result may be further simplified to a 
single integer. For example: 

1 

( 8 +3 ) + ( 7+ 3 ) 
15+3 
5 

The first example may be diagrammed 

+9 

as follows: 1(8+3)-(5+3) 

1~+3 

2 3 4 5 6 7 8 9 10 

2~:"
1 t 

+3 

11 

11 

12 

12 

13 

13 

1~.J5 

14 15 

16 

16 

The vertical lines above indicate, as usual, that the 
expressions to the right are equivalent. From here on the 
vertical lines will be omitted; that is, any list of 
expressions is to be read as a statement that the 
expressions are equivalent. 

tBl2-14 

(5f3)+(8f3) is equal to 13f3 

The diagram for this example follows: 

o 1 

+3 

6 7 8 

14 

9 10 11 12 13 14 
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5.5. MULTIPLICATION OF RATIONAL NUMBERS However, since 3:3 is 1, then 

The rules for multiplying two rational numbers will be (4~5)X(H3) 

explored by first considering a number of cases in which the (4~5)xl 

division can actually be performed. Compare the 4 -;- 5 
corresponding examples in the following two columns: 

Therefore, all members of the two sets of expressions 
(10~5)x(12n) (1'lx12)~(5x3) above are equivalent, and 12"15 is equal to 4~5. 

2x4 120 H 5 

8 8 It therefore appears that for any three integers A, 2, 
and C: 

(18~3)X(12:6) (l',xl.'):( 3x,., 

6 x 2 ,! 1 l) : ] 8 A~R 

12 12 (A~B)x(CI ) 
(AxC):(BxC) 

(32:8 )x( 35~7) (3' • 3 S ) ~ ( x 7 ) 

4" 5 11 .' (1 -;-5 t:i In words, if the dividend and divisor of a rational number 
20 I) are multiplied by the same quantity c, the resulting 

rational number is equal to the original rational number. 
Since the results in the two columns agree, it appears [jJl5-18 

that (10~5)x(12~3) is equivalent to (10xL')~(5x3) and so on. 
In general, if A, H, C, and are any integers, it appears 
that (/l:;,)x(C~2) is equivalent to (Ax;')~(fjX.T). The above 
examples illustrate this only for cases where A ~iJ and C~D 5.6. MULTIPLICATION OF A RATIONAL BY AN INTEGER 
each produce integer results. However, 
assumed to apply for all rational numbers. 

the 
For 

rule will be 
example: 

of 
Consider again the 

two ratios, that is: 
general rule for the multiplication 

(3~4)'(5:2) is equal to 15: 
(A:R)x(C:D) 

(4~3)x(2~5) is equal to 8~lS (.~x!") ~ (BxD) 

(3:·q)x(lln) is equal to 12H2 (that is, 1). If B has the value 1, we obtain the following simpler 
rule: 

The rule for multiplying rationals can therefore be 
stated as follows: A x (C: ) 

(A~l )x( C~D) 

(Ad)x(C~D) (AxC):(1xZl) 

(A xC) ~ 

(AxC)~(BxD) 

In other words, if a ratio C~D is to be multiplied by 
In words, 
dividends 

the dividend of 
and the divisor 

the result is 
of the result 

the 
is 

product of the 
the product of 

an integer A, 
the numerator 

the result is obtained by simply multiplying 
C by A. For example: 

the divisors. 
5x( H7) 

are 
Applying this rule to the case where A, B, 

equal to 4, 5, 3, and 3, respectively, yields 
C, and n 1577 

m9 

(4~5)x(3n) 

(4x3 )~( 5 x3) 

12 H 5 
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5.7. MULTIPLICATION EXPRESSED IN TERMS OF VECTORS 5.8. ADDITION OF RATIONALS 

since 3+4 can be written as +/3 4, and 5+2 can be 
written as +/5 2, etc., then any rational can be written as 
+/V, where V is a two-element vector. The first examples 
used in the multiplication of rational numbers will now be 
repeated but written in this new form: 

The method for adding rationals given in 
applied only to the addition of two rationals 
same divisor, that is, 

(A+C)+(B+C) is equal to (A+B)+C 

Section 
sharing 

5.4 
the 

8 

( +/ 1 0 
2x4 

5)x(+/12 3 ) 

8 

+/10 5x12 
+ /12 0 15 

3 It cannot be applied to add a pair of 
as 2+3 and 4+5. However, the results of 
section can be applied as follows: 

rationals such 
the preceding 

12 

( +/ 18 
6x2 

3)x(+/12 6 ) 

12 

+/18 3x12 
+/216 18 

6 2+3 

4+5 

is equal 

is equal 

to 

to 

(2x5)+(3x5) 

(4x3)+(5x3) 

20 

(f /32 
4x5 

8)x(+/35 7 ) 

20 

+/32 8x 3 5 
+/1120 56 

7 Therefore 
respectively. 
divisor and can 

2+3 and 4+5 are equal to 10+15 and 12+15, 
But the last two rationals have the same 

therefore be added as follows: 

From the foregoing it appears that the rule for 
multiplying rationals can be written very neatly in terms of 
vectors: if V and Ware each two-element vectors, then the 
product of the rationals (+/V)x(+/W) is equivalent to the 
rational +/VxW. For example: 

(10+15)+(12+15) is equal to 22+15. 

Therefore 

(2+3)+(4+5) is equal to 22+15. 

8 

V+I0 5 
W+12 3 
(+/V)x(+/W) 
2x4 

VxW 

Similarly: 

(2+7)+(4+5) 
«2+7)x(5+5))+«4+5)x(7+7)) 
(10+35)+(28+35) 
38+35 

120 15 
+/ VxW 

8 
[]20 

(1+2)+(1 
«1+2)x( 
(3+6)+(2 
6+6 

3)+(1 
+3))+ 
6)+(1 

6) 
(1+3)x(2+2))+(1+6) 
6) 

1 

added 
In general, 
as follows: 

two rationals, (A+B) and (C+D) may be 

(A+B)+(C+D) 
«A+B)x(D+D))+«C+D)x(B+B)) 
« AxD) +(BxD))+ « CxB) +( DxB)) 
«AxD)+(CxB))+(BxD) 

lB2l 
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5.9. ADDITION OF RATIONALS IN TEm1S OF VECTORS 

Recall the rule for the addition of two rationals as 
follows: 

(A~B)+(C:[) 

((Ax )+(BxC)o(BxD) 

Recall also that if V is a two element vector, then 
~/V is the ratio V[lJ~V[2]. Consequently, the rule for the 
addition of two rationals :/V and ~/W can be expressed as 
follows: 

(:/V)+(:/f/) 
(+ / Vx¢lJ) : ( VI 2] x 1·1[ 2 I) 

For example: 

11+3 :)
 
11,- 7 2
 
(:/1 5)+(~ 72) 
(+/3 5x2 7):(5 x2) 

( + / [, 3',): 1 o 
41: 10 

W22 

5.10. THE QUOTIENT OF T\VO RATIONALS 

Consider the following examples of division: 

12 ~ll 

3 

(12 x5)f(4 x5) 

3 

1 8 ~ 2
 
9
 

(18x7H2 x7
 

9
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They illustrate the fact, developed earlier, that the 
multiplication of both numerator and denominator by the same 
quantity leaves a fraction unchanged. That is: 

P~Q 

(pxR)~(QxR) 

Consider now the division of the rational number Ii~B 

by the rational number C~~D, that is, 

(A:BH(C~ ) 

The result will remain unchanged if the numerator Ii~B and 
the denominator :" are each multiplied by the same number 
LJ ~ C. Th at is: 

(.HB)~(C~D) 

( (A :B) x (D: C) ) 0( ( C -o ) x (D: C) ) 

The last half of Ule above expression (that is, (C,D)x(D~C» 

can be simplified by applying the rule that the product of 
two rationals is the product of their numerators divided by 
the product of their denominators: 

(C:D)x(D,C)
 
(CxlJ)qDxC)
 

Since CxD and I'<C are equal, their quotient is 1. Therefore 
(C~D)x(LJ:C) makes 1. 

Finally, then: 

(A~B)HC~D) 

( (Ii ~ B ) x ( D ~ C) ) : ( ( C: D ) x ( iJ ~ C) ) 

((A~B)x(lJ~C» :1 
(HB)x(D~C) 

Therefore the quotient (Ii~B)~(C:D) is equivalent to 
the product (A~B)x(D~C). For example: 

(3(,~3H(24~4) 

2 

(36~3)x(4~24) 

2 
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This relation can also be expressed in terms of 
vectors as follows. If V is a two element vector and W is a 
two-element vector, then: 

(,/V),(,/W)
 
(,/V)x,/¢W
 

For example: 

(,/36 3),(~/24 4)
 

2
 

(,/36 3)x(~/4 24)
 

2
 
[jJ23 

5.11. DECIMAL FRACTIONS 

Any rational number having a denominator such as 10 or
 
100 or 1000, etc., can be represented as a Q~gim~! f~~gliQ~
 
in the manner illustrated below:
 

1386HO 
138.6 

1386,100 
13.86 

1386HOOO 
1. 386 

1386HOOOO
 
.1386
 

1386HOOOOO
 
.01386
 

The period occurring in a decimal fraction is called a
 
gggiillg! ~Q1~t. If the decimal point in a decimal fraction
 
is followed by one digit, then the rational it represents is
 
the integer represented by the same digits without a decimal
 
point, divided by 10. If the decimal point is followed by
 
two digits, the rational represented is the same integer
 
divided by 100, and, in general, if the decimal point is
 
followed by K digits, then the rational represented is the
 
same integer divided by the integer formed by a 1 followed
 
by K zeros.
 

[]24-26 

5.12. ADDITION AND SUBTRACTION OF DECH1AL FRACTIONS 

The following examples show the addition of some pairs 
of decimal fractions in which the fractions in each pair 
have the decimal point i~ lhg ~gm~ ~!ggg, that is, they have 
the same number of digits following the decimal place: 

21.34+16.55 
(2134~100)+(1655,100) 

(2134+1655)HOO 
3789,100 

37.89 

13.659+82.546
 
(13659+82546),1000
 
96205HOOO
 

96.205 

12.700+39.615 
(12700+39615)~1000 

52.315 

In other words, a pair of decimal fractions having the 
decimal point in the same place can be added just as if they 
were integers (i.e., by ignoring the decimal point), and 
then placing the decimal point in the same place in the 
result. This rule may be applied to the foregoing examples 
as follows: 

21.34 13.659 12.700 
16. 55 82.546 39.615 

37.89 96.205 52.315 

By the same reasoning, subtraction of such a pair of 
decimal fractions can be carried out in a similar manner. 
For example, the subtraction 21.34-16.55 can be carried out 
as follows: 

21.34 
16.55 

4.79 
1E27 

It remains to add two decimal fractions which do not 
have the same number of digits following the decimal point. 
The value of a decimal fraction is not changed by appending 
zeros to the right of it; thus 12.7 and 12.70 and 12.700, 
etc., are all equal. This follows from the fact 
(established earlier) that the value of a rational is 
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unchanged if the numerator and denominator are each 
multiplied by the same number. For example: 

12.7
 
127+10
 
(12 7 x10) +( 10 xl0)
 

1270+100
 
12.70
 
1270+100
 
(1270 xl0)+(100 xl0)
 

12700+1000
 
12.700 

Therefore, zeros may be appended to the right of any 
decimal fraction without changing its value. To perform the 
addition 12.7+39.615, one appends two zeros to the right of 
12.7 (getting 12.700) and then adds them by the method for 
adding decimal fractions having the decimal point in the 
same place: 

12.700 
39.615 

52.315 
!D2S 

5.13. THE DECIMAL FRACTION REPRESENTATION OF A RATIONAL 

Many rational numbers having denominators which are 
not of the form 10, 100, 1000, etc., can still be expressed 
as decimal fractions by simply multiplying both numerator 
and denominator by some integer which produces a denominator 
which is of the form 10, 100, 1000, etc. For example: 

1 +2 3+ 5
 
(1x5)+(2 x5) 6 +1 0
 
5+10 .6
 

.5 

7+2 1+25
 
35 + 10 4+100
 

3.5 .04 

38+4 1 t 125
 

950+100 8t1000
 

9.5 .008 

1c16 1 H 2 5
 
625+10000 16+10000
 

.0625 .0016
 

From these examples, it should be clear that the 
ordinary long division process may be used to convert such 

rationals to decimal fractions; all that is needed is to 
append to the integer numerator a decimal point followed by 
a sufficient number of zeros. For example, since 38 is 
equivalent to 38.0 then 38+4 may be written as 38.0+4 and 
the long division may be carried out as follows: 

9.5 

~ 
- 36 
~ 

-20
 
------0
 

Similarly, ~/1 16 may be converted to decimal fraction 
as follows: 

.0625 

~OOO 
-96 
~ 

-32 
------so 

-80 
o 

GJ29 

5.14. DECI~~ FRACTION APPROXIMATIONS TO RATIONALS 

The rational number 75+64 can be converted to a 
decimal fraction by long division as follows: 

1.171875 
~75.000000 

-64
 

110
 
-64
 

460
 
-448
 

120
 
-64
 

560
 
- 512
 
~ 

-448 

~ 
- 32 0 

o 

Therefore, 75+64 is equivalent to 1.171875. 

Suppose that one stopped the long division process 
just before the last digit, Obtaining the quotient 1.17187 
and leaving a non-zero remainder, that is, 320. The decimal 
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fraction 1.17187 is not equal to 75!54, but it is very 
nearly equal to it and-is therefore said -to be a good 
g22±Q~!mgibQn to 75!54. To see how close 1.17187 is to 
75!54 one may subtract the approximation 1.17187 from the 
true value of 1.171875 as follows: 

1.171875
 
-1.171870
 

The difference is therefore .000005 or 5!1000000. This is 
only 5 millionths, a very small quantity. 

The decimal fraction 1.17187 is said to be a 5-place 
approximation to 75!54 because it is close to 75!54 and has 
5 digits following the decimal place. It is also a Q~§i 
5-place approximation to 75!54, since no other decimal 
fraction with only 5 places can be closer (although 1.17188 
is just as close and is also a best approximation). 

The decimal fraction 1.171 (obtained by stopping the 
long division after 3 places) is a three-place approximation 
to 75!54, and is smaller than 75!64 by the amount .000875. 
It is not, however, the best approximation, since the 
fraction 1.172 is larger than 75!54 by only .000125 as may 
be seen from the following subtraction: 

1.172000
 
-1.171875
 

0.000125 

Therefore, to get a Q~§t approximation to a rational, one 
should continue the long division one place beyond the 
desired number of places. If the additional digit is less 
than 5, the additional digit should be discarded; if not, 
the additional digit should be discarded but a 1 should be 
added into the last place kept. For example: 

1.1718 
~75.0000 

-64
 
110
 
-54
 

450
 
-4l~ 8
 

120
 
-54
 

550
 
-512
 
~ 

The best 3-place approximation is 1.171+.001, or 1.172. 

Similarly, the best two-place approximation to 115! 5 4 
can be obtained as follows: 

1.795 
115.000~ 
-54
 
5IO
 
-448
 
~ 

- 575 
~o 

- 3 84 
------s6 

The best two-place approximation to 115!54 is therefore 
1.79+.01, which is 1.80, or simply 1.8. 

For many rationals, the long division process D~Y~~ 

terminates with a zero remainder. For example, for the 
rational 1, 3, the remainder is always 1: 

.333 

~ 
-9 
----ro 

-9
 
10
 

-9
 
-1
 

For such a case, the long division process can also be used 
to give a best approximation to the rational, thus .333 is 
the best three-place approximation for the rational 1! 3 and 
differs from it by only 1!3000. For, 

.333+(H3000)
 
(333!1000)+(1!3000)
 
(999!3000)+(1!3000)
 
1000!3000
 
1 ! 3
 

Similarly, .557 may be obtained as the best three-place 
approximation to 2!3 as follows: 

.5555
 
-.2.12.0000
 

-1 8
 
~ 

-18 
~ 

-18 
~ 

-18 
-2­



-73­ -74­

Since the fourth digit of the result exceeds :i, the best 
three-place approximation is .666+.001, or .667. 

The following table shows the four-place decimal frac­
tion approximations to the rationals resulting from the 
expression (17)o.fI7: 

1 0 .. 5 0.3333 O. 2 S O. _ 0.16 [i 7 O.142g
 
2 1 0.6667 O. S O. 'I 0.3333 0.2 57
 
3 1 .. S 1 O. 75 o. 11 O. 5 . '1286
 

2 1. 333 1 O. [3 0.6r,S7 CJ .. S 7 1 L~ 

2. 5 l.fib7 1 .. :! ~, 1 0.3J33 0.7143 
3 2 1. S 1 . 2 1 O. '3571
 

7 3 • -J 2.3 JJ 1. 75 1. lj 1.11i! 1
r­

W30 

5.15. MULTIPLICATION OF DECI~ffiL FRACTIONS 

The following example shows the multiplication of two 
decimal fractions: 

1 • 3 x 2 • l'j
 
(13t1D)x(214fl00)
 
(13x214 )~( 1000)
 
2782f1000
 

2.782 

From this it is clear that the following rule can be used: 
multiply the numbers as integers (ignoring the decimal 
point) and place a decimal point in the result so that the 
number of digits following it is equal to the Sll~ of the 
number of digits following the decimal points in the two 
factors. For example: 

2 .. 14 (2 decimal places) 
1.3 (1 decimal place) 

642
 
214
 

2.,782 (2+1 decimal places) 
ffi31-32 

5.16. DIVISION OF DECUffiL FRACTIONS 

The following procedure can be used to find the 
quotient where the dividend and divisor are decimal 
fractions: 

1.	 Perform the division as if the numbers were integers, 
ignoring the decimal points. 

2.	 In the resulting quotient, move the decimal point as 
many places to the l~it as there are decimal places 
in the original QbyiQ~nQ. 

3.	 From there move the decimal point as many places to 
the Kbght as there are decimal places in the original 
Qiyi~QK. 

For example, to evaluate the expression 11.025 fl.?G, 
we first divide the integer 110?5 by the integer 126: 

;~ 7. S 

~110:'5 
-lOUS 
--C)-lfS 

-38L 

630
 
- G:30
 

o 

The decimal point in the quotient 7.5 is now moved three 
places to the left (because the dividend 11.025 has three 
decimal places) to obtain .0 75, and the decimal place is 
then moved two places to the right (because the divisor 1.26 
has two decimal places) to obtain 8.75. This result can be 
checked by evaluating 3.75 xl.26 to see that it yields 
11.025 as required. 

The justification for this procedure should be clear 
from the following equivalences: 

11.025f1.26
 
(11025fl000)f(126f100)
 
(11025fl000)x(100f126)
 
«110257126)x(100HOOO)
 

1E33 
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5.17. EXPONENTIAL NOTATION 

Numbers such as 120000000 and .0000000017 are awkward 
to read and write because of the large number of zeros to be 
counted. ~~QQ~~~t!~l ~Qt~t!Q~ allows one to write these 
numbers instead as 12E7 and 17E-l0. 

More generally, one may write any decimal number (or 
integer) followed immediately by an E followed immediately 
by an integer. The value this denotes may be determined as 
follows: take the number before the E and move its decimal 
point by an amount determined by the integer following the 
E, moving it to the right if the integer is positive and to 
ele left if the integer is negative. For example: 

1.34ES 1. 34E-S 

134000 .0000134 
134E3 134E-7 

.134 E6 .134E-4 
1B34-35 

5.18. DIVISION WITH NEGATIVE ARGUMENTS 

A study of the map used in introducing rational 
numbers should make it clear that (-1)~3 is the negative of 
1~3, that (-2)~3 is the negative of 2~3, etc. The result to 
be obtained when the divisor is negative is not so clear. 

Consider the rational 3~-4 which has a negative 
divisor. We have seen that it is equivalent to the rational 
(3xA)~(-4xA), where A is any integer. If we choose A to be 
-1, then (3xA)~(-4xA) is equal (-3)f4. Similarly, (-3)~(-4) 

is equal to 3~4. From this it appears that the sign of the 
quotient B~C is determined from the signs of the arguments B 
and C in exactly the same way that the sign of the product 
BxC is determined. 

1B36 

5.19. DIVISION BY ZERO 

The result of the division A~B is a quotient C such 
that CxB is equal to A. If A is 4 and B is zero, then C 
must be a number such that CxO is 4. Since 0 times anything 
is 0, there is no such number C. Hence division by zero is 
not possible. 
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Chapter 6 

FUNCTION TABLES WITH RATIONAL NUMBERS 

6.1. INTRODUCTION 

In Chapter 4 we used function tables to examine the 
function of subtraction newly introduced in Chapter 3, and 
to re-examine familiar functions applied to the negative 
numbers also introduced in Chapter 3. In this chapter we 
will pursue a similar course with respect to the division 
function and the rational numbers introduced in Chapter 5. 

In this chapter, the results of divisions are 
represented as decimal fractions correct to three places. 

6.2. CATENATION 

Catenation is a simple new primitive which will be 
needed in this and later chapters; it is denoted by the 
comma. "Catena" is a Latin word meaning "chain", and 
~gt~ngtiQn is a function which chains its arguments 
together. For example: 

X+l 2 3
 
Y+4 S
 

X,Y
 
2 3 4 S 

Y,X 
4 S 1 2 3 

+/X,Y 
1 S 

X,7 
1 2 3 7 

7,X 
7 1 2 3 

7,8 
7 8 

IBl 
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6.4. COMPARISON 
6.3. DIVISION TABLES 

Two rationals such as 3~7 and 4+9 can be compared to 
If I+18, then the body of the division table for the see which is the larger by first converting them each to a 

arguments 1 to 8 is given by the expression Io.+I as decimal representation. For example:
follows: 

3~7 

I+18 0.429
 
D-<-Io. +I 4~9
 

D 0.444 
1. 000 o . 500 0.333 0.250 o • 200 0.167 0.143 O. 125 (3+7)S(4~9) 

2. 000 1.000 0.667 O. 500 0.400 0.333 0.286 0.250 1 
3. 000 1.500 1.000 0.750 0.600 0.500 0.429 0.375 
4. 000 2.000 1. 333 1. 000 0.800 o.667 0.571 0.500 It is also possible to compare two rationals without 
5. 000 2.500 1.667 1. 250 1. 000 0.833 O. 71 Lj 0.625 actually carrying out any division. 
6. 000 3.000 2.000 1. 500 1. 200 1. 000 0.857 0.750 
7. 000 3.500 2.333 1. 750 1.400 1. 167 1.000 0.875 If two rationals have the same denominator, they can 
8. 000 4.000 2.667 2.000 1. 600 1. 333 1. 143 1. 000 be compared by simply comparing their numerators. For 

example, 27+63 is less then 28+63. Moreover, for any pair
This table has a number of interesting properties. of fractions one can find an equivalent pair which do have 

For example, each row can be seen to be in descending order the same denominator. For example, 3+7 is equivalent to 
and each column can be seen to be in ascending order. (3 x9)+(7 x9) (that is, 27+63) and 4+9 is equivalent to 
Moreover, the main diagonal consists of all l's, (7x4)~(7x9) (that is, 28+63). 
illustrating the fact that N+N is equal to 1 whatever the 
value of N. Moreover, many other duplications occur in the In general, if Nl, Dl, N2, and D2 are any integers,
table, showing that the same value may result from the then Nl+Dl and N2+D2 can be compared by forming the 
division of different pairs of numbers. Thus the decimal equivalent pair (NlxD2)~(DlxD2) and (Dl xN2)+(Dl xD2), which 
fraction 0.333 occurs in two places, resulting from 1+3 and have the same denominator. Hence it is only necessary to 
2+6. compare the numerators NlxD2 and Dl xN2. For example: 

[]2 
Nl+3 
Dl+7 

The di vis ion table can be extended to negative N2+4 
arguments as well. However, as pointed out in Chapter 5, D2+9 
the number 0 is not permitted as the right argument of Nl+Dl 
di vision: 0 0429 

N2+D2
 
J-<-(19)-5 0.444
 
J (NHDl )s(N2W2)
-4 3 2 1 0 1 2 3 4 1
 
K+(0-<j>14),14 (Nl xD2)s(Dl xN2)
 
K 1
-4 3 2 1 1 2 3 4 
s «. +K 

1.000 1.333 2.000 4.000 Lj • 000 2.000 1. 333 1.000 
0.750 1.000 1. 500 3.000 3.000 - 1. 500 1.000 0.750 
0.500 0.667 1.000 2.000 2.000 1.000 o. 667 0.500 
0.250 0.333 0.500 1.000 1.000 0.500 0.333 0.250 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.250 - o • 333 0.500 1.000 1.000 0.500 0.333 0.250 
0.500 0.667 1.000 - 2.000 2.000 1.000 0.667 0.500 
0.750 1.000 1. 500 3.000 3.000 1.500 1. 000 0.750
 
1.0 a 0 1.333 2.000 4.000 4.000 2.000 1. 333 1.000
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The same relations will of course hold if N1, D1, N2, 6.5. THE POWER FUNCTION FOR NEGATI\m ARGUMENTS
and D2 are vectors. For example: 

N1+1 1 1 2 2 2 3 3 3
 
D1+1 2 3 1 2 3 1 2 3
 
N2+4 4 4 5 5 5 6 6 6
 
D2+4 5 6 4 5 6 4 5 6
 

N1 fD1 
0.5 0.333 2 1 0.667 3 1.5 1
 

N2~D2 

1 0.8 0.667 1.25 1 0.833 1.5 1.2 1
 

(NHD1)~(N2~D2) 

111011001
 

(N1xD2)~(D1xN2) 

1 0 1 1 0 0
 

Moreover, if one wants to compare each element of 
N1~D1 with each element of N2~D2, then the corresponding 
comparison tables agree as well: 

( N1 ~ D1 ) 0 • s ( N2 ~ D2 ) (N1o. xD2 ) ~ (D1 o. xN2 )
 
1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 
1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 
0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 
0 0 0 o 0 0 1 0 0 0 0 0 0 0 0 1 0 0
 
1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1
 

L/L/((N1~D1)o.~(N2~D2» = ((N1o.xD2)~(D1o.xN2» 

1
 
1B4
 

In Chapter 4 the functions +, x, r, and L were 
re-examined to determine how they applied to the negative 
arguments introduced in Chapter 3. This was not done for 
the power function because the result of an expression such 
as 2*-3 is a rational number, and rational numbers had not 
yet been introduced. 

We will begin by recalling the definition of the power 
function as the product over a number of repetitions of a 
certain factor, that is, A*B is equivalent to x/BpA. For 
example: 

3p2
 
2 2 2
 

x / 3p 2
 
8
 

2*3
 
8
 

The power table for positive integers therefore 
appears as follows: 

I+2 3 1+ 5 6
 
J+2 3 4 5 6 7
 
L» , *J 

4 8 16 32 64 128
 
9 27 81 243 729 2187
 

16 64 256 1024 4096 16384
 
25 125 625 3125 15625 78125
 
36 216 1296 7776 46656 279936
 

A simple pattern emerges in each row of the 
table - any element of a row can be obtained from the 
element which precedes it by multiplying by a certain 
factor, that factor being the value of the left argument 
which produced that row. For example, the third row was 
produced by the expression: 

4*2 3 4 5 6 7
 
16 64 256 1024 4096 16384
 

and the third element in the row can be obtained from the 
one before it by multiplying by 4. 
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The application of the power function to a negative 
way - each element can be obtained from the one fQllQ~iDg it 

This same pattern can be stated in a different 
l~fi argument is straightforward. Recall that 3*4 is 
equivalent to x!4p3, and that in general A*4 is equivalentby 9bYbging by the same factor. In this way the pattern can 
to X!4pA. Hence if A is -3 we have:be extended to the left to obtain results for right 

arguments less than 2: -
4p - 3 

3 3 3 3I+2 3 4 5 
x!4p 3 

81 
J+(17)-'+ 

J -
'>	 3*43 1 0 1 2 3
 
Io . *~]
 81 

-5p 30.125	 0.250 0."00 1.000 2.000 4.000 8.000
 
3 3 3 3 3
0.037	 0,111 O. 333 1.000 3.000 9.000 27.000
 

x!5p 3
O. 016 0.062 0.250 1.000 '+. 000 16.000 64.000 -
243
 

3* 5
 
243
 

Two important results emerge from these
 

0.008 0.0'+ 0 0.200 1.000 5.000 25.000 125.000 

The foregoing results can now be used to construct apatterns: (1) Any number A raised to the power 1 is equal 
to A, and (2) Any number raised to the power 0 is equal to table of the power function for both positive and negative 

arguments, including 0 in the right argument only:1. For example: 

1 2 3 '+ 5 6*1 I + ( 0 -¢ I '+ ) • I 4 

1 2 345 6 J+(17)-4 

1 2 3 4 5 6*0 I 

1 1 1 1 1 4 3 2 1 1 2 3 4 

ItIS-6 ,T 

3 2 1 0 2 3 
L» • *J 

-
The case of a zero left argument has not been 

considered. From the foregoing we may conclude that 0*0 
should be 1 and that 0*1 should be o. Further entries in 

0.016 
0.037 
0,125 

0.062 
0.111 
0.250 

0.250 
O. 3:,3 
0.500 

1. 000 
1.000 
1. 000 

4.000 
-

3. 000 
2. 000 

16.000 
9.000 
4. 000 

6'+.000 
27.000 
-8.000 

the expression 0*0 1 2 3 '+ 
by the factor 0 and are all 

will be 
zero: 

obtained by multiplying 1. 000 
1.000 
0,125 

1. 000 
1.000 
0.250 

1.000 
1. 000 
0,500 

1.000 
1.000 
1.000 

1. 000 
1.000 
2. 000 

1.000 
1. 000 
4.000 

1. 000 
1.000 
8.000 

1 0 
0*0 1 
0 0 

2 
0 

3 4 

0 

0,037 
0.016 

0.111 
0.062 

O. 333 
0,250 

1.000 
1.000 

3.000 
'4. 000 

9.000 
16.000 

27.000 
6 '+.000 

It should also be recalled that O*A is defined forRecalling that A*-l was obtained from A*O by dividing 
non-negative values of A:by A, we may now attempt to define a result for 0*-1 by 

dividing the value for 0*0 (that is, 1) by the appropriate 
0*0 1 2 3 4factor. But this factor is 0, and division by 0 is not 

o 0 000allowed. Hence the function O*R is nQi defined for negative 
IM7values of the right argwnent R. 
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6.6. THE PO~mR FUNCTION FOR RATIONAL ARGUMENTS 

When the power function is applied to a right argument 
consisting of successive integers, the successive elements 
of the result increase by a fixed factor. For example: 

4*0 1 2 3 4 5 6 7 8
 
4 16 64 256 1024 4096 16384 65536
 

The multiplying factor is 4. This same pattern is 
observed when the elements of the right argument are equally 
spaced, even though the spacing is not equal to 1. For 
example: 

4*0 246 8
 
1 16 256 4096 65536
 

The multiplying factor is now 16. 

The first pattern above can be thought of as being 
obtained from the second by squeezing the odd integers 
between the even integers. Hence if the multiplying factor 
for the pattern 2*0 1 2 3 4 5 6 7 8 9 is 4, the factor for 
the pattern 2*0 2 4 6 8 must be 4x4, which agrees with the 
earlier observation. 

Similarly the pattern 4*0 .5 1 1.52 2.5 3 3 05 4 4.5 5 
can be thought of as being obtained by squeezing the entries 
.5, 1,5, 2,5, 3.5, and 4.5 between the integers 1, 2, 3, 4, 
and 5. In this case the multiplying factor must be 2, since 
the product of two factors (that is, 2 x2) must be equal to 
the factor 4 which obtains for the pattern for the integers. 
Therefore: 

4*0 .5 1 1.52 2.5 3 3.5 4 4.5 5
 
1 2 4 8 16 32 64 128 256 512 1024
 

similarly: 

9*0 1 2 3 4 5
 
9 81 729 6561 59049
 

9*0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
 
3 9 27 81 243 729 2187 6561 19683 59049
 

25*0 1 2 3 4 5
 
25 625 15625 390625 9765625
 

25*0 .5 1 1.5 2 2 0 5 3 3.5 4 4.5
 
5 25 125 625 3125 15625 78125 390625 1953125
 

ffi8 

Each of the left arguments used above is a R§~fg~t 

§g~g~§, that is, a number which is equal to some integer 
multiplied by itself. Thus 4 equals 2x2 and 9 equals 3 x3 
and 25 equals 5x5. Because of this property, the 
multiplying factor in each of the "squeezed" patterns is an 
integer. Since 3 is not a perfect square, a left argument 
of 3 gives a pattern in which the fractional powers are not 
integers: 

3*0 .511.522.53 
1.000 1.732 3.000 5.196 9.000 15.588 27.000 

Nevertheless, the pattern is maintained, the 
multiplying factor is 1.732 (correct to 3 places) and 
1.732 xl.732 is (approximately) equal to 3. 

From this it appears that 3*.5 is a number which 
multiplied by itself gives 3; it is called the §g~g~g rQQt 
of 3. Similarly, 2*.5 is the square root of 2, and 
(2*,5)x(2*.5) must equal 2. 

The square root of a number can be obtained by 
"guessing and testing" much like the method described for 
division at the beginning of Chapter 3. For example, to 
obtain the square root of 2 we might try 1 (which is too 
small because lxl is less then 2), and 2 (which is too large 
since 2x2 is greater than 2), and then 1. 5. Since 1. 5x1. 5 
is 2.25, this is also too large. The next trial might be 
1.4 (which is slightly too small), and the next might be 
1.42. Better methods are developed in later chapters. 

We can now produce a table of powers using right 
arguments of the form (IN)~2: 

I~l 2 3 4 5 6 7 8 ')
 

J~O ,5 1 1.5 2 2.5
 
IO,*J 

1.000 1. 000 1. 000 1.000 1.000 1. 000 

1.000 1. 414 2.000 2.828 4.000 5.657 
1.000 1.732 3.000 5.196 ').000 15.588 
1.000 2.000 4.000 8.000 16.000 32.000 
1.000 2.236 5.000 11.180 25.000 55.902 
1.000 2.449 6.000 14.697 36. 000 88.182 
1,000 2.646 7.000 18.520 49.000 129.642 
1,000 2.828 8.000 22.627 64.000 181.019 
1,000 3.000 9.000 27.000 81. 000 243.000 
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The same reasoning can be applied 
of the form (IN)-'K for any value of K: 

to right arguments 
Chapter 7 

( - s ) -. 3 
O. 333 0.667 1 1.333 1. 667 2 

THE RESIDUE FUNCTION AND FACTORING 

1°.*(16)-'3 
1.000 1.000 1.000 1.000 1. 000 1.000 
1.260 1.587 2.000 2.520 3. 175 4.000 
1.442 2.080 3.000 4.327 6.240 9.000 
1. 587 2.520 4.000 6.350 10.079 16.000 
1. ? 10 2.924 5.000 8.550 14.520 25.000 
1. 817 3.302 6.000 10.903 19.812 35.000 
1. 9 13 3.659 7.000 13.391 25.615 49.000 
2.000 4.000 8.000 16.000 32.000 5 '\ .000 
2, 080 4.327 9. 000 18.721 38.941 81.000 

(15)-'4 
0.25 0.5 0 75 1 1. :) 5 1.5 

[°.*(16),4 
1. 000 1.000 1. 000 1.000 1.000 1.000 
1. 189 1. 414 1. 682 2.000 2.378 2.8::'8 
1. 316 1. 732 2.280 3.000 3.9 118 5.196 
1. 414 2.000 2.828 'l. 000 5.657 8.000 
1. 495 
1. 565 

2.236 
2.449 

3. 3
'1

4 
J. 83 '1 

5.000 
6.000 

7. l\ 7 7 
9. 391 

11.180 
14.697 

1. 627 2.646 4. ::'0 4 7.000 11.386 18.520 
1. 682 2.828 4.757 tJ,OOO 13.454 22.627 
1. 732 3.000 5. 196 9.000 15. 5tJ 8 27.000 

(15)-'5 
0.2	 0.4 0.6 0.8 1 1.2 

1°.*(16)-.5 
1. 000 1. 000 1. 000 1.000 1.000 1.000 
1. 149 1.320 1. 516 1.741 2.000 2.297 
1.246 1. 552 1. 933 2.408 3.000 3.737 
1. 320 1.7 111 2.297 3.031 4.000 5.278 
1. 380 1. 904 2.627 3.624 5.000 6.899 
1.431 2.04 a 2.930 4.193 6. 000 8.586 
1.476 2,178 3.214 'l. 743 7.000 10.330 
1. 516 2,297 3.482 5.278 8.000 12.126 
1. S 52 2.408 3. 737 5. tJO0 9.000 13.967 

The foregoing results have all involved applying the 
power function to non-integer right arguments and 
non-negative left arguments. In general it is not possible, 
to apply it to non-integer right arguments together with 
n~ggtiy~ left arguments. For example, to evaluate -4*.5 it 
would be necessary to determine a result R such that RxR 
equals -4. It is, however, impossible to find such a 
number, since the product of any number with itself is 
non-negative. 

7.1- THE RESIDUE FUNCTION 

Cons ider the following expressions: 

3 xO 1 2 3 4 5 6 
0 3 6 9 12 15 18 

1 + 3 xO 1 2 3 4 5 6 
1 4 7 10 13 16 19 

2+3xO 1 2 3 4 5 6 
2 5 8 11 14 17 20 

From the first expression, it is clear that the 
numbers 0, 3, 6, 9, 12, 15 and 18 are each the product of 3 
and some integer; they are therefore said to be int~ge~ 

multiples (or simply multiplgs) of 3. A number which is an 
integer multiple of 3 is also said to be giyi§!Qlg QY 3. 

The numbers 1, 4, 7, 10, 13, 16, and 19 are not 
divisible by 3; when divided by 3 they each yield an integer 
quotient and a reIDainde~ of 1. Similarly the numbers 2, 5, 
8, 11, 1 17, and 20 each yield a remainder of 2 when

'\,
divided by 3. The remainder when dividing an integer by 3 
must be either 2 or 1 or O. If the remainder is 0 the 
number is, of course, divisible by 3. 

The remainder obtained on dividing an integer B by an 
integer A is a function of A and B. This function is called 
the ~emgindgr or ~g~igyg and is denoted by a vertical line 
as follows: AlB. For example: 

316 
o 

317 
1 

310 1 2 3 4 5 6 7 8 9 10 
01201201201 

510 1	 2 34 56 7 8 9 10 
0123 '\012340 

11J9-10 
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A function table for residue is shown in Figure 7.1. 
From this table it should be clear that the results of the 
expression AlB must be one of the integers 0, 1, 2, 3, etc., 
up to A-1. That is, the results belong to the vector 
-1+1A. 

I 11111 
11012345678901234--1----------------------------- ­
1 I 0 000 0 0 0 0 0 0 0 0 0 0 0 Left Domain: 18 
21010101010101010 Right Domain: 114 
31012012012012012 Body: ( 18) 0. 1114 
4 I 012 3 0 1 2 301 2 3 0 1 2 Symbol: I 
5 I 012 340 1 2 340 1 2 3 4 
6 I 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 
7 I 012 3 4 560 1 2 3 4 560 
8 I 0 1 234 5 6 701 2 3 4 5 6 

Table of Residues 

Figure 7.1 
fBl-2 

7.2. tlEGATIVE RIGHT ARGUMENTS 

The following examples show how the residue function
 
applies to negative right arguments:
 

S+ 6+111
 
S
 

5 4 -3 -2 -1 0 1 2 3 4 5 

3xS 
15 12 -9 -6 -3 0 3 6 9 12 15 

313 x S 
o 0 0 0 0 0 0 0 0 0 0 

1+3xS 
14 11 -8 -5 -2 1 4 7 10 13 16 

311+3 xS 
1 1 1 1 1 1 1 1 1 1 1 

2+3xS 
13 10 -7 -4 1 2 5 8 11 14 17 

3 I 2 +3 xS
 
2 2 2 2 2 2 2 2 2 2 2
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It should be clear from these examples that the 3-residue of 
B (that is, 31B) is obtained by adding or subtracting some 
integer multiple of 3 so that the result is the smallest 
non-negative number that can be so obtained. In general, 
the result AlB is the smallest non-negative integer that can 
be obtained by adding to, or subtracting from, B some 
integer multiple of A. 

IB3-4 

7.3. DIVISIBILITY 

The integer B is divisible by the integer A only if 
the A-residue of B is zero, that is, only if (AIB)=O. Since 
the expression (18)0.10,114 produced a table of residues 
(Table 7.1), the expression 0=(18)0.10,114 will produce the 
body of the corresponding divisibility table: 

1 11111 
1012345678901234--1----------------------------- ­

1 1 1 111 1 1 111 1 1 1 1 1 1 
2 I 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
31100100100100100 
41100010001000100 
51100001000010000 
61100000100000100 
71100000010000001 
81100000001000000 

It is also interesting to arrange the integers 0 to 99 
in a 10 by 10 table and then observe the patterns produced 
by first taking residues and then determining divisibility. 
For example: 

M+ ( lOx 0 , 19 ) ° . +0 , 19 
M 

0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 16 17 18 19 
20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 
40 41 42 43 44 45 46 47 48 49 
50 51 52 53 54 55 56 57 58 59 
60 61 62 63 64 65 66 67 68 69 
70 71 72 73 74 75 76 77 78 79 
80 81 82 83 84 85 86 87 88 89 
90 91 92 93 94 95 96 97 98 99 
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0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 

2 
2 
2 

" 
2 
2 
2 
2 
2 
2 

2 
0 

SiN 
3 4 
3 4 
3 I) 

3 4 
3 4 
3 4 
3 4 
3 I) 

3 4 
3 4 

31M 
0 1 
1 2 

0 
0 
0 
0 
0 
0 
(1 

0 
0 
0 

2 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
1 

2 

2 
2 
2 
2 
2 
2 
:2 
2 
2 

1 
2 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

2 
0 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

0 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 

0=5 1M 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
(1 (1 1 
0 0 1 
(1 0 1 
0 0 1 

0=] IM 
1 0 0 
0 0 1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
(1 

1 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
(1 

0 
1 

0 
0 
0 
0 
(1 

0 
0 
0 
0 
0 

1 
0 

From these examples it is clear that the factors of 
any number B occur in £giK§ such that the product of the 
pair is equal to B. Thus, if 3 is a factor of 12 then 1273 
(that is, 4) is also a factor and 3x4 is equal to 12. In 
general, if A is a factor of B, then B"A is also a factor 
and the product of the pair of factors A and B~A (that is, 
(B~A)xA) is equal to B. 

All possible factors of a number B can be found by 
simply trying to divide it by each of the integers from 1 up 
to and including B. For example, the number 24 has the 
following 8 factors: 

1 L 3 4 6 8 12 24 

2 
0 
1 

0 
1 
2 

1 
2 
0 

2 
0 

1 

U 

1 
2 

1 
2 
0 

2 
0 
1 

0 
1 
2 

1 
2 
0 

2 
0 
1 

0 
1 
0 

1 
(1 

0 

(1 

0 
1 

0 
J 
0 

1 
0 
0 

(1 

0 
1 

0 
1 
0 

1 
0 
0 

0 
0 
1 

0 

0 

The factor pairs of 24 can be obtained by simply dividing 
by the vector of its factors as follows: 

24 

2 
0 
1 

0 
1 
2 

1 
2 
0 

2 
0 
1 

0 
1 
2 

1 
2 
0 

2 
0 
1 

0 
1 
;) 

1 
2 
0 

2 
0 
J 

0 
1 
0 

1 
0 
0 

0 
0 
1 

0 
1 
0 

1 
0 
0 

0 
0 
1 

0 
1 
0 

1 
0 
0 

0 
0 
1 

rJ 

1 
0 

24 12 
2471 2 3 4 6 
8 6 4 3 2 1 

8 12 24 

2 
0 

0 
1 

1 
2 

2 
0 

0 
1 

1 
2 

2 
0 

0 
1 

1 
2 

2 
0 

0 
1 

1 
0 

0 
0 

(1 

1 
1 
0 

0 
0 

0 
1 

1 
0 

0 
(1 

0 
1 

lE5-12 

Thus 1 and 24 are a pair; 2 and 12 are a pair, and so on. 

The residue function can be used to determine which of 
the integers 18 are factors of B. For example, if B is 6, 
then: 

7.4. FACTORS 12345616 

If B is divisible by A, then A is said to be 
of B. For example, 3 is a factor of 12, and 5 is 
of 15, and so on as shown below: 

a 
a 

IggtQr 
factor 

000210 

1 1 
0=1 2 
o 0 1 

34 5616 

4 

3 

3 

1273 

1575 

973 

0 

0 

0 

3112 

5115 

319 

The positions of the l's in the last vector indicate which 
of the integers 1 2 3 4 5 6 are factors of 6. For example, 
since the third element is 1, then 3 is a factor, and since 
the fourth element is 0, then 4 is not a factor. The vector 
1 1 1 0 0 1 can be used to pick out the actual factors 1 2 3 
6 by means of the gQm2K~§§iQ~ function discussed in the 
following section. 

1il13-16 

6 
2474 

0 
4/ 24 

2478 8124 
3 0 
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7.5. COMPRESSION 

The following 
compression function: 

examples show the behavior of the 

1 3 5 
1 0 1 0 1/1 2 3 4 5 

1 0 1 0 1/2 3 5 7 11 
2 5 11 

(15)15 
000210 

0=(15)15 
111001 

(0=(15)15)/15 
1 2 3 5 

(0=(124) 124)/124 
1 2 3 4 5 8 12 24 

The left argument of compression must be a vector of l's and 
o's and forms a "sieve" which picks up the element of the 
right argument wherever a 1 occurs in the left argument. 

7.6. PRIME NUMBERS 

The following expressions yield all factors for each 
of the integers from 1 to 8: 

(0=(11) 11)/11 (0=(15)15)/15 

1 1 5 

(0=( 12) 12 )/12 (0=(15)15)/15 

1 2 1 2 3 

(0=(13) 13)/13 (0=(17)17)/17 

1 3 1 7 

(0=(14)14)/14 (0=(18)18)/18 

124 1 2 4 8 

11117-18 

Any number which has exactly two distinct factors is 
called a 2~!m~ number. From the above examples it is clear 
that 2, 3, 5, and 7 are primes, but 1, 4, 5, and 8 are not. 
Thus a prime has no factors other than itself and 1. 

If K is a vector of o's and l'S, then +/K gives a 
count of the number of l's in K. For example: 

+/1 1 0 1 0 0 0 1 
4 

0=(18)18 
1101000 1 

+/0=(18)18 
4 

The conditions for a prime number stated above in words can 
therefore be stated algebraically as follows: B is a prime 
number if the expression 2=+/0=(lB)IB has the value 1. For 
example: 

2=+/0=(11)11 2=+/0=(15)15 
0 1 

2=+/0=(12)12 2=+/0=( 15) 15 
1 0 

2=+/0=(13)13 2=0+/=(17)17 
1 1 

2=+/0=(14)14 2=+/0=(18)18 
0 0 
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The last result above gives the number of factors for7his same test can be used to obtain all of the primes 
each of the numbers I to 17. Therefore the expressionup to a certain value by applying it to a divisibility 
2=+/"'0=(112)0.1112 determines which numbers are primes:table. Consider, for example, the following tables: 

I 11 2 ] 4 ~ 1 g J 10 11 12--1---------------------------------­ o 1 1 
2=+/QO=(11.')c. 1112 
0 1 'J 1 0 0 1 J 

l!u 
ell 
311 

0 
o 
.' 

U 
1 
0 

0 
I 

0 
1 
2 

o 
iJ 

J 
1 
1 

0 
0 

.' 

0 
1 
0 

U 
U 
1 

(] 
1 
2 

) 
0 

0 

Left 0: 11 
Right 0:11 

Body: (\ 2) 1112 

This vector 
vector 112 to 

of J's and l's can be 
finally pick out all of 

used to compress the 
the primes up to 12: 

1j11 .2 
~ I 1 .2 

IJ I 1 " 
7 1 1.2 

] 
] 

3 

0 
,+ 
4 
4 

1 
I) 

5 

2 
1 

[J 

) 

1 
o 

0 
3 

2 
1 

1 
4 

3 
.' 

2 
0 

'I 

3 

3 
1 

5 
'+ 

0 

0 

Symbol: I 

2 3 'J 
(2=+/"'0=(112)'.1, [,')/11.' 
7 11 

fBI9-24 

8 I 1 2 :, 4 " Ii 7 0 1 .' 3 4 
911 .' J 5 b 7 8 0 1 .2 3 

1011 " 3 II 5 b I 8 0 1 
1 1 I 1 ::' 3 'i 5 b 1 8 'J 1 J 0 1 
1211 :' 3 4 b 1 8 J II) 11 0 

D I 1 2 J S fJ 1 (~ 9 1,) 11 L'
--1---------------------------------­

1 I 1 1 1 1 1 1 1 1 1 1 1 1 Left O:l1J 
210 

310 
1 
0 

J 

1 
1 
0 

(1 

0 

1 
] U 

1 
l! 

:] 

1 
1 
l! 

0 
') 

1 
1 

Right 0:112 
Body:D=( l; )J. I \ 1,' 

4 I u 0 0 1 ,) 0 ] 1 I) .rJ 0 1 Symbol:!i 
510 0 (J J 1 0 o 0 0 1 0 J 

blo 0 o 0 J 1 J o 0 0 0 1 
71 (J o 0 0 0 CJ 1 0 0 0 0 0 
diu 0 0 o 0 n J 1 U 0 0 CJ 

,] I (J 0 0 0 o 0 0 0 1 o 0 0 
1!} 10 0 0 0 0 0 0 0 0 1 0 0 
1110 0 o 0 0 0 0 0 0 0 1 0 
1210 0 0 0 0 0 0 0 0 CJ 0 1 

The last table shows divisibility. For example, the 
l's in the 6th column show the position of the 4 factors of 
6. Therefore the sum of the 6th column tells how many 
factors 6 has, and similarily for each column. The sum of 
the columns is obtained by summing the rows of the transpose 
of the table. Thus: 

+/li/0=(112)o.1 r L? 
122324243426 



-95­

Chapter 8
 

MONADIC FUNCTIONS 

8.1. INTRODUCTION 

Each of the functions discussed thus far have applied 
to two quantities. Thus in the expressions 3x4 and 3+4 and 
31 4 , each of the functions x, +, and 1 apply to the two 
quantities 3 and 4. These quantities are called the 
a~qumeuta of the function; the one to the left of the 
function is called the fi~~i or l~fi argument, and the one 
to the right is called the ~eCQng or ~ighi argument. 

A function having two arguments is said to be gyggig, 
the prefix g~ meaning two. There are also functions which 
apply to one argument; they are called IDQnedig functions. 
The following examples show a monadic function which is 
called the fQctQriel function: 

! 5
 

1
 
~ 1
 

120
 

! 2 ! 6
 

2 720
 

! 3 ! 7
 
6
 5040
 

! l~ ! 8
 
24 40320
 

From the examples it should be clear that factorial 3
 
is the product of the factors 1 2 3, factorial 4 is the
 
product of the factors 1 2 3 4, and so on. The examples
 
also illustrate a point which applies to all monadic
 
functions - the symbol for the function (in this case, !)
 
precedes its single argument.
 

The argument of a monadic function may (like the
 
arguments of a dyadic function) be a vector. For example:
 

!1 2 3 4 5 6 7 8
 
1 2 6 24 120 720 5040 40320
 

[jJ1-2 
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8.2. NEGATION 

Negation is a monadic function denoted by the symbol 
For example: 

-3 X+3
 

3 -x
 
-5 3
 

5+2 3 5
 
-- 5 -5 

-- 3
 
--5 --5
 

5 2 3 5
 
-2 3 5.8
 

2 5
 

-2 3 5.8
 

From these examples it should be clear that negation 
of a number B is equivalent to subtracting B from zero; that 
is, -B is equivalent to O-B. In other words, negation 
changes the sign of its argument. 

It is also apparent from the examples that the symbol 
used for the monadic function of negation is the same as 
that already used for the dyadic function of subtraction. 
This might be expected to cause confusion, but it does not. 
For example: 

4-3
 
1
 

4x-3
 
12
 

4--3
 
7
 

Thus the symbol - denotes subtraction if it is preceded by 
an argument, but denotes negation if it is preceded by a 
function. 

This double use of symbols (once for a dyadic function 
and once for a monadic function) will be applied to many 
other symbols as well as the -. For example, +, x, +, I, L, 
and I, already used for dyadic functions, will be used to 
denote monadic functions as well. 

1E3 
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8.3. RECIPROCAL 8.5. FLOOR AND CEILING 

The ~~~!p~2~91 function is a monadic function denoted The flQQK function is denoted by L and yields the next 
by ~ and defined as follows: ~B is equal to l'B. For integer just below or equal to the argument. The ~~iliDg 

example: function is denoted by r and yields the next integer just 
above or equal to the argument. For example: 

~2 

O. 5 L 3 r 3 
3 

~4 

L3. 14 r 3. 14 
4 

0.25 

5+-110 -
" L 3 • J It r 3. 1!j.> 

4] 4 5 6 7 8 9 10 

- r-3R+--;-S L 3 
3R 

10.50.33330.250.2 0.lfi67 0.1l+29 0.1250.11110.1 
L - 1.5 1 • 5 0 .5 1 1.5 r 1.5 1 0 .5 1 1.5 

2 1 1 0 0 1 1 1 1 0 1 1 2SxR 
1111111111 

The floor and ceiling functions are easily visualized[:]4-5 
by drawing the integers as the floors (and ceilings) in a 
building as follows: 

8. 4. MAGN ITUDE 
r 2 • fi 

The numbers 5 and 5 are said to have the same size or 2 .6t 
m9g~itgg~, namely 5. In other words, the magnitude of a 
number is a function which ignores the sign of the number. L2 • ' 

For example: 

r 1 L 1I 5 
5 

o 
5 

L- 1S+- 6 + 1 11 
8
 

5 4 3 2 1 0 1 2 3 4 5
 
r-2.4 

18 
5 t+ 3 2 1 0 1 2 3 4 5 ~:I-,., 

L-2.4 
IT+-6 3 2 5 4 

T~T 

1 1 1 1 1 

T~IT 
1 -1 1
 

[]6
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The following examples illustrate how the monadic 8.7. SIZE 
function 1!QQ~ is related to the dyadic function ~§gigg§: 

The number of elements in a vector V is called the 
17f5 ~i~§ of the vector. Size is therefore a monadic function 

3.4 and is denoted by p. For example: 

L1 7f 5 V+2 3 5 7 11 

3 pV 
5 

(17-5117)f5 X+ 17 

3 pX 

1B7 7 
pX[2 35J 

3 
pX[12J 

8.6. COMPLEMENT 2 

The QQmg!§ID§Dt function is denoted by - and applies 
only to !Qgigg! arguments (that is, 0 and 1). When applied 
to 0 it produces 1, and when applied to 1 it produces o. 
For example: 

-1 
o 

-0 
1 

-1 0 1 0 1 1 
0 1 0 1 0 0 

When applied to a table, the function 
two-element vector giving the number of rows in 
followed by the number of columns. For example: 

T+2 3 50.X17 
pT 

3 7 
plllT 

7 3 

p yields a 
the table 

IBll 

0 0 1 
0=31112 
0 0 1 0 0 1 0 0 1 

1 1 0 
-0=31112 
1 1 0 1 1 0 1 1 0 

1 2 4 
( -0 = 3 I 1 12 ) /1 1 2 
5 7 8 10 11 

1 2 4 
(0;<31112 )/112 
5 7 8 10 11 

The symbol - is called tilg§. 
!jJ8-10 
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Chapter 9 

FUNCTION DEFINITION 

9.1. INTRODUCTION 

The expression 
determine whether the 
example: 

0=31x was 
argument 

shown 
X was 

(in 
divisi

Chapter 
ble by 3. 

7) to 
For 

1 

o 

0=319 

0=3[10 

The expression 0 =31 X is therefore a monadic function of X in 
the sense that for any particular value assigned to X, the 
expression yields a particular corresoonding value. 

Unlike the functions floor, ceiling, and magnitude 
(which have the symbols L, r, and 1), the function 
determined by the exoression 0=31x has no special single 
symbol to denote it. It would, of course, be impractical to 
assign a special symbol to every possible such expression. 
However, it is important to be able to assign a name to any 
such expression which happens to be of interest at the 
moment, and then be able to use that name for the function 
just as L, r, and are used for the floor, ceiling, and1 

magnitude functions. 

The name DT is assigned to the function determined by 
the expression 0=31X in the following manner: 

\lZ+DT X 
Z +0 =31 X V 

The above is called gefinitiQn Qf th~ f~ngtiQn DT. Once the 
function DT has been so defined, it can be used like any 
other monadic function as follows: 

DT 9 

D T 10 
o 

DT 110 
0010010010 
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The symbol 9 which begins and ends a function 
definition is called g~l. 

Any number of such functions may be defined, but they 
must, of course, be given distinct names. These function 
names, like the names introduced for values in Chapter 1, 
must begin with a letter but may include both letters and 
digits. For example: 

9 Z+D4 X 
2+0=4IX 9 

D4 110 
0 0 0 1 0 0 0 1 0 0 

v Z+D S X
 
Z"-O=S!X 9
 

D S 11 0 
000 0 1 0 0 0 0 1 

VZ+Q X
 
Z+(X-3)x(X-S) 9
 

0 6 

3 
Q 7 

8 
Q 1 7 

8 3 0 1 0 3 8 

The rules for determining the meaning of a function 
definition are very simple: when the function is applied to 
an argument, that argument is substituted for each 
occurrence of the name X in the second line of the function 
definition, and the result tllereby assigned to the name Z is 
the result of the function. For example, to evaluate Q 7, 
the 7 is substituted for X to yield 

Z+(7-3)X( 7-S) 

This is evaluated to yield the result 8. Hence: 

Q 7
 
8
 

ffil-4 
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Functions such as floor and ceiling which have been 
assigned special fixed symbols will now be called Q~imitiY§ 
i~ngtiQn~ in order to distinguish them from the new class of 
g§iingg iYngtiQn~ just introduced. A defined function can 
be used within expressions, just as primitives are. For 
example: 

Q 6 
3 

4 xQ 6 
12 

DT 12 
1 

DT 4xQ 6 
1 

Q Q 6 
0 

fB5-7 

9.2. DEFINITION OF DYADIC FUNCTIONS 

The expression o=X[Y was shown (in Chapter 7) to 
determine whether the argument X is a factor of the argument 
Y. For example: 

0=519 
o 

0=7121 
1 

The expression o=xlY is therefore a dyadic function of the 
arguments X and Y in the sense that for any particular 
values of X and Y the expression yields a particular 
corresponding value. 

The name F is assigned to the dyadic function 
determined by the expression o=XIY in the following manner: 

'lJZ+X F Y 
z+o=xIY 'V 

The function F can now be applied to pairs of arguments as 
illustrated below: 

5 F 9 
o 

7 F 21 
1 

5+7 F 21 
6 

(5 x7) F (5x21) 
1 

fBB-13 

9.3.	 A FUNcrION TO GENERATE PRI!1ES 

In Chapter 7 it was shown that the expression 

(2=+/qO=( IN)o .11N)/lN 

would	 produce a vector of all the primes up to the integer 
N. Therefore a function PR can be defined to generate 
primes as follows: 

'VZ+PR	 X 
Z+(2=+/qO=(lX)O. 11X)/lX'V 

The following examples show the use of the function 
PR: 

PR 12 
2 3	 7 11 

+/ PR 12 
28 

PR 55 
2 3 7 11 13 17 19 23 29 31 37 41 43 47 53 

ffi14 
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9.4. TE~ERATURE SCALE CONVERSION FUNCTION 9.5. Fm,CTIONS ON RATIONALS 

The Centigrade scale and the Fahrenheit scale are two 
different scales for measuring temperature. For any given 
temperature reading in Centigrade there is therefore a 
corresponding value in Fahrenheit~ in other words, the 
Fahrenheit value is a function of the Centigrade value. 
This function will be expressed as a defined function called 
CTOF (for ~entigrade ~Q fahrenheit). 

The Centigrade scale has 100 degrees between the 
freezing and boiling points of water, whereas the Fahrenheit 
scale has 180 degrees between these same points. Therefore 
any Centigrade reading X must be multiplied by 180 and 
divided by 100: that is, 180xX~100. !1oreover, 0 degrees 
Centigrade (the freezing point of water) correspcnds to 32 
degrees Fahrenheit and so it is necessary to add 32 to the 
foregoing expression, giving 32+180xX~100. The conversion 
function CTOF may therefore be defined and used as follows: 

'V Z+-CTOF X
 
Z+32+180xX-,100 'V
 

CTOF 0 
32 

CTOF 100 
212 

CTOF 40 20 0 20 40 60 80 100 
40 4 32 68 104 140 176 212 

The function CTOF determines the Fahrenheit value as a 
function of the centigrade value. It is, of course, also 
possible to define a function FTOC which determines the 
Centigrade value as a function of the Fahrenheit value: 

'VZ+-FTOC X
 
Z+100x(X-32)~180 'V
 

FTOC 40 4 32 68 104 140 176 212
 
40 20 0 20 40 60 80 100
 

CTOF FTOC - 40 4 32 68 104 140 176 212
 
40 4 32 68 140 176 212
 -FTOC CTOF - 40 20 0 20 40 60 80 100 

-40 20 0 20 40 60 80 100 

The last two lines above illustrate the fact that the 
function FTOC undoes the work of CTOF, and the preceding two 
lines illustrate that CTOF undoes the work of FTOC. The 
functions FTOC and CTOF are therefore inverse functions. 

If X is a vector of two integer elements and Y is a 
vector of two integer elements, then ~/X is a rational and 
~/Y is a rational. Moreover, as shown in Section 5.7, the 
product (~/X)x(~/Y) is equal to ~/(XxY). Therefore, the 
following function multiplies two rationals to produce the 
two element vector which represents their product: 

'VZ+-X P Y
 
Z+-XXY 'V
 

For example: 

3 4 P 7 5 
21 20 

~ /3 4 P 7 
1. 05 

(~/3 4)x(~/7 5 ) 
1. 05 

Similarly, the following function will add rationals: 

'V Z+-X A Y
 
Z+-(+/Xx¢Y ),X[2JxY[2J 'V
 

For example: 

3 4 A 7 
43 20 

~/3 4 A 7 5 
2.15 

(~/3 4}+(~/7 5 ) 
2.15 

ffil6-1B 

9.6. TRACING FUNCTION EXECUTION 

A function can be defined by a single expression (as 
in the examples thus far), or it can be defined by a 
sequence of expressions. For example: 

'V Z+-R X 
[1] T1+-4xX 
[ 2 J T2+-3xX*2 
[3J T3+-2xX*3 
[ 4J Z+-T1+T2+T3'V 

R 2 
ffil5 36 

R 2 3 4 
36 93 192 



-107­ -108­

The statements are executed in the order in which they 
appear on the page, and each is identified by its number 
appearing in brackets on the left. 

To understand the behavior of a function it is often 
helpful to examine some of the intermediate results produced 
by each of the individual statements in its definition. To 
indicate that each intermediate result produced in executing 
the function R is to be displayed, we would write 

Tt:.R+-1 2 3 4 

Thereafter, the execution of R would be accompanied by a 
display of the intermediate results as follows: 

Q+-R 2 
[1J 8 
[2J 12 
[3J 15 
[4J 35 

Q 
35
 

Q+-R 2 3 4
 
[1J 8 12 15
 
[2] 12 27 48 
[3J 15 54 128
 
[4J 35 93 192
 

Q 
35 93 192 

Such a display of the steps of execution of a function
 
is called a trace of the function. The name Tt:.R used in
 
initiating the--trace of the function R denotes the t~gg§
 
fQ~~~Ql Y~f~Q~ for R. In the preceding example, Tt:.R was set
 
to trace every line of R, but it could be set to trace only
 
some of them. For example:
 

Tt:.R+-1 3 
Q+-R 2 3 4 

[1] 81215
 
[3J 15 54 128
 

Moreover, if Tt:.R is set to 0, no tracing is performed: 

Tt:.R+-O 
Q+-R 2 3 4 

Q 
35 93 192 

ffi19 

Chapter 10 

THE ANALYSIS OF FUNCTIONS 

10.1. INTRODUCTION 

The problem of converting temperatures from the 
Centigrade to the Fahrenheit scale, which was handled by the 
function CTOF of Chapter 9, is often handled by simply 
providing a table covering the values of interest. For 
example, Table 10.1 would suffice for a range of 
temperatures just above the freezing point of water: 

C I F 

a I 32 
1 I 33.8 
2 I 35.5 
3 I 37.4 
4 I 39.2 
5 I 41 
5 I 42.8 
7 I 44.5 
8 I 45.4 
9 I 48.2 

10 I 50 

A Table Representation of the Function
 
CTOF for Centigrade Values Near Zero
 

Table 10.1
 

Such a table is often more convenient to use than to 
evaluate the expression 32+180xC~100 (used in the definition 
of the function CTOF) for each conversion. However, such a 
tabular representation of a function also has its 
disadvantages; it provides only a limited set of values and 
could not, for example, be used directly to find the 
Fahrenheit equivalent of 25 C (which lies outside of the 
tabled values) or of 5.54 degrees Centigrade (which lies 
between two of the tabled values). For this reason it is 
often desirable to determine from such a table the algebraic 
expression which would produce the same function as that 
represented by the table. 

To appreciate the problem of deriving an algebraic 
expression for a function represented only by a table, 
suppose that the expression 32+180xC~100 is DQt known and 
that the only information known about the function is that 
contained in Table 10.1. One might begin by observing that 
each Fahrenheit value is at least 32 more than the 
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corresponding Centigrade value, and therefore guess that the 
desired function is approximately 32+C. The next step is to 
append to Table 10.1 a column of values for the function 
32+C so that they can be compared with the tabled values of 
F: 

c F 32+C 

o 32 32 
1 33.8 33 
2 35.6 34 
3 37.4 35 
4 39.2 3G 
5 41 37 
6 42.8 38 
7 44 .6 3') 

8 li6 • 4 40 
9 48.2 41 

10 50 "2 

Although the first entries in the columns F and ]2+C 
agree (both are 32), the second entry falls short by 0.8, 
the third entry by 1.6, etc. It therefore appears that one 
should add 0.8xC to the expression 32+C, yielding 32+C+.8xC 
or, more simply, 32+1. 8xC. If a column of values for 
32+ 1. 8xC is appended to the foregoing table and compared 
with the column F it will be seen that this is the required 
expression. 

The process of determining an expression for a 
function from a table of the function will be referred to as 
anal¥zing the table or, alternatively, as angly~iD9 the 
function represented by the table. The analysis of tables 
is not only an interesting puzzle, it is also a problem of 
the greatest importance, since it underlies every scientific 
discipline. The reason is that in every area of science and 
technology, one attempts to determine the functional 
relationships between various quantities of interest. Thus 
one wishes to know how the acceleration of an automobile 
depends on the power of the engine, how the gasoline 
consumption depends on the speed, how the length of life of 
the brakes depends on the area of the brake-shoes, how the 
electric current supplied to the headlamps depends on the 
battery voltage, how the weight limit of a suspension bridge 
depends on the size of the cable used, and so on. Moreover, 
it is important to be able to express these relations 
algebraically so that it becomes easy to calculate any new 
values needed. 

-1l0­

values--they do not yield an algebraic expression for the 
function. The algebraic function must be determined by 
analysis of the table. 

In practice one might do a few experiments, make a 
small table, derive from it an algebraic expression for the 
functional relationship, and then do a few more experiments 
to test (and perhaps revise) the derived expression. in a 
book this process cannot be simulated completely since we 
can only give fixed tables resulting from certain 
experiments, and cannot allow the reader to choose the 
values to be included in these tables. However, if a 
computer is available, one person (the teacher) can enter 
the definition of any function so that another person (the 
student) can "experiment" with the function at will by 
simply applying it to any desired arguments. If the student 
is not permitted to see the original definition of the 
function, then he can be given the problem of experimenting 
with the function, determining a table, and deriving from it 
his own definition of (i.e., algebraic expression for) the 
function. 

The remainder of this chapter will be devoted to the 
analysis of tables. Three methods are treated: maps, 
graphs, and difference tables. Difference tables provide 
the most powerful method, but maps and graphs are treated 
first hecause they are easier to comprehend and because maps 
have already been used for other purposes in earlier 
chapters. A fourth and more powerful method (called 
cu~Y~=iiitiD9) is treated in Chapter 16. 

[II 

10.2. MAPS 

If one first makes a map of a table, then the map can 
be used as a guide in the analysis of the table. In order 
to see what guidance the map can provide, it is useful to 
recall the maps of two simple functions. 

If 1'+0,14, then the map of the function 4+X against X 
appears as follows: 

c~c 

o 1 2 3 7' 84 ~G 
From this it is clear that the addition of a constant (in

However, the relationships between two quantities are this case 4) appears in the map as a uniform translation,
normally determined by experiments in which the that is, each point is moved by the same amount, and the
corresponding values of the quantities of interest are mapping arrows all have the same slope.
measured. Such experiments can only yield a table of 
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If, as before, X-<-O,14, then the map of the function The map of 2xX is now combined with the map of the original 
3xX appears as follows: table as follows: 

2 3 4 6 7 8 9 10 11 12 13 14 

l\~::
 
From this it is clear that multiplication by a constant (in 
this case 3) appears in the map as a uniform spreading, that 
is, the distance between the successive arrowheads (in this 
case 3) is the constant of multiplication. 

Consider now the mapping of a function which involves 
both addition and multiplication, say 4t3xX: 

11 12 13 14 15 16
01~2~10 

~

1 ~ 4 ~5 ~7 1 0o 2 3 6 

The effects of uniform translation and uniform spreading are 
now superimposed, but it is still possible to recognize the 
individual effects of each. These observations will now be 
applied to the analysis of the function shown in Figure 
10.2. 

yx 

3 3 
4 5 
5 7 

2

7 11 

1 

II \\§::6 9 

Table and Map of a Function 

Figure 10.2 

It is usually best to try to account for the 
multiplication (spreading) first. In this case adjacent 
arrowheads are separated by 2 units and so the 
multiplication factor is 2. Therefore we make a map of the 
function 2xX as follows: 

2 3- 4 6 7 8 9 10 

In this map, the original table is represented by normal 
lines as usual, and the approximating function 2xX is 
represented by broken lines. The scored lines lead f~Qm the 
results of 2xX to the results of the tabled function and 
therefore represent the function that must be applied to the 
function 2xX to yield the tabled function. Since the scored 
lines all have the same slope, this function must be a 
translation (by -3), that is, the addition of -3. The 
required function is therefore -3t2 x X, as may be verified by 
computing the values for the case X-<-2 3 11 5 6 7 and 
comparing them with the second column of Figure 10.2. 

The functions analyzed by maps thus far have all been 
of the form AtBxX where A and B are constants. In the 
analysis of more complex functions (such as 
3t(5 xX)t(2 xX*2)), maps are of little help and one of the 
other methods should be used. 

lB2 

10.3. GRAPHS 

Each row of a function table such as Table 10.1 
consists of a pair or numbers representing an argument and a 
correspcnding function value. Any other way of showing the 
pairing of the numbers in each of the rows is obviously a 
possible way of representing the function. For example, in 
a map, each pairing is shown by an arrow from the argument 
to the corresponding function value. 

Any single number can be represented by marking off 
the integers at equal intervals along a line and then 
placing a cross on the line to show the desired value. For 
example 4 might by represented as follows: 

----------------x-------­

I I I I I 
o 2 3 4 6 

:~'"
5 6 7 8 9 10 11 12 13 14 
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A whole set 0 f numbers could be represented by a set of If vertical lines are drawn through the crosses on the 
crosses on such a line. Consider, for example, the function horizontal line, and if horizontal lines are drawn through 
table of Table 10.3. the crosses on the vertical line, the picture appears as 

follows: 
x I Y 

6 - I I I I I 
1,5 I 5.5 I I 
2.0 I '+ • 5	 x-----+-+-+-+---+-------­
2. 5 I 3. 5	 I I I I 
3.0 I 2.5 5 -	 I I I I I 
4.0	 I o, 5 I I I I 

x-----+-+-+-+---+-------­
Table of a Function I I I 

4 - I I I 
Table 10.3 I I I 

x-----+-+-+-+---+-------­
The set of arguments shawn in the first column would be I I 
represented as follows: 3 - I i 

I I 
------x-x-x-x---x--------	 x-----+-+-+-+---+-------­
I I I I I I 
o 1 2 3 4 6	 2 ­

If the set of function values Yare now represented 
similarly along a vertical line rising from the o:point of 
the first line, the picture appears as follows: 1 ­

6 - x-----+-+-+-+---+-------­
I I I
 

x	 o - +-----x-x-x-x---x-------­

I I I I I I I I
 
5 - I o 1 2 3 4 5 6
 

I
 
x 

I
 
4 - I
 

I
 
x 

I
 
3 - I
 

/ 
x 

2 ­

1 ­

x 

I 
o - I-----x-x-x-x---x-------­

I I I I I I I
 
0123'+ 56
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The pairing of each argument with its particular 
function value can now be show~ by placing a point at the 
intersection of the lines through them as follows: 

6 ­

x-----o-+-+-+ + _ 

I I I I I I 
5 - I I I I I I 

I I I I I I 
x-----+-o-+-+--_+ _ 

4 ­

x-----+-+-o-+ + _ 

3 ­

x-----+-+-+-o + _ 

2 ­

1 ­

x-----+-+-+-+---o- _ 

o - +-----x-x-x-x---x-------­

I I I I I I I 
o 1 2 3 4 5 6 

In practice, one actually draws neither the lines nor 
the crosses, but simply marks the points of intersection, 
producing the following less cluttered picture: 

6 ­

5 ­

4 ­

3 ­

2 ­

1 ­

o - +-----------------------­
I I I I I I I 
0123456 

This picture is called a g~a2h or 2lQt of the function of 
Table 10.3. Negative values are included by simply 
extending the horizontal line leftward from the zero and the 
vertical line downward from the zero. 

The vertical line of the graph (which passes through 
the zero point of the horizontal line) is called the 
Ye~ti~al aZi§ or Y-a~i§, and the horizontal line (through 
the zero of the vertical line) is called the hQ~i~Qntal a~i§ 
or X-abi~. The names are derived from the (arbitrary) 
convention that the argument of a function is often called X 
and the result is often called Y, so that the expression for 
a function is in the form Y~F X. 

~3-4 

10.4. INTERPRETING A LINEAR GRAPH 

If a ruler is laid along the points in the preceding 
graph, the points will be seen to lie in a straight line. 
If one graphs a number of functions of the form A+BxX (where 
A and B are fixed values), it will be seen that the points 
in the graph of any such function lie in a straight line. 
Conversely, every graph whose points all lie in one straight 
line represents a function of the form A+BxX. Moreover, the 
values of A and B can be easily determined t~Qm th~ g~a2h. 
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Consider, for example, Figure 10.4 which shows the 
graph of the function of Table 10.3 with a line drawn 
through the points. 8ny point on the line (not only the 
five taken from the table) represents a point of the 
function. For example, if the argument X is 1, then the 
function value Y is 6.5, and if X is 0, then Y is 8.5. But 
if X is 0, the value of the expression A+BxX is simply A. 
Hence, for this function A must have the value 8.5. 

9 ­

8 ­

7 ­

5 ­

5 ­

4 ­

3 - 2 

2 ­

1 ­

o - +----------------\------ ­
I I I I I I I 
0123456 

Graph of Function of Table 10.3 

Figure 10.4 

Moreover, B is clearly the amount that the function 
changes when the argument is changed from some value to a 
value greater by 1. Since the function is equal to 4.5 for 
X=2 and is equal to 2.5 for X=3 this change is equal to 
2.5-4.5 or -2. Therefore B is equal to -2. Finally, the 
expression for the function must be 8.5+-2xX. This may be 
verified by evaluating the expression for the values 
X~1.5 2 2.5 3 4 and comparing the results with the second 
column of Table 10.3. 

To summarize, the values of A and B can be determined 
from a straight-line graph as follows: 

(1)	 The value of A is the height at which the graph line 
crosses the vertical axis (where X=O). 

(2)	 The value of B is the change in height corresponding 
to	 a change of 1 on the horizontal axis. 

[j]5-6 

A function table whose graph does not form a straight 
line is not as easy to interpret as a straight line graph. 
However, the graph can still provide some guidance. 

Consider, for example, Figure 10.5 which shows a 
function table and the corresponding graph. The points do 
not lie in a straight line, but have been joined by a smooth 
curve which suggests the function values which should be 
obtained between the points included in the table itself. 

A number of interesting characteristics of the 
function can be seen clearly in its graph. For example, it 
is clear that the function reaches a low point for an 
argument value of X equal to approximately 3.5 and that it 
reaches a high point for a value of X a little less than 2. 
Moreover, it is easy to spot those argument values for which 
the function has a zero value, namely for X equal to 1.4 or 
2.6 or 4.2. 

Since X-l.4 is zero for X=1.4 and X-2.6 is zero for 
X=2.5 and X-4.2 is zero for X=4.2, then the expression 

(X-l.4)x(X-2.6)x(X-4.2) 

is zero for X equal to either 1.4 or 2.6 or 4.2. Hence it 
will agree with the given function at least for these three 
values of the argument X. In order to see how well this 
expression agrees with the given function for all points, it 
can be graphed together with the given function as shown in 
Figure 10.6. 
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i A comparison of the two curves 
that they have the same general shape, 

in Figure 
that is, 

10.6 shows 
the values 

I
4-1 

for the given function appear to be larger than those of the 
expression by a fixed ratio. A value for this ratio can be 
determined from two corresponding points, say for an 

I argument value of 2.4. 
values are seen to be 

The two corresponding 
1.8 and .36, and the 

function 
ratio is 

I
2-1 

I 
A better 

therefore given by 

therefore 1.8~.36, 

approximation to the given function is 
5 times the expression just tried, that 

that is, 5. 

I 
I 

is: 
5 x(X-l.4)x(X-2.6)x(X-4.2) 

o I Evaluation of this function for each of the argument values 

I 
I 
I 

-2-/
I 

appearing in the first column of Table 
agrees exactly with the function given 

10.5 shows that it 
in the second column. 

Iil7- 8 

I 10.5. THE TAKE AND DROP FUNCTIONS 

I
-4-1 and 

The dyadic functions 
+, respectively. The 

tg~~ and g£Qg are denoted by t 
following expressions illustrate 

I their use: 

Y+O 1 4 9 16 25 36 
\ 

-6-1 3tY 3+Y 
1 0 1 4 9 16 25 36 

2tY 2+Y 

I 
-8-1 

o 
1 

1 
I I 

2 
I I 

3 
I 
4 

I 
5 

0 

16 

25 

1 
-

3tY 
25 36 

-
2tY 

36 

4 

0 

0 

9 

1 

1 

16 25 36 
- 3+Y 
4 9 
- 2+Y 
4 9 16 

X 
1,2 
1,6 
2.0 
2.4 
2.8 
3.2 

Y 
4.20 
2.60 
3.96 
1, 80 

- 1, 96 
5.40 

The tate function takes from its right argument the 
number of elements determined by the left argument, 
beginning at the front end if the left argument is positive 
and at the back end if it is negative. The drop function 
behaves similarly, dropping the indicated number of elements 
from the right argument. 

3.6 
4.0 
4.4 

6.60 
- 3.64 

5.40 

If the left argument is greater than the number 
elements of the right argument, then the extra positions 
filled with zeros. For example: 

of 
are 

Table and Graph of a Function X+2 3 5 7 

Figure 10.5 2 3 
6tX 
5 7 0 0 
-

6tX 
0 0 2 3 5 7 

1iJ9-10 
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10.6. DIFFERENCE TABLES 
~N
 

.~mOON~~O~~~rlillrnOrnrnm~MmomNNill~~Moornro
 The ti~~t ~itt~~~ng~ of a vector Y is defined as the 
~~~mMOM~ill~m~~ill~MrlOrlM~~rnONNMMNrlrn~~O~o 

I I •• ••••••••••••••••• • • •• •• '. vector obtained by taking the difference between each of the 
rl~~OOOOOOOOOOOOOOOOOOOOrlrlrlrlrlrlrlOOOOOrl pairs of adjacent elements of Y. For example, if Y is theI '-''-'I I I I I I I I I I I I I I I I I 
~ x x vector 

o 1 4 9 16 25 36 64 81 100 
omomO~~Nill~OillOMO~illN~~oroOrlOG'lf)r--.:tNOlOO 
NmO~illMmOrnillN~mrnommrnroill~m~illlO0Jr--rolDOO.:tj 

>,. •••• •• ••• • • • • • • • • 
then the first difference of Y is the vector~rlOrlNMM~MMMNrlOOOrlNM~~~illillWill~~MNON~ 

I I I I I I I I I I I I I I , 

3 5 7 9 11 13 15 17 19 

0000000000000000000000000000000 00 More precisely, the first difference is the function V 
('"JjN('f).:t~lOr--mmOrlN('f).:t~LDr--romOrlNM.:t~LDr--rornOrlN 

~ . . . . . . . . . . . . .. .. defined as follows:
 
rlrlrlrlrlrlrlrlNNNNNNNNNN('f)('f)('f)('f)('f)('f)('f)('f)('f)0J.:t.:t.:t .zt- .zr 

'lZ+V Y 
-m Z+(HY)-(-HY)'l 

For example: 
co 

0 V Y 
...... 3 5 7 9 11 13 15 17 19 

-.cT QJ 
.... 
::J To understand the behavior of the function V, it may 
bn.­

LL 

help to 
follows: 

observe the effects of the terms l~Y and 1 ~Y as 

l~Y 

c c -(Yl 1 4 9 16 25 36 49 64 81 100 
o 0- .­
.......... 
U U 
C C o 1 4 

l~Y 

9 16 25 36 49 64 81 
::J ::J 

LL LL 

III bn 
c 

4- .­
0 ..... 

-("\J 

The subtraction of the second 
clearly yields the differences 
elements of Y. 

of these from the first 
between each of the adjacent 

III 
.J::.E 
0. ­
III )(
.... 0 

<..:l .... 
0.. 

-00.. 
C<!: 
III 

- ...... 

If Y+F X for some function F 
spaced arguments X, then the first 
said to be the tih~t gitt§hgngg Qt 
example, if X+O,l10 and Y+X*2 (that 
X), then the vector 

and some set of equally 
difference of Y is also 
tOg tyngtiQn F. For 
is, Y is the §ggg~g of 

C 
<1l1ll - V Y 

.L:l-o 
IllC 1 3 5 7 9 11 13 15 17 19 
t-Ill 

I 
-=r 

I 
("\J 

~ 
0 

I 
("\J 

I 
-=r 

I 
\D 

---0 

I 
CD 

is said to be the 
(for the arguments 

first difference of the 
X). 

square function 

I I I 
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Viewed in terms of a function table, the vectors X and 
Y used in the preceding paragraph are the first and second 
columns of a function table. Attention will now be limited 
to function tables whose first column X is of the form O,lN, 
that is, of the form 0 1 2 3 etc., up to some integer N. In 
the first section of Chapter 11, it will be shown how the 
methods developed can be applied to any set of equally 
spaced arguments such as 1.2 1.6 2.0 2.4 2.8 3.2, etc. 

Since attention is being confined to argument sets of 
the form a,lN, the argument column can be dropped from 
function tables without introducing ambiguity. For example, 
the single column on the left of Figure 10.7 shows this 
simplified form of the funct on table (for the function 
CTOF) of Table 10.1. The r ght side of the same figure 
shows a two-column table conta ning the function vector F 
and its first difference D F; such a table is called a 
Qiffer§nQ§ tg~l§. 

10.7. FITTING FUNCTIONS OF THE FORM A+BxX 

In using maps to analyze functions, it was found that 
any function of the form A+BxX could be recognized by the 
uniform spread between adjacent arrow points, and that the 
actual values of the constants A and B could be determined 
from the map. This type of function is analyzed even more 
easily with the aid of the difference table; the uniform 
spread is recognized by the fact that the elements of the 
first difference (which give the spacing between adjacent 
function values) are all the same. The constants A and B 
are simply the first row of the difference table, that is, 
32 and 1.8 in Figure 10.7. 

10.8. FACTORIAL POLYNOMIALS 

1E13-14 

F 

32 
33.8 
35.6 
37.4 
39.2 

F D F 
-----------­

32 I 1.8 
33.8 I 1.8 
35.6 I 1 . 8 
37.4 I 1 . 8 
39.2 I 1.8 

In analyzing certain functions it will be found that 
the elements of the first difference are not all alike, and 
the function is therefore not of the form A+BxX. In such a 
case one may take a §§QQng gifI§~enQ§, that is, the 
difference of the first difference. If this second 
difference is not constant, one takes a thi~g difference, 
and so continues until a constant difference is reached. 

41 
42.8 
44.6 
46.4 
48.2 
50 

41 
42.8 
44.6 
46. Lj 

48.2 
50 

I 
I 
I 
I 
I 
I 

1 . 8 
1.8 
1.8 
1.8 
1.8 
1.8 

For example, 
which a constant 
difference. 

Y I D Y ID D YID D D Y 

Table 10.8 
difference 

shows a function 
is reached at 

table in 
the third 

Abbreviated 
Function Table 
for Table 10.1 

Function and Difference 

Difference Table 
for the Function 
CTOF of Table 10.1 

Table 

5 
3 
9 

17 
21 
15 

I 
I 
I 
I 
I 
I 

2 
6 
8 
4 

- 6 
22 

I 
I 
I 
I 
I 
I 

8 
2 
4 

10 
16 - 22 

I 
I 
I 
I 
I 

6 
6 - 6 
6- 6 

Figure 10.7 
IE 

7 
51 

I 44 

A Constant Third Difference 

Table 10.8 
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The first ~Q~ of the table is the vector V+5 -2 8 -5. The 
expression for the function is determined from the vector V 
as follows: V is first divided by the vector ! 0 1 2 3 
(that is, 1 1 2 5) to obtain the vector W as follows: 

w+-V~!O 1 2 3 
W 

5 -2 4 

The elements of Ware then used to form the following 
expression: 

5+ ( - 2 »: X) + ( 4 x x»( X- 1 ) l+ ( -1 x X x ( X-1 ) x ( X- 2 ) ) 

This expression represents the function exactly, as may be 
determined by evaluating it for the argument 0,\7 and 
comparing it with the first column of Table 10.8. 

The method can be stated in general as follows: 
Calculate the successive columns of the difference table 
until a constant column is obtained. Then use the elements 
of the first row as follows: 

Divide the first element by !O (that is, 1).
 
Divide the second element by 11 and multiply by X.
 
Divide the third element by 12 and multiply by
 
Xx(X-l). 
Divide the fourth element by 13 and multiply by 
Xx(X-l)x(X-2). 
and so on.
 
Finally, add the expressions so obtained.
 

In other words, if the vector V is the first row of 
the difference table, then the expression 

(V[IJ~!I-l)x xjX--l+\I-l 

is evaluated for each value of I from 1 to pV, and the 
results are then added together. 

The functions X and Xx(X-l) and Xx(X-l)x(X-2), etc., 
are cal~ed f~~tQ~i~l QQlynQmi~l§; X is called a factorial 
polynomial of Q§g~§§ 1, and Xx(X-l) is called a factorial 
polynomial of degree 2, etc. In general, the factorial 
polynomial of degree N is given by the expression xjX--l+\N. 

An explanation of why the method works will now be 
developed. The method is based on the fact that each of the 
functions X and Xx(X-l) and Xx(X-l)x(X-2), etc., produce 
difference tables with particularly simple first rows, and 
on the fact that difference tables can be added and 
multiplied by constants in certain useful ways. 

10.9. MULTIPLICATION AND ADDITION OF DIFFERENCE TABLES 

The first difference of a vector has two very useful 
properties. If Y is any vector, if D Y is its first 
difference, and if A is any constant, then the first 
difference of the vector AxY is equal to A times the first 
difference of Yj that is, D AxY is equal to AxD Y. For 
example: 

Y+O 1 4 9 15 25 35 49 
D Y 

1 3 5 7 9 11 13 

5xY 
o 5 24 54 95 150 215 294 

D 5xY 
5 18 30 42 54 55 78 

5xD Y 
5 18 30 42 54 55 78 

Clearly the same would be true of second differences, 
third differences, and so on. That is: 

ID Ax Y ID D A xy ID D D A x Y 
IAxD Y AxD D Y AxD D D Y 

Therefore, if every element in a difference table is 
multiplied by some constant A, then it is still a proper 
difference table, but for the new function AxY in its first 
column. 

Similarly, if Yl and Y2 are two vectors and if D Yl 
and D Y2 are their first differences, then the first 
difference of the sum Yl+Y2 is equal to the sum of the first 
differencesj that is, 

D Yl+Y2 
(D Yl)+(D Y2) 

Again, the same results apply to entire difference 
tables. Consequently, difference tables may be multiplied 
by constants and added together at will and the result is 
always a proper difference table. 

1H20-21 

[B15-19 
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Degree:o Degree:1 

10.10. DIFFERENCE TABLES FOR THE FACTORIAL POLYNOMIALS Function:1 Function:X 

The factorial polynomials of degrees 0 through 5 are y D Y [) D Y Y [) Y D D Y 
shown below: 

1 0 0 0 0 0 0 1 0 0 0 0 
Qgm:§§ 

o 
!'Q1YDQmi9,;), 
1 

1 
1 

0 
I] 

0 
0 

0 
0 

0 
r) 

0 
0 

1 
2 

1 
1 

o 
U 

0 
0 

0 
0 

0 
0 

1 X 1 0 0 0 o :j 1 o 0 o 
Xx(X-1) 1 0 0 0 4 1 0 o 

3 Xx(X-l)x(X<') 1 0 0 5 1 0 
4 Xx(X-l)x(X-2)x(X-3) 1 0 6 1 
5 Xx(X-1)x(X-2)x(X-3)x(X-/j) 1 7 

The polynomial of degree 2 has 2 occurrences of X, the 
polynomial of degree 3 has 3 occurrences of X, and so on. 
The function with a fixed value of 1 has been introduced as Degree:2 Degree:3 
the polynomial of degree 0 in order to complete this Function:Xx(X-1) Function:X x(X-1)x(X-2) 
pattern; it has () factors of X. 

Y D Y n D y Y [) Y [) D Y 
The difference tables for these factorial polynomials 

are shown in Figure 10.9. Previous tables shown have 0 0 , o 0 () 0 0 0 I] 0 0 
stopped at the first constant column, but these tables have 0 2 0 o u 0 0 6 b 0 0 
been continued so that all have the same number of columns. 2 4 2 () 0 o u 6 12 0 0 

Having the same number of columns, they can be added b 6 2 II 0 6 1 8 18 0 0 
together. However, it is clear that any columns following a 12 8 2 0 24 3b 24 6 
constant column will consist entirely of zeros. 20 

:J 0 
1 
12 

2 GO 
120 

CO 
90 

30 

l+~ 210 

Degree: 4 Degree:5 
Function:Xx(X-1)x(X-2)x(X-3) Function:Xx(X-1)x(X-2) 

x(X-3)x(X-4) 

Y D Y D [) Y Y D Y D D Y 

0 0 0 0 24 0 0 0 0 0 0 1~0 

0 0 0 24 24 0 0 0 0 0 120 120 
0 0 24 48 2/j 0 0 0 0 1~0 240 120 
0 2/j 72 72 24 0 0 120 360 360 

24 96 144 96 0 120 480 720 
120 240 240 120 600 1200 
360 480 720 1800 
840 2520 

The Factorial Polynomials 

Figure 10.9 
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The first row from each table is shown below, together 10.11. EXPRESSIONS FOR GRAPHS 
with the degree of the polynomial it is taken from: 

Consider the function F defined and used as follows: 
Q§.g:t:ee Ebr~t EQ~ Qf ~ifferenge ~g~le 

'VZ+F X 
0 1 0 0 0 0 0 [1] Z+(X-5)x(X-3)'V 
1 0 1 0 0 0 0 
2 0 0 2 0 0 0 X+1 2 3 4 5 6 7 
3 0 0 0 6 0 0 V+F X 
4 0 0 0 0 24 0 V 
5 0 0 0 0 0 120 8301038 

Except for final zeros, the first row of the difference A graph of the function F for the arguments X is shown 
table for the factorial polynomial of order N is (NpO),!N, in Figure 10.10. The pattern shown by the points of this 
that is, N zeros followed by IN. graph is also shown by the l's in the following result: 

Consider now the function obtained as A times the R+8 7 6 5 4 3 2 1 0 
zeroth order polynomial added to B times the first order R 0 • = V 

polynomial, added to C times the second, etc.; that is, the 1 0 0 0 0 0 1 
function: 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
A+(BxX)+(Cx xjX-O l)+(Dx xjX-O 1 2)+(£x xjX-O 1 2 3) 0 0 0 0 0 0 0 

+(Fx xjX-O 1 2 3 4) 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 

The difference table for this function will be A times the 0 0 0 0 0 0 0 
difference table for order 0, plus B times the difference 0 0 0 0 0 0 0 
table for order 1 , etc. In particular, the first row of the 0 0 1 0 1 0 0 
difference table will be the sum of the following vectors: 0 0 0 1 0 0 0 

A x 1 0 0 0 0 0 
B x 0 1 0 0 0 0 
C x 0 0 2 0 0 0 
D x 0 0 0 6 0 0 8-1 
E x 0 0 0 0 24 0 I 
F x 0 0 0 0 0 120 I 

I 
This sum is clearly equal to (A,B,C,D,E,F)x1 1 2 6 24 120, 4-1 
or 
of 

more simply 
A,B,C,D,E,F 

(A,B,C,D,E,F)x!O,15. Conversely, 
can be determined from the first 

the values 
row V of a 

I 
I 

difference table as follows: A,B,C,D,E, and F are the t 

elements of the vector V~:O,15. This is the rule which was 0-1-----0---0---------­
used in Section 10.8. I 

fB22 I 
I 

4-1 
I I 
o 10 

Figure 10.10 
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The vector R is simply the range of the function for However, one might want to plot points where the argument is 
the argument X, and the comparison between it and the set of close. This could be done by taking the integer parts of 
values V will clearly yield a 1 at each point to be plotted the function values as follows: 
in the graph. 

LW 
A Q~~ Qh~~t for the same function can be obtained by 7 2 - 1 0 3 8 

replacing the comparison for equality by a comparison for Ro.=LW 
less-than-or-equal: 0 0 0 0 0 0 1 

1 0 0 0 0 o 0 
s-: sV 0 0 0 0 0 0 0 

1000001 0 0 0 0 0 0 0 
1000001 0 0 0 0 0 0 0 
1000001 0 0 0 0 0 1 0 
1000001 0 1 0 0 0 0 0 
1000001 0 0 0 0 0 0 0 
1100011 0 0 0 0 1 0 0 
1100011 0 0 1 1 0 0 0 
1100011 
1110111 The comparison can also be made as loose or as tight 
1111111 as desired by simply computing the table IRo.-W and then 

~23-26 comparing it with any desired quantity. For example: 

T-<-! Ro.-W 
The expression Ro.=V will identify only those elements T 

of V which agree exactly with elements of the range. For 0.59 5.39 8.19 8.99 7.79 4.59 0.61 
example: 0.41 4.39 7.19 7.99 5.79 3.59 1. 61 

1.41 3.39 5.19 6. 9 9 5.79 2.59 2.61 
.Y-<-X+.1 2.41 2.39 5.19 5.99 4.79 1. 59 3.51 
.Y 3.41 1. 39 4.19 4.99 3.79 0.59 4.61 

1.1 2 .1 3. 1 4.1 5.1 6.1 7.1 4.41 0.39 3.19 3.99 2.79 0.41 5.51 
W-<­ F Y 5.41 0.51 2.19 2.99 1. 79 1. 41 5.51 
W 5.41 1.51 1. 1 9 1. 99 0.79 2.41 7.61 

7.41 2.61 0.19 0.99 0.21 3.41 8.61 7.41 2.51 0.19 0.99 0.21 3.41 8.51 
R> , =W 8.41 3.51 0.81 0.01 1. 21 4.41 9.51 

0 0 0 0 0 0 0 
0 0 0 o 0 0 0 .5?-T 1?-T nT 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 0 o 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 
0 0 0 0 o 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 o 1 0 
0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 
0 0 0 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 

0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 o 1 1 1 0 0 
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 

IB27 

10.12. CHARACTER VECTORS 

If P is a vector of the first five prime integers, 
then one can index it as shown in the following examples: 
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P[2J The last example above illustrates how the space may 
3 be used as a character. 

P[3 1 2J 1B29 
5 2 3 

P[ 2 5 4J 
3 11 7 

P 
Indexing of a 

display the graphs 
character vector can 

produced in Section 
also 
10.9 

be 
in 

used to 
a more 

2 3 5 7 11 pleasing and more readable form. For example, if R and V 
are the vectors defined in Section 10.9, then: 

Similarly, if L is a vector of the first five letters 
of the alphabet it may be indexed as follows: R 

8 7 6 5 4 3 2 1 0 
L[2J V 

B 8 3 0 1 0 3 8 
L[3 1 2J M+-Ro. =V 

CAB M 
L[2 5 4J 1 0 0 0 0 0 1 

BED 0 0 0 0 0 0 0 
L 0 0 0 0 0 0 0 

ABCDE 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

The original value of the vector L could be assigned 0 1 0 0 0 1 0 
by the following expression: 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
L+-'ABCDE' 0 0 1 0 1 0 0 

0 0 0 1 0 0 0 
The quotes are necessary to indicate that the result 

is to be the actual string of characters ABCDE rather than l+M 
some value which has been assigned to the D~~~ ABCDE. For 2 1 1 1 1 1 2 
example: 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 
PRIMES+-2 3 5 7 11 1 1 1 1 1 1 1 
A+-PRIMES 1 1 1 1 1 1 1 
B+-'PRIMES' 1 2 1 1 1 2 1 
A[4 3 2 5J 1 1 1 1 1 1 1 

7 5 3 11 1 1 1 1 1 1 1 
B[4 3 2 5J 1 1 2 1 2 1 1 

MIRE 1 1 1 2 1 1 1 
pA 

5 , 
*'[l+MJ 

pB * * 
6 

1B2B 

Characters other than letters can also be used. For 
example: * * 

C+-'*+ABCD'
 
C[2 2 1 5 1 3 1 6 1 2 2J
 * * 

++*C*A *D*++ * 
, *'[2 2 1 2 2 1 2 2J 

** ** ** 
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In order to make such graphing easy we might even 
define a graphing function GR as follows: 

VZ+GR X 
[1] Z+' *'[l+X]V 

GR M 

* * 

* * 

* *
 
*
 

GR (\8)0.:>\8 

*
 
**
 
***
 
****
 
** ** *
 
**** **
 
*******
 
********
 w30-31 
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Chapter 11 

INVERSE FUNCTIONS 

11.1. INTRODUCTION 

The functions CTOF (for ~entigrade ~Q [ahrenheit), and 
FTOC, introduced in Chapter 10, are an example of a pair of 
mutually inverse functions; that is, FTOC undoes the work of 
CTOF, and CTOF undoes the work of FTOC. This may be stated 
as follows: 

FToe CTOF X yields X for any X.
 
CTOF FTOC X yields X for any X.
 

Examples of the foregoing for particular values of X appear 
in Chapter 10. 

Inverse functions are very important. The reason is 
that whenever one needs to use a certain function, the need 
for the inverse almost invariably arises. Suppose, for 
example, that F is a function which yields the amount of 
heat produced by an electric heater as a function of the 
voltage applied to it. Then for any given voltage V one can 
determine the heat produced by using the expression F V. 
However, if one wants to produce a specified amount of heaL 
H, it will be necessary to determine what voltage will 
produce it. This requires the use of the function inverse 
to F which will yield the voltage as a function of the heat. 
If this inverse function is called G, then the necessary 
voltage is given by G H. Moreover: 

G F X yields X for any X.
 
F G X yields X for any X.
 

It is therefore important to investigate methods for 
determining the inverse of any given function F. If F is 
represented by a function table, then the inverse function 
is represented by the same table, but with the argument and 
function columns interchanged. For example, Table 10.1 
(reproduced in the left side of Figure 11.1) represents the 
function CTOF for a certain set of arguments. To apply the 
function CTOF to the argument 3, one locates the value 3 in 
the first column of the table and then takes the second 
value in that row (that is, 37.4) as the result. To apply 
the inverse function FTOC, to the argument 41, one locates 
41 in the ~~£Q~£ column and takes the first element in that 
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row (that is, 5) as the result. In other words, the From the foregoing results for addition and 
appropriate function table for the inverse function is multiplication, it should be clear that the inverse of the 
obtained from the function table for the original function function A+BxX is the function (~B)x(-A)+X. Thus if L and M 
by interchanging the two columns as shown on the right of are defined as follows: 
Figure 11.1. 

'VA+L X 'VZ+N X
 
C F F I c Z+A+BxX 'V Z+(~B)x(-A)+X 'V
 

0 I 32 32 I 0 then:
 
1 I 33.8 33.8 I 1
 
2 I 3S. 6 3S. 6 I 2 L M X M L X
 
3 I 37.4 37.4 I 3 A+Bx(~B)x(-A)+X (fB) x( -A )+A+BxX
 
4 I 39.2 39.2 I 4 A+1 x(-A)+X (~B)xO+BxX
 

5 41 41 I 5	 A+(-A)+X ( ~B ) »sx XI 
6 I 42.8 42.8 I 6 O+X 1 xX 
7 I 44.6 44.6 I 7 X X 
8 I 45.4 46.4 I fBl-28
 
9 I 48.2 48.2 I 9
 

10 I 50
 50 I 10 

A Pair of Inverse Functions	 11.3. DIFFERENCE TABLES 

Figure 11.1 These results will now be applied to extend the 
applicability of the difference table method of function 
analysis developed in Chapter 10. Recall that the method 

11.2.	 INVERSE OF THE FUNCTION A+BxX developed applies only to a set of arguments of the form
 
0, 1, 2, 3, etc. Thus the difference table for a function
 

If	 F is the function A+X, that is: whose values are 4 -1 -2 1 8 19 would appear as follows if 
the argument column was added: 

'VZ+F X
 
Z+A+X 'V X I Y I D Y ID D Y
 

-then the inverse function is given by X-A or, equivalently, 0 I 4 I S I 4
 
by (-A)+X. Thus the inverse function G is defined as 1 I -2

1 I 1 I '+
 
follows: 2 I I 3 I 4
 

3 I 1 I 7 I 4
 
'VZ+G X 4 I 8 I 11
 

Z+(-A)+X'V 5 I 19
 

It is easy to see that F and G are inverse, for G F X The function F represented by the table is obtained by using
 
is equivalent to (-A)+A+X and since (-A)+A is zero, this is the first row of the difference table (that, is 4 -S 4)
 
equivalent to o+X, or simply X as required. Similarly, divided by the vector 1 1 2 to obtain the coefficients
 
F G X is equivalent to A+(-A)+X which is equivalent to o+X 4 -5 2 for the following expression: 4+(-SxX)+2xXx(X-l).
 
or X. Therefore, the required function F is defined as follows:
 

BXX, the inverse function K is	 'VZ+F XIf H is the function
 
the function XfB, or (fB)xX. Thus: Z+4+(-5xX)+2xXx(X-l) 'V
 

'V Z+H X 'VZ+K X Evaluation of the expression F 0,15 serves as a check as 
Z+BxX 'V follows:Z+(fB)xX'V 

F 0 1 2 345 
If -1 -:; 1 8 19 
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Suppose now that the desired arguments were the 
equally spaced values P+2. 0 2.22.42.62.83.0. The 
following table shows these arguments appended to the 
difference table as a leftmost column : 

P X I Y D Y ID D Y 1 1
 

-
2 I 0 4 I 5 I 4


1
 -
2.2 1 1 I - 1 I 1 1 4
 

2.4 2 2 I 3 I 4
1 1
 

2.6 I 3 I 1 1 7 I 4
 

2" 8 4 I 8 I 11
1
 

3 I 5 I 19
 

Suppose that one were able to determine a function G 
which yields the column X as a function of P, that is: 

G 22.22.'+ 2.6 2.83 
012345 

Then F G P would yield Y; that is: 

F G 22.2 2.4 2.6 2.8 3
 
4 2 1 8 19
 

In other words, the function H defined as follows is the 
required function: 

'V Z+H X
 
Z+-F c X 'J 

It remains to determine the function G which yields
 
the column X as a function of the column P. Since X is of
 
the form 0 1 2 3 4 5, it is easy to determine P as a
 
function of X, that is, to determine the function ~~y~~~~ to
 
G. This is done by forming the difference table for P as 
follows: 

X P I D P1
 

o 2 .2
 
1 2.2 .2
 
2 2.4 .2
 
3 2.6 .2
 
4 2.8 .2
 
5 3
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The coefficients 2 .2 in the first row yield the expression 
2+.2xX for the function inverse to G. This is of the form 
A+BxX and its inverse (that is, G) is therefore (fB)x(-A)+X. 

Hence G is defined as follows: 

\I Z+G X
 
Z+5x-2+X \I
 

Finally: 

G 2 2.2 2.4 2.6 2.8.3 
012345 

F G 2 2.2 2.4 2.6 :2. 8 3
 -4 1 ;> 1 8 19
 

2 ')H 2 2.4 2.6 2. 8 3
 -4 1 2 1 8 19
 

Instead of defining and using the separate functions F 
and G, their effect could be combined in a single (but 
cumbersome) expression by substituting for each occurrence 
of X in the expression for F, the expression occurring in 
the function G. Thus, for each X in the expression 

4+(-5 xX)+2 xXx(X-1) 

SUbstitute the expression 

5x-2+X 

to obtain the single expression 

4+(-5 x(5 x-2+X»+2 x(5 x-2+X)x((5x-2+X)-1) 
[jJ3-4 

11.4. MAPS 

In Chapter 10, it was shown how maps and graphs could 
be useful guides in the analysis of functions. They can 
also be useful guides in determining inverse functions. 

If F and G are each monadic functions, then we will
 
write F G to denote the function defined by applying F to
 
the result of G. That is, the function F G applied to X
 
yields F G x. If F and G are inverses, then F G must be the
 
~Q~~tity function, that is, the function which applied to
 
any argument X yields X.
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Consider a function G represented by the following This interchange is easily visualized as f oLl.ow s e 
function table and the corresponding map: 

(1) Draw the graph of the original function on 
x I Y translucent paper (which can be read through from 

the obverse side of the paper). 
4 1 
5 4 (2) Label the top two corners of the paper with A an~ 

6 7 E, and the bottom two corners with C and D (both 
7 10 pairs in order from left to right). 
8 13 

(3) Grasp the paper by corners 13 and C and fLp it 
12345	 6 7 8 9 10 11 12 13 over without changing the positions of the two 

corners held.1/) \~I The result is a graph of the inverse function. 
I I I I I I 1 1 I I I 1 I 
1 ! 3 4 5 6 7 8 9 10 11 12 13 For example, the left side of Figure 11.2 shows a 

function table and the corresponding graph. The right side 
A map of the identity function clearly consists of a shows the table for the inverse function together wit~ the 

set of vertical arrows. Therefore, if the ident.ity function graph obtained by the process just described. The broken 
is represented by broken line arrows and superi~posed on the line midway between the X-axis and the Y-~xis shows the line 
precEcing map, the picture appears as follows: through the points E C about which the paper is flipped. It 

is the one line in the graph whose position rpmains 
unchanged. 

1 2 3 4 5 6 7 8 9 10 11 12 13 
A )3 =:Iru-~ 9" 

~: ~I 1 1,1 6-1 ,; I 
I	 /l;/l)	 I / I''\I~ I	 t- I 

/ 

I I I L I	 / 
/

II'--t-:L1/!jti-1I I II)<.,.II :xJ\~m	 I

I / 

I 

I I	 
4-1 

1 2 3 4 5 6 7 8 9 10 11 12 13 /
I 

/
/ 

/ 

I 

11~111\11'11	 C'l_ 

The function F represented by the crossed lines is clearly /	 /
2-1 V) ­

the inverse of G, since the application of F to the results / / 

of G produces the equivalent of the identity function. I
I / 

/ 
/ 

IBS 
t /	 / 

/O-r--:::---------------------- ­
/I I I I I I11.5. GRAPHS o-~------------o 1 2 3 4 5 I I I I c	 D o 1,1') t Q.J»u

In a graph, the values of the argumEnt X are 
represented by distances measured along a horizontal line, X I Y X I Y 
and the values of the function values Yare represented by 
distances measured along a vertical line. Since an inverse 2 I 6 6 I 2 

function is obtained by exchanging the roles of argument and 3 I 4 4 I 3 
result in the original function, the graph of the inverse is 4 I 2 2 I 4 
obtained from the graph of the original function by 5 I 0 015 
interchanging the horizontal and vertical lines in the 
graph. 

Graphs of a Pair of Inverse Functions 

Figure 11. 2 
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The graph of an inverse function can, of course, be 
obtained without using translucent paper, by simply plotting 
it from the table for the inverse function. One advantage 
of this is that the scales (the numbers along the horizontal 
and vertical axes) do not appear lying on their sides and 
printed backwards as in Figure 11.2. Figure 11.3 shows a 
pair of functions (the square function X*2 and its inverse) 
in which the graph of the inverse has been drawn in this 
manner. 

I I 
2. Ij_ 1 2.4- 1 

I 1 

2.0- I 2.0-1 

1 1 

1. 6- 1 1. 6 - 1 

I I 

1. 2 - 1 1. 2 - 1 

I I
 
.8- 1 -I
 

I 1 

. 4- I .4- I
 
I 1 

0- 0 - - - - - - - - - - - - - - - - - - - - - - - - 0-0-------------------------­

I 1 1 I I 1 I I I 1 1 1 
o .Ij .81.:) 1.6 2.0 /.4 o .IJ . 8 1. 2 1. 6 2. 0 2. If 

yx I X Y 

0 1 0 0 I 0 
.2 1 .04 .OIJ I .2 
.11 I .16 .16 I .4 
.6 1 .36 .36 1 .6 
.8 I .64 . G4 1 .8 

1.0 I 1.00 1. 00 1 1.0 
1. 1141.2 1 1.44 1 1.2 

1.4 I 1.96 1. 96 I 1. 44 
1.6 1 2.56 2.56 I 1 . G 

Inverse Graph by Reflection 

Figure 11. 3 

The function inverse to the square function is called 
the square root function. It was treated briefly in Section 
6.6 where it was shown that the square root of X is 
equivalent to X*.5. 

ffi6-9 

11. 6. DETERl1I!HNG THE INVERSE FOR A SPECIFIC ARGUMENT 

For any function whose graph is a straight line, it is 
easy to find an expression for the function since it is only 
necessary to determine the values of the constants A and B 
in the expression AtBxX. It is equally easy to obtain the 
expression for the inverse function since this is given by 
('B)x(-A)tX. For example, the function graphed on the left 
of Figure 11.1 is given by the expression 10t-2xX and the 
inverse on the right is given by -.5 x-l0tX. 

For a function whose graph is not a straight line, it 
may be impossible to obtain an expression for the inverse 
function. However, it is possible to determine the inverse 
function in the following sense: for any given argument in 
the domain of the inverse function it is possible to 
determine the corresponding value of the result of the 
inverse function. 

For example, in the case of the square function (X*2) 
graphed on the left of Figure 11.3 we have no expression for 
the inverse function, the square root, graphed on the right . 
However, for any particular argument it is possible to find 
the result approximately from the graph of the inverse; for 
example, if the argument is 2, the result of the inverse 
function is clearly slightly greater than 1.4. Moreover, 
one can achieve the same without the graph of the inverse, 
by working directly from the graph of the original function. 
Thus one locates the argument 2 on the y~~t!~~1 axis and 
determines the approximate corresponding result on the 
horizontal axis. 

Finally, one can work directly from the expression for 
the original function without even graphing it. For 
example, the expression for the function on the left of 
Figure 11.2 is X*2. To obtain the value of the inverse 
function applied to the argument 2, one must determine a 
value of X such that X*2 is equal to 2. If one determines a 
value C such that C*2 is less than 2 and another value D 
such that D*2 is greater than 2, then the required value of 
the square root of 2 must lie between C and D. 

ThUS, if C is 1.4 and D is 1.42, then C*2 is 1.96 and 
D*2 is 2.0164 and the required value lies between 1.4 and 
1.42. The point midway between them is (1.4tl.42)f2, that 
is 1.41. Since 1.1J1*2 is equal to 1.9881, the required 
value is greater than 1.41. Since it is already known to be 
less than 1.42, we now choose the value midway between 1.1J1 
and 1.42, that is, 1.415. The value of 1.1J15*2 is 2.012225 
which is very near to 2. Hence 1.415 is a very good 
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approximation to the value of the square root function 
applied to the argument 2. Moreover, the same process could 
be continued to determine better and better approximations 
as long as desired. 

Although we have not obtained an expression for the 
square root function, we have devised a process which 
determines the value of the square root when applied to the 
particular argument 2. Horeover, the process could be 
applied for any argument other than 2 which lies in the 
domain of the square root. Finally, the process uses only 
the expression for the original square function. 

The procedure used to determine the square root had to 
be repeated or !t~~~~~9 a number of times to obtain a 
sufficiently good approximation to the desired result. Such 
a process is called !~~~~~~y~. Functions which are defined 
by iterative procedures will be discussed more fully in the 
succeeding chapter. 

[]lO-ll 

11.7. THE SOLUTION OF EQUATIONS 

If G is the function inverse to F, and one wishes to 
obtain the val ue 0 f G N, then the required val ue Y mus t be 
such that F Y is equal to N. In other words, the following 
expression must be true (that is, have the value 

N=F Y 

Such an expression which is required to be true 
~g~~t!Q~, and a value of Y which makes it true 
~Q19i!Q~ or KQQt of the equation. 

The problem of determining the value of 

1): 

is called an 
is called a 

the inverse 
function G applied to the argument N is therefore equivalent 
to finding a solution to the equation N=F Y. It is for this 
reason that the solution of equations is a very important 
topic in the study of algebra. For example, finding the 
square root of 2 is equivalent to solving the equation 
2=X*2, and finding the square root of 10 is equivalent to 
solving the equation 10=X*2. 

The origin of the term "square root" for the function 
inverse to the square function should now be clear; the 
square root of the argument N is the solution or ~QQ~ of the 
equation N=X*2 in which the square function occurs to the 
right of the equal sign. 
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Chapter 12 

ITERATIVE PROCESSES 

12.1. INTRODUCTION 

The iterative process used in Section 11.6 for find ng 
the square root of 2 is only one of many possible itcrat ve 
processes for achieving the same end. The follow ~g 

procedure is, in fact, more effective tha~ the procudure of 
Chapter 11 in the sense that it closes in on the deslre~ 

value in fewer iterations. 

Suppose that is the square root 0:': a given number x, 
that:: is any other number, and ttat y is equal to Y;Z. 
Then =xy is equal to X, and C> is also equrl.l to X. Hence 
if i is 18ss than 5, then j must b8 greater than 5, and if Z 
is greater than , then Y must be less. In any case, the 
correct square root 5 must lie betweon Z and Y. 
Consequently, the point midway between Z and Y (that is, 
.5 x'+Y) should furnish a good new approximation to the 
square root S. Since Y is equal to X1Z, this expression can 
be written siDply as 

Suppose, for 
root of 3, that is, 
of 1 for Z, then the 

X+3 
2+1 
.SxZ+X-;-Z 

2 

.5xZ+X; 

example, that we wish to find the square 
X has the value 3. If we choos~ a value 
next approximation is give~ as follows: 

Using the new approximation 2 for 2 yields the next 
appr ox i.n.a t i.on . 

Z"-2
 
.5xZ+X-;Z
 

1 .75 

Again: 

Z+ 1. 75 
.5 xz+_n Z 

1.732142857 

Z+ 1 .7321 'f 2 8 5 7 
.5 xZ+X:Z 

[1]12-13 1.73205081 
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Squaring this last result yields: 

~.73205081*2 

3.000000008 

showing that it is a good approximation to the square root 
of 3. 

The foregoing procedure can be made clearer by simply 
assigning the value of the new approximation to the name Z 
each time as follows: 

X<-3 
2+1 
Z+. 5xZ+X~Z 

Z 
2 

Z+.5xZ+X~Z 

2 
1. 75 

Z+. 5xZ+X~Z 

?: 
1.7321'+2857 

Z+. 5xZ+X~Z 

2
 
1.73205081
 

From this it is clear that the i~g~~~iQn consists of 
repeating the execution of the expression Z+.5xZ+X~Z enough 
times, the line containing only the expression Z being 
inserted solely to allow us to see the successive values of 
the approximation Z. 

Such iteration can be specified in a function 
definition as follows: 

'V Z+SQRT X
 
[lJ 2+1
 
[ 2 J Z+. 5xZ+X~Z
 

[ 3 J -+2 '1/
 

The right-pointing arrow on line 3 of the function 
definition is called a g~~ngh; the only effect of the 
expression ~2 is to cause statement number 2 to be executed 
next. Hence statements 2 and 3 are executed again and again 
in sequence. This behavior can be seen from a trace of the 
function as follows: 

Tb.SQRT+l 2 3 
F+SQRT 3 

SQRT[lJ 1 
SQRT[2J 2 
SQRT[3J 2 
SQRT[2J 1.75 
SQRT[ 3J 2 
SQRT[2J 1.732142857 
SQRT[3J 2 
SQRT[2J 1.73205081 

I.B1 

The trouble with the function SQRT is that it never 
terminates. It would be desirable to make it terminate when 
a certain condition becomes satisfied, say when the 
magnitude of the difference between Z*2 and the argument X 
becomes less than .00001. This is achieved in the function 
SQT defined as follows: 

'l/Z+SQT X 
[lJ Z+l 
[2J Z+.5xZ+X~Z 

[3J ~2x.00001<IX-Z*2'1/ 

As long as X and Z*2 differ by .00001 or more, the 
expression following the branch arrow is equal to 2xl and 
statement 2 is executed next. When Z*2 becomes close enough 
to X, the expression has the value 2 xO, (that is, 0), 
indicating that statement 0 should be executed next. Since 
there is no statement 0, the process terminates. 

The function SQT can now be applied to any 
non-negative argument. For example: 

SQT 2 
1. 4142155862745 

(SQT 2)*2 
2 00000060073049 

SQT 10 
3.1522775551757 

(SQT 10)*2 
10.000000031568 
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The detailed behavior of the function SQT can be seen 
in a trace as follows: 

1'65Q1'+l 2
 
F+SQT 10
 

5Q1'[l] 1
 
5Q1'[2] 5.5
 
5QT[3J 2
 
5Q1'[2] 3.65909090909
 
SQ1[3] 2
 
SQI'[ 2] 3.1960050818746
 
SQ 1'[ 3 J 2
 
SQ1'[2] 3.1622776651757
 
5Q1[3] 0
 

F 
3.16227766,,1757 

Iteration is of great importance in mathematics and 
its uses are by no means limited to root-finding. The 
remaining sections of this chapter illustrate a few of its 
uses. Others occur in later chapters. 

IB2 

12.2. GENERAL ROOT FINDER 

The iterative method used in Section 11.6 to determine 
the square root of 2 can now be expressed as a formal 
function definition by using branching. The method consists 
of using two quantities C and D which QQ~D9 

value in the following sense: C*2 is less than 
greater than 2, and the desired value therefore 
C and D. The method procedes by computing 
midway between C and D and then computing Z*2 to 
it lies above or below 2. If it lies below 2, 
respecified by Z (that is, C+Z) and 
otherwise D is respecified by Z and 

It will be more convenient 
quantities C and D in a single 
respecifies either B[lJ or B[2J. 
follows: 

'VZ"Q X
 
[1] B..-l, 4 1. 42
 
[ 2 ] A+.5 x+/B 

[ 3 J I+l+X<Z*2 
[4J B[IJ .. Z 
[ 5 ] ~2x.00001<IX-Z*2'V 

the process 
the process 

to combine 
vector B 

the desired 
2 and D*2 is 
lies between 

the point Z 
see whether 

then C is 
is repeated; 
is repeated. 

the bounding 
so that Z 

The complete definition 

The behavior of the 
trace: 

1'6Q+15 
P+Q 2
 

Q[lJ 1. 4 1. 42
 
Q[2] 1.41
 
Q[ 3] 1
 
Q[4] 1. 41
 
Q[ 5] 2
 
Q[2] 1.415
 
Q[3J 2
 
Q[4J 1 • 41 5
 
Q[ 5 J 2
 
Q[ 2 J 1,1~125
 

Q[3J 1
 
Q[ 3 J 1
 
Q[4J 1. ill 2 5
 
Q[5J 2
 
Q[ 2 J 1.41375
 
Q[3J 1
 
Q[4J 1.41375
 
Q[5J 2
 
Q[2J 1.414375
 
Q [ 3 J 2
 
Q[4J 1.414375
 
Q[ 5 J 2
 
Q[ 2 J 1.4140625
 
Q[3J 1
 
Q[4J 1.4140625
 
Q[ 5 J 2
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function is illustrated by the following 

Q[2J 1.41421875
 
Q[ 3 J 2
 
Q[4J 1.41421875
 
Q[5J 2
 
Q[2J 1.414140625
 
Q[3J 1
 
Q[4J 1.414140625
 
Q[5J 2
 
Q[2J 1.4141796875
 
Q[3J 1
 
Q[4J 1. 1/J14 796 8 7 5
 
Q[4J 1.4141796875
 
;1[ 5J 2
 
Q[ 2 J 1.41419921875
 
Q[ 3 J 1
 
Q[4J 1.41419921875
 
Q[ 5 J 2
 
Q[ 2 J 1.41420898'1375
 
Q[ 3 J 1
 
0[4J 1. 414208984375
 
Q[ 5 J 2
 
In 2 J 1,4142138671875
 
Q[ 3 J 2
 
Q[4J 1.4142138671875
 
Q[5J 0
 

D 

1.4142138671875 

The foregoing function will determine a root of the 
equation X=Z*2, that is, for a given value of X it will 
determine a value of Z such that the equation is true. In 
order to obtain a general root finder which would solve the 
equation X=F Z for any desired function F, it is necessary 
to replace every occurrence of the expression Z*2 in the 
function Q by the expression F Z. 

It will also be convenient to have the bounding vector 
B as an argument of the function so that one can specify 
suitable initial bounding values. The general root-finder 
is therefore defined as follows: 

'VZ+B GRF X
 
[ 1 J Z+.5 x+/B
 
[ 2 J B[l+X<F ZJ+Z
 
[ 3 J ~.ooool<IX-F Z'V
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Suppose, for example, that l' is the ~~g~ function 
defined as follows: 

\l Z+1' X 
[1] Z+X* 3V 

Then, since 4*3 is less than 100 and 5*3 is greater than 
100, the expression 4 5 GR1' 100 yields a solution of the 
equation 100=Z*3 as follows: 

4 5 GR1' 100 
4.541588787895 7 

(4 5 GR1' 100 )*3 
99.999990581'129 

1E3 

There are two reasons for including the bounding 
values R as an argument of the general root finder function 
CRF. The first is that for some functions l' it is very 
difficult to compute suitable initial bounding values and it 
may be necessary to provide them, possibly from information 
obtained from a rough graph. The second reason is that for 
some functions l' the equation X=1' Z has more than one 
solution, and the initial bounding values permit us to 
isolate anyone of the several roots as desired. 

For example, suppose that l' is defined as follows: 

\l	 2+1' X
 
7+-75.44+(102.2 xX)+(-41 xX*2)+(5 xX*3) V
 

Then several different values of X can be determined for 
which F X is zero: 

1	 2 GR1' a 
1.4 

3	 2 GR1' 0 
2.5 

4	 5 GR1' 0 
4.2 

It can be verified that this function is equivalent to the 
function 5x(X-l.4)x(X-2.5)x(X-4.2) whose graph appears in 
Figure 10.5. This graph will therefore be helpful in 
appreciating how the different bounding values lead to 
different roots. Two further solutions appear below: 

1 2 GRF 3 
1.65639 

3 2 GRF 3 
2.23409 

tB4-6 

12.3. GREATEST COMMON DIVISOR 

The integer 7 is a divisor of 42 and a divisor of 53 
and is therefore said to be a gQIDmQD giYi§Q~ of the pair of 
integers 42 and 63. The largest integer which is a common 
divisor of a pair of integers is said to be their gr~~t~§t 

gQillillQD giYi§Qr. Thus 7 is a common divisor of the pair 
42 53 but is not their greatest common divisor since 21 is 
also a common divisor and is greater than 'I. 

An interesting and efficient method for finding the 
greatest common divisor of a pair of integers X and Y is 
based on the following fact: If ~ is the remainder obtained 
on dividing X into y (that is, Z+XIY), then the greatest 
common divisor of X and y is also the greatest common 
divisor of X and Z. For example, if X is 48 and Y is 56, 
then Z is 18 and the greatest common divisor of 48 and 66 is 
the same as the greatest common divisor of 18 and 48. The 
process can now be repeated since the greatest common 
divisor of 18 and 48 is the greatest common divisor of 18 
and tb~ir remainder, which is 12. Thus we look for the 
greatest common divisor of 12 and 18. The remainder 12118 
is 6 and we now look at the pair 6 and 12. The remainder 
6112 is zero. This indicates that 6 is a divisor of 12 and 
therefore 6 is the greatest common divisor of 6 and 12. 
Hence, 6 is also the greatest common divisor of the original 
pair 48 and 66. 

The foregoing is an iterative process which can 
obviously be defined as follows: 

VZ+X GD Y 
[lJ Z+X 
[2J X+X!Y 
[3J Y+Z 
[4J -+X;tOV 
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The behavior of the function GD can be seen from the 
following trace: 

TIoGD+-\4 
P+-48 GD 66 

GD[ 1] 48 
GD[ 2] 18 
GD[ 3] 58 
GD[4] 1 
GD[1] 18 
GD[2] 12 
GD[ 3] 18 
GD [4] 1 
GD[ 1] 12 
GD [ 2] 6 
GD[3] 12 
GD[4] 1 
GD [1] 6 
GD [ 2] 0 
GD [ 3] 6 
GD [ 4] 0 

p 
6 

The greatest cornmon divisor function can also be 
defined in terms of a single argument (which is expected to 
be a two-element vector) as follows: 

'J Z+-GCD X 
[1] Z+-X[l]
 
[2J X+-(I/X),X[1]
 
[3J -+X[1J;<0 'J
 

For example: 

TIoGCD+-\ 3 
P+-GCD 48 66
 

GCD[1] 48
 
GCD[ 2] 18 48
 
GCD [ 3] 1
 
GCD [ 1] 18
 
GCD[ 2J 12 18
 
GCD[3] 1
 
GCD[1] 12
 
GCD[ 2J 6 12
 
GCD[3J 1
 
GCD[1J 6
 
GCD[2J 0 6
 
CCD[ 3J 0
 

p 

6 
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The function GCD can be used in the treatment of 
rational numbers as follows. If V is any two-element vector 
of integers it can be used to represent the rational number 
~/V. Moreover, if V is multiplied by any scalar integer S 
it still represents the same rational number. For example: 

V+-48 66 
~ / V 

0.727273 

3xV 
144 198 

~/3xV 

0.727273 

Similarly, if V is divided by any integer which is a 
divisor of both elements, the result is a pair of integers 
which also represent the same rational number. For example: 

V~2 

24 33 

~ / V~2 

0.727273 

Moreover, if V is divided by the greatest cornmon divisor of 
V[lJ and V[2J, one obtains the smallest pair of integers 
which represent the same rational. For example: 

V~GCD V 
8 11 

~/V+GCD V 
0.727273 

11J8-11 

12.4. THE BINOMIAL COEFFICIENTS 

Binomial coefficients are of importance in many areas 
of mathematics. In this section they will be introduced as 
a further example of the use of iteration in the f~nction 

which defines them. They will be used and studied more 
thoroughly in later chapters in the treatment of 
polynomials. 

ffi7 
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The QlnQIDlgl gQ~fflgl~nt~ Qf Qf9~f N are the N+l 
elements of the vector produced by the expression BIN N 
using the function BIN defined as follows: 

'lZ+BIN X
 
[ 1 J Z+ , 1 
[2J +3 xX"pZ 

[3J Z+(0,Z)+(2,0) 
[4J +2 'l 

The following examples illustrate the behavior of the 
function: 

BIN 0 

BIN 

BIN 2
 
2 1
 

BIN 3
 
3 3 1
 

BIN 4
 
4 6 4 1
 

BIN 5
 
5 10 10 5
 

BIN 5
 
5 15 20 15 5 1
 

T!JBIN+14 
P+BIN 3
 

BIN[1 J 1
 
BIN[2J 3
 
BIN[3J 1
 
BIN[4J 2
 
BIN[2J 3
 
BIN[3J 1 2
 
BIN[4J 2
 
BIN[3J 1 3 3
 
BIN[4J 2
 
BIN[2J 0
 

P 
1 331
 

1m2-19
 

Chapter 13
 

INNER PRODUCTS AND POLYNOMIALS 

13.1. INTRODUCTION 

Each of the expressions +/DxW and lIA+B and rlAlB 
involve a dyadic function applied to the two arguments, 
followed by a reduction of this result by a second dyadic 
function applied over the result. These expressions are 
therefore said to be of the same fQfID, although they do 
differ in the actual dyadic functions employed. Thus the 
first uses + and x, the second uses land +, and the third 
uses rand l. 

Expressions of this form are so important that they 
will be assigned a special notation known as lnn~f QfQ9~gt. 
Their importance is due largely to the fact that they arise 
very frequently in practical problems. Consider, for 
example, the following expressions: 

D+5 2 4
 
W+35 12
 
+IDxW
 

208
 

A+8 13 10 15
 
B+14 7 15 9
 
l I A+B 

20
 

The expression +/DxW may arise from a practical 
problem as follows. Suppose that the elements of D express 
a certain distance in terms of yards, feet, and inches, that 
is, D represents the distance 5 yards, 2 feet, and 4 inches. 
One could express tha same distance in inches alone by 
multiplying the first element by 35, the second by 12, the 
third by 1, and then summing the results. In other words, 
if W is the weighting vector as specified above, then the 
distance in inches is given by the expression +/DxW. 

The second expression lIA+B may arise as follows. 
Suppose that one wishes to travel from station p to station 
Q and has a choice of four different routes, via the four 
different intermediate stations, Ii, I2, I3, and I4 as shown 
in Figure 13.1. Suppose further that the distances from P 
to the four intermediate stations are given by the four 
elements of the vector A, and that the distances from the 
intermediate stations to the destination Q are given by the 
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vector H. Then the expression A+" gives the total distances 13.3. MATRICES 
for each of the four possible routes, and L/A+R gives the 
smallest of these distances, that is, the shortest distance What we have been calling a table is in mathematics 
possible by the available routes. more usually called a met~i~; we will call it so from now 

on. We will also generalize the dyadic ~§Q§titiQn function 
(introduced in Section 1.7 and denoted by p) so that it will 
permit the specification of a matrix with any shape and 
having any desired elements. 

The dyadic repetition function p was defined only for 
scalar arguments, but it will now be defined for vector 
arguments as well. For example: 

3.) 5 

5 p 3 
3 3 3 
3,,1 2 3 '+ 

2 3 
10p1 2 3 4 

Minimum Distance 2 j lj 1 -, 
L 1 1 2 

Figure 13.1 From these examples it is clear that the left argument 
determines the size of the result and that the elements of 

~,11-2 the result are chosen from the right argument, repeating 
them over and over if necessary. 

13.2. THE INNER PRODUCT OF TWO VECTORS If the left argument A is a two-element vector it 
again determines the size of the result, that is, the result 

If X and Yare vectors of the same dimension, then the 
expression X+.XY is called the ely§ tim~§ inn~~ e~Q~ygt of X 
and Y, and is defined to be equivalent to the expression 
+/XxY. Similarly, XL.+Y is called the minimYm elY§ inn~~ 
Q~Q~yg~ and is defined as L/X+Y, and so on for every pair of 

is a matrix J,J such that ," 
to A. In other words, 
For example: 

2 3p1 2 3 '+ S S 

(that is, the size of ,'1) 
~ has Arl] rows and A[2] 

is equal 
columns. 

dyadic functions. For example: 2 3 
[I 5 6 

X*-2 3 5 7 11 
Y*-2 1 2 0 1 3 4p 1 12 
X+. xy +/XxY 1 2 3 4 

28 L8 5 6 7 8 
XL. +Y L/X+Y 9 10 11 12 

'+ '+ 
x«, *Y x/X*Y 3 5p 0 

3300 3300 0 1 0 1 0 
X+. -Y +/X-Y 1 0 1 0 1 

22 22 0 1 0 1 0 
X+. "y +/X"y ijJ6-7 

'+ '+ 
xr. =Y r /X=Y 

1 
EB3-5 
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13.4. INNER PRODUCT WITH MATRIX ARGUMENTS argument. More specifically, if R~M+.xN, then the element 
R[I;J] is given by the expression M[I;]+.xN[;J]. For 

The inner product also applies to matrix arguments. example: 
For example: 

R~M+.xN 

M+3 4p 3 0 4 2 4 6 5 1 0 5 2 4 R 
N+4 5p 6 7 2 1 7 5 6 5 0 5 7 2 3 6 3 1 2 2 1 3 4 8 33 22 29 39 
M 90 76 55 35 76 

3 0 4 2 1 43 42 39 16 43 
4 6 5 1 
0 5 2 4 R[ 2; 3] 

N 55 
6 7 2 1 7 M[2;] 
5 6 5 0 5 4 6 5 1 
7 2 3 6 3 N [ ; 3 ] 
1 2 2 1 3 2 5 3 2 

M[ 2 ; J+ . xN [ ; 3] 
M+. xN ML .+N 55 

48 33 22 29 39 3 4 4 0 5 
90 76 55 35 76 2 3 3 2 4 (ML.+N)[3;5] 
43 42 39 16 43 5 4 2 1 5 5 

M[3;JL.+N[;5] 
M+. =N M+.>'N 5 

0 1 1 1 0 4 3 3 3 4 HJ8-l0 
1 1 0 1 0 3 3 4 3 4 
1 1 1 0 1 3 3 3 4 3 

If X is a vector and M is a matrix, then the inner 
( M+ • =N ) + (M+ • >,N) product M+.xX is defined by simply treating X much like a 

4 4 4 4 4 i-column matrix. For example: 
4 u 4 4 4 
4 4 4 4 4 X~O 3 2 4 

M+. xX 
The result of an inner product applied to matrices M 16 32 35 

and N is a matrix having the same number of rows as the ML. +X 
first argument and as many columns as the second argument. 3 4 0 

The elements of the results are the results obtained by M+.>'X 
applying the inner product to each fQ~ vector of the first 4 4 1 
argument paired with each gQl~~ vector of the second M+. =X 

0 0 3 

If Y is a vector and M is a matrix, then the inner 
product Y+.xM is defined by treating Y much like a i-row 
matrix. For example: 

Y+O 4 2 
Y+. xM 

16 34 24 12 
YL. +M 

2 0 4 2 

Y+."M 
2 2 2 3 

HJll-18 
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13.5. POLYNOMIALS 

If C is a vector and X is a scalar, then an expression
 
of the form t/CXX*-ltlPC is a function of X which is called
 
a 2QlynQID!~1 Q£ Q~g£~~ -ltpC. For example, if C~2" 3 1,
 
then t/CXX*-ltlPC is a polynomial of degree 3 and is
 
equivalent to the expression t/2 5 -3 lxX*O 1 2 3. This
 
expression is clearly equal to the sum of the following
 
quantities:
 

2 xX* 0
 
5xX*1
 

3xX*2
 
1 x X* 3
 

Each of these quantities is called a t§£m of the-polynomial; 
each of the constant multipliers is called a ~Qg££!g!§nt. 

Figure 13.2 shows a graph of each of the terms of the
 
polynomial t/2 5 3 l'X*O 1 2 3, together with a graph of
 
their sum, that is, of the polynomial itself.
 

Since a polynomial may have any number of terms and 
since each of the coefficients may have any value, these 
graphs suggest (correctly) that coefficients can be chosen 
so as to make a polynomial which approximates any function 
of practical interest. This ability to approximate a wide 
variety of functions is one of the main reasons for the 
overwhelming importance of polynomials. A second reason is 
the ease of evaluation, which involves only addition, 
multiplication, and powers. A third reason is the ease with 
which polynomial functions can be analyzed. 

1B19-21 

13.6. POLYNOMIALS EXPRESSED AS INNER PRODUCTS 

Since pxQ is equivalent to QxP, the expression 
t/Cx(X* ltlpC) for a polynomial can be written equivalently 
as t/(X*-ltlpC)XC. Moreover, since t/QxP can be written in 
the inner product form as Qt.x?, the polynomial can be 
written as the inner product (X*-ltlPC)t. XC. 

It should be clear that none of these equivalent 
expressions for a polynomial apply correctly to a yggtQ£ 
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argument X in order to evaluate the polynomial applied 
separately to each element of X. For example: 

C<-l 2 1
 
X<-3
 
+/CXX*-1+1PC
 

16
 
X<-4
 
+/CxX* 1+1PC
 

25
 
X<-5
 
+/CXX*-1+1PC
 

36
 
X+3 4 5
 
+/CXX*-1+1PC
 

34
 
X+3 4
 
+/CXX*-1+1PC
 

(cannot be evaluated because the vectors X and -1+1PC are 
not of the same size) 

To obtain the correct result of 16 25 36 when
 
applying the polynomial with coefficients C+1 2 1 to the
 THIS PAGE INTENTIONALLY LEFT BLANK 
vector argument 3 4 5, it requires a different expression
 
for the polynomial. This can be obtained by a slight
 
modification of the inner product expression (X*-1+1pC)+.XC,
 
namely, (XO.*-1+1pC)+.XC. For example:
 

C+1 2 1
 
X+3 4 5
 

XO.* 1+1pC
 
1 3 9
 
1 4 16
 
1 5 25
 

(XO. *-1+ lpC)+. «c
 
16 25 36
 

The following definition will therefore be adopted for 
the polymonial function: 

VZ+C POL X
 
A+(Xo.*-1+1PC)+.XCV
 

The following examples illustrate its use: 

1 2 1 POL 3 4 5 6
 
16 25 36 49
 

1 3 3 1 POL 3 4 5 6
 
64 125 216 343
 

1il22-24 
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Chapter 14 

IDENTITIES 

14.1. INTRODUCTION 

Two expressions are said to be equivalent if they 
represent the same function, that is, if they both yield the 
same value for any specified argument (lying within their 
domains). For example, xxy and yxX are equivalent, as are 
XiY and YiX, but X-Y and Y-X are DQt equivalent. 

If two equivalent expressions are joined by an equal 
sign, the resulting single expression is true (i.e., has the 
value 1) for every possible value of the argument or 
arguments. It is therefore called an iQ~ntity. For 
example, the expression (XxY)=(YxX) is always true, as are 
( Xi y) =( Yi X) and (X L( YL.: ) ) = ( ( XL Y) LZ) . 

For convenience in discussion, many of the more useful 
identities are given names. For example, the identity 
(XxY)=(YxX) is said to express the ~Qffiill~t~tiyity QI ti~~~, 

and (XI (Yl Z) ) =(( Xl Y) I -) e xp r e s s e s the ~~§.Qgi~tiyity QI 
minim~. The following list shows (together with their 
names) a number of identities which the reader should either 
find already familiar, or be able to verify by evaluating 
them for a few sample values of the arguments: 

IQsmt:hty !:J~m~ 

(XtY)=(YtX) Commutativity of plus 

((XiY)iZ)=(Xi(YiX)) Associativity of maximum 

(Xx(YtZ))=((XxY)t(XxZ))Distributivity of times 
over plus 

(Xi(YL--:))=((XiY)L(XiZ))Distributivity of maximum 
over minimum 

(XiY)=(-(-X)L(-Y)) Duality of maximum 
(XLY)=(-(-X)i(-Y)) and minimum 

(XVY)=(-(-X)A(-Y)) Duality of ~nQ
 

(XAY)=(-(-X)v(-Y)) and Qf
 

Identities are very useful in mathematics, primarily 
because they allow one to easily express the same function 
in a variety of ways, each of the different ways possessing 
some particular advantage such as being easy to evaluate, or 
fJroviding some particular insight into the behavior of the 
function. Consider, for example, the function t/(IX)*2 
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which yields the sum of the squares of the integers up to 
and including X. The difference table for this function 
appears as follows: 

X \t/(I.Y)*2 I D t/(tX)*2 I D D t/(tX)*2 I D D Dt/(tX)*2 

0 I 0 I 1 3 I 2 
1 I 1 I 4 5 I 2 
2 I 5 I 9 7 I 2 
3 I 14 I 1 G q 

4 I 30 I 25 11 
5 I 5 S I :3 () 
6 I 91 

According to the method of analyzing a function by 
difference tables developed in Chapter la, the first row of 
the difference table (that is, 0 1 3 2) can be divided by 
~ 0 1 2 3 (that is, 0 1 2 6) to obtain the coefficients 
0, 1, 3~?, and 2 ~ 6 used in the following express ion: 

() -t .', t ( (3 ~ 2 ) x X x ( \' - 1 ) ) -t- ( ? ~ [, ) x X x ( X - 1 ) x X - 2 

The expression is equivalent to t/(tX)*2. Moreover, 
for large values of X it is much easier to evaluate than 
t/(tX)*2. For example, the sum of the squares up to 100 is 
given by: 

Ot100t(( 1:1)xl0U'99)t(2~5)'?JOx90x98
 

LJ -t- 1 0 0 -t- 1 4 8 6 [1 -t- 32 3 If 0 0
 
338350
 

Moreover, by methods to be developed in this chapter, 
the expression OtXt((3i2)xXxX-1)t(2H,)xXx(X-1)xX-2 can be 
shown to be equivalent to the polynomial: 

(~6)x(X*0 1 2 3)+.xO 132 

This can be evaluated even more easily. For example: 

X+100 
(~6)x(X*0 1 2 3)+.xO 132 
(~6)x1 100 10000 1000000t.xO 1 3 2 
(~6)xOt100t30000t2000000 

(~6)X2030100 

338350 

14.2. COMMUTATIVITY 

Since XtY yields the same result as YtX, the function 
t is said to gQIDID~t~, or to Q~ gQ~~i~iiy~. The word 
gQIDID~t~ implies that the two arguments can be commuted 
(i.e., interchanged) without changing the result. The 
function x is also commutative; that is, (XxY)=(YxX). To 



see why this is so, consider the way in which multiplication 
is defined as repeated addition, that is, 3x4 can be 
considered as the addition of three groups of objects each 
containing four items. 

This can be pictured in terms of the array 

3 4 P '0' 
ODOD 
ODDD 
DODD 

which consists of three rows, each containing four boxes. 
The total number of boxes is then 3x4. It is clear that the 
array 

Q3 4 p '0' 
ODD 
ODD 
DOD 
ODD 

contains the same number of boxes. It is equally clear that 
this is the same array as 

3 P 'lJ ' 
ODD 
DOD 
ODD 
DOD 

which represents the product 4 x3. Hence, (3x4)=(4x3). 

comm
The functions 

utative, that is, 
maximum and minimum are both 

(X1Y)=(Y1X) 

and 

(XLY)=(YlX) 

It is equally clear that equality is commutative, that is, 

(X=Y)=(Y=X). 

To show that a function is DQt commutative, it is 
sufficient to exhibit one pair of arguments for which it 
does not commute. For example, 4-3 yields 1 and 3-4 yields 
-1. Since these results differ, it is clear that 
subtraction is not commutative. Similarly 3<;4 yields 1 and 
4<;3 yields 0 and the function <; therefore does not commute. 

The results thus far can be summarized in a table as 
follows: 

+ x L <; 
1 0 1 0 

A zero lying below a function symbol indicates that the 
function is not commutative, and a 1 indicates that it is. 

ni 

The l's and o's in the foregoing table can be thought 
of as the results of a function COM which determines the 
commutativity of its argument, that is, COM '+' yields 1, 
and COM '-' yilelds 0, and so on. This function could be 
defined as follows: 

\lZ"-COM X 
Z"-(X='+-xIL<;=')/l 0 1 1 1 0 1 

For example, in the evaluation of the expression COM 'I', 
the argument X has the value 'I', and the expression 
x='+-xIL<;=' therefore has the value 0 0 0 1 0 0 o. 
Consequently, (X='+-xll<;=')/10 1 1 1 0 1 yields 1, 
indicating that the function maximum is commutative. 

tB2 

EYn~tiQD IgQl~~. Consider the subtraction table 5 and its 
transpose T'-QS shown in Figure 14.1. The circled element in 
5 is the result of the subtraction 5-3. The corresponding 
element of 'l' (enclosed in a square) is clearly the result of 
3-5. More generally, if one uses table 5 to evaluate any 
subtraction X-Y, then the corresponding element of table T 
is the result of the commuted expression Y-X. Consequently, 
a function is commutative only if its function table A 
agrees with its transpose QA. 

5 T 
0 -

1 
-

2 3 4 - 5 6 0 1 2 3 4 5 6 
1 
::' 
3 

0 
1 
2 

1 
0 
1 

-
2 

- 1 
0 

- 3 
2 

-
1 

-
4 

3 -
::' 

5 
-

4 

3 

- 1 
2 - 3 

0 
1 -
7 

1 
0 
1 

2 

1 
0 

3 
2 
1 

4 
3 
2 

5 

4 
3 

4 3 2 1 0 1 -
2 - 4 - 3 2 1 0 1 2 

5 4 3 2 1 0 1 -
5 4 - 3 2 

- 1 0 1 
6 5 4 3 2 1 0 -

6 
-

5 4 - 3 -
2 

- 1 0 

5"-(17)°.-17 T"-Q5 

Function Tab les for Subtraction 

Figure 14.1 
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Most functions of interest are defined on a limitless 
domain (e.g., all numbers) and any function table therefore 
represents only a part of the domain. Consequently, the 
fact that a function table agrees with its transpose does 
not prove that the function is commutative, since an 
enlarged table might show that it is not. However, some 
important functions are defined for a limited domain (i.e., 
for only a small number of arqument values), and for such a 
function it is possible to make a complete function table 
and determine the properties of the function directly from 
the table. 

We will illustrate this by defining four important 
lQgiggl functions, i.e., functions whose domains are limited 
to logical values (] and 1. They are called gDQ, Q~, 

DQt=~DQ, and DQt=Q~, and are denoted by A, V, ~, and ¥, 

respectively. They are completely defined by the function 
tables of Figure 14.2. These tables are all symmetric 
(i.e., agree with their transposes), and these functions are 
therefore all commutative. 

A I o 1 v 'J ~ I (] 1


0--1 o o o o 0-1-11 ~-ti- ~
 
1 o 1 1 1 1 (] 1 o o 

and or not-and not-or 

Function Tables for Logical Functions 

Figure 14.2 
tE3 

Thg MgthQQ Qi ~~h9Y2tiQD. The process of examining all 
possible cases to determine some property of a function 
(used above on the logical functions) is called the mgthgQ 
Qi g~h9Y2tiQD. It can often be applied even if the number 
of possible values of the arguments is unlimited. For 
example, the arguments of the function s can take on an 
unlimited number of values, but it is only necessary to 
consider three cases: if the arguments are arranged in 
ascending order according to value, then the order is either 
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x Y, in which case the result of the function XsY is 1, or 
the order is Y X in which case the result of XsY is (] or 
the two are equal, in which case the result is 1. This may 
be summarized in a table as follows: 

Case I XsY 

X Y I 1
 
Y X I o
 
Y=X I 1
 

Moreover, if a column for the expression YsX is added, the 
table appears as shown in Table 14.3. This table shows that 
the function s is not commutative. 

Case I r I YsX 

X Y 1 o 
Y X o 1 

Y=X 1 1 

Non-Commutativity of s 

Table14.3 

The same scheme of exhaustion can be used to determine 
the commutativity of the other relations < = 2 > and~, 

and of the functions rand L. For example, Table 14.2 shows 
that maximum is commutative. 

Case I xr Y I rr X 

yX Y Y 
Y X X X 
Y=X X X 

Commutativity of 

Table 14.4 

ffi4 
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14.3. ASSOCIATIVITY 

Since X+(Y+Z) yields the same result as (X+Y)+Z, the 
function + is said to be ~~~Qgi~tiy~. Multiplication is 
also associative, that is, 

( Xx(YxZ))=«Xxy)xZ) 

It is easy to show that subtraction and division are !:!Qt 
associative , For example, 4-(3-2) yields 3 and (4-3)-2 

yields -1. 

The associativity of the maximum function can be 
established by examining all possible cases. If three names 
X, Y, and Z are arranged in non-decreasing order according 
to their values, they can occur in exactly six possible 
arrangements. These are shown in Table 14.5, together with 
columns showing the evaluation of the expression Xr(yrZ) and 
(Xry)rz. This evaluation proceeds as follows. The first 
column shows the values of the expression Xry, and the 
second shows the maximum of these values and Z; the third 
column shows the values of yrZ, and the fourth column shows 
the maximum of X and these values. Since columns 2 and '+ 
agree, the function r is associative. 

Case I Xry I (xry)rz I yrz I xr(yrz) 

x y z I y I Z Z I Z 
X 
y 
y 

Z 
X 
Z 

y 
Z 
X 

I 
I 
I 

y 
X 
X 

I 
I 
I 

y 

Z 
X 

y 
Z 
Z 

I 
I 
I 

y 
Z 
X 

Z 
Z 

X 
y 

y 
X 

I 
I 

y 

X 
I 
I 

y 

X 
y 
y 

I 
I 

y 

X 

Associativity of 

Table 14.5 
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14.4. DISTRIBUTIVITY 

The identity 

(Xx(Y+Z))=( (XxY)+(XxZ)) 

is said to represent the gi~tKiQYiiyiiY Ql roYlii~lig~iiQn 
QY~~ gggiiiQD, since it shows that the effect of 
multiplication by X on the sum y+z (shown to the left of the 
equal sign) can be said to gi§i~iQYig equally over each of 
the arguments Y and Z as shown on the right. 

To see why multiplication distributes over addition, 
it is helpful to use the picture of multiplication 
presented in the discussion of commutativity, that is, the 
product of two factors P and Q is pictured as the number of 
elements in the array (P,Q) p '0'. The left side of the 
identity of the preceding paragraph is then represented by 
the array (X,Y+Z)p'D', and the right side by the sum of the 
arrays (X,Y)p'D' and (X,Z)p'D'. For example, if X~4 and y~g 

and Z~5, then: 

(X,Y+Z)p'D' 
DDDDDDDDDDDDDD 
00000000000000 
DDDDDDDDDDDDDD 
DDDDDDDDDDDDDD 

(X,Y)p'D' (X,Z)p '0' 
DDDDDDDDD 00000 
DDDDDDDDD DDDDD 
DDDDDDDDD DODDD 
DDDDDDDDD DO ODD 

If the last two arrays are pushed together they form an 
array identical to the first and therefore contain the same 
total number of elements as the first. 

!B8-9 

The function 9Dg distributes over QI, that is: 

(XA(YVZ))=«XAY)V(XAZ)) 

Since the arguments X, Y, and Z are each limited to the 
values 0 and 1, this identity can be examined by evaluating 
the expressions for each of the eight possible cases as 
shown in Table 14.6. 

X Y Z I yvZ I XA(YVZ) I XAY I XAZ I (XAY)V(XAZ)

0 0 0 I 0 I 0 I 0 I 0 I 0 
0 0 1 I 1 I 0 I 0 I 0 I 0 
0 1 0 I 1 I 0 I 0 I 0 I 0 
0 1 1 I 1 I 0 I 0 I 0 I 0 
1 0 0 I 0 I 0 I 0 I 0 I 0 

1 0 1 I 1 I 1 I 0 I 1 I 1 
1 1 0 I 1 I 1 I 1 I 0 I 1 
1 1 1 I 1 I 1 I 1 I 1 I 1 

Distributivity of A over v 

Table 14.6 

[1J1O-12 
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The function I distributes over L, that is, 

(XI (Yl z» =( (XI Y)l (XI z) ) 

To examine this putative identity, it is necessary to 
consider the six possible arrangements of the arguments 
X, Y, and Z when arranged in non-decresing order according 
to value. This is shown in Table 14.7 

__~~~~ __ 1_~~~_1_~~~~~~l_1_~~~_l_~~~_l_~~~~2~~~~~l 

X Y Z I Y I y I Y I Z I v 

X ~ Y I Z I Z I Y I Z I z 
Y X Z I Y I X I X I Z I X 
Y Z X I Y I X I X I X I X 
Z X Y I I X I Y I X I X 
z y X I z I X I X I X I X 

Distributivity of lover 

Table 14.7 

A function may distribute over itself. For examp le , 
the function L does so: 

( XL ( YL Z) ) = ( (X LYL ) (XL Z ) ) 

This fact can be examined by means of a table similar to 
Table 14.7. It can easily be shown that plus does not 
distribute over itself. For example, 3t('++5) is not equal 
to (3 -t- I; ) t ( 3 t 5 ) • 

The distributivity properties of functions can be 
summarized conveniently in a table. For example, for the 
functions t x I and L, the results derived thus far are 
shown in Table 14.8. For example, the second row (labelled 
x), shows that x distributes over t. The blank entries of 
the table could be filled in by further analysis. For 
example, plus does not distribute over either itself or 
times, but it does distribute over both maximum and minimum; 
the complete first row of Table 14.8 would therefore be 
o 0 1 1. 
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t 

t I 0 
x I 1 

I 1 

I 1 

Some distributivity properties 

Table 14.8 

ffi13-15 

14.5. IDENTITIES BASED ON COMMUTATIVITY, ASSOCIATIVITY, AND 
DISTRIBUTIVITY 

It is important to recognize that an identity such as 
(XxY)=(YxX) applies not only to the simple names X and Y, 
but also to any expression that may be substituted for them. 
For example, if the expression (pxQ-R) is substituted for X, 

and the expression (MtRxQ) is substituted for Y, then the 
foregoing identity (representing the commutativity of 
multiplication) ensures that 

(pxQ-R)x(MtpxQ) 

is equivalent to 

(MtRxQ)x(PXC!-R) 

The combined use of the properties of commutativity, 
associativity and distributivity leads to a host of 
identities too numerous to list. For example, (AtB)xC is 
equivalent to (,(,lt3) (since is commutative), which isY 

equivalent to ('>,1)t( Cx3) (since x distributes over t), 
which is equivalent to (rlxC)t(3xC) (since x is commutative). 
Consequently, (At.'J)xC is equivalent to (AxC)t(BxC). 

In order to show the derivation of such a result 
clearly, it is convenient to simply list the successive 
equivalent statements, one below the other, together with 
notes to the right of them showing what property was used to 
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derive each new equivalent statement. For example, the 
derivation used in the preceding paragraph would be shown as 
follows: 

(A+B)xC 
Cx(A+B) Commutativity of x 
(CxA)+( CxB) Distributivity of x over + 
( AxC)+(BxC) Commutativity of x 

[BIG-18 

For convenience, the notes written to justify each 
step in a derivation will be abbreviated; the symbols k, ~, 

and Q will be used to denote commutativity, associativity 
and distributivity. Thus k+ means that + is commutative, d x 

means that x is associative, and xQ+ means that x 
distributes over +. 

The following shows the use of these abbreviations in 
the derivation of a rather important identity: 

(A+B)x(C+D) 
( (A+B) xC) +( (A+B) xD) xQ+ 
( ex ( A+B) ) +( D x (A+ B ) ) kX 

( (CxA)+ (CxB) ) +( (DxA) + (DxB» xl2 + 
( (AxC)+(BxC»+((AxD)+(BxD» (;:x 
(AxC)+( (BxC)+(AxD) )+(BxD) d+ 
(AxC)+( (AxD)+(BxC» +(BxD) 1:+ 
(AxC)+(AxD)+(BxC)+(BxD) d+ 

Consequently, the first expression, (A+B)x(C+D), is 
equivalent to the last, (AxC)+(AxD)+(BxC)+(BxD), that is: 

(A+B)x(C+D) 
(AxC)+(AxD)+(BxC)+(BxD) 

In other words, each element of the first sum is multiplied 
by each element of the second sum and the four resulting 
terms are added together. 

EBl9-21 

The foregoing result will be used in deriving further 
results, and to make it easy to refer to, it will be given 
the name Theorem 1. One reason for the importance of 
Theorem 1 is that it has some useful special cases. For 

example, if A and C both have the same value x, then 
according to Theorem 1, the expression (X+B)x(X+D) is 
equivalent to (XxX)+(XxD)+(BxX)+(BxD). This leads to the 
following derivation: 

(X+B)x(X+D) 
(B+X) x(D+X) k+ 
(BxD)+(BxX)+(XxD)+(XxX) Theorem 1 
(BxD)+((BxX)+(XxD»+(XxX) £1+ 
(BxD)+( (XxB)+(XxD) )+(XxX) k X 

(BxD)+(Xx(B+D»+(XxX) xQ+ 
(BxD)+((B+D)xX)+(XxX) ~x 

(BxD)+( (B+D) xX)+( X*2) (X*2)=(XxX) 
(BxD)+((B+D)x(X*1»+(X*2) (X*l)=X 
((BxD)xX*O)+( (B+D)xX*l )+(X*2) (X*O)=l 
+!((BxD)xX*O),((B+D)xX*1),(X*2) (P+Q+R)=+/P,Q,R 
+/((BxD),(B+D),l)xX*O 1 2 ( ( P[ 1] »:Q [ 1 ] )+ ( P[ 2] x Q [ 2] ) 

+(P[3]xQ[3]»=+!PxQ 

Finally then: 

(X+B)x(X+D)
 
+/((BxD),(B+D),l)XX*O 1 2
 

In other words, (X+B)x(X+D) is equivalent to a polynomial in 
X with the coefficients BxD and B+D and 1. 

For example, if B is 2 and D is 3, the polynomial has 
the coefficients 5, 5, and 1. In other words: 

((X+2)x(X+3»=(+/5 5 1xX*O 1 2) 

The product (X+2)x(X+3) can also be expressed in the 
form x/X+2 3. In general if V is any two-element vector, 
then x/X+V is equivalent to (X+V[1])x(X+V[2]), Moreover, 
the coefficients of the equivalent polynomial are given by 
x/V and +/V and 1. That is: 

(x/X+V)=+/( (x/V), (+/V), l)xX*O 1 2 
[jJ22-23 

14.6. IDENTITIES ON VECTORS 

Thus far, the identities considered have been applied 
only to scalar arguments. However, many of them apply 
equally to vectors. For example, the commutativity of x 
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;sures that (AxB)=(BxA) and that 3x5 is therefore equal to 
x3. However, if A is the vector 3 5 7 and B is the vector 
o -1, it is still true that (AxB)-(BxA). For example: 

A+-3 5 7 -B+- 5 0 1 
AxE 

-
5 0 7 

BxA -0 7 

>mmutativity of x applies for vectors because it applies 
>r each of the corresponding pairs of elements of the 
,guments. 

For the same reason, the associativity and 
Lstributivity of functions applies to vectors as well. For 
{ample: 

A+-3 5 7
 
B+-5 0 1
 
C+-6 4 2
 
(HB)lC
 

5 7
 
AI (BrC)
 

5 7
 
Ax(B+C) 

20 7 
(AxB)+(AxC) 

20 7 
ALB 

0 1 
C+(ALB) 

4 1 
C+A 

9 9 
C+B 

4 1 
(C+A)L(C+B) 

4 1 

aJ24-25 

There are also some important identities concerning 
le reduction of vectors. Thus (+/A)+(+7B) is equivalent to 
IA,B. For example: 

(+/1 2 3)+(+/4 5 6 7)
 
(1+2+3)+(4+5+6+7) Definition of +7
 
1+2+3+4+5+6 +7 B.+
 
+/1 2 3 4 5 6 7 Definition of +7
 
+/(1 2 3),(4 5 6 7) Defini tion of , 
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Moreover, if the vectors A and B are of the same dimension 
so that A+B is meaningful, then (+IA)+(+IB) is equivalent to 
+IA+B. For example, if A is 1 2 3 and B is 4 5 6: 

(+/1 2 3)+(+/4 56)
 
(1+2+3)+(4+5+6 ) Definition of +1
 
1 +2+ (3+4) +5+6 ,:1.+
 
1+2+(4+3)+5+6 Q+
 
1+(2+4)+(3+5)+6 ,:1.+
 
1+( 4+2) +( 5+3 )+6 Q+
 
(1+4)+(2+5)+(3+6) ,:1.+
 
+/( 1+4), (2+ 5), (3+6) Defini tion of + I
 
+/1 2 3+4 5 6 Definition of vector addition
 

Since the only properties of addition used in the 
foregoing derivations were its commutativity and 
associativity, the same results hold for any function which 
is both commutative and associative. For example: 

(( rlA)I( riB) )=( rIA,B) 
((rIA)I(rIB))=(rIA+B) 
((xIA)x(xIB))=(xIA,B) 
( ( x I A) x ( x I B) ) = ( x I A xB ) 

Thus if F is any function which is both associative 
and commutative, then 

((FIA)F(FIB))=(FIA,B) 

Since this is a very useful result which will be referred to 
again in later derivations, it will be given the name 
ThgQ~gID 2. 

Moreover, if F any functionis which is both 
associative and commutative, and A and B are vectors of the 
same dimension, then 

((F/A)F(FIB))=(FIA F B) (Theorem 3) 

This result will be called ThgQ~gID 3, as indicated by the 
note to the right of the identity. 

fB26-27 

Since x distributes over +, a product of sums can be 
expressed as a sum of products. More explicitly, if V and W 
are two vectors, then 

((+IV)x(+IW))=+I+IVo.xW (Theorem 4) 
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For example:	 Each side of the identity of Theorem 5 is a table; the 
identity will be derived by showing that (for any value of I 

V+- 3 1 4 and any value of J) the element in the Ith row and Jth 
W+- 5 a 2 6 column of the table on the left is identical with the 
(+/V)x(t/W) corresponding element of the table on the right:

104 

15 0 
Vo.W 

6 18 
((Axpo.x(BxQ))[I;J] 
((AxP)[I])x((BxQ)[J]) Definition of a,x 

5 
20 

0 
0 

2 
8 

6 
24 

(A[A]xP[I])x(B[J]xQ[J]) 
A[I]x(P[I]xB[J])xQ[J] 

Multiplication of 
d x 

vectors 

39 13 

104 

t/Vo.xW 
52 
t/+/Vo,xW 

A[I]x(B[J]xP[I])xQ[J] 
(A[I]xB[J])x(P[I]xQ[J]) 
((Aa,xB)[I;J])x((pa,xQ)[I;J]) 
((Ao,xB)x(pa,xQ))[I;J] 

Qx 

d x 

Definition of a.x 

Multiplication of tables 

1m8 The only properties of the function x used in this 
derivation are its associativity and commutativity, 
Therefore, the same derivation would apply for any function 

The preceding identity (Theorem 4) and the following which is both assocative and commutative. Hence Theorem 5 
one will both be useful in the treatment of products of remains true if any such function is substituted for x. For 
polynomials: example: 

«AxP)o.(BxQ))=((Ao,xB)x(Po.xQ)) (Theorem 5) «Afp)o.f(BfQ))=((Aa.fB)f(pa.fQ)) 
[]29~31 

For example: 
14.7. THE POWER FUNCTION 

A+-1 2 3 
B+-4 
P+-2 

5 
0 

6 
2 

7 Consider the following expressions: 

Q+- 3 1 3 1 2*3 
AxP 8 

2 0 6 2*4 
BXQ 16 

12 5 18 7 
(AxP)o.x(BxQ) 128 

(2*3)x(2*4) 

24 
0 

10 
0 

36 
0 

14 
0 128 

2*(3t4) 

72 30 108 42 (2*(3t4))=((2*3)x(2*4)) 

A 0, xB 
4 
8 

5 
10 

6 
12 

7 
14 

The foregoing result suggests the following identity: 

12 15 18 21 (A*(BtC) )=( (A*B)x(A*C)) (Theorem 6) 

po.xQ It can be derived as follows: 
6 2 6 2 
o 
6 

o 
2 

o 
6 

0 
2 

(A*B)x(A*C) 
(x/BpA)x(x/CpA) (P*Q)=x/QpP 

24 
o 

(A o • xB ) x ( e«. x Q ) 
10 36 14 

o 0 0 

x/(BpA), x(CpA) 

x/(BtC)pA 
A*(BtC) 

Theorem 2 
Definitions 
(P*Q)=x}QpP 

of p and , 

ffi32 
72 30 108 42 
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Theorem 5 leads to a very useful identity on vectors. 
If X is a scalar and E and F are any vectors, then: 

«X*E)oox(X*F))=(X*Eo.+F) (Theorem 7) 

For example: 

E+O 1 2
 
F+O 1 2 3
 
X+2 
X*E 

2 4
 
X*F 

1 2 4 8
 
(X*E)o.x(X*F) 

1 2 4 8
 
2 4 8 15
 
4 8 15 32
 

Eo.+F 
0 1 2 3
 
1 2 3 4
 
2 3 !I 5
 

X*Eo.+F 
1 2 4 8
 
2 4 8 15
 
4 8 15 32
 

[lJ33 

14.8. SUM OF POLYNOMIALS 

The polynomial function introduced in Chapter 13 was 
defined as the function P whose definition appears below: 

'VZ+C P X
 
Z+(Xo,*-1+1PC)+.XC'V
 

Consider the polynomials 1 3 5 P X and 5 1 4 P X. Their sum
 
can be shown to be equivalent to the polynomial 7!1 g P X
 
whose coefficient vector is the sum of the coefficient
 
vectors of the given polynomials, that is:
 

((1 3 5 P X) + (5 1 4 P X)) =((1 3 S +6 1 4) P X) 
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In general, if X is a scalar and A, Band E are 
vectors of the same dimension, then 

((+/AxX*E)+(+/BxX*E))=(+/(A+B)xX*E) 

In particular, if E is the vector -1+1pA, then the left side 
of the foregoing identity is the sum of the polynomial with 
coefficients A and the polynomial with coefficients B , and 
the right side is the polynomial with coefficients A+B. The 
derivation of the identity follows: 

(+/AxX*E)+(+/BxX*E)
 
+/(AxX*E)+(BxX*E) Theorem 3
 
+/ ( ( X* E) x A l+ ( ( X* E) x B ) ex
 
+/(X*E)x(A+B) x!2 +
 
+/(A+B)x( X*E) {;x
 

The polynomials C P X and (C,o) P X are clearly 
equivalent, since an extra term in the polynomial with a 
zero coefficient will contribute nothing to the sum. For 
example, if C+1 2 3, and X+4, then: 

C P X
 
+/1 2 3x4*0 1 2
 
+/1 2 3x1 !I 16
 
+/1 8 48
 
57
 

and 

( C, 0) P X
 
+/1 2 3 Ox1 4 16 54
 
+/1 8 48 0
 
57
 

More generally, any number of zeros may be appended to 
the right of a vector of coefficients without changing the 
polynomial, that is, ((C,NpO) P X)=(C P X). Consequently, 
two polynomials with coefficients C and D of different 
dimensions may be added by first appending enough zeros to 
the shorter of the two to yield a vector of the S~e 

dimension as the longer. For example, if (pD)<pC, thenl 

((C+(pC)tD) P X)=(C P X)+(D P X) 



The following identity applies to every case, that is, for 
(pD) less than, equal to, or greater than pC: 

M+(pC)f(pD)
 
(((MtC)t(MtD» P X)=(C P X)t(D P X)
 

1ID4-35 

14.9. THE PRODUCT OF POLYNOMIALS 

The product of two polynomials is equivalent to 
another polynomial whose coefficients are easily determined 
from the coefficients of the given polynomials. In other 
words, 

(E P X)=((C P X)x(D P X» 

and the coefficients E can be determined from C and D. The 
method will first be described by means of an example and 
the derivation will be shown later. 

Suppose that C+3 1 4 and D+2 0 5 3. First form the 
multiplication table Co. xD: 

Co.xD 
6 o 15 g 

:' o 5 3 
8 o 20 12 

Then draw diagonal lines through the table and sum the 
numbers on each diagonal, placing each sum at the end of its 
diagonal as shown below: 

Co.xD 
6 /0 15/9


~2/ 0/ 5 3
 

/~8/0~0~2 
6 2~~~/ 
The result is the vector of coefficients 6 2 23 14 23 12;
 
that is:
 

(6 2 23 14 23 12 P X)=(3 1 4 P X)x(2 0 5 3 P X) 

The reasons why the method works will now be examined. 
The product of the polynomials C P X and D P X may be 
written as: 

(t/CXX*-ltlpC)X(t/DxX*-ltlpD) 

In this form it is clear that the product is a product of 
the sums of two vectors V and W, where V+CXX*-ltlPC and 
W+DxX*-ltlpD, that is, (t/V)x(t/W). The results of Theorem 
4 can therefore be applied to express the result in terms of 
the multiplication table for V and W: 

((t/V)x(t/W»=t/t/Vo.xW 

Since V is the product of two vectors (that is, C and 
X*-ltlPC) and W is the product of two vectors, Theorem 5 can 
be applied to write the table VO.XW as the product of the 
two tables CO,xD and (X*-ltlpC)O.x(X*-ltlpD). That is: 

(Vo cxW)=(Co cxD)x((X*-ltlpC)O.x(X*-ltlpD» 

But Theorem 7 allows us to write X*(-ltlpC)O.t(-ltlpD) for 
the second table; that is, 

( Vo , xW ) = ( Co, xD) xX*( -1 -t- l pC) 0 -t- ( -it 1 PD)0 

For example, if C and D are as defined in the earlier 
example (that is, C+3 1 4 and D+2 0 5 3), then: 

CO,xD (-ltlpC) o. t( -ltlpD) 
6 o 15 9 o 1 2 3 
2 o 5 3 1 2 3 4 
8 o 20 12 2 3 4 5 

The table on the right gives the exponents of X. 

To summarize: 

(C P X)x(D P X) 
(t/CXX*-ltlpC)X(t/DxX*-ltlpD) Definition of polynomial 
t/t/(CXX*-ltlpC)O,x(DxX*-ltlpD) Theorem 4 
t/t/(Co,xD)x(X*-ltlpC)O.x(X*-ltlpD) Theorem 5 
-t- / -t- / ( Co , xD) x X* ( -1 -t- 1 pC) o. t ( -1 t 1 PD) Theorem 7 

It is clear that the table of exponents 
(-ltlpC)O,t(-ltlpD) will always be of the form shown in the 
example in the preceding paragraph, that is, it contains a 
zero in the upper left corner, l's in the next diagonal, 2's 
in the next diagonal, and so on. Hence the element of the 
table Co,xD that is multiplied by X*O is in the upper left 
hand corner, the elements multiplied by X*l are on the next 
diagonal, etc. Hence the appropriate coefficients for X*O 
and X*l, and X*2, etc., in the product polynomial are 
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obtained as the upper left corner of Co.xV, the sum of the 
next diagonal of Co. xV, the sum of the next diagonal, etc. 
This is the pattern shown in the rule given at the outset 
for multiplying polynomials. 

[jJ36 

lq.lO. THE PRODUCT x/X+V 

In Section lq. 5 it' was shown that the product 
(X+2)x(X+3) could be expressed in the form x/X+2 3, and 
that, more generally, if V were any 2-element vector, then 
x/X+V was equivalent to (X+V[lJ)x(X+V[2J). Moreover, it was 
shown that x/X+V was equivalent to the polynomial with 
coefficients (x/V),(+/V),l. The case of a vector V of 
arbitrary dimension will now be considered. 

The expression X+2 is equivalent to the polynomial 
with coefficients 2 1, that is, (X+2)=+/2 1xX*0 1. 
Similarly, X+3 is equivalent to the polynomial with 
coefficients 3 1. Therefore, the product (X+2)x(X+3) can be 
treated as a product of polynomials. The coefficients of 
the product polynomial may then be obtained by the method of 
Section lq.9 as follows: 

2 l o.x3 1 

6 2
 
/3/1
 

-: /1/
6 5 

This result agrees with that obtained in Section lQ.5. 

Consider now the product x/X+4 2 3: 

x/X+4 2 3
 
(X+4)X(X+2)x(X+3) Definition of x]
 
(X+4)X(6 5 1 P X) Preceding result
 
(4 1 P X)x(6 5 1 P X) X+4 as a polynomial
 

This last product of polynomials can again be evaluated by 
the method of the earlier section: 

4 1 D x S 5 1• 
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It should now be clear that the product x/X+V is a 
product of polynomials with coefficients V[lJ,l and V[2J,1 
and V[3J,1, etc. The coefficients of a polynomial 
equivalent to x/X+V can therefore be obtained by multiplying 
these polynomials together in turn. The following function 
Q produces the desired coefficients as a function of the 
vector V: 

n+Q V 
[1] 2+1 
[2 J I +p V 
[3J 2+(V[I]x2,0)+(0,2) 
[4J I+I-1 
[5J -+3xI"-01i 

For example: 

Tf',Q+3 
Q 4 2 3 

Q[3J 3 1 
Q[3J 6 5 1 
Q[3J 25 26 9 1 
24 26 9 1 

IJJ37-38 

lQ.ll. THE FACTORIAL POLYNOMIAlS 

The factorial polynomials introduced in Section 10.7
 
for the purpose of fitting functions were defined as
 
follows:
 

Degree of 
Factorial Factorial 
rQ1YDQillif!1 rQ1YDQm!f!1 

° 1 
X1 

2 x« X-ll
 
3 Xx(X-ll x(X-2)
 
4 Xx(X-1)x(X-2)x(X-3)
 

Such a polynomial can also be w~itten in the ~a~
 
x/X+V, where V is the vector 1-IN and N is the degree of ~e
 
polynomial.
 

24/0/4

ij//1

24 26 9 1 

Hence (x/X+4 2 3)=(24 26 9 1) P X 
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The coefficients of a polynomial equivalent to the 
factorial polynomial of degree N can therefore be obtained 
by applying the function Q to the argument 1-1N. For 
example: 

Q - 0 
o 

Q -0 1 
0 1 1 

Q -0 

0 2 3 1 
Q -0 1 2 3 -

0 6 11 6 1 

Hence: 

(0 1 P X)~X
 

(0 -liP X)=Xx(X-1)
 
(0 2 3 1 P X)=Xx(X-1)x(X-2)
 

(0 6 11 6 1 P X)=Xx(X-1)x(X-2)x(X-3)
 

In the introduction to this chapter it was shown that 
the function +/(lX)*2 (that is, the sum of the squares of 
the integers to X) was equivalent to the following sum of 
factorial polynomials: 

0+X+((3~2)xXx(X-1))+(2~6)xXx(X-1)x(X-2) 

Moreover, it was stated that this expression was equivalent 
to the polynomial (~6)x(X*0 1 2 3)+.xO 1 3 2. This 
statement can now be proven as follows: 

0+X+«(3~2)xXX(X-1))+(2~6)xXx(X-1)x(X-2) 

(~6)x6x(X+((3~2)xXx(X-1))+(2H)xXx(X-1)X(X-2)) ((~6)xG)=1 

( ~ 6 ) x ( ( 6 x X) +( 9 x Xx ( X- 1 ) ) +( 2 x Xx ( X-1 ) x ( X- 2) ) ) xi2 +
 
(~6)x((6xO 1 P X)+(9xO -liP X)+(2 xO 2 -31 P X) ) Note 1
 
(~6)x((0 6 P X)+(O -9 9 P X)+(O 4 -6 2 P X)) Note 2
 
(~6)x((0 6 0 0 P X)+(O -9 9 0 P X)+(O 4 -6 2 P X) )Note 3
 
(~6)x(0 1 3 2 P X) Note 4
 
( ~ 6 ) x+ /0 1 3 2 x X* 0 1 2 3 Note 5
 
(~6)x+/(X*0 1 2 3)~0 1 32 Qx
 
(~6)x(X*0 12 3l+. xO 1 32 Note 6
 

Note 1: Polynomial equivalent of factorial polynomials 
Note 2: (Ax(C P X))=(AxC) P X 
Note 3: ((C,O) P X)=C P X 
Note 4: Sum of polynomials 
Note 5: Definition of Polynomials 
Note 6: Definition of +.X 

ij-]39-40 
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14.12. MATHEMATICAL INDUCTION 

The function +/lX can be analyzed by constructing a 
difference table as follows: 

X I +/lX I D+/1X I D D+/1X I D D D+/1X 

o o 1 1 o
 
1 1 2 1
 
2 3 3
 
4 10
 

The results of Section 10.7 may then be applied to conclude 
that the function +/lX was equivalent to the following sum 
of factorial polynomials: 

O+X+( ,5 xXx(X-1)) 

In drawing this conclusion it is assumed that everyone of 
the third differences (in the last-colu;D) would be o. This 
happens to be true for the function +llX, but the 
calculations of this table do not 2~QY~ it to be so. 

For example, suppose one attempted to analyze the 
function 

X+(o5 xXxX-1)+Xx(X-1)x(X-2)x(X-3)x(X-4) 

The first five entries in the difference table would appear 
exactly the same as the table shown for +/lX, and one might 
erroneously conclude that all third differences would be 
zero. However, if one considered one further row, the table 
would appear as follows: 

XI +/lXID+/1X!D D+/1XID D D+/1XID D D D+/1XID D D D D+/1X 

01 0 1 I 1 I 0 0 I 120 

11 1 2 I 1 I 0 120 
21 3 3 I 1 I 120 
31 6 4 I 121 
41 10 125 
51135 

A difference table can yield the coefficients of a 
polynomial which fits a given function exactly for a certain 
number of values of the argument and which 2~QQ~lY fits it 
very nearly or exactly for all values of the argument, but 
study of the difference table alone cannot ensure that it 
fits for all points. It is therefore desirable to develop 
other means of verifying that an expression derived from a 
difference table does in fact agree with the given function 
for points other than those actually used in the table. 
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Let us suppose that the functions t/lX and Xt.5xXxX-l 
do agree for some integer value K, that is, we suppose that 

(t/lK)=Kt.5tKxK-l 

From this assumption alone, we will now show that they must 
agree for the argument Ktl. 

We have undertaken to show that t/lKtl is equal to 
(Ktl)t.5 x(Ktl)x(Ktl)-1, in other words to show that 

(t/lKtl)-«Ktl)t.5 x(Ktl)x(Ktl)-1) 

is zero. 

Let	 the functions F and G be defined as follows: 

'JZ+P X	 'lZ+-G X 
Z+-t/lX'l	 Z+-Xt.5xXxX-l'l 

We wish to show that F and G agree for all integer values of 
their argument, that is, that (F X)-(G X) is zero for every 
integer X. We begin by expressing the difference for the 
argument Ktl in terms of the difference for argument as 
follows: 

(F Ktll -(G Ktll 
( til Kt 1 ) - ( (K t 1 J+ . 5 x (K t 1 ) x (K t 1 ) -1 ) Definitions of F and G 
«t/lK)t(Ktl))-«Ktl)t.5 x(Ktl)xK) (t/lKtl)=(t/lK)tKtl 
«t/1K)t(Ktl)-(Ktl))-.5 x(Ktl)xK 
«t/1K)tO)-.5 x(Ktl)xK 
(t/lK)-.5 x(2 xK)t(K-l)xK 
(t/lK)-Kt.5 xKxK-l 
(F K)-(G K) Definitions of F and G 

Hence the difference between F Ktl and G Ktl must be 
the same as the difference between F K and G K. In other 
words, if F K and G K are equal, then F Ktl and G Ktl must 
also be equal. 

But for K=l, F K and G K are obviously equal; that is 
till is equal to It.5xlxO. Hence F ltl must equal G ltl, 
that is, F 2 equals G 2. Thus, for K=2, F K equals G K. 
Therefore F 2tl equals G 2tl, and so on for all possible 
integer arguments. Hence F X equals G X for all positive 
integer values of X. 
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This method of proof is called IDgthgIDgti~gl ing~~tiQn. 
To prove that two function F and G are equivalent, proceed 
as follows: 

1)	 Show that the difference (F Ktl)-(G Ktl) is equal to 
the difference (F K)-G K. 

2)	 Show that F 1 is equal to G 1. 

If items 1 and 2 can both be shown to be true then the 
functions must agree for all positive integer arguments. 

[jJ41 
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Chapter 15 

LINEAR FUNCTIONS 

15.l. INTRODUCTION 

The expression 4+3xX is said to be a li~g~~ function. 
The reason for the term" linear" becomes evident on plotting 
the function; as shown in Figure 15.1, the plot forms a 
straight line. 

More generally, if A and B are any scalar constants, 
then the expression A+BxX is a linear function. A plot of 
several linear functions sharing the same value of Band 
having different values of A (Figure 15.2) shows that the 
graphs have the same slope (i.e., they are parallel), but 
that they intercept the Y-axis at different points 
determined directly by the value of A. That is, the 
Y-intercept of the function 5+3xX is 5, the Y-intercept of 
2+3xX is 2, and so on. 

A plot of the function A+BxX for a common value of A 
and different values of B (Figure 15.3) shows that the 
functions share the same Y-intercept but have different 
slopes which are directly determined by B, that is, the 
vertical distance between any two points on the graph is B 
times the horizontal distance between them. 

If A, B, and C are scalar constants, then the 
expression A+(BxX)+(CxY) is a function of two arguments X 
and Y. For any fixed value of X the expression is a linear 
function of Y. For example, the function 1+(2xX)+(3xY) is 
equivalent to 1+(2x4)+(3xY) if X is given the fixed value 4. 
This in turn is equivalent to 9+3 xY, which is clearly a 
linear function of Y. 

Similarly, for a fixed value of Y, the expression 
A+(BxX)+(CxY) is a linear function of X. Consequently it is 
said to be a liD~gr tgD~~iQD Qf t~Q g~ggmgDt§. 

If the two arguments X and Yare combined in a single 
two-element vector V, then the linear function 1+(2xX)+(3 xY) 
can be written more concisely as 1+(2 3+.xV). more 
generally, for any scalar A and any two-element vector B, 
the expression A+B+.xV represents a linear function of the 
two arguments V[l] and V[2]. 
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This vector form of writing linear equations possesses 15.2. MAPPINGS 
three important advantages. First, the expression A+B+.xV 
applies for a linear function of any number of arguments; 
it is only necessary that B and Veach have the same number 
of elements as there are arguments. For example, the 

If A is a two-element vector and 
then the expression A+B+.xV applies to 
V and yields a two-element vector as a 

B is a 2 by 2 matrix, 
a two-element vector 

result. For example: 
expression 1+2 3 4+.xV represents a linear function of the 
three arguments V[l], V[2], and V[3]. It could be written 
in terms of these individual arguments as follows: 

A-<- -2 4 
B-<-2 2p 1 2 3 2 
B 

1+ ( 2 x V[ 1] )+ ( 3 x V[ 2] l+ ( 4 x V[ 3] ) 1 2 
3 2 

or, if the three arguments are called X, Y, and Z it could B+. xl 2 
be written as: 5 7 

A+B+. xl 2 
1+( 2xX)+( 3xy)+( 4XZ) 

m-3 
3 3 

The vector 1 2 can be shown as a point on the graph as 
can the vector 3 3 which results from applying the linear 

The second advantage of using the expression A+B+.xV 
is that it can express not only one linear function, but 
several. For p.xample, if B is the matrix 

function A+B+.xV to it. Hence the effect of the linear 
function can be shown as a map by drawing an arrow from the 
point representing the vector 1 2 to the point representing 
the result 3 3. This is shown in Figure 15.4. 

B-<-2 2p2 3 1 4 A more complete picture of the effect of the linear 
B function A+B+.xV can be obtained by computing and plotting 

2 3 the results from applying it to a number of points. Figure 
1 4 15.5 shows the mapping from the points 1 2 and 1 5 and 5 5 

and 5 2. 
and A is the vector 5 7, then A+B+. xV yields two results: iii7 

5+2 3+.xV 
The effects of A and B can be studied separately by 

and considering certain special cases. For example, if A has 
the value 0 0, then A+B+.xV is equivalent to B+.xV. 

7+1 4+. xV 
The linear function B+.xV always leaves the origin 

Hence A+B+.xV 
arguments. 

expresses two linear functions in two (the point 0 0) unchanged, that is, B+.xO 0 is 0 0 no matter 
what B is. Apart from this simple fact, the mapping 
produced by B+.xV can be quite complicated. For example, if 

In general, if A is a vector of M elements and B is 
M by N matrix, then A+B+.xV expresses M linear functions 
N arguments. 

an 
in 

1iJ4-6 

B-<-2 
B 

2.5 

2p2.5 

-
0.5 

.5 1 . 5 .5 

1.5 0.5 
B+.xl 7 

1 5 
B+. «: 6 

2 6 
B+. x 3 5 

5 
B+ox4 4 

8 8 
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then the mapping produced by B+.xV is shown in Figure 15.6. 
From this figure it appears that the effects on different 
points may be quite different. For example, the last point 
5 is "stretched" (that is, it maps into a point straight 
away from the origin in the same direction as 5), the second 
point Q maps into itself, and the arrows from P and H lead 
in opposite directions. Points (such as P, Q, H, and 5) 
which lie on a line do, as remarked before, map into points 
which also lie on a line. 

ijJ8 

12­15.3.	 ROTATIONS 

There is a certain class of matrices which yield a 
very simple and important mapping. If B is a 2 by 2 matrix 
of the form 8­

5 C .: -c 5 
4­

and C is equal to either (1-5*2)*.5 or -(1-5*2)*.5, then the 
mapping B+.xV is a ~QtgtiQD about the origin. That is, each 
point maps into a point the same distance from the origin 

7

'"
 

0-----------1------------------- ­

I
I
I
I 

but displaced by rotation through a certain angle. Such a 
matrix will be called a ~Qt£tiQD IDgt~i~. For example, if 
5+.5, then (1-5*2)*.5 is equal to (3~4)*.5 (which is 
approximately .866), and B is the matrix: 

0.5 0.866 

4­
I 

I
I
I
I
II 

5 o	 10 

Figure 15.7 shows the mapping B+.xV applied to the following A Linear Mapping 
set of points: 

0.866 0.5 

Figure 15.6 
B+.xO 0 

o	 0 
B+.xl 1 
-1. 37 0.366 
B+. x2 2 

2.73	 O. 732 
B+.x 1 1 

0.366	 1. 37 
B+.xO 1 

0 0866 0.5 
B+.xl	 2 

2.23	 0.134 
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To see why this mapping is called a rotation, lay a 
sheet of translucent paper over the plot and copy onto it 
the original points V and the axes. Then place a pin 
through the origin and rotate the translucent overlay until 
one of the points V coincides with the point B+.xV into 
which it maps. It will then be seen that all points in V 
lie over the corresponding points B+.xV. Moreover, the 
an~le of rotation is the angle formed between the new and 
old positions of the axes. 

If 5 is equal to 1, then (1-5*2)*.5 is equal to zero, 
and the 

1 
o 

In this 
mapping 

rotation matrix B becomes 

0 
1 

case it is clear that B+.xV yields V for any V. 
B+.xV is therefore called the ig~ntity mapping, 

The 
and 

the matrix B is called the ig~ntity matrix. 
IB9-13 

15.4. TRANSLATION 

The effect of the vector A in the linear function 
A+B+.xV is most easily seen if B is chosen to be the 
identity matrix. In that case B+.xV yields V and the 
expression A+B+.xV is therefore equivalent to the expression 
A+V. This mapping is shown in Figure 15.8 for the case 
A+2 -1. All of the mapping arrows are parallel and of the 
same length. This sort of mapping is called a tr~n~l~tiQn. 

If the first element of A is zero, the translation is 
~grtiQ~l, moving upward if A[2] is positive and downward if 
it is negative. Likewise, if the second element is zero the 
translation is hQri~Qnt~l, to the right if A[1] is positive, 
and to the left if it is negative. 

IB14 

15.5. LINEAR FUNCTION ON A SET OF POINTS 

It is often necessary to apply the expression B+.xV to 
a number of points, that is, for a number of different 
values of V. This can be done comveniently by assembling 
the values into a single matrix M such that each of the 
points appear as a column of M. Then the expression B+.xM 
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yields a matrix whose columns are the results of applying 
the linear function to each column of M. For example, if the 
required points are 2 3 and 4 2 and 1 5, then 

M+~3 2p2 3, 4 2, 1 5 
M 

2 4 1 
3 2 5 

Moreover, if 

B+2 2p 1 2 3 2 
6- I B 

I 1 2 
I	 3 2 
I o~o 

4=o~l
I	 then 

B+. xM 
I o~o	 8 8 11 

2- I 12 15 13 

I 
I 1B15 

I ------------ _1 1 
0------- - I --I I Ii 4 5

1	 The translation A+V does not extend to a matrix of
I - 1 2 ,2 1 0 points quite so neatly as does the expression B+.xV. For 

example, if A+l 2 and M is the matrix of the preceding 
Translation paragraph, then A+2 3 is a translation of the vector 2 3 but 

A+M cannot be evaluated because A and M are not of the same 
Figure 15.8	 shape. What is needed is a matrix P of the same shape as M 

and having each column equal to A, that is: 

P 
1 1 1 
3 3 3 

Then P+M yields the desired translation of the columns of M; 

P+M 
3 5 2 
6 5 8 

The matrix P can be obtained by the expression 
9(~pM)pA. Hence the translation of a set of points M can be 
expressed as: 

(~( <j>pM)pA)+M 

and the general linear function A+B+.~V can be expressed for 
a set of points Mas: 

(~(<l>pM)pA)+B+.xM 

Hl16 
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15.6. ROTATION AND TRANSLATION A more general stretching is illustrated by the matrix 
B below: 

If B is a rotation matrix, then the function B+.xV is 
a rotation and the function A+B+.xV is a rotation followed 3 0 
by a translation. Similarly, B+.xA+V is a translation o 2 
followed by a rotation. A few experiments with these 
expressions for some chosen values of A and B applied to a For such a matrix, the expression B+.xV stretches by a 
number of points V will show that the two expressions are different amount for each coordinate. 
nQt equivalent. 1B18 

However, the same experiments will be seen to suggest 
that B+.xA+V i~ equivalent to rotation by B (that is, B+.xV) 
followed by some translation. The amount of the translation 15.8. IDENTITIES ON THE INNER PRODUCT +.x 
will be found to be not A but rather B+.xA. In other words: 

The inner product +.x has been seen to be central to 
B+. xA+ V the treatment of linear functions. Certain identities 
( B+ • xA ) +( B-t , x V) involving the inner product are also important in the study 

of linear functions. One of these has already been 
The foregoing identity expresses the fact that the established, namely, the distributivity of +.x over +: 

inner product function +.x distributes over +. This 
identity holds for any matrix B (i.e., it is not limited to B+.xA+V 
rotation matrices). A proof of this for 2 by 2 matrices is ( B +. xA ) +( B +. xV) 
fairly simple and is outlined in an exercise. The identity 
also holds for matrices B of any dimension. The proof of A second important fact is that this inner product +.x 
this is more involved and will not be attempted here, is associative, that is: 
although the reader should be able to extend the method of 
proof used for a 2 by 2 matrix to the case of a 3 by 3 M+.x(B+.xV) 
matrix. Any reader not wishing to work through the proofs (M+.xB)+.xV 
may wish to shore up his faith in the identity by performing 
a number of experiments. A proof of this will be outlined in exercises for the case 

11117 of 2 by 2 matrices M and B. 
ffi19-21 

15.7. STRETCHING 
15.9. LINEAR FUNCTIONS ON 3-ELEMENT VECTORS 

If Bis the matrix 
If V is a 3-element vector, B is a 3 by 3 matrix and A 

3 0 is a 3-element vector, then A+B+.xV is again a linear 
o 3 function of V which produces a 3-element result. 

then the expression B+.xV"stretches" the point V by a In order to get a clear picture of the mapping 
factor of 3, since each element of the result is 3 times the produced by the function A+B+.xV for vectors V of dimension 
corresponding element of V. In a plot, such stretching is 3, it is necessary to devise a way of plotting a point 
equivalent to extending the line from the origin to the 
point V to 3 times its length. If I is the identity matrix 

having 3 coordinates. This can be done as follows: Draw 
the usual coordinates for a graph on a flat piece of thick 

and r is any scalar value, then ~xI is a stretching matrix styrofoam and obtain a set of wires of various lengths. 
whose degree of stretch is equal to ~. Stick a wire into the point 3 4 on the graph so that it 

extends straight up to a length of 5 units. The tip of the 
wire then represents the point (that is, the vector) 3 4 5. 
Other points can be represented similarly. 
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The points plotted in 3-dimensions will be easier to t 
see if the wires are tipped with colored beads. Moreover, 
if two different colors are used to plot the points V and 
the points A+B+.xV, then the effect of a linear mapping can 
be observed easily. Light tape can be used to connect each 9

point to the corresponding point produced by the linear 
function. Alternatively, numeric labels identifying the 
points can be attached to them. 8
 

For example: 

7
B+3 3p2 0 1 1 2 1 1 1 1
 
M+~5 3p1 1 1, 2 2 2, 3 3 3, 0 1 1, 0 2 2
 

6

B M -2 0 1 1 2 3 0 0
 

1 - 2 1 1 2 3 1 2 5
 
1 1 1 1 2 3 1 2
 

B+. xM -
J. 2 3 1 - 2 

4
 

0 0 0 
- 1 - 2
 

3 6 9 2 4
 3
 

The plot of this mapping is shown in Figure 15.9.
 
2
 

Most of the properties of linear functions observed
 
for 2-element vectors carryover to the case of
 
3-dimensions. For example, points lying on any line map
 1
 
into points lying on a line. Since this is true for a line 
in any direction it is also true for any plane, that is, 
points lying in the same plane map into points lying in a 
plane. performing and plotting experiments for various 
values of B and V should make this clear. 

, /The identity matrix for 3-dimensions is the matrix I
 
shown below: 

.1 0 0
 
o -1 0
 

,o 0 .1 
/ 

It is easy to show that this is the identity matrix by
 
showing that I+.xV yields V for any 3-element vector V.
 

III 22- 23
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A Mapping in Three Dimensions 

Figure 15.9 
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15.10. ROTATIONS IN THREE DIMENSIONS Chapter 16 

In an earlier section it was shown that the expression INVERSE LINEAR FUNCTIONS 
B+.xV produced a rotation (in two-dimensions) if B was a 
matrix of the form: 

16.1. INTRODUCTION
 
5 C
 

-C 5 The importance of inverse functions was noted in 
Chapter 11 where it was remarked that whenever one finds use 

where C is equal to (1-5*2)*.5 or to -(1-5*2)*.5. for a particular function, the need for the inverse of that 
function usually arises. This is true of linear functions, 

It was also shown (in Exercise 15.13) that for such a and this chapter will be devoted to methods for obtaining 
matrix B, multiplication by its transpose yields the the inverse of a linear function. 
identity matrix, that is: B+.x~B is equal to the identity 
matrix. This is the essential property of a rotation matrix For a linear function of a single argument X, the 
and applies in 3-dimensions as well. Thus any 3 by 3 matrix inverse has already been determined in Chapter 11, where it 
B such that B+.x~B yields the identity matrix is a rotation was shown that the inverse of the function 
matrix. 

A+3xX 

it is easy to assemble a matrix B which meets these 
specifications. If 5 and C satisfy the requirements imposed was 
in the first paragraph, then the following matrix R is a 

(~B)x(-A)+Xrotation matrix. 

1 
a 
a 

a 
s 

-C 

a 
C 
5 

For example, 
makes 31. 
yields: 

if A is 
Applying 

3 and B is 4 and X is 
the inverse function 

7, 
to 

then A+BxX 
this result 

For ~R is equal to (~4)x(-3)+31 

(~4)x28 

1 
a 
a 

a 
s 
C 

a 
-c 

5 Hence the result is the original value of 

7 

X as required. 

and s «. x~R therefore equals 

1 a a 
a (5*2)+(C*2) (Sx-C)+( CxS) 

a ( - Cx 5 ) + (S xC) (C*2)+{S*2) 

which (since (5*2)+{C*2) equals 1) is the identity matrix. 

(~B)x(-A)+X 

« ~B)x( -A) )+( (~B)xX 

An important point is that the 
(~B)x(-A)+X is itself a linear function. 
is so, w~ write the expression in an 
follows: 

inverse function 
To show that this 

equivalent form as 

Similarly, 

S 
-C 

a 

C 
5 
a 

0 
a 
1 

and 
5 
a 

-C 

a 
1 
a 

C 
a 
5 

are rotation matrices. Moreover, if Rand T are any two 
rotation matrices then the product R+oxT is also a rotation 
matrix. 

[B24 
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The last expression is a linear function since it is a 
constant (that is, (~B)x(-A») added to a constant (that is, 
~B) times X. For example, if A is 8 and B is 4, then the 
original linear function A+BxX is 

8+4xX 

and the inverse is 

«~4)X(-8»+«~B)xX) 

-2+.25xX 

Chapter 11 dealt only with the inverses of functions 
of a single argument and, strictly speaking, the notion of 
inverse functions applies only to such a case. However, as 
shown in Chapter 15, a linear function of several arguments 
X, Y, and Z can be treated as a function of the single 
vector argument V, where V+X,Y,Z. In this sense, a linear 
function of several arguments does possess an inverse. As 
was just shown for the case of a single argument X, the 
inverse of any linear function is itself a linear function. 

16.2. SOME INVERSE FUNCTIONS 

As we did in the study of linear functions in Chapter 
15, we will begin with a simple case in which A is zero, 
that is, we will consider the linear function B+.xV. 
Suppose that Band IB are defined as follows: 

B+2 2p3 1 5 2
 
IB+2 2 p 2 1 5 3
 
B IB
 -3 1 2 1
 

5 2 5 3
 

Then the linear function IB+.xV is the inverse of the 
function B+.xV. This can be tested on a number of examples 
as follows: 

B+. xl 2
 
5 9
 

IB+.x5 9
 
1 2
 

-B+.x 3 4 -5 7 
-IB+.x 5 7 

3 4 
B+.xIB+.x2 

2 5 
IB+.xB+.x2 5 

2 5 
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Similarly, in 3 dimensions the following matrices B 
and IB define inverse functions: 

B+3 3p 1 0 2 2 1 3 4 0 4
 
IB+3 3p - 1 0 .5 1 1 .25 1 0 • 25
 

B IB - c.1 0 2 1 0 • J 

2 1 3 1 1 .25 -4 0 4 1 0 .25 

B+. xl 2 4 
9 16 20 

IB+.x9 16 20 
1 2 4 

ffil-2 

The foregoing illustrates how the linear function 
B+.xV may have an inverse IB+.xV which is also a linear 
function. It does not show how to go about finding a 
suitable inverse IB for any given matrix B. This is a 
rather difficult matter which will be addressed in 
subsequent sections. 

In these later sections we will be considering the 
problem of finding an inverse for the function B+.xVand 
will ignore the more general problem of finding an inverse 
to the general linear function A+B+.xV. The reason is that 
the inverse to A+B+.xV can be easily obtained once we find 
an inverse to B+.xV. This will now be shown. 

Suppose a matrix IB has been found which is inverse to 
B, that is, 

IB+. »s«. xV yields V. 

Then IB+.x(-A)+V is the function inverse to A+B+.xV. For: 

IB+.x(-A)+(A+B+.xV)
 
IB+.x«-A)+A)+(B+.xV) Associativity of +
 
IB+. xO+(B+. xV)
 
IB+.xB+.xV
 
V Because IB is inverse of B
 

Consequently, attention will be restricted to the problem 
of finding an inverse to the function B+.xV. 

16.3. THE SOLUTION OF LINEAR EQUATIONS 

In Section 11.7 it was remarked that even though a 
general expression for a function G inverse to F could not 
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be found, yet one could find the value of G N for any 
argument N by simply finding a value of Y such that 

N=F Y 

This value satisfies the only requirement on G, namely, that 
F G N must be equal to N, for if G N is Y, then F G N is F Y 
which in turn is equal to N since Y was so chosen. 

Finding a value of Y such that N=F Y is called 
"solving the equation N=F yR. It is often easier to solve 
such an equation than to find a general expression for the 
inverse function G. Moreover, solving such an equation for 
several different values of N may give some clues to an 
expression for G. 

In any case, we shall approach the problem of finding 
an inverse to the function B+.xV by developing methods for 
solving the equation N=B+.xV. Since N is a vector, we 
require a value of V such that ~~gh element of N agrees with 
~~gh element of B+.xV. This can be expressed by saying that 
the following expression is required to be true: 

II/N=B+.xV 

For example, if 

B+2 2p 1 2 2 3 
B 

1 2 
2 3
 

N+3 4
 

V+l 1
 
B+. x V
 

3 5 
N=B+.xV 

1 0 
II/N=B+.xV 

0 

then the first element of B+.xV agrees with the first 
element of N, but V is not a solution of the equation 
N=B+.xV since the elements do not all agree, as shown by the 
zero value resulting from the expression IIjN=B+.xV. 
However, the vector -1 2 is a solution as shown below: 

V+-1 2
 
B+. xV
 

3 4 

N=B+.xV 
1 1 

IIjN=B+,xV 
1 

16.4.	 BASIC SOLUTIONS 

A solution of the equation 

/\/1 0 = B+.xV 

or	 of the equation
 

/\/0 1 = B+.xV
 

will be called a ~~~ig solution. Basic solutions have two 
important properties: 

They	 are rather easy to obtain. 

They can be used to determine solutions to the 
equation /\/N=B+.xV for any value of N. 

The second matter will be explored first, that is, we will 
first assume that we know two basic solutions Vl and V2 such 
that 

/\/1 O=B+.xVl
 
/,/0 1=[J+.x~'2
 

and will show how Vl and V2 can be used to determine a 
solution to the general equation /\/N=B+.xV. The matter of 
how to determine Vl and V2 themselves will be deferred to 
the succeeding section. 

if Vl and V2 are basic solutions for a matrix B, then 
the vector 

V+(N[1]xVl)+(N[2]xV2) 

is a solution of the equation /\/N=B+.xV. For example, if B 
is the matrix 

4 2
 
1 3
 

then 

Vl+.3.1
 
V2+-.2.4
 

are basic solutions, for: 

B+.xVl 
o 

B+.xV2 
o 1 

t1J3-4 



-213-	 -214­

Moreover, if N+3 5, then: 

V+(N[l] xV1)+(N[2] xV2)
 
V
 

0.1	 1.7
 
B+. x V
 

3 5 

and V is indeed a solution of the equation A/N=B+.xV. 
1±15-6 

The method is based on two simple facts: 

1) B+.xSxV is equal to SxB+.xV for any scalar S 

2) B+.xP+Q is equal to (B+.xP)+(B+.xQ)
 
(Distributivity of +.x over +)
 

The first of these facts is easily established and the 
second was established in Exercises in Chapter 15. 

The following arguments can now be used to show that
 
V+(N[1]xV1)+(N[2]xV2) is in fact a solution of the equation
 
A/N=B+.xV:
 

B+.xV 
B+.x«N[1]xV1)+(N[2]xV2» Definition of V 
(B+.xN[1]xV1)+(B+.xN[2]xV2) Fact 2 
(N[lJxB+.xV1)+(N[2]xB+.xV2) Fact 1 
(N[lJx1 0)+(N[2]xO 1) Definition of V1 and V2 
(N[1],0)+(O,N[2]) 
N 

16.5. DETERMINING BASIC SOLUTIONS 

We now address the problem of finding basic solutions,
 
that is, finding solutions V1 and V2 for the following set
 
of equations:
 

A/1 0 B+.xV1
 
A/O 1 B+.xV2
 

If one has a vector VA such that B+.xVA is equal to 
S,O then V1+(fS)xVA is a basic solution. For example: 

B 
1 3
 
4 2
 

VA -
2 4 

B+.xVA 
10 0 

V1+(f 10)xVA
 
V1
 

.2 .4 
B+. x V1
 

0
 

The foregoing is a simple application of Fact 1 of the 
preceding section. Moreover, the expression (fS)xVA can be 
written equivalently as VAfS. 

To find a basic solution we can therefore begin with 
the simpler problem of finding a vector VA such that B+.xVA 
is equal to S,O for any value of S. It is easy to choose a 
value of VA such that the second element of B+.xVA is zero; 
simply take the second row of B, reverse the sign of its 
first element, and then reverse the order of its elements. 
In other words: 

VA+¢ 1 1 x B [ 2 ; ] 

For example, if B is the matrix 

1 3
 
4 2
 

then 

4 2 Second row of B (that is, B[2;J)
 
4 2 Reversal of sign (-1 1 x B [ 2 ; ] )
 
2 -4 Reversal of order (¢-1 lxB[2;])
 

B+.x2 4
 
10 0
 

Hence if VA+2 -4, then B+.xVA is -10 O. Moreover, V1+VAf-10 
is a basic solution: 

V1+VAf 10
 
V1
 

.2 .4 
B+. x V1 

1 0 
1lJ7.. g 
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The following set of equivalent statements show why 
the second element of B+.xVA is zero when VA is determined 
by the foregoing procedure: 

(B+.xVA)[2J Second element of B+.xVA 
B[2;J+.xVA Definition of inner product 
+IB[2;JxVA Definition of inner product 
+IB[2;Jx¢-11 xB[2;J Choice of VA 
+IB[2 ;JxB[2;2J,-B[2;lJ Reversals of sign and order 
+I ( B[ 2 ; 1 J , B [ 2 ; 2 J ) x ( B [ 2 ; 2 I, - B[ 2 ; 1 J ) 
( B[ 2 ; :l J xB[ 2 ; 2 J ) + ( B[ 2 ; 2 J x - B[ 2 ; 1 J ) 
a 

The entire procedure for determining the basic 
solution V1 can therefore be summarized as follows: 

VA+¢-l lxB[2;J 
Rl+B+.xVA 
Vl+VA~R1[l J 

It should be clear that a similar procedure applies to the 
second basic solution V2 such that Ala 1 = B+.xV2. It is 
only necessary to interchange the roles of the first and 
second elements as may be seen by comparing the pair of 
procedures below: 

VA+¢ - 1 1 x B[ 2 ; J VB+¢l -lxB[l;J 
Rl+B+. xVA R2+B+.xVB 
Vl+VA~R1[1] V2+VB~R2[2J 

For example: 

B 
3 5 
2 4 

VA+¢-l :lxB[2;J VB+¢:l - l xB[l;J 
VA VB 

4 - 2 5 3 
Rl+B+.xVA R2+B+. x VB 
Rl R2 

2 a a 2 
Vl+VA~Rl[1J V2+VB~R2[2J 

Vl V2 
2 - 1 2.5 1.5 

B+.xVl B+.xV2 
a a 1 

[BID 
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16.6. SIMPLIFIED CALCULATIONS FOR BASIC SOLUTIONS 

Examination of the procedures for determining basic 
solutions shows that certain simplifications can be made. 
For example, in calculating Rl+B+.xVA, only the first 
element of Rl need be calculated since it is the only one 
used in the expression Vl+VA~Rl[lJ. Thus Rl[lJ can be 
computed as B[l;J+.xVA, which requirGs only half as much 
computing as does B+.xVA. On the other hand, it may be wise 
to do the whole calculation B+.xVA since the value of the 
second element (which must be zero if VA has been computed 
correctly) is a check on the work thus far. 

Similar remarks apply to the calculation of R2[2J for 
the second basic solution; that is, R2[2l is B[2;J+.xVB. 
Moreover, R2[2J need not be computed at all since it is 
equal to R1[lJ, as you may have noticed in previous examp~es 

and exercises. The reason for this appears in the following 
identity, in which the first line is the expression for 
Rl[lJ and the second line is the expression for R2[2J: 

+/(B[1;lJ,B[1;2J)x(B[2;2J,-B[2;lJ)
 
+I (B [2 ; 1 J , B [2 ; 2 J ) x ( ( - B [ 1 ; 2 J ) , B [ 1 ; 1] )
 

Taking either of these expressions for Rl[lJ, it is 
clear that if B is a matrix having the elements P, Q, H, and 
S as follows: 

P Q
 
R S
 

then Rl[lJ is equal to (pxS)-(QxR). In other words, one 
takes the product of the first element with the one 
diagonally opposite and subtracts from it the product of the 
remaining two elements. For example, if B is the matrix 

5 2
 
7 4
 

then the value of Rl[lJ is (5x4)-(2x7), that is, 6 

Continuing with this example, the whole computation of 
V1 can be expressed as follows: 

Vl+4 7~(5x4)-(2x7) 

Similarly, V2 is obtained as follows: 

V2+-2 5~(5x4)-(2x7) 
[jJll 



16.7.	 THE DETERMINANT FUNCTION 

The expression for R1[lJ (or for R2[2J) developed in 
the preceding section is a very important function called 
the g§t§~IDinant. It was also shown that if B is the matrix 

P Q 

R 5 

then	 the determinant of B is the expression (p x 5 ) - ( QxR ) . 

The determinant function may be defined formally as 
follows: 

11 Z+-DET B 
[lJ Z+-(B[1;lJxB[2;2J)-(B[1;2JxB[2;lJ)V 

For example: 

B+-2 2p5 2 7 4 
B 

5 2
 
7 4
 

DET B 
5 

Since B+.xV1 is 1 0, the first column of B+.xB5 is 1 0 and 
similarly the second column is 0 1. Thus 

B+.xB5 
1 0 
o 1 

Recalling the names VA and VB used in first deriving 
basic solutions: 

VA+-¢-1 1 xB [ 2 ; J
 
VB+-¢ 1 -l xB[ 1; J
 

and the fact that V1 and V2 are obtained by dividing these 
vectors by the determinant of B: 

V1+-VA ~DET B
 
V2+-VB~DET B
 

Then if M is the matrix whose columns are the vectors VA and 
VB, it follows that the matrix B5 of basic solutions can be 
obtained from M as follows: 

B5+-M~DET B 

The matrix M can be determined as follows. Suppose 
that the elements of B are called P, Q, R, and 5 as follows: 

The function DET will be used throughout the remainder P Q 
of this chapter. The notion of determinant is used for R 5 
square matrices of 
must be emphasized 
by 2 matrices. 

dimensions higher than 
that the function DET 

2 by 2, but it 
applies only to 2 then the first column of 

is «-Q),P). Hence M is 
M is (5,-R) and the second column 

[]12-1S 
5 -Q 

-R P 

16.8. MATRIX FORM OF THE BASIC SOLUTIONS 
In other words M is obtained from B by simply interchanging 

It is convenient to represent the basic solutions V1 the first element of B with the one diagonally opposite, and 
and V2 as a single matrix B5 whose first column is Vl and reversing the signs of the remaining two elements. Finally, 
whose second column is V2. For example, if B is the matrix the matrix of basic solutions B5 is obtained by dividing M 

by the determinant of B. 
3 5 
2 4 To summarize, if B is the matrix 

then V1+-2 -1 and V2+--2.5 1.5 and the matrix B5 is P Q 
R 5 

2 2.5 
1 1.5 form the matrix 

5 -Q 
-R P 

and divide it by the determinant (p x 5 ) - ( QxR ) to obtain the 
matrix of basic solutions. 
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For example: We will now show that B5+.xN is equivalent to 
(N[lJxVl)+(N[2JxV2) by showing that each of their two 

1 
o 

o 
1 

B 
9 8 
8 6 

B +. xBS 

6 
- 8 

M 
8 
9 

VET 
10 

B B5 
.6 .8 
. 8 . 9 

fi1l6-17 

elements agree. Beginning with 

(B5+.xN)[lJ 
B5[1;J+.xN 
(BS[1;lJxN[lJ)+(B5[1;2JxN[2J) 
(Vl[lJxN[lJ)+(V2[lJxN[)J) 
(N[lJxVl[lJ)+(N[2JxV2[lJ) 
«N[lJxVl)+(N[2JxV2))[lJ 

the first element: 

Definition of inner product 
Definition of inner product 
Definition of BS 
Commutativity of x 

Definition of indexing 

A similar proof applies for the second element. 

16.9. THE 
SOLUTIONS 

GENERAL SOLUTION FROM THE MATRIX OF BASIC 
16.10. THE INVERSE LINEAR FUNCTION 

In section 16.4 
general linear equation 

/\/II=B+."V 

we saw that the solution of the In the preceeding section we saw that if B5 is the 
matrix of basic solutions for the matrix S, then BS+.xN is a 
solution of the general equation 

could be obtained from the 
follows: 

v+ ( [I[ 1 J x Vi) + ( N [- 2 J x V 2 ) 

basic solutions Vi and V2 as 
/\/I'I=B+. x V 

Consequently if V is any 
yields V. In other words 

vector and N+B+.xV then BS+.xN 

This can be written 
basic solutions B5 as 

V+B5+. xN 

more neatly 
follows: 

in terms of the matrix of 
BS+.x(B+.xV) 

yields V. Therefore the function BS+.xV 
function inverse to the function B+.xV. 

is the linear 

For exarnple, if 
Since 

expression 
the inverse relationship is mutual, the 

N+5 
Vl+2 
V2+4 

5 
3 
5 

B+.x(BS+.xV) 

also yields V. 
1B20-21 

then BS is 

2 4 
16.11. PROPERTIES OF THE INVERSE LINEAR FUNCTION 

3 5 As noted in the preceding section 

and 

10 

24 

34 

34 

N[lJ x Vi 
15 

N[2J x V2 
3D 

(11[1 J xVl)+(N[2J 
45 

BS+.xN 
45 

x V 2 ) 

mS-19 

B5+. x(B+.xV) 
V 

Since the inner product 
that 

(BS+.xB)+.xV 
(B+.xB5)+.xV 
V 

B+.x(BS+.xV) 

+.x is associative, it also follows 
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But the only matrix which multiplied by any vector V yields	 For example: 
V is	 the identity matrix I which has the value 

1 0 
o 1 

Hence 

BS+.xB
 
B+.xBS
 
I 

It is already clear that B+.xBS yields the identity 
matrix, since the columns of BS are the basic solutions for 
B and the columns of B+.xBS are therefore 1 0 and 0 1. The 
reader may wish to verify that BS+.xB is also equal to the 
identity matrix for each of the corresponding values of BS 
and B determined in earlier examples and exercises. 

[jJ22-23 

16.12. ALTERNATIVE DERIVATION OF THE INVERSE LINEAR FUNCTION 

The linear function BS+.xV inverse to B+.xV was first 
determined by computing BS as the matrix of basic solutions 
for B. The method used applies only for vectors V of 
dimension 2 and cannot be applied for higher dimensions. We 
will now develop an alternative method which is somewhat 
more difficult but which has the important advantage that it 
applies to higher dimensions. 

Since BS+.xV is inverse to B+.xV only if BS+.xB is the 
identity matrix, we can pose the problem as follows: find a 
matrix BS such that BS+.xB is the identity matrix. We will 
determine BS in several steps. Thus if Hi is a matrix such 
that Hl+.xB is "closer" to the identity than B itself, we 
may find a second matrix H2 such that H2+.x(Hl+.xB) is even 
closer to the identity. Suppose that in four such steps the 
result 

H4+. x(H3+. x(H2+.x(Hl+. xB))) 

is equal to the identity matrix. Then (because +.x is 
associative) : 

(H4+.xH3+. xH2+. xHl)+.xB 

is also equal to the identity matrix. Hence 

BS+H4+.xH3+.xH2+.xHl 

is the required inverse matrix. 

B+2 2 p 5 3 4 2 
B 

5 3 
4 2 

Hl+2	 2 p .2 0 0 1 
Hi 

.2 o 
0 1 

Hl+.xB 
1 .6 
4	 2 

H2+2 2 p 1 0 4 
H2 

1 o 
4 1 

H2+.x(Hl+.xB) 
1 .6 
0	 .4 

H3+2 2 p 1 0 0 2.5 
H3 

1 o 
0 2. 5 

H3+. x(H2+.x(Hl+.xB)) 
1 • 6 
0 1 

H4+2	 2 p 1 .6 0 1 
H4 

1 .6 
0 1 

H4+.x(H3+. x(H2+.x(Hl+.xB))) 
1 o 
0 1 

BS+H4+.xH3+.xH2+.xHl 
BS 

1 1.5 
2 2.5 

BS+.xB 
1 o 
0 1 

There are a number of points to observe in the 
foregoing sequence. Each of the matrices H themselves 
differ from the identity in only one element. Hl+.xB is 
closer to the identity than B in the sense that the first 
element is 1; thus the first element of Hi was chosen as 
the reciprocal of 5 so as to divide the first row of B by 5. 
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The matrix H2 was chosen so that the second row of the 
result would be obtained by adding -4 times the first row to 
the second row, thus making the first element in the second 
row of the result zero. Thus the element H2[2;1] was chosen 
as -(Hl+. xB)[2;1]. The result H2+.x(Hl+. xb) therefore 
agrees with the identity in the entire first column. 

The matrices H3 and H4 are chosen similarly to make 
the second column agree; H3 multiplies the second row by 
the reciprocal of the last element of the matrix 
H2+. xHl+. xB, and H4 adds the appropriate multiple of the 
second row to the first so as to make the upper right 
element of the result zero. 

It will be instructive to repeat the foregoing 
sequence using a name BT for the intermediate results 
produced so that we write BT~B and BT~Hl+.xBT and 
BT~H2+.xB1', etc. Moreover, if we first set B5 to be the 
identity matrix, and then write B5~Hl+.x55 and B5~H2+.xB5, 

etc., the final value of BS will be the required product of 
the H matrices. Thus: 

BT~B ED+-2 2 p 1 0 0 1 
51' BS 

5 3 1 0 
4 2 0 

BT~Hl+.xBT B5~Hl+.xB5 

BT B5 
1 .2 0· 6 
4 2 0 1 

BT BT~H2+. xBT BS~H2+. xB5 
R r-BT 

L '" 

1 0· 6 
~ 

-0 • Lj .8 1 
BT~H3+.xBT BS'-H3+. xB5 
BT B5 

1 .2 0• 6 -
0 1 2 2. 5 

BT~H4+. xBT BS~H4+. xBS 
BT B5 

1 0 1 1. 5 -
0 1 2 2. 5 

B5+.xB 
1 0 
0 1 
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Finally, since 82 and BT are subjected to the same 
sequence of multiplications, we can combine the matrices BT 
and B5 into a single matrix i" whose first two columns 
represent BT and whose last two columns represent B5. The 
foregoing computation then appears as follows: 

I<) 2 P 1 0 0 1 
I 

1 o 
o 1 

M~B,I 

M 
3 1 0 

'I 2 0 1 
M~Hl+.xM 

M 
1 .2 0 
4 2 0 1 

M~H2+.xM 

1 .6 .2 0 
o .4 .8 1 

M+-H3+.xt[ 
• b .2 0 

o 1 2 2.5 
M~H4+.xM 

M 
1 o 1 1. 5 
o 1 2 2. 5 

The last two columns of M are the required inverse. 

In other words, if we append the identity matrix to 
the right of B and multiply the resulting matrix by any 
sequence of matrices such that the first two columns become 
the identity matrix, then the last two columns will be the 
inverse of the matrix B. 



It may be noted that each of the matrices H were 
chosen such that each multiplication H+.xM affected only one 
row and affected that row in one of two simple ways: 

It multiplied the row by a scalar (chosen so as to
 
make the diagonal element of the row equal to 1
 

It added to the row some multiple of another row 
(chosen so as to make one of the elements zero). 

We can perform such a sequence of calculations without 
actually writing out the matrices H which produce them. To 
illustrate this we repeat the preceding example in this form 
together with notes showing what calculations were 
performed: 

B,I 
3 1 0
 

4 2 0 1
 

1 .6 .2 0 Row 1 is multiplied by +5
 
4 2 0 1
 

1 • E .2 0 
0 .4 - .8 1 4 times row 1 is added to row 2
 

1 • C .2 0 
0 1 2 2.5 Row 2 is multiplied by . .4
 

1 0 1 1 • 5 . 6 times row 2 is added to row 1
 
-0 1 2 2.5
 

The foregoing should be compared carefully with the 
earlier example which used the matrices H1, H2, etc. This 
method for determining the inverse of a matrix is called the 
GQ~S§=JQ£ggn method. 

1±124 

16.13. EFFICIENT SOLUTION OF A LINEAR EQUATION 

A solution to the equation A/N=B+.xV can be obtained 
by determining the matrix BS which is inverse to B and then 
computing V+BS+.xN to obtain the solution. A modification 
of the Gauss-Jordan method can provide the solution more 
efficiently as follows: apply the Guass-Jordan method to 
the matrix B,N instead of to B,I and the last column of the 

result will be the desired sOlution. For example, if N is
 
the vector 4 6 and B is the matrix of the preceding example,
 
then:
 

B,N 
5 3 4
 
4 2 6
 

1 .6 .8
 
4 2 6
 

1 .6 .8
 
0 - .4 2.8
 

1 .6 .8
 -0 1 7
 

1 0 5 
-0 1 7
 

The solution is therefore 5 7. This may be checked as 
follows: 

B+.x5 7
 
4 6
 

N 
4 6
 

ill25 

16.14. INVERSE LINEAR FUNCTIONS IN THREE DIMENSIONS 

If V is a vector of 3 elements and B is a 3 by 3 
matrix, then B+.xV is a linear function of V. The inverse 
function BS+.xV can be determined by the Gauss-Jordan 
method. The reason it works is the same as in the case of 
two elements, namely, if B is multiplied by a sequence of 
matrices until the result becomes the identity matrix, then 
the product of that sequence of matrices is a matrix BS such 
that BS+.xB is the identity. In other words, BS is the 
inverse of B. The Gauss-Jordan method is simply an 
efficient way of keeping track of the product of the 
sequence of matrices applied to B. 

The general scheme is to first reduce the first column
 
to 1 0 0, then reduce the second column to 0 1 0, then the
 
third column to 0 0 1. The first operation for the first
 
column is to divide the first row by its first element. The
 
next is to add a multiple of the first row to the second,
 
and the next is to add a multiple of the first row to the
 
third. On the second column we first divide the second row
 
by its second element and then add multiples of it to rows 1
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and 3. On the third column we first divide the third row by 
its third element and then add multiples to rows 1 and 2. 
For example: 

B+3 3 P 2 1 3 1 0 2 4 0 4
 

B
 
2 1 3 
1 0 2 
4 0 4 

B ,3 3 p 1 0 0 0 1 0 0 0 
2 1 3 1 0 0 
1 0 2 0 1 0 
4 0 4 0 0 1 

1 .5 1.5 .5 0 0 Multiply row 1 by ~2 

1 0 2 0 1 0 
4 0 4 0 0 1 

c­1 .5 1 . 5 0 0• J 

0 .5 • S 
- .5 J 0 Add 1 times row 1 to row 2 

0 2 2 0 1 Add 4 times row 1 to row 3 
- 2 

1 .5 1 . 5 . 5 0 0 - c0 1 1 1 
- 2 0 MUltiply row 2 by . ,) 

c,0 2 2 0 1 

-
1 0 2 0 1 0 Add .5 times row 2 to row 

-
0 1 1 1 2 0 
0 0 4 0 4 1 Add 2 times row 2 to row 3 

1 0 2 0 1 0 
0 1 1 1 2 0 
0 0 1 0 1 . 25 Multiply row 3 by ~-4 

1 0 0 0 1 . 5 Add 2 times row 3 to row 1 
-0 1 0 1 1 .25 Add 1 times row 3 to row 2 

0 0 1 0 1 . 25 

The desired inverse is in the last 3 columns, that is: 

B5+-3 3p 0 . 5 1 • 25 0 1 • :: 5 
BS 

o 1 . 5
 
1 1 • 25
 
o 1 -.25 

ES+.xB 
1 o 0 
o 1 0
 
o o 1
 

B+.xB5 
1 o 0 
o 1 0
 
o o 1
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16.15. THE INVERSE FUNCTION 

We have seen that if BS+.xB is the identity matrix, 
then the function BS+.xV is inverse to the function B+.xV. 
For this reason the mgt~i~ BS is said to be the inY~£~~ Qt 
th~ mgt£i~ B. The inverse of a matrix is an important 
function which will be assigned the symbol [J. Thus if P+-[JQ, 
then p+.xQ and Q+.xP are both equal to the identity matrix. 

Moreover, ([JQ)+.xN is the solution of the equation 
A/N=E+.xV. This is easily seen by substituting the solution 
([JQ)+.xN for V obtaining: 

A/N=Q+.x([JQ)+.xN 
A/N=(Q+.x[JQ)+.xN Associativity of +.X 
A/N=I+.xN Q+.x~Q is the identity I 
A/N=N 
1 

The solution of the equation A/N=Q+.xV is also an 
important function of Nand Q and will be assigned the 
symbol m as a dyadic function; that is, NffiQ yields the 
solution of the equation A/N=Q+.xV. In other words: 

N[]Q 
(H.lQ) +. xiV 

H.l29-32 

16.16. CURVE FITTING 

In Chapter 10, the problem of fitting a function F was posed 
as follows: given a table of a vector of arguments X and the 
corresponding vector Y+-F X, determine a function E defined 
by some expression such that E X is equal to Y. In Chapter 
10 this problem was solved by constructing a difference 
table and using its first row to determine multipliers of 
factorial polynomials whose sum became the required 
expression. This solution applied only to a set of 
arguments X of the form O,IN. 

In Chapter 11 the method was extended to apply to any 
set of equally spaced arguments, that is, to any set of 
arguments X of the form A+BxIN. Moreover, in Chapter 14 a 
simpler equivalent expression was found which involved a 
polynomial rather than the factorial polynomials. However, 
the nlethod still applied only to equally spaced arguments. 

The inverse linear function can now be applied in a 
simple manner to obtain a solution for any set of arguments 

[J26-28 



X. We seek a vector of coefficients C such that the Appendix
polynomial C POL X is equal to the required set of function 
values Y, that is: ALGEBRA AS A LANGUAGE 

A/Y=C POL X 

INTRODUCTION
Recalling the definition of the polynomial function 

from Section 13.6, this requirement may be written as Although few mathematicians would quarrel with the
follows: proposition that the algebraic notation taught in high 

school is a language (and indeed the primary language of 
A/Y=(Xo.*-1+1pC)+.XC mathematics), yet little attention has been paid to the 

possible implications of such a view of algebra. This paper
Furthermore, because C must have the same number of elements adopts this point of view to illuminate the inconsistencies 
as X, the expression lPC may be replaced by \pX so that the and deficiencies of conventional notation and to explore the 
outer product in the foregoing expression becomes a function implications of analogies between the teaching of natural 
of X only. Thus: languages and the teaching of algebra. Based on this 

analysis it presents a simple and consistent algebraic
A/Y=(Xo.*-l+\pX)+.-'C notation, illustrates its power in the exposition of some 

familiar topics in algebra, and proposes a basis for an 
This is clearly a linear equation with a given value of Y, a introductory course in algebra. Moreover, it shows how a
given matrix XO.* l+\pX, and an argument C whose values are computer can, if desired, be used in the teaching process,
to be determined. Hence the required value of C is given by since the language proposed is directly usable on a computer
the expression: terminal. 

Y!E(Xo.*-l+\pX) 

ARITHMETIC NOTATION
For example, if X~o 3 4 6 8 (not equally spaced) and 

if F is the function +/( lX)*3, then Y has the value 0 36 100 We will first discuss the notation of arithmetic,
441 1296, and the square matrix XO.*-1+1PC has the value: i.e., that part of algebraic notation which does not involve 

the use of variables. For example, the expressions 3-4 and 
1 0 0 0 0 (3+4)-(5+6) are arithmetic expressions, but the expressions
1 3 9 27 81 3-X and (X+4)-(Y+6) are not. We will now explore the 
1 4 16 64 256 anomalies of arithmetic notation and the modifications 
1 6 36 216 1296 needed to remove them. 
1 8 64 512 4096 

EUDQtiQDS gng ~~mQQl~ fQr fYngtiQn~. The importance of
The solution may then be obtained by appending the vector Y introducing the concept of "function" rather early in the 
as a final column on this matrix and applying the efficient mathematical curriculum is now widely recognized.
method of Section 16.13 to the resulting matrix shown below: Nevertheless, those functions which the student encounters 

first are usually referred to not as "functions" but as 
1 0 0 0 0 0 "operators". For example, absolute value (1-31) and 
1 3 9 27 81 36 arithmetic negation (-3) are usually referred to as 
1 4 16 64 256 100 operators. In fact, most of the functions which are so 
1 6 36 216 1296 441 fundamental and so widely used that they have been assigned 
1 8 64 512 4096 1296 some graphic symbol are commonly called operators 

(particularly those functions such as plus and times which 
The solution is: apply to two arguments), whereas the less common functions 

which are usually referred to by writing out their names 
C+O 0 0.25 0.5 0.25 (e.g., Sin, Cos, Factorial) are called functions. 

This result may be checked by evaluating the polynomial This practice of referring to the most common and most 
CP03468. elementary functions as operators is surely an unnecessary

1B33-34 obstacle to the understanding of functions when that term is 
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first applied to the more complex functions encountered. 
For this reason the term "function" will be used here for 
all functions regardless of the choice of symbols used to 
represent them. 

The functions of elementary algebra are of two types, 
taking either one argument or two. Thus addition is a 
function of two arguments (denoted by X+Y) and negation is a 
function of one argument (denoted by -Y). It -would seem 
both easy and reasonable to adopt one form for each type of 
function as suggested by the foregoing examples, that is, 
the symbol for a function of two arguments occurs between 
its arguments, and the symbol for a function of one argument 
occurs before its argument. Conventional notation displays 
considerable anarchy on this point: 

1. Certain functions are denoted by anyone of 
several symbols which are supposed to be synonomous 
but which are, however, used in subtly different ways. 
For example, in conventional algebra xxy and XY both 
denote the product of X and Y. However, one would 
write either 3xY or 3X or XX3, or 3x4, but would not 
likely accept X3 as an expression for Xx3, nor 3 4 as 
an expression for 3x4. Similarly, lY and X/Yare 
supposed to be synonomous, but in the sentence "Reduce 
8/6 to lowest terms", the symbol/does not stand for 
division. 

2. The power function has no symbol, and is denoted 
N 

by position only, as in X The same notation is 
often used to denote the Nth element of a family or 
array X. 

3. The remainder function (that is, the integer 
remainder on dividing X into Y) is used very early in 
arithmetic (e.g., in factoring) but is commonly not 
recognized as a function on a par with addition, 
division, etc., nor assigned a symbol. Because the 
remainder function has no symbol and is commonly 
evaluated by the method of long division, there is a 
tendency to confuse it with division. This confusion 
is compounded by the fact that the term "quotient" 
itself is ambiguous, sometimes meaning the quotient 
and sometimes the integer part of the quotient. 

4. The symbol for a function of one argument 
sometimes occurs before the argument (as in -4) but 
may also occur after it (as in 4! for factorial 4) or 
on both sides of it (as in Ixi for absolute value of 
X) • 

Table 1 shows a set of symbols which can be used in a 
simple consistent manner to denote the functions mentioned 
thus far, as well as a few other very useful basic functions 
such as maximum, minimum, integer part, reciprocal, and 
exponential. The table shows two uses for each symbol, one 
to denote a mQn~gig function (i.e., a function of one 
argument), and one to denote a Qy~gig function (i.e., a 
function of two arguments). This is simply a systematic 
exploitation of the example set by the familiar use of the 
minus sign, either as a dyadic function (i.e., subtraction 
as in 4-3) or as a monadic function (i.e., negation as in 
-3). No function symbol is permitted to be elided; for 
example, xxy may not be written as Xi. 

Monadic form fB f Dyadic form AfB 

Definition	 Name Name Definition 
or example	 or example 

+-+t3 0+3	 Plus t I'lus 2+3.2 +-+ 5.2 

, -. o 3 Negative - Minus 2-3.2 +-+ 1 . 2 

x 3 -{--,. (3)Q)-( 3<Q)	 Signum x Times 2x 3.2 ,--+ 6. '+ 

-{--~~ 3 1 i 3	 Reciprocal . Divide 2i3.2 +-+0.625 

B IB LB Ceiling I Maximum 317 +-. 7 
3. 1'+ 4 3 

-3.14 3 4 Floor L Minimum 3 L7 ++ 3 

*3 ,-+ (2.71828 0 0)*3	 Expon- * Power 2*3 +-+ 8 
ential 

'11*5 +-+ 5 ++ *..,5	 Natural il Loga- 10 il 3 +-+ Log 3 base 10 
logarithm rithm 10il3 ++ ("'3)iill0 

3 . 1 4 +-+ 3. 14 Magnitude Remain- 318 ,- -+ 2
 
der
 

TABLE 1 

A little experimentation with the notation of Table 1 
will show that it can be used to express clearly a number of 
matters which are awkward or impossible to express in 
conventional notation. For example, XiY is the quotient of 
X divided by Y; either l(X,Y) or «X-(YIX»iY yield the 
integer part of the quotient of X divided by Y; and XI(-X) 
is equivalent to IX. 
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In conventional notation the symbols <, ~, =, ~, >, 

and ~ are used to state relations among quantities; for 
example, the expression 3<4 asserts that 3 i~ less than 4. 
It is more useful to employ them as symbols for dyadic 
functions defined to yield the value 1 if the indicated 
relation actually holds, and the value zero if it does not. 
Thus 3~4 yields the value 1, and 5+(3~4) yields the value 6. 

b~~g~~. The ability to refer to collections or arrays of 
items is an important element in any natural language and is 
equally important in mathematics. The notation of vector 
algebra embodies the use of arrays (vectors, matrices, 
3-dimensional arrays, etc.) but in a manner which is 
difficult to learn and limited primarily to the treatment of 
linear functions. Arrays are not normally included in 
elementary algebra, probably because they are thought to be 
difficult to learn and not relevant to elementary topics. 

A vector (that is, a I-dimensional array) can be 
represented by a list of its elements (e.g., 1 3 5 7) and 
all functions can be assumed to be applied 
element-by-element. For example: 

1 2 3 4 x 4 3 2 1 produces
 
4 6 6 4
 

Similarly: 

1 2 3 4 + 4 3 2 1 
5 5 5 5 

1 2 3 4 
1 2 6 24 

1 2 3 4 * 2 
1 4 9 15 

2 * 1 2 3 4 
2 4 8 16 

In addition to applying a function to each element of 
an array, it is also necessary to be able to apply some 
specified function to the collection itself. For example, 
"Take the sum of all elements", or "Take the product of all 
elements", or "Take the maximum of all elements". This can 
be denoted as follows: 

+/2 5 3 2 
12 

x/2 5 3 2 
60 

r/2 5 3 2 
5 

The rules for using such vectors are simple and 
obvious from the foregoing examples. Vectors are relevant 
to elementary mathematics in a variety of ways. For 
example: 

1. They can be used (as in the foregoing examples) to 
display the patterns produced by various functions 
when applied to certain patterns of arguments. 

2. They can be used to represent points in coordinate 
geometry. Thus 5 7 19 and 2 3 7 represent two points, 
5 7 19 - 2 3 7 yields 3 4 12, the displacement between 
them, and (+/(5 7 19 - 2 3 7)*2)*.5 yields 13, the 
distance between them. 

3. They can be used to represent rational numbers. 
Thus if 3 4 represents the fraction three-fourths, 
then 3 4 x 5 6 yields 15 24, the product of the 
fractions represented by 3 4 and 5 6. Moreover, ~/3 4 
and ~/5 6 and 7/15 24 yield the actual numbers 
represented. 

4. A polynomial can be represented by its vector of 
coefficients and vector of exponents. For example, 
the polynomial with coefficients 3 
o 1 2 3 can be evaluated for the 
following expression: 

1 
ar

2 
gu

4 
m

and exponents 
ent 5 by the 

558 
+/3 1 2 4 x 5 * 0 1 2 3 

CQn~tgnt~. Conventional notation provides means for writing 
any positive constant (e.g., 17 or 3.14) but there is no 
distinct notation for negative constants, since the symbol ­
occurring in a number like -35 is indistinguishable from the 
symbol for the negation function. Thus negative thirty-five 
is written as an §~2~§~~iQn, which is much as if we 
neglected to have symbols for five and zero because 
expressions for them could be written in a variety of ways 
such as 8-3 and 8-8. 

It seems advisable to follow Beberman [lJ in using a 
raised minus sign to denote negative numbers. For example: 

3 - 543 2 
2 -1 0 1 2 

Conventional notation also provides no convenient way 
to represent numbers which are easily expressed in 

8 -9 
expressions of the form 2.14xl0 or 3.265xl0 • A useful 
practice widely used in computer languages is to replace the 
symbols xl0 by the symbol E (for ~~2Q~~~~) as 
follows: 2.14E8 and 3.265E-9. 
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Q~d~ Qi exe~utiQn. The order of execution in an algebraic 
expression is commonly specified by parentheses. The rUles 
for parentheses are very simple, but the rules which apply 
in the absence of parentheses are complex and chaotic. They 
are based primarily on a hierarchy of functions (e.g., the 
power function is executed before multiplication, which is 
executed before addition) which has apparently arisen 
because of its convenience in writing polynomials. 

Viewed as a matter of language, the only purpose of 
such rules is the potential economy in the use of 
parentheses and the consequent gain in readability of 
complex expressions. Economy and simplicity can be achieved 
by the following rule: parentheses are obeyed as usual and 
otherwise expressions are evaluated from right to left with 
all functions being treated equally. The advantages of this 
rule and the complexity and ambiguity of conventional rules 
are discussed in Berry [2J, page 27 and in Iverson [3J, 
Appendix A. Even polynomials can be conveniently written 
without parentheses if use is made of vectors. For example, 
the polynomial in X with coefficients 3 1 2 4 can be written 
without parentheses as +/3 1 2 4 x X * 0 1 2 3. Moreover, 
Horner's expression for the efficient evaluation of this 
same polynomial can also be written without parentheses as 
follows: 

3+Xx1+Xx2+Xx4 

bnglQgi~~ ~ith Ngt~~gl ~gng~gng~. The arithmetic expression 
3x4 can be viewed as an order to gQ something, that is, 
multiply the arguments 3 and 4. Similarly, a more complex 
expression can be viewed as an order to perform a number of 
operations in a specified order. In this sense, an 
arithmetic expression is an imperative sentence, and a 
function corresponds to an imperative verb in natural 
language. Indeed, the word "function" derives from the 
latin verb "fungi" meaning "to perform". 

This view of a function does not conflict with the 
usual mathematical definition as a specified correspondence 
between the elements of domain and range, but rather 
supplements this static view with a dynamic view of a 
function as that which g~Qg~~~~ the corresponding value for 
any specified element of the domain. 

If functions correspond to imperative verbs, then 
their arguments (the things upon which they act) correspond 
to nouns. In fact, the word "argument" has (or at least 
had) the meaning topic, theme, or subject. Moreover, the 
positive integers, being the most concrete of arithmetical 
objects, may be said to correspond to proper nouns. 

What are the roles of negative numbers, rational 
numbers, irrational numbers, and complex numbers? The 
subtraction function, introduced as an inverse to addition, 
yields positive integers in some cases but not in others, 
and negative numbers are introduced to refer to the results 
in these cases. In other words, a negative number refers to 
a process or the result of a process, and is therefore 
analogous to an abstract noun. For example, the abstract 
noun "justice" refers not to some concrete object (examples 
of which one may point to) but to a process or result of a 
process. Similarly, rational and complex numbers refer to 
the results of processes; division, and finding the zeros 
of polynomials, respectively. 

ALGEBRAIC NOTATION 

NgID§~~ An expression such as 3xX can be evaluated only if 
the variable X has been assigned an actual value. In one 
sense, therefore, a variable corresponds to a grQDQYD whose 
referent must be made clear before any sentence including it 
can be fully understood. In English the referent may be 
made clear by an explicit statement, but is more often made 
clear by indirection (e.g., "See the door. Close it."), or 
by context. 

In conventional algebra, the value assigned to a 
variable name is usually made clear informally by some 
statement such as "Let X have the value 6" or "Let X=6". 
Since the equal symbol (that is, '=') is also used in other 
ways, it is better to avoid its use for this purpose and to 
use a distinct symbol as follows: 

X+6
 
Y+3x4
 
X+Y
 

18 
(X-3)x(X-5) 

3 

b§~1gn1ng N~~~ kQ g~gK~§§1QD§. In the foregoing example, 
the expression (X-3)x(X-5) was written as an instruction to 
evaluate the expression for a particular value already 
assigned to X. One also writes the same expression for the 
quite different notion "Consider the expression (X-3)x(X-5) 
for any value which might later be assigned to the argument 
X." This is a distinct notion which should be represented 
by distinct notation. The idea is to be able to refer to 
the expression and this can be done by assigning a name to 
it. The following notation serves: 

'l Z + G X
 
Z+(X-3)x(X-5)'l
 



The v's indicate that the symbols between them define 
a function; the first line shows that the name of the 
function is G. The names X and Z are dummy names standing 
for the argument and result, and the second line shows how 
they are related. 

Following this definition, the name G may be used as a 
function. For example: 

G 6 
3 

G1234567 
8 3 0 -1 0 3 8 

Iterative functions can be defined with equal ease 
(Iverson [3J) but the mechanics will not be discussed here. 

f9~~ 91 ~~~g§. If the variables occurring in algebraic 
sentences are viewed simply as names, it seems reasonable to 
employ names with some mnemonic significance as illustrated 
by the following sequence: 

LENGTH'c6 
WIDTH'c5 
AR EA'cLENGTllx WID TH 
HEIGHT'c4 
VOLUME'cAFI EA xH EIGHT 

This is not done in conventional notation, apparently 
because it is ruled out by the convention that the 
multiplication sign may be elided; that is, AREA cannot be 
used as a name because it would be interpreted as AxFlxExA. 

This same convention leads to other anomalies as well, 
some of which were discussed in the section on arithmetic 
notation. The proposal made there (i.e., that the 
multiplication sign cannot be elided) will permit variable 
names of any length. 

ANALOGIES WITH THE TEACHING OF NATURAL LANGUAGE 

If one views the teaching of algebra as the teaching 
of a language, it appears remarkable how little attention is 
gi ven to the reading and writing of algebraic sentences, and 
how much attention is given to identities, that is, to the 
analysis of sentences with a view to determining other 
equivalent sentences; e. g. , "Simplify the expression 
(X-4) x (X+4)." It is possible that this emphasis accounts 
for much of the difficulty in teaching algebra, and that the 
teaching and learning processes in natural languages may 
suggest a more effective approach. 

In the learning of a native language one can 
distinguish the following major phases: 

1. An informal phase, in which the child learns to 
communicate in a combination of gestures, single 
words, etc., but with no attempt to form grammatical 
sentences. 

2. A formal phase, in which the child learns to 
communicate in formal sentences. This phase is 
essential because it is difficult or impossible to 
communicate complex matters with precision without 
imposing some formal structure on the language. 

3. An analytic phase, in which one learns to analyze 
sentences with a view to determining equivalent (and 
perhaps "simpler" or "more effective") sentences. The 
extreme case of such analysis is Aristotelian Logic, 
which attempts a formal analysis of certain classes of 
sentences. More practical everyday cases occur every 
time one carefully reads a composition and suggests 
alternative sentences which convey the same meaning in 
a briefer or simpler form. 

The same phases can be distinguished in the teaching 
of algebraic notation: 

1. An informal phase in which one issues an 
instruction to add 2 and 3 in any way which will be 
understood. For example: 

2+ 3 Add 2 and 3 

2 2
 
3 +3
 

Add two and three 

Add II and III 

The form of the expression is unimportant, provided 
that the instruction is understood. 

2. A formal phase in which one emphasizes proper 
sentence structure and would not accept expressions 

2 
such as 6 x 3 or 6x( add two and three) in lieu of 
6 x ( 2 + 3 ) . Again, adherence to certain structural rules 
is necessary to permit the precise communication of 
complex matters. 

3. An analytic phase in which one learns to analyze 
sentences with a view to establishing certain 
relations (usually identity) among them. Thus one 
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learns not only that 3+4 is equal to 4+3 but that the single quantities. For example, the last expression can be
 
sentences X+Y and Y+X are equivalent, that is, yield construed as yielding a set of possible areas for a
 
the same result whatever the meanings assigned to the rectangle having a fixed perimeter of 12.
 
pronouns X and Y.
 

More interesting possibilities are opened up by 
In learning a native language, a child spends many certain simple extensions of the use of arrays. One example 

years in the informal and formal phases (both in and out of of such extensions will be treated here. This extension 
school) before facing the analytic phase. By this time she allows one to apply any dyadic function to two vectors A and 
has easy familiarity with the purposes of a language and the B so as to obtain not simply the element-by-element product 
meanings of sentences which might be analyzed and produced by the expression AxB, but a table of all products 
transformed. The situation is quite different in most produced by pairing each element of A with each element of 
conventional courses in algebra - very little time is spent B. For example: 
in the formal phase (reading, wri ting and "understanding" 
fOLrr~l algebraic sentences) before attacking identities A+l 2 3 
(such '0; commutativity, associativity, distributivity, B+2 3 5 7 
etc. l , Tndeed, students often do not realize that they 
migh t (['LLe:: ly check their work in "simplification" by A 0 • <B A 0 • +B A o. *B 
s ub s t.i t u t i.n j certain values for the variables occurring in 
the original and derived expressions and comparing the 2 3 5 7 3 4 6 8 1 1 1 1 
evaluated results to see if the expressions have the same 4 6 10 14 4 5 7 9 4 8 32 128 
"meanill'}", at least for the chosen values of the variables. 6 9 15 21 5 6 8 10 9 27 243 2187 

It is interesting to speculate on what would happen if If 5+1 2 3 4 5 6 7, then the following expressions 
a native language were taught in an analogous way, that is, yi",ld an addition table, a multiplication table, a 
if children were forced to analyze sentences at a stage in s ub t r a c t.i.on table, a maximum table, an "equal" table, and a 
their development when their grasp of the purpose and "greater than or equal" table: 
meanir.g of sentences were as shaky as the algebra student's 
grasp of the purpose and meaning of algebraic sentences. So. +s So. rS 
P~rhaps they would fail to learn to converse, just as many 2 3 If 5 5 7 8 1 2 3 4 5 6 7 
s~udents fail to learn the much simpler task of reading. 3 4 5 6 7 8 9 2 2 3 4 5 5 7 

4 5 7 8 9 10 3 3 3 4 5 6 7 
Another interesting aspect of learning the 5 5 7 8 9 10 11 4 4 4 4 5 6 7 

n.m-r ana Lv t i c aspects of a native language is that much (if 6 7 8 9 10 11 12 5 5 5 5 5 6 7 
~ot most) of the motivation comes not from an interest in 7 8 9 10 11 12 13 6 6 5 5 6 6 7 

language, but from the intrinsic interest of the material 8 9 10 '1 1~ 13 14 7 7 7 7 7 7 7 
(in children's stories, everyday dialogue, e t c , ) for which 
it is used. It is doubtful that the same is true in So. xX 5 0.=5 

algebra - ruling out statements of an analytic nature 1 2 3 4 ') 6 7 1 0 0 0 0 0 0 
(identi~ies, etc.), how many "interesting" algebraic 2 4 6 8 10 12 14 0 1 0 0 0 0 0 
sentences does a student encounter? 3 Eo 9 12 1'5 18 21 0 0 1 0 0 0 0 

4 8 12 16 20 24 28 0 0 0 1 0 0 0 

The use of arrays can open up the possibility of much 5 10 15 20 25 :'0 35 0 0 0 0 1 0 0 

more interesting algebraic sentences. This can apply both 5 12 18 24 30 36 42 0 0 0 0 0 1 0 

to sentences to be read (that is, evaluated) and written by 7 14 21 28 35 42 49 0 0 0 0 0 0 1 

students. For example, the statements: 
50. -5 50.'<5 

2*1 2 3 4 5 0 1 2 3 4 5 6 1 0 0 0 o 0 0 

2xl 2 3 4 5 1 0 1 2 3 4 5 1 1 0 0 0 0 0 
2q 2 3 4 5 2 1 0 1 2 - 3 4 1 1 1 0 0 0 0 

1 2 3 4 5~ 2 3 2 1 0 1 2 3 1 .L 1 1 0 0 0 

1 2 3 4 5* 2 4 3 2 1 0 1 2 1 1 1 1 1 0 0 
-

1 2 3 4 5x5 4 3 2 1 5 4 3 2 1 0 1 1 1 1 1 1 1 0 
5 5 4 3 2 1 0 1 1 1 1 1 1 1 

produce interesting patterns and therefore have more 
intrinsic interest than similar expressions involving only 
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Moreover, the graph of a function can be produced as 
an "equal" table as follows. First recall the function G 
defined earlier: 

VZ+G X
 
Z+(X-3)x(X-5l'7
 

G 5 
8 3 0 o 3 8 

The range of the function for this set of arguments is 
from 8 down to -1, and the elements of this range are all 
contained in the following vector: 

R+8 7 6 5 4 3 2 1 0 1 

Consequently, the "equal" table Ro.=G 5 produces a rough 
graph of the function (represented by l's) as follows: 

F>, =G 5 
1000001
 
0000000
 
0000000
 
0000000
 
0000000
 
0100010
 
0000000
 
0000000
 
0010100
 
0001000
 

A PROGRAM FOR ELEMENTARY ALGEBRA 

The foregoing analysis suggests the development of an 
algebra curriculum with the following characteristics: 

1. The notation used is unambigious, with simple and 
consistent rules of syntax, and with provision for the 
simple and direct use of arrays. Moreover, the 
notation is not taught as a separate matter, but is 
introduced as needed in conjuilction with the concepts 
represented. 

2. Heavy use is made of arrays to display 
mathematical properties of functions in terms of 
patterns observed in vectors and matrices (tables), 
and to make possible the reading, writing, and 
evaluation of a host of interesting algebraic 
sentences before approaching the analysis of sentences 
and the concomitant development of identities. 

Such an approach has been adopted in Iverson [4J, 
where it has been carried through as far as ~he treatment of 
polynomials and of linear functions and linear equations. 
The extension to further work in polynomials, to slopes and 
derivatives, and to the circular and hyperbolic functions is 
carried forward in Chapters 4-8 of Iverson [3J. 

It must be emphasized that the proposed notation, 
though simple, is not limited in application to elementary 
algebra. A glance at the biblioqcaphy of Falkoff and 
Iverson [5J will give some idea of the wide range of 
applicability. 

Th~ BQ1~ Q.t th~ S;;Q!!)l?!J.t~J:. Because Jhe proposed notation is 
simple and systematic it can be Lcecuted by automatic 
computers and has been made available on a number of 
time-shared terminal systems. The most widely used of these 
is described in Falkoff and Iverson [6J, IBM Corporation, 
1968. It is important to note that the notation is executed 
directly, and the user need learn nothing about the computer 
itself. In fact, each of the examples in the present paper 
are shown exactly as they would be typed on a computer 
terminal keyboard. 

The computer can ,'uviously be useful in cases where a 
good deal of tedious computation is required, but it can be 
useful in other ways as well. For example, it can be used 
by a student to explore the behavior of functions and 
discover their properties> To do D:is a student will simply 
enter expressions which apply the functions to various 
arguments. If the t, rminal is equipped with a display 
device, then such exploration can even be done collectively 
by an entire class. This and o t.r.e r ways of using the 
computer are discussed in Berry et al [7J. 
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1.1 Evaluate the following 1.2 Check your answers to 
expressions, entering the result Exercise 1.1 and repeat each one3.	 Iverson, K. E., ~l~m~nt~fY I~gtiQD§: ~n ~19QK!thm!g 
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underscore: the steps of the evaluation in 
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3+(LJ x6)5.	 Falkoff, A. D., and K. E. Iverson, "APL Bibliography", 

««1+2)x3)+LJ)xS)+6E~Qg~~giD9§ Qf IE~~ N~EEM CQDf~K~ng~, November 1970. 
J +( LJ+6 ) «( 3 x3)+LJ)xS)+6 

« 9 )+'j)xS)+66.	 Falkoff, A. D., and K. E. Iverson, A~1\JQQ U§~K~~ 
(3+4)+6 ( 13 xS)+6~~nggl, IBM Corp., 1968. 

6 S t-6 
3 x(LJ x6)

7.	 Berry, P. C., A. D. Falkoff, and K. E. Iverson "Using 71 

the Computer to Compute: A Direct but Neglected 
(3 X 4 ) x 6	 1.3 Enter numbers in theApproach to Teaching Mathmatics·, If!E ~QKlg 

underscored positions such that~QnJ~K~ng~ QD CQm~~t~K Eg~ggiiQD, Amsterdam, August 
(3+S)x(6+LJ)	 each expression gives the24-28, 1970. 

indicated result: 
(9+19)x(42+8) 

( 3+	 )x6 
(18+10)+S	 42 

3 + (	 x 6 ) 
(16 x13)+LJ9	 27 

(7+	 ) x 3 
49+(16 x13)	 30 

(7+3)x 
3 x«5 x6)+LJ)	 30 

(LJ2+ )XLJ 
(3 x(Sx6))+LJ 200 

+6) +LJ 
( ( 2+ 3) x ( lJ+ 6) ) + ( 2 x S ) 17 

( 2 x )+19 
1+(2 x(3+(LJX( S+6)))) 49 

+(4Sx6) 
««1+2)x3)+LJ)xS)+6 274 

(4+	 )X(S+6) 
77 

(3+(4x( +2))+7 
38 

(2 x«(3+ )+(2x2))+S))+3 
33 
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1.4 Check your answers for 1.6 Write an equivalent English 1.9 Enter a number in each of 
Exercise 1.3. For each one that expression for each algebraic the underscored positions such 
is incorrect, show every step of expression in Exercise 1.1. that the expression gives the 
the evaluation using the number indicated result: 
that you entered in the 1.7 Evaluate the following 
underscored position. expressions: 2+ x3+5 

162 
1.5 Write an equivalent 2 x 3+4 2+( x 3) + 5 
algebraic expression for each of 67 

- ­
the following sentences: ~+3x4 2 x(3+ )x5+3
 

14/j

Quantity 7 plus 1 multiplied by 1+.?x3+4 X )
 2 x ( +3)x5+3 
3. 144 

1+(2x3)+4 10+6x4+ x2 
17 added to the product of 6 130
 
and 2. 1+(2 x3)+4 X5
 10+(6 x4)+ x2 

130
 
5 times the quantity 17x6. (2+'1+20)x16
 10x25+ +45 

800
 
Add the quantity 3+2 to the 14x15x13+6+20 x9 x3 x1 x7
 
product 0 f 8 and 5. ') 0 72
 

2 x10+10 +40+10)x2

The product of the quantities 118
 
6+10 and 7+3. 9 x(2+7)x3
 10+17+ x 1 'Ix 5 

197
 
The sum of 4 and 14 added to 23+7x2+1
 43+9x6+ 
the product of 3 and 13. 160 

1+( 9x11 )+11 x 1 
29 plus the product of 19 and 1.10 For each wrong answer 
6. 1+( 2x 3+4) x5+6 obtained in Exercise 1.9, fill 

into the given expression your
Quantity 9+20 added to the sum 1+(2 x3)+(4 x5)+6 answer and all of the implied
of	 7 and 6. parentheses and then evaluate the 

resulting expression.
Increase the quantity 8x3 by 7. 1.8 For each wrong answer 

obtained in Exercise 1.7 take the 1.11 Using as few parentheses as 
Add 15 to the sum of 14 and 8. given expression and modify it by possible, write algebraic

inserting all of the parentheses expressions for each of the 
Multiply 6 times itself and i~plied by the rule to evaluate English expressions of Exercise 
then add 3. the rightmost function first. 1. 5. 

Then evaluate the resulting 
Quantity 1+2+3 times 8. expression. For example: 1.12 Write equivalent English 

expressions for each of the 
The product of 3+4 and 8. 1+(2 x3)+4 x5 expressions of Exercise 1.7. 

1+«2 x3)+(4 x5)) 
2 plus twice the quantity 9+5. 27 1.13 Evaluate each of the 

indicated expressions:
 
Si~ more than the product of 2
 
and 8. A-<-2
 

B-<-3 
A+B 

AxB 

A+3 

4xB+8xA 

(lO+B)xA 

P-<-9 
B-<-2 
A+px3 

(B+B)xP 

A+B+B+B 

,'1+(3 x8 ) 

A + 3 xB 

A + (P+ 7) 

SPEED~60 

TIME+-5 
DISTANCE+-SPEEDxTIME 
DISTANCE 

SPEEDx7 

SPEED+-4 0 
SPEEDxTIME 

3 x(4 x ,1 ) 

(4 xA)x3 

(A X4)x3 

Ax4x3 

CAT<-l 
KITTENS<-4 
TOTAL<-CAT+KITTENS 
TOTAL 

NEWKITTENS-<-KITTENSx5 
TOTAL<-TOTAL+NEWKITTENS 
ro~L 

2 xTOTAL+( 4x 7) 

( 5 + ( CAT x Tt uE) +3 ) x 3 

CATxCAT+5 
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VJL T I 11F:+-LEl/xf/IDTHxCAT	 FI;.4"T 
t.irst:
 

17+ ( 1 7 + TO TA L ) «: :J[) 0
 

( L C' + UP E )+
 
T+-4 1 q 0
 
l+-7 (3+ 'I+L;::'i)x
Vx(T+3)	 ) s 

( 3 +Ii ) + ( if nl x
 

(1'+3)xV 55
 

(TxV)+(~jXV) 1.16 For each wrong answer in 
Exercise 1.15, write in your 

(VxT)+( V x 3 ) answer and every step in the 
evaluation of the expression. 

Vx'i'+Vx3 
1.17 Translate each of the 

DO+- ~J following sentences into a 
:'0+6x7 sequence of algebraic 

expressions: 
3+nO x4+5 

The length of a playing field 
DO is 100 yards. Its width is 50 

yards. The area is the length 
.".:+- j times the width . 
XxX 

A weightlifter has a steel bar 
X+-5 weighing: Ibs. He also has 
XxX two weigh ts , each weighing ')0 

Ibs. The total weight that he 
will be lifting is the sum of 

1.14 For each wrong answer in the bar and the two weigh ts.
 
Exercise 1.13, repeat the work
 
showing every step of the A triangle has three sides.
 
eval uation. Side a is 3 inches long, side b
 

is lj inches, and side c is 5 
1.15 Fill in the underscored inches long. The perimeter of 
positions so that the expressions the triangle is the sum of the 
give the indicated result: lengths of the sides. 

WIDTH+-9 A nickel has a value of five 
( +fIIDTH)x3 cents. A dime is worth ten 

93 cents. A quarter is worth two 
8+( xWIDTH) dimes and one nickel. 

4lj 
LEN+­ An airplane is flying directly 
WIDTH+LEN east with a heading of 90 

13 degrees. He turns right 30 
(LEN x3)+(WIDTH+ degrees. The new heading will 

22 be the sum of the old heading 
10+LENx and the amount that the plane 

18	 turned. 
HEIGHT+-5
 
20+HEIGHT+
 

37 
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On a trip across the country, 
the Smiths travelled for six 
days, covering 500 miles each 
day. The total distance 
travelled is the daily mileage 
times the number of days in 
transit. 

John weighed 100 Ibs. He then 
ate three pieces of steak, each 
weighing 1 lb. !lis new we i qh t; 
is the sum of his old weight 
and all that he ate. 

1. 18 11ake up "w o r d problems" to 
correspond to each of the 

groupsfollowing of algebraic 
sentences: 

,e +-10 [] 
Y.(-:; 0 

y 
soUo 

III CHE3+- 7 

P.i-.,:PT+-2 
lAP OS+-4 
( \',l:? x ] 6 ) + ( ; 1:') +' 23 

175 

1.19 Evaluate the following 
expressions: 

+/J 7 Ll 

x / 'I 2 1 b 

x/20 5 7 

18+(x/2	 3 1) 

(x/2 11)+39 

(+/10 20)x3 

+/43 7 10 21 28 

+/16 15 50 35 

+/30 4 

3+3+3 

3+3 

3 

+/3 3 3 

+ /3 3 

+/3 

+/1 13 

+/JU 7 tt S 

( + /3 lj 1) x 7 

+/'1 

x / 8 3 7 

ABC+-l 3 5 
Dr-: 4 6 8 1 o 
+ / ABC 

x/DE 

r / ,Ig C 

MiC 

+/DE 

3++/ABC 

2x2~.~ 

2x2 

2 

x /2 2 2 

x/2 2 

x/2 

x/10 19 5 

+/9 10 1 

7+ x/3 5 7 
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x/3 Ten times the product over 8 3. 1.23 Fill in the underscored 1.25 Write an equivalent English 
position so that each of the expression for each of the 

(+10 Lj. 3 115 4)+7 Four plus 3 plus 7. expressions give the indicated expressions of Exercise 1.22. 
results: 

x I 1J Three times the sum over 1 2 3 1. 26 Evaluate the following 
4 5 5. 1 expressions: 

E+-~ 3 'I 
E+x lAne Six times seven times one times +/1 3 9 157 " + 6 

three. 10 
(+IDc)xP + 11 4 3 + 1 = 3 4 

Quantity 4+3 times the sum over 1 5 
E'*-3+xIABC '0 17 4 7. +I I 3 'i 7 + 1 L+ 

i::+(+IABC)+(+IDE) S 5 
The sum of 3 4 and 5, all times x I \ + /' J 7 a + \4 

(E x3)++IAB the product over 2 8 3 4. .?L+ 

X I 13 + 3579+3 
+IAHC++IDE 1.21 Write an equivalent English 7 ~ U 

expression for each of the first + 1\ 4 + 3+3579 
+/S 10 expressions in Exercise 1.19. 78 

'~J +­ 3 + \ 4
 
+/9 25 42 15 1. 22 Evaluate the following x I I N
 

expressions: 1.' 0 5 x 14
 
x/2 [, 9 27 19 +I I
 

14 3+ 5 x 1 L.j.
 

(x/12 49 45)x8 I I
v 

+ 114 (\4)X(\4)
 
+11 5 34 111 x 11
 

x I 1 II 3528800 +/(14)x(1 4)
 
x/9
 

1 S	 1.24 Write an equivalent /•.I+-3 S 7 ~J 

algebraic expression for each of (.1*-4 

1.20 Use the QY~r notation to +11 5 the following sentences: N+/iJ 
wr i. te an equivalent algebraic 
expression for each of the x I 1 5 The first three integers. N+ ',N 
following sentences: 

1 1 Iota 5. Pi x Pi
 
Plus over 4 5 8 9.
 

+11 1 The integers to nine. ll+?.fx 1 ,\1
 

Times over 2 4 5.
 
N*-3 The sum of the first three +/3 x\5
 

The sum over 20 15 4. +/1N integers.
 
3 x+I\5
 

6 plus the product over 4 1 2. +/1N+l Times over the integers to 4.
 
3X4+ 15
 

plus the sum over 3 12 4 20. +/1N+2 Plus over the integers to 7.
 
12+3XJ 5
 

The product of 3 and 7. +/12 xN Q is assigned the value 4.
 

The integers to Q. 

The one digit integers. 
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1.27 Fill in the underscored 
positions so that each of the 
expressions give the indicated 
result (Note that each entry may 
be either a vector or a scalar) : 

x/2p4 

x /l Op 4 

(4p1)+2 3 5 7 

x/9p 
134217728 

p 5 
5 5 5 55 5 

2p 
4 repetitions of 
repetitions of 3. 

Vector 5 7 9 
repetitions of 1. 

7 plus 

times 

4 

3 

10 10 
2 3 5 7 + 1+2 3 5 7 p 3 3 times 6 repetitions of 5. 

5 10 6 10 3 3 3 3 3 3 3 3 3 3 
2 3 5 7 + (4p2)X)4 x/ p4-­ 1.32 Evaluate the following 

6 7 9 11 
2 8 1 6 x X/9p10 

262144 
1p 

expressions: 

6 32 4 30 ,'1+2 3 5 7 
2 8 1 6 x 4 xx/3p7 7p M+ 8 7 6 5 

10 40 5 30 3 3 3 3 33 M+N 
+ \ 4 3++/3p7 p 7 

6 7 8 9 7 7 7 77 7 7 7 M+NxM 

20 40 
x\4 

6080 
16 9 13 10++/4p4 

12 
+/4p 

(M+4)xl1 

8 9 10 
+\ 

11 12 1.30 Fill in the blanks so that 1 
x/ P 1 -­ (M+N)xM 

7 14 
x t 

2~8 35 
the expressions give 
result: 

the printed 
40 

+/ p 5 -­
(M+\4)xN 

8 13 
+ x t 

1i32328 33 +/4p 3 3 3 
p 3 

-3­ « 3xM) +( 2xN)) x2 

18 21 
3x +\ 
24 ---;pf 30""33 

x +\ 

12 

8 8 8 
8p 
8 88 8 8 

9 9 9 
p 9 

p8 
+/3xM 

16 20 ~2832 +/8p 8 8 8 88 8 3 x+/11 

16 20 
+ x t 

~2832 
64 

6 6 6 
6p 
6 66 

+/ p5-­
+/l1 x N 

1.28 Write an 
algebraic expression 
English expression: 

equivalent 
for each 243 

x/-­p 3 

x/5p 

1.31 Write an equivalent 
algebraic expression for each of 
the following sentences: 

I1x +/ N 

(+/M) xN 
100000 

The first 
following 4. 

five integers 
3 3 

2p Three repetitions of 5. (+/M)x+/N 

Every third integer beqinning 80 
+/-­p 10 5 repetitions of 3. x/M+N 

with 3 and ending with 21. +/-­p4 Plus over 6 repetitions of 4. (x/M)+N 
28 

Every third integer beginning +/ p 6 -­ The product of 3 repetitions of (x/M)+x/N 
with 7 and ending with 31. 60 7. 

1. 29 Evaluate 
expressions: 

the following 2 2 2 
lOp 
2 2-2-2 
x / 3p -­

2 2 2 Seven repetitions of six. 
\+/,'1 

+/\+/,'1 
343 The sum of ten repetitions of 

3p 5 
7 7 7 

p 7 
77 7 7 7 7 

four. +/\+/t3 

+/3p5 
5 5 5 

8p 
5 55 5 5 

Times over vector 
repetitions of 5. 

3 6 plus 2 +/\+/3p2 

3 x5 

2 2 2 
p 2 

22 2 2 2 
x/\x/2p3 
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21 3 CHAPTER 2 

MI N 

I" IN 

IN 

I" 1,'1+1/
 

I" I NxN
 

( 11'1) +1 IN
 

( 11'1 ) xi!
 

+IMIN 

xj:'lf/l 

41N 

+/4[- N 

x/41N 

2.1 Use Table 2.1 to evaluate 
the function "normal weight" for 
the following arguments: 

S9 63 69 60 

2.2 We will use the term "two 
times" for a function whose 
result is twice the argument. 
Thus a table for this function 
for the arguments \4 would appear 
as follows: 

Argument Result 

2 
2 4 
3 6 
4 8 

a) Make a table for the "two 
times" function for the same 
set of a r qurnen t s as used in 
Table 2.1. 

b) Is the "two times" function 
a good approximation to the 
"normal weight" function of 
Table 2.1? 
Over what set of arguments do 
the two functions differ by not 
more than 2? 

c) One could add a certain 
"correction" to each result of 
the "two times" function to 
obtain the exact normal weight. 
For example, for the argument 
63 the value of "two times" is 
126 and a correction of 4 is 
needed to give the actual 
normal weight of 130. Make a 
table to represent an 
appropriate "correction" 
function for the arguments from 
60 to 70. 

2.3 Evaluate the function 
represented by Table 2.2 for each 
of the following cases: 

61 inches medium frame 
58 inches large frame 
63 inches small frame 
6 S inches all frames 
68 inches small and large 

2.4 Use the information in Table 
2.2 to make tables to represent 
each of the following functions: 

a) Normal weights for large 
frame and heights 60 to 66. 

b) Normal weights for all 
frames and heights 66 to 70. 

c) Normal weights for small 
frame and for even numbered 
heights from 58 to 68, that is, 
for heights 56+2x\6. 

d) Normal weights for height 
67 and all frames. 

2.5 a) Extend the table of 
Figure 2.3 to include arguments 
up to 12 (for both arguments). 

b) Circle the result in the 
table which results from the 
expression 6x8. 

c) Underscore the result of 
the expression 8x6. 

d) Pick out all occurrences of 
the number 40 in your table and 
label each with a different 
letter of the alphabet. Then 
write these letters in a column 
and beside each write the 
expression (e.g., 5 x8) which 
corresponds to that particular 
entry in the table. 
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following b) Evaluate the followinge) Repeat part (d) for the a) Evaluate the function F for 2.13 Evaluate the
 
number 24. the arguments 4, 6, and 10. exp"'essions: expressions:
 

a) ( t3 ) 0 x ( \ 'I )	 68 W•2.6	 a) Construct an addition b) What is the domain of F? 
table for the arguments 1 to 

b) (2x\5)0.+13	 6 B vi 212.	 c) What is the range of F? 

(2x\~)o.+(2xl~)	 63 Wb) Label each occurrence of d) Write an expression (in the c) 
the result 9 in the table with manner of Exercise 2.7) which 

d) 2 x ( 1 3 ) 0 • x ( 1 'I )	 c) State clearly the relationa	 different letter. Then list represents F. 
between the function Wand thethe letters and show with each 

e) 5+(\3)0.x(,',1	 function represented by Figurethe expression which 2.9 Repeat Exercise 2.8 using 
2.2.corresponds to that entry. rQ~ 9 of the body of Figure 2.3
 

f) 2 X(15)o.+lS
as the one-column body of the 
2.16 a) Construct the followingc) Repeat part (b) for the table, and row 3 as the 

number 21).	 arguments. If any of the 2.14 a) Construct a function function table: 
arguments in part (a) do not lie table according to the 

Left domain: \ 8 2.7 Let 1 denote the domain of in the domain of this function, following specifications: 
Right domain: \ 8 the first argument of the indicate that they cannot be 

( \ 8) 0 + \ 8•multiplication table of Figure evaluated.	 Left domain: ~ Body: 
[,	 Name: PLUS2.3 (that is, 1+\), and let Y	 Right domain: 

Body: (Jx-L 4 ) 0 .+·l i.jdenote the domain of the second 2.10 Repeat Exercise 2.9 using 
b) Evaluate the followingargumen t (that is, Y+ \ 1u). Then rows from the addition table Name: 
expressions:the function represented by the constructed in Exercise 2.6 

b) Evaluate the followingthird row of the body of Figure rather than Figure 2.3. 
expressions:	 3 PLUS2.3 can also be represented as 

3 xY, and the function represented 2.11 (parts a-i)Answer the nine 
4	 PLUS 6by the fourth column can be questions posed in Section 2.2. 3 H 

represented as Xx 4. Use this 
3x4 PLUS 6scheme to write expressions which 2.12 Let A+1 2 3 4 and H 3 

represent each of the functions B+1 2 3 4 5. Then evaluate the 
2	 PLUS 2x3represented by the following following expressions: H 

parts of the body of Table 2.3: 
4	 H ( 1 H 1 ) 4x2 PLUS 2x3a) A o • <B
 

a) Row 2.
 
(4x2) PLUS 2x34	 H 1 Hb) Column 10.	 b) A 0. +B 

c) Row 5. 
2	 !i 1 H 2 2+3 PLUS 4d) Column 5.	 c) B o • xA 

2.15 a) Construct a function 2 PLUS 3+42.8 Make a table whose body d) B - • +A 
table according to theconsists of one column taken from 

B v • xB	 following specifications: 2+3+4the 8th column of the body of the e) 
multiplication table of Figure 

2	 PLUS 3 PLUS 4Left domain: 56+1142.3, and whose first column (that f) A - • +A 
Right domain: 123is, the arguments lying outside 
Body: Same as Fig. 2.2the body) is taken from the 
Name: wsecond column of the body of 

Figure 2.3. Call the function 
represented by this table F. 
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2.17 Evaluate 
expressions: 

the following 2.19 a) Evaluate 
expressions: 

the following 2.21 Evaluate 
expressions: 

the following b) Let G 
represented 

be 
by 

the 
the 

function 
following 

3f3 +/3p4 A~2 3 4 5 6 7 8 9 
map: 

4_ 5 6 7 8 9 10 
3 L S 

sr3 

4x3 

+/5p3 

1 *A 

2*A 4~0 
SL 3 5x3 3*A Then evaluate the following 

2 x 5 r 7 +/10p10 4*A 
expressions: 

,J 4 

( 5+2H" 10x10 A 0 • *A 
G 6 

(5 x2)[9 

s r 5 L2 

multiplication to 
the following 

b) Use 
evaluate 
expressions: 

2.22 Evaluate 
expressions: 

the following 
G 7 

B~l 2 3 4 5 6 G G 6 
(3r5lL2 + / 6p 3 

B*2 G 2x3 
2.18 Evaluate the following +/25p16 

expressions: B*3 G 4 6 7 8 9 10 
+/100p13 

i orar cr i ar vr s B*4 F G 4 
+/20p20 

r 110 8 6 14 7 9 
+/2000p512 

2.23 a) Let 
represented 

F be 
by 

the 
the 

function 
following 

G F 4 

L 110 8 6 14 7 9 
2.20 Evaluate the following 

map: F G 6 

A -+-1 0 
B-+-17 

8 
4 

b 14 
13 2 

7 9 
19 

expressions: 
4~0 

G F 6 

r IB x/3p2 F G 4 6 7 8 9 10 
4 5 6 7 8 9 10 

LIB 2*3 G F 4 5 6 7 8 9 10 
Then evaluate the following 

(L!Al+L/B x /5 p 2 expressions: c) How are the functions F and 
G related? 

L I A+B 2*5 F 4 
d) Make maps of some other 

(+/AlL+/B x / 6p 4 F 6 pair of functions Hand K which 
are related in the same manner 

(+/A)[+/B 4*6 F 9 that F and G are. 

LiAr B x/10p2 F F 6 e) Construct a function table 
to represent the function F. 

r I ALB 2*10 F 2x3 
f) Repeat part (e) for each of 

+ I ALB x/2p10 2xF 3 the functions G, H, and K. 

A 0 • f B 10*2 F 4 5 6 7 8 9 10 

B o. fA 

B 0 • LA 
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2.24 Let F and G be the CHAPTER 3 
functions defined by maps in 
Exercise 2.23. Then if X is any 
argument value, the expression 3.1 Evaluate the following 2x+/110 
F G X means to apply the function expressions: 
G to X and then apply the 10x11 
function F to the result. 8-6 

P+7+15 
a) Make maps to show the 13 - 6 pO.-15 

sequence of functions F G X. 
13-6 5 4 3 2 1 

b) Make a single map to show 3.2 Fill in the blanks so that 
the overall result of the 6 7 8 9 10-5 the expressions will give the 
expression F G X. indicated results. Note that 

1 2 3 4 5+5 each entry may be either a scalar 
c) State the overall effect of or a vector: 
applying F to the result of G. 8-14 

8­
d) Repeat parts (a-c) for the +/8-14 5 
expression G F X. ( 8­ )+6-­M+8 12 7 11 43 10 
e) Repeat parts (a-d) for the N+ 6 7 2 1 20 (8+6)­
functions Hand K of Exercise M-N 10 
2.23. -2 3 4 5 

M+N 6 9 1 -8­

- I 5 
(M-N)+N 2 4 6 -8­

+/8-1 
(M+N) -N 25 

M+2 3 5 7 
Mo. +N -M 

8 7 14-2­

I 5 -M 
6 5 3 -1­

6 - 15 
3.3 In defining the QY§~ 

+/15 notation it was shown that +/14 
10 8 7 2 means 14+10+8+7+2. 

+/6-15 Similarly, -/14 10 8 7 2 means 
14-10-8-7-2, where the expression 

2 X+/15 is evaluated from the right as 
usual. That is, -/14 10 8 7 2 is 

(15)+(6-15) equivalent to 14-(10-(8-(7-2»), 
or 7. Use this fact to evaluate 

+/(15)+(6-15) the following expressions: 

5 x 6 -/8 6 4 2 

2X+/18 -/12 9 8 4 3 

8x 9 -/20 14 12 10 18 9 
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( 20+ 12 + 18) - ( 14+ 10 + 9 )
 

- /8 7 6 5 4 3 2 1
 

(8+6+4+2)-( 7+5+3+1)
 

-/7 6 5 4 3 2 1
 

( 7+5+3+1)-(6+4+2)
 

3.4 Make a map to represent 
each of the following 
express ions: 

7 8 9 10 11-5
 

2 3 4 5 6+5
 

10 11 12 13 14-8
 

2 3 4 5 6+8
 

«\5)+6)-6
 

3.5 Evaluate the following 
expressions: 

5 - 8 

5 - 18 

1 - \ 8
 

8 - t 8
 

0-\ 8
 

5+\8
 
5+5
 

5-5
 

So. -s 

T+5+5
 
To. - T
 

To. -5 

50. -T 

- /10 8 6 4
 

-/1 2 3 4
 

- /1 S
 

- / \ 6
 

- / \ 7
 

- / t 8
 

3.6 Fill in the blanks so that 
the expressions will yield the 
indicated results: 

8­

8­
3
 

( 8 + )-48
 
8
 

3 4 5 12­
0 2 5 8
 

3 4 7 12­
2 1 2 7
 

( \ 5 ) ­
--3­3 3 3 3
 

+/3-\
 
0
 

+/5-\
 
0
 

+ / 7 - l
 

0
 
- / \
 

3
 
- / t 

4
 

- / \
 

8
 

3.7 Make maps to represent the 
following expressions: 

( \ 5 ) - 3
 

( t 5 ) +- 3
 

( t 7) - 9
 

(\7)+-9
 

( t 7) + 9
 

(17)--9
 

3.8 Evaluate the following 
expressions: 

( t 5 ) - 3 

( \ 5 ) +- 3
 

(\7)--9
 

( \ 7) +9 

1'1+-0-\6
 
1'1
 

P+-\6
 

P+N
 

P-N
 

N-P
 

r «. +1'1
 

r «, -1'1
 

No. +P
 

lIo.-P
 

3.9 Fill in the blanks so as to 
make the expressions yield the 
indicated results: 

-
3 2 1	 5 ­

-
8 6 4 18
 

4 1 3 7 5+
 
8 5 3 2 12
 

-5+- 8 5 3 2 12
 
5­

4 1 3 75
 
5+
 

-3-7
14 2	 8
 

5+
 
2 0 5""15
 

5+
-"6-111 8 9
 

S­
-0­O 0 0	 0 

5+ 
-0­0 0 0 0
 

+/0-\
 
10
 

+/0-\
 
21
 

- / I 

3
 
- / I
 

- / t 

4
 

- / t 

4
 

3.10 Write algebraic expressions 
for each of the following: 

The integers from 8 to 8
 

The integers from -4 to 15
 

Every third integer from -12 to
 
12
 

Every second integer from 9 to
 
7
 

The positive integers to 6
 

The positive integers to 6 in 
descending order 

The negative integers from 6
 
in ascending order (that is,
 
running from -6 to -1)
 

The negative integers greater 
than -7 in descending order 
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CHAPTER 4 

4.1	 a) Construct a subtraction e) Write an expression using 5 
table with a left domain of 112 (but not A or B) to yield a 
and a right domain of 112. result equal to the result of 

the expression (¢A)o.-¢B. 
b) Make a clear statement of 
each property you observe in 4.3 The following simple table M 
the table of Part (a). will be used to observe the 

behavior of the flipping 
4.2 Let	 functions: 

A*-13 M*-O 2 ° . +1 2
 
B*- 1 4 M
 
5+Ao. -B 1 2
 

3 4 
a) Evaluate the following 
expressions: a) Evaluate the following 

expressions:
 
15/5
 

¢aM 
¢5 

a¢/1
 
a5
 

15/¢M
 
B ° • -A
 

¢I\;lM
 
O-Bo.-A
 

l5laM 
b) Without using any of the
 
flipping functions 15/, a, or ¢, al\;lM
 
write an expression to yield a
 
result equivalent to 15/5. ¢15l¢M
 

c) Evaluate the following b) The expressions of Part (a) 
expressions: produce several different 

results although some pairs 
¢B produce the same result. Using 

sequences of flipping functions 
¢5 as long as you like, how many 

giff~~~Dt results can you 
A ° . -¢B	 produce? 

¢A	 c) Can any sequence of 
flipping functions applied to M 

(M) o.-B	 produce the result 

a5	 1 2 
4 3
 

d) State any relations you
 
observe among the expressions
 
of Part (c).
 

d) Can you give a convincing 
argument to show that the 
different results you produced 
in Part (b) are ~11 that can be 
produced? 

e) Write the shortest possible 
expressions you can find for 
each of the different results 
produced in Part (b). For 
example, the expression ¢I5lM 
produces the result 

3 1 
4 2 

and is therefore equivalent to 
rotating M clockwise by one 
position. Hence a 
re-application of the pair ¢15l 
(that is, ¢15i¢I5iM) will effect a 
second rotation to produce the 
result 

4 
2 

3 
1 

However, 
produced 
expression 

this 
by 

e¢M. 

can 
the 

also 
shor

be 
ter 

f) From the preceding parts of 
this exercise it should be 
clear that e¢M is DQt 
equivalent to I\;lM. 
Nevertheless, for the 
subtraction table 5 it was 
obvious from the examples given 
in the text that e¢S is 
equivalent to 15i5. What is 
there about the table 5 that 
makes this so? 

4.4 Let 

A*-3 + 1 6 
B*-2 x1S 

M*-Ao.-B 

a) Evaluate the following 
expressions: 

A[4J 

B [ 2 J 

M[ 3; S J 

M[ S; 3 J 

( 15iM ) [ 3 ; S J 

(I5lM)[S;3J 

M[ 2 ; J 

M[ ; liJ 

(M[3;J)[SJ 

b) Evaluate the following 
expressions: 

A[2 4J 

A [ 13 J 

A[3+13J 

M[ 2 4; 1 3 5 J 

M[:' 4; J 

M[ ; 1 3 J 

A [ 3 J 

B[4J 

A[3J+B[4J 

(Ao.+B)[3;4J 

4.5 Consider the addition table 
B given in the text. State any 
patterns you observe in the 
table. Where possible make your 
statements in both English and 
algebra. For example: 
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~B is equal to B. 

0-~B[2;J is equal 

B[I;] is equal to 
value of I. 

to B[2;J. 

B[;IJ for any 

i » • I I 

.t «, LJ 

r- . LI 

4.14 Evaluate 
expressions: 

I+(tl1)-6 
A+Io.+I 

the following L/5sX+Y 

1/9SX+Y 

L /9SX+Y 

B[5; J is equal to 2+B[3;J. 
J » • I J 4sA 1/15SX+Y 

4.6 Repeat the work of Exercise 
4.11 a) Repeat 

with I+( 113)-7. 
Exercise 4.10 

16 sA * 2 L/15SX+Y 

4.5 for the multiplication table 
N given in the text. b) Evaluate 

expressions and 
the following 
comment on the 

S+Io. -I 
4sS 

4.16 Evaluate 
expressions: 

the following 

4.7 Quadrant 2 of the 
multiplication table N given in 
the text consists of the first 
seven rows and first seven 
columns of N. Hence Quadrant 2 
is the table Q2 defined as 
follows: 

Q2+N [17;17J 

be specifiedcanQuadrant 4 
similarly: 

the 

3=7 

3=3 

K+18 
R+K- . I K 
T+RIEl~R 

patterns in the table 

4.12 Evaluate 
expressions: 

following 

T: 

the 

M+Io. «t 

12",M 

X+8 4 3 5 7 6 
Y+4 3 10 8 2 5 
XsY 

144",M*2 

4.15 Evaluate 
expressions: 

following 

L/ A=~A 

L/L/A=QA 

L/L/S=~S 

A+(16)o.+16 
A=~A 

S+ ( 1 6 ) 0 • - 1 6 

S=~S 

Q4+N[8+17;8+17J X+17 
Y+~X 

I/XSY 
I/S=~S 

a) Write similar 
to define the 
quadrants Q1 and Q3. 

expressions 
remaining 

X=Y 

X~Y 

L/XsY 

5sX+Y 

L/I/S=~S 

C+ ( 16) 0 • "' 16 
+/C 

b) State any relations you 
observe among the quadrants. 

Xo. =X 1/5SX+Y +/~C 

x-, ~X 

4.8 Repeat the work of Exercise 
4.5 on the table MAX defined in x-, =Y 
the text. 

4.13 Evaluate the following 
4.9 Repeat the work of Exercise expressions: 
4.5 on the table MIN defined in 
the text. X+17 

X o. >X 

4.10 Evaluate 
expressions and 

the following 
compare the x-, "'x 

results: 
x-, sX 

I+16 
Xo.s~X 

J+O-I 
QXo. »x 
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CHAPTER 5 5.3 
of 

Make 
the 

maps to represent each 
following expressions, 

4054B~124 

where 5+16 and N+-4+17 and M+4x5: 51324~7B 

5.1 Evaluate the following (P+Q HR 5x5 971203~257 

expressions: 
(P-QHR 5x5 followed by (5x5)~" 2511930~1095 

4x 8 

Nx2 followed by (Nx2)~2 5764B96~2164 

32~4 5.2 Fill in each underscored 
position giving either the result M~4 followed by (M~4)x4 1505625~1375 

3 2~ B of evaluating the expression or a 
value such that the expression 5.4 Evaluate each of the 751424:3184 

48~B will yield the indicated result: following expressions using the 
method of guessing, first 5.6 Repeat the examples of 

(32~B)+(4B~B) x 3 obtaining two guesses which Exercise 5.5 using the method of 
24 "bracket" the result (that is, long division. 

(32+4BHB 2 11,3 one is too high and the other is 

5+6 x17 xiS 
too 
the 

low), and then closing in on 
result by successive guesses 

5.7 Fill 
following, 

in the 
using 

blanks in the 
long division 

5 300 which lie between the guesses where necessary. 
30071 5 which bracket the result most 

57 '2 closely. Make your guesses as 241724~178 

-;-:;:0 good as possible to shorten the 
s . 3 2" work, but show all of your work: x314 

25x20 853452 
5~6 256~8 314x 

,7 1174046 
571 32 37B~7 ( +15)x624 

32x7 144144 -­
50 . ~ 1 2 3 6 4096~16 ( -48)x176 

(25~5H(35~5) 457248 -­
( -5 H2 5040~42 ( n)7167 

- - - -
(25r35H5 416331 -­

6 9 12 x 2 403207105 257864H( 167x3) 
( 28+ ) ~ 5 

-­T+5- 24 40 362BBO~144 ( 268000~4)~250 

T ~5 -­40 362BBO~27 268000~( 250 x4) 
To . ~ 1 2 3 6 ( 2 B+ ) ~ 5 -­

-
40 

-
362BBO~4B (238750 x5 )~50 

P+ B 12 10 21 ( 2B+ H5 -­Q+16 15 35 49 40 362BBO~36 23870~(50~5) 

R+2 3 5 7 (-2B+ H5 -­
P~R 40 5.5 Evaluate the following 172B712 

22 21 32~ expressions, using the method of 
Q~R 2 7 16 guessing at a quotient, 1728~12*2 

22 21 32~ subtracting from the dividend the 
(P~R)+(Q~R) 22 21 32 product of this guess with the 172B~12*3 

divisor, making a guess at the 
quotient of the new remainder 
divided by the divisor, and so 
on. Show all of your work. 



5.8 Make maps to represent each 
of the following, where 5+-4+\9: 

S~4 followed by (5~4)x4 

S~3 followed by (5~3)x6 

S~6 followed by (5~6)x3 

5.9 State the values of the 
divisor, dividend, and quotient 
for each of the following 
expressions: 

8~4 

1 0 ~ 2
 
1 96~ 14
 
2 048~64
 

1728H44
 

5.10 State the values of the 
numerator and denominator for 
each of the expressions of 
Exercise 5.9. 

5.11 Give an appropriate name 
for each of the following 
fractions: 

1 ~ 2 
1 f3 
2~S
 

7 ~ S
 
2~6
 

3 ~ 6
 

4 ~6
 

6~6 

-7H2 

5.12 Under each expression below 
enter a simpler equivalent 
expression of the form A~B (where 
A and B are integers), as shown 
by example in the first four 
lines: 

(2 8)+(S~8)
 

7 ~
 

(7 3)+(8~3)
 

1 S ~ 3
 

(lo71)+(4~7) (16~31)+( ~ 3 1 ) (3~S)x( H2) 
8 ~ 3 1 18~60 

(-6~13)+(32H3) 

( H7)+(2H17) (lH8)x(2~ 
-2­

(32~13)-(6H3) 34~120 

(42HS)+(-42i1S) (3H99)-( ~ 9 9 ) ( i s ; )x( ~ 20 ) 
22~99 1 2 0 ~"8""C) 

(26n)-(-22~3) 

(64H9)-( H9) (17~24)x( 

(38-47)H9 64~19 - ­ 8S~96 

(2S+14)71 (29~ )+(19~ 
4 - ­

(S~ )x(6~ 

20~~ 
(2S+9)~(4+S) 

5.15 Under each expression enter (S~3)x( 

(19+-38)~(7+S) a simpler equivalent expression 4 

of the form integer ~ integer: 
(3~9)-(2S~9)+(-20~9) (S~3)x( 

(2~3)x(S71) 1 
(lO+27H(4-3) 

(3~S)x(S~3) (lH23)x( _ 
(-32~12)-(-32~12) 1 

(-10H7)x(SH2) 
(-1~18)-(-19~18)-(6~18) 

(-2~3)x(-2~3) 

( ~ )x(39~41) 
1-­ - ­

(2~11)+(2~11)+(2~11) 

(4~7)x(7~9)+(15~9) 5.18 Under each expression enter 
(3 x2)Hl an equivalent expression of the 

(13~8)x(14~6)-(-17~6) form integer ~ integer: 
5.13 Review each of the results 
obtained in the preceding «13~8)x(11~3))+«7~12)x(S~2)) (2~3)x(2~2) 

exercise and add a third line 
giving an equivalent integer if «3~4)+(10~4))x(3S~S2)-(19~1S) (2~3)x(3~3) 

there is such an integer. For 
example: (-2~B)x(-S~3) (3~4)x(S~S) 

(H3)+(8~3) (O~4)x(-1S~3) (7~9)+(2~3)x(3~3) 

1S~3 

S (-HS)x(5~S) (H9)+( 2~3)x1 

5.14 Fill in the underscored (3~4)x(12H2) (H9)+(2~3) 

expressions with integers such 
that the indicated equivalences 5.16 Review each result obtained «8~4)x(S~S))+(-13~20) 

will hold: in the preceding exercise and 
give an equivalent integer where «3~4)x(S~5))+«3~S)x(4~4)) 

(S~13)+( H3) possible. 
19H 3 «2~3)x(2~2))+«1~2)x(3~3)) 

5.17 Fill in the underscored 
(S~13)+( H3) positions appropriately: 
2 
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5.19 For each expression write 
an equivalent expression of the 
form integer ~ integer: 

3 x(4+5) 

4x(3~5) 

5x(3~5) 

(H9)xll 

3 x(H9)x3 

3x7~9x3 

(H9)x(3~3) 

5x14~13x2 

lx2~3x4 

lx(2~3)x4 

4x3~2xl 

5.20 As shown in the first 
example, write equivalent 
expressions of the form ~/V where 
V is a vector whose two elements 
are integers: 

(U3 5)x(~/2 3) 

~ /6 15 

(~/16 28)x(~110 20) 

(16~28 )x( 10~20) 

( 10n)x(-12~3) 

(~/23 4)x(~/4 23) 

(~/12 25)n/4 4) 

(3H2)+( 5H2) 

(~/3 12)+(~/5 12) 

(~/15 28)+(~/-1 28) 

(~/17 29)-(~/-32 29) 

(~/2 5)x(~/3 7)
 

~/2 5x3 7
 

2x~/4 5
 

-~/2x4 5
 

5x~/2 3x4 7
 

5.21 For each expression write 
an equivalent expression which 
involves not more than two 
integers: 

(2~7)+(4~5)
 

(3~5)+(4f6)
 

(12+24)+(-3H7) 

(12~24)-(3H7) 

(12~24)-(-3H7) 

(2~5J+(3HO) 

(~/2 5J+(~/3 10) 

(~/5 2)+(~/10 3) 

2x(~/5 2)-(~/-10 3) 

2 7x(~/5 2)+(~/3 11) 

3 3x(~/5 7)-(~/-11 6) 

(1~2)+(3~4)+(5~6) 

(H2)+(2~3)+(3~4) 

(~/12)+(~/1+12)+(~/2+12) 

5.22 Under each expression write 
a series of equivalent 
expressions showing the steps in 
simplifying to a final expression 
of the form X~Y: 

A-<-4 7
 
B-<-2 5
 
(~/A)+(UB) 

(~/A)-(~B) 

(~/B)-(~/A) 

(~/B)+(~/A) 

(~/A)+(~/A) 

G-<-10 9 
(~/B)-(~/I;) 

(~/A)+(~/G)-(~/G) 

(~/G)-(~/B) 

W-<-(~/A)+(~/G) 

(~/W)-(~/A)
 

(~/W)+( z« ~/A»
 

(~/BJ+(~/W)
 

(~/B)x(~/A)
 

(~/W)x(~/G)
 

(~/W)x(~/W)
 

(~/G)x(~/B)
 

(UW)+( ~/B)
 

5.23 For each expression write a 
simpler equivalent expression 
involving at most two integers: 

(9~2)~(4~3) 

(H3H(4~9)
 

(-H3)~(4~9)
 

3~(4~9)
 

5H5~6) 

A-<-3 4
 
B-<-5 6
 
(~/A)~(~/B) 

(~/BH(~/A) 

(~/A)x(~/B)~(~/A) 

(~/78 23)~(~/45 3) 

(4nH(~/3 1) 

(4~7)~3 

(7~8)~2 

5.24 write the following 
rational numbers as decimal 
fractions: 

5~10 

2~10 

8~1 

34~100 

34~1000 

34~10 

7HOOOO
 

234HO
 

~/234 100
 

234~1000 

45 - i o
 

~/294 10000
 

38~10 

50~10 

~/23 100
 

~/-8 1000
 

~/-567 1
 

OOOOHOO
 

4567HOO
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28345~1000 5.27 Evaluate the following: (~/98 100)+(12H)-(~/98 10) 2~3 

79HOOO 34.3+6.3 36.5--578.4 ( 1 9 ) "' 9 

~/-78 1000 2.5+5.6 77.777-66.66 ( 132)n2 

~ /293847 10 19.4-3.2 46.9-26.879 (110)o.~(110) 

29~1 

9287654HOOOOO
 

9",100000
 

23~100 

3688H10 

5.25 write decimal fractions 
equivalent to each of the 
following expressions: 

(",/14 10)x(~/7 100)
 

(",/14 10)~(~/100 7)
 

(",/24 100)x(",/74 10)
 

(",/14 100)+(~/27 100)
 

(",/64100)+('1136100)
 

(",/164 100)+(~/135 10)
 

(H3.610)
 

(",/14.8210)
 

(~/15.66 10)x(~/256.4 100)
 

5.26 Evaluate the following 
expressions showing each rational 
result as a decimal fraction: 

V+6 27 135 
E+l0*14 
Vo. ~E 

F+l0*(17)-4
 
Vo. ~F
 

38.6- 10.3 

(~/48 10)+4.6 

6.00+3.87 

4.7300+9.4529+98.0000 

7.50+68.90- 548.21 

5.78-2.40 

67.8+3.6 

866.00+(4HOO) 

13.6--7.2 

5.28 Evaluate the following 
expressions: 

5.3+8.27 

8.6+5.14+1. 26 

870.3458+ -78.2 

(~/34 10)+21.7--44.4 

45.23+(~/37 10) 

(",/56 100)+(4~10) 

5.6-(45",10)+ 4.12 

19.5-279.69 

58.3-23.45 

67.8+ 692.5678 

(~/-93 1000)+2.45 

5.29 Obtain decimal fraction 
equivalents for the following 
expressions: 

3~4 

1728~25 

1728H6 

153~12 

2 3~5 25 

3~5 25 

(18)~8 

(116)~16 

(132)",32 

(125)~25 

(125)~4 

1~2*16 

1~5*16 

1",10*16 

1-(18)",8 

1-(132)~32 

5.30 Obtain the best 3-place 
decimal fraction approximation to 
each of the following 
expressions: 

1 ~ 3 

(65,24)H12",44) 

(7H3)~(H8) 

(46",9)~(lH19) 

(32~21 )~( 12HO) 

(24~28)H6 

(4~9H(2H8)~(32H) 

(H12)H2S771)
 

( 8",l)x(6",37)
 

(8H3)~(20",9) 

(H14H( 3H6) 

(66~2)~(2~3) 

(9H6)~(6~6) 

(H2)~(8",3H(9~4) 

5.31 Evaluate the following 
expressions: 

2.41x1.48 

3.27x16.4
 

1.287x14.321
 

234. 56x12. 34 

2.4x3. 5x4.6x5. 7 

13.287x4.8+S.6 

1.125x.32 

http:19.5-279.69
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5.32 Obtain the best 2-place 
decimal approximation to each of 
the expressions of the preceding 
exercise. 

5.33 Find the best 
approximation to each 
expressions of Exercise 
with each multiplication 
by division. 

5.34 Write 
of Exercise 
notation. 

5.35 Write 
of Exercise 

each of the 

3-place 
of the 

5.31 but 
replaced 

results 
5.31 in exponential 

each of the results 
5.33 in exponential 

notation with the value 3 for the 
integer following the E. 

5.36 Obtain the best 3-place 
approximation to each of the 
following expressions: 

2~3 

2 -, - 3 

2:- 3 

2~-3 
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CHAPTER 6 

6.1 Evaluate the following 
expressions: 

A+-2 3 7 
B,-4 1 ;'
 
C.. 9 8
 
A,B 

B,A 

(A,3) , C 

A, (B, C) 

(-<j)14),1ll 

6.2 Let n b~ the H-by-8 divisio~ 

table shown in the text. 

a) Evaluate the following 
expressions: 

D =1 

0=102 

0=103 

b) Examine the results of Part 
(a) and state the pattern 
produced by expressions of the 
form D=R, where R is any value 
which occurs more than once in 
D. (if necessary evaluate 
further cases, possibly 
extending the table itself) 

6.3	 a) Give expressions of the 
form used in Exercise 4.7 (for 
the multiplication table N) to 
define four suitable quadrants 
of the division table Jo.oK 
given in Section 6.3. 

b) State any relations 
observed among the quadrants. 

6.4	 a) Evaluate the following 
expressions: 

A ,- C 7 8 9 1 0 11 
B+-7 8 9 10 11 12 
C,- 9 1 0 11 1 2 1 3 1', 
D+-10 11 12 13 14 15 
AoB 

C :-0 

T'-(A,B) < • s( CoD) 

b) Use the table 'l' to 
determine which is the larger 
of each of the following pairs 
of rationals: 

8~9 and 9~10
 

9 H 0 and 1 0 ~ 11
 

c) Without using division 
write an expression which will 
yield a table identical with T. 
Evaluate the expression and 
compare the result with T. 

6.5 Evaluate the 
expressions: 

2 30.*1+110 

2*-ll+112 

3*-ll+112 

2 30.*-4+112 

2 3 II 5 5°.*-4+17 

following 
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6.6	 a) Evaluate the following 
expressions to five decimal 
places: 

A -<-15
 
B-<-O-A
 

2 *A
 

2 *B 

(2*A)x2*B 

( 2*18)x2*0-18 

+/(2*1100)x2*0-1100 

b) Evaluate the following 
expressions to five decimal 
places: 

A+14
 

3 *A
 

3 * O-A 

( 3*A)x(3*0-A) 

c) Evaluate the following 
expressions to five decimal 
places: 

A+14
 

5 *A
 

1 75*A
 

5 * O-A
 

(175*A) =5*0-A
 

6.7 Evaluate the following 
expressions: 

A+15 

10*A
 

1 0 * O-A
 

10*A
 

10*0-A 

20*A 

20*A 

O*A 

O*O-A 

6.8 Evaluate the following 
expressions: 

A-<-(16)72 

9*A
 

B-<-O -A
 

9*B 

49*A 

49*B 

6.9	 a) Determine a number A 
which when multiplied by itself 
yields 10 (correct to three 
decimal places). 

b) Use the result of Part (a) 
to evaluate the following 
expressions: 

10*(16)72 

10*0-(16)72 

6.10 Evaluate the following 
expressions: 

A-<-16
 
3 *A 7 3
 

3 *A 74
 

3 *A 7 5
 

3*A 7 6 

5 *A 76 

CHAPTER 7 

7.1 Evaluate the following 
expressions: 

3117 
7.2 

3117 593 18 42 

9 I 19 

91+/19 

+/3113
 

+141 14
 

+1121112
 

(8+7)161654427529104 

(5177 5 24 2750 4 2)-660 

3[+/6 8 

(3+9$6) 1726 10 9 234 3064 36 

21-/2 4 9 653 1504 7 

(4f6) 16 2522 5 5 

515 1312 9 1 162x5 9 932 7 3 

717 4394L955 8513 

(917418 20 887)+200 10 866 

(3 x6)171 1 8 4+7 21 82 4 10 

1/3 9 1365+10 258 3
 

7160 3
 

(612)x755
 

614d
 

613216 5 5172
 

1/4 19 

I 17 37 

Evaluate the following: 

1 2 3 ° . I 4 5 6 7 

2 4 6 ° . I 6 12 18 24 72 

1 4 o . I 10 4 520 831 

4 7 8 10 o . I 920 6540 42 

7?10 50 3 1 10 o . I 3 360 2 5 

8 8 10 89 3 o . I 9410 6 8 

10 3 o . I 220 7148 14 910 7 

10 56 2 ° • I 4 388 

7[ 1 17 1 4 26 o . + 3 1 

10 7 5 9 7 ° . I 3 680 9090 26 

22 5 4 6 89 ° . I 8 48 67 7 2 

7-8 9 10 o . I 8 320 

2 1 2 ° . I 10 4 3 6922 

( 1+2?1 6 4 ) 73 ° . I 3 

5 4 3 1 ° . \ 529 4 61 2 486 9 

8 10 7 3 8 0. I 10 25 85 69 5 

7786 0.143657585 

616 7 34 1 0.+ 3 1 5 458 

70 5 3 0.136 84 10 26 2516 

58 0.16949 
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( a x i o 5) 0,1246628 

6 2 9 4 5 0 3 2 373+8 1 45 

7.3	 Evaluate the following: 

3 I 10 

(3+7)195270 7 4160 

101-727 -7 9 3 

(4+2)1-61 

61+/4650 

1 1 8 

61 8416L 0 0 4 6 5 

16I X/153
 

66149981476L-l0
 

(10 x5)12L9 2548
 

(26 xl0)1350 46 9 94 6517 

1/-5+7023 99 -10 

81-6 2 -451 990 216 

(5-t5d)I-61641 

11-31 x-3899 

(313 -8198)x 9 2 

71 =r7 -1 

(413$6)1-9 9 6 0~44 3 38 40 

61-9402 3216 

7.4 Make a table of the results 
of the expression (19)0,1-10+119. 
Do you notice any patterns in the 
table? Are they similar to the 
patterns in Table 7.1? Draw 
circles around all the D's in the 
table. Connect groups of these 
circles by straight lines. Does 

it seem that one half of the 
table is the mirror image of the 
other half with respect to these 
lines? 

7.5 Evaluate the following 
expressions: 

0=31116 

0=5[125 

M+(10 xO,19)o,-t0,13
 
41M
 

91M 

71 M 

7.6 Make the table 
0=(110)0,1110. Circle the 
positions of all the l's in the 
table. Why are there no l's in 
half of the table? What is the 
significance of the line of l's 
that divides the table in half? 

7.7 In the table of the 
preceding exercise, the number 3 
will be seen to have exactly two 
divisors (1 and 3). Find all the 
other numbers in the table which 
have exactly two divisors. Find 
four more numbers not in the 
table which have this property. 

7.8 Make the table 
0=(110)0,1-11+121. Note all of 
the interesting properties of the 
table that you can observe; for 
example, is the left half a 
mirror image of the right half? 
Where does the split occur? Is 
-8 divisible by the same numbers 
as 8? 

7.9 Which of the following 
numbers is divisible by 3: 

12 45 34 87 10 5 76543 76 
567 9876543 39 149 9378 345 83 

86 -237 873 3482 93754 

Add up the digits of each number. 
Are these sums divisible by 3? 
Can you find a rule that will 
tell quickly whether a number is 
divisible by 3 or not? Can you 
find a relationship between the 
3-residue of the number and the 
residue of the sum of its digits? 
Does this relationship hold for 
integers other than 3? 

7.10 Which of the following 
numbers is divisible by 5? 

56 25 90 1234 1000 595 
98765 234 -3591 63 55 80 -390 48 
240 

Is there any relationship between 
the 5-residue of the number and 
the 5-residue of its final digit? 

7.11 Which of the following 
numbers is divisible by 2? 

8 24 86 456 9870 34592 237 
162 1000 645 343 926 -427 1445 92 

Is there any relationship between 
the 2-residue of a number and the 
2-residue of its final digit? 

7.12 Write down in your own 
words a definition for the I 
function. According to your 
definition, what would the result 
of OIN be, where N is any 
integer? 

Now suppose you defined AlB as 
the repeated subtraction of A 
from B until a result is obtained 
that is 0 or larger but also less 
than A. Will this definition 
produce the same results as the 
definition introduced in the 
text? Using this new definition, 
OIB would be a never ending 
process. Would it seem 
reasonable to let OIB have the 
result B? 

7.13 Evaluate the expression 
(IN)IN for each of the following 
values of N: 

9 12	 15 17 24 32 36 

7.14 Use the results of the 
preceding exercise to determine 
all of the factors of each of the 
numbers 9,12, etc., listed in 
that exercise. 

7.15 For each list of factors 
obtained in the preceding 
exercise write the list of 
corresponding factor pairs. For 
example, the factors of 6 are 1 2 
3 6 and the corresponding factors 
are 6 3 2 1. 

7.16 From your answers to the 
preceding exercise, does it seem 
reasonable that every number has 
an even number of factors? Can 
you find any numbers that have an 
odd number of factors? If a 
number has an odd number of 
factors, what are its factor 
pairs? 

7.17 Evaluate the following 
expressions: 

1 0 1 0 1/3 5 7 9 11 

o 1 0 0/3 7 9 11 

X+12	 17 4 5 ·3 0 4 0 

1 1 1 1 0 0 0 O/X 

(X>O)/X 

(X~O)/X 

(0=2IX)/X 

(0=3IX)/x 

( ( 0= 21 X) 1 ( 0 =31 X) ) / X 



«	 0=21 XJL (0=31 X)) IX 

«	 0= 2[ X) L( 0;< 31 X)) I X 

(0=51125 )/125 

(1=51125)/125 

(2<5[125)/125 

t/Xo.=X 

(1=t/Xo.=X)/X 

(1;<t/Xo.=X)IX 

7.18 Write expressions which 
will select from the positive 
integers up to N those numbers 
satisfying the stated properties. 
For example, the expression 
( 0 =41 1 N) 11 N would be appropriate 
for the property "all integers up 
to N which are divisible by 4" 

a) All integers up to N which 
are divisible by either 3 or 5 

b) All integers up to N which 
are divisible by both 3 and 5 

c) All integers up to N which 
are divisible by 15 

d) All integers up to N which 
are greater than M 

e) All integers up to N which 
are greater than M and 
divisible by 5 

f) All integers up to N which 
are divisible by every element 
of the vector V 

g) All integers up to N which 
are divisible by exactly K 
elements of the vector V 

7.19 Use the expression 
(2=+/~0=(IN)o.11N)/1N to 
determine all of the prime 
numbers up to 20. Show each step 
of the calculation. 

7.20 Evaluate the following 
expressions: 

P-<- ( 2 = t I III ( 1 1 2 ) 0 I 1 12 ) 11 12• 

P*2 0 2 0 1 

x/P*2 0 2 0 

x/P*O 0 0 0 0 

x/P*1 0 0 0 0 

x/P*O 1 0 0 0 

x/P*2 0 0 0 0 

x/P*O 0 1 0 0 

x/P*1 1 0 0 0 

7.21 The expressions of the 
preceding exercise were all of 
the form x/P*E, and the last five 
of them yielded the first five 
positive integers. Determine 
further values of E to continue 
the process for integers 7, 8, 9, 
etc. What is the first integer 
impossible to represent in this 
way? 

7.22 Take the first integer 
which cannot be represented in 
the form x/2 3 5 7 11*E and 
append it (it is a prime number) 
to the list P and then continue 
the process of Exercise 7.21 for 
a few more integers. Can every 
integer be represented as x/P*E 
where P is a vector of prime 
numbers? 

7.23	 a) If P is a vector of 
primes and if M-<-x/P*E and 
N-<-x/P*F and C-<-x/P*ELF, then C 
is a divisor of both M and N. 
Choose a number of different 
values of E and F and verify 
that this is so for the cases 
chosen. 

b) Explain why C is a divisor 
of both M and N. 
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c) Is it possible to find a 
number larger than C which 
divides both M and N? Why? 

7.24	 a) If P, M, and N are as 
defined in the preceding 
exercise, and if L+x/P*EiF, 
then both M and N divide L. 
Verify this for a few values of 
E and F. 

b) Explain why M and N divide 
L. 

c) Is it possible to find a 
number smaller than L which is 
divisible by both M and N? 
Why? 
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CHAPTER 8 

8.1 Evaluate the following x --X 
expressions: 

Xx-X 
: 3 

XI-X 
x /1 3 

Xl-X 
! 4 

8.4 Evaluate the following 
x. / \ 4 expressions correct to 3 decimal 

places: 
110 

,4 
! 5 H r : 4) 

.: 5 
! 6 ) , ( : 5 ) 

,6 

:1+110H(: 1l0) 
18
 

(1+ll0)x( ~1l0)
 

- : 1 8 

( !110HllO 
: - 1 8 

1 , ! 1 9 
~ ! 1 5 

8.2 Comparison of the last two 
results of Exercise 8.1 suggests +/' : 1 5 
a definition for the value of :0. 
What is the value? Would its -;-2*t5 
adoption agree with the obvious 
requirement that !N+1 is equal to +/,2*15 
(N+1)x!N? What value would the 
same line of reasoning give for 8.5 Evaluate the expression 
: -1? +/,2*1N for the first few 

positive values of N. What 
8.3 Evaluate the following integer do these results seem to 
expressions: be approaching? Can you choose a 

positive value of N large enough 
- 1 6 so that +/~2*1N is larger than 1? 

X+2 3 7 4 8.6 a) Evaluate the following 
expressions: 

-x 
3 4 7 9 10 

x - 3 
X+3 4 7 9 10 

X+-3 IX 

X+-X	 I -X 

-284­

- I X	 (X;tlX)/X 

Xi I X N+112
 
l lH 3
 

+/IX
 
(N-3IN),3
 

1+/.1 
llH S 

X=IX 
(N-sINHs 

(X=!X)/X 
8.8 Evaluate the following 

(X;tIX)/x expressions: 

b) Evaluate the following -1 1 0 1 0 1
 
expressions:
 

~-1 1 0 1 0
 
P+7.2 3.4 8.1 5
 
Ip X+-2 3 7 11
 

PI-P	 X>3 

c) What is the relation -X>3
 
between the expressions IP and
 
PI-P appearing in Part (b)? X<;3
 
Would this relation remain true
 
for any value assigned to P? -0=5Ill2
 

8.7 Evaluate the following O;t 'J I \ 1 2 

expressions: 
8.9 Evaluate the following 

L3.	 5 2.6 2 4.9 expressions and compare their 
results: 

13. S 2.6 2 LI. 9 
L+O 1
 

L(1l0H2 L 0 l L
• 

~(~L)o.I(-L) 

1(1l0),2 
Lo.IL 

L(1l0),3 
~(-L)o.L(-L) 

1(1l0)~3 

Lo.;tL
 
X+1.8 2.7 6 4.9 7
 

-(-L)o. =(-L)
 
X = l X
 

L 0 <L• 

(X=LX) /X
 
-(-L)o.<;(-L)
 



8.10 
(i.e., 
either 
then 
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If L is any logical vector 
each of its elements is 

0 or 1) of any dimension, 
the expressions L/L and 

-r/-L yield the same result. 

a) Verify this for a number of 
values of L. 

b) Perform a similar 
verification of the equivalence 
of r /L and -L/-L. 

c) Find similar relations among 
the functions <, <;, =,;>, and 
~. For example, ~/L is 
equivalent to -=/-L. 

8.11 Evaluate the following 
express ions: 

A +2 3 5 
B +1 3 5 7 9
 
pA
 

pE 

+ / A =A 

+ / B=B 

M+Ao.+B 
pM 

x/pM 

pGlM 

pEo.+A 
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CHAPTER 9 

9.1 Define a function called D6 
to determine divisibility of its 
argument by 6. Then evaluate the 
following expressions: 

D6 12 

D6 112 

D6 (110)°.+(110) 

D6 (110)0.x(110) 

D6 (110)0.-(110) 

9.2 Define a function called B 
which determines the square of 
its argument. Then evaluate the 
following expressions: 

B	 16 

B	 (16)0.+(,6) 

9.3 Define a 
which yields 
its argument 
Then evaluate 
112. 

9.4 Define a 

function called R7 

the remainder when 
is divided by 7. 
+he expression R7 

function called IQ7 

which yields the integer part of 
the quotient of its argument when 
divided by 7. Then evaluate the 
expression IQ7 3 74 23 49. 

9.5 Using the functions defined 
in the preceding exercises, 
evaluate the following 
expressions: 

3xD6 110 

+/D6 110 

L/D6 72 138 252 

3xB 2+15 

X+12+2 x I 8 

7 xIQ7 X 

(7xIQ7 X)+R7 X 

9.6	 a) Using the functions 
defined in preceding exercises, 
evaluate the expression D6 R7 B 
18 
b) Let C be the function 
defined as follows: 

VZ+C X 
Z+D6 R7 B XV 

Now evaluate the expression 
C 18 

9.7 Define monadic functions to 
yield each of the following 
results: 

a) The area of a square as a 
function of the length of its 
side. 

b) The area of a circle as a 
function of its radius (Use 
3.1416 as an approximation to 
pi) . 

c) The area of a circle as a 
function of its diameter. 

d) The volume of a sphere as a 
function of its radius. 

e) The length of a rope in 
inches as a function of its 
length in feet. 

9.8 Use the dyadic function F 
defined in the text to evaluate 
the following expressions: 

2	 4 6 8 F 13 14 15 16 

4	 F 13 14 15 16 

2	 4 6 8 F 13 
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M+ ( 1 5 ) 0 + ( \ 5 ) • 

M	 F 7+M 

9.9 Define a dyadic function 
called H which gives the area of 
the rectangle whose length is 
given by the first argument and 
whose width is given by the 
second argument. Then evaluate 
the following expressions: 

3	 Ii 4 

345Ii567 

3Ii567 

345Ii5 

9.10 Define a dyadic function K 
which yields the volume of the 
square cylinder, where the first 
argument represents the height of 
the cylinder and the second 
argument represents the length of 
the square base. 

9.11 Define dyadic functions to 
yield each of the following 
results (the first argument 
mentioned is to be the first 
argument of the function): 

a) The area of a triangle as a 
function of its base and 
altitude. 

b) The perimeter of a 
rectangle as a function of its 
length and width. 

c) The width of a rectangle as 
a function of its area and 
length. 

d) The width of a rectangle as 
a function of its length and 
area. 

e) The volume of a circular 
cylinder as a function of its 
height and the radius of its 
base. 

f) The altitude of a triangle 
as a function of its area and 
base. 

9.12	 a) A rectangular plot is 
to be enclosed with 432 yards 
of fencing. Define a function 
to give the area of the 
enclosed plot (in square yards) 
as a function of the length of 
one of the sides (in yards). 

b) Evaluate the function for a 
number of arguments to 
determine that value which 
yields the largest possible 
area. 

9.13 a) A rectangular plot is 
to be enclosed with a fence of 
length L. Define a function 
which gives the area enclosed 
as a function of L and of the 
length S of one of the sides. 

b) Evaluate the function for a 
number of values of Land Sand 
determine the largest possible 
value of the area for a given 
fence length L. 

c) How do the values of Land 
S compare when S has been 
chosen to give maximum area for 
some fixed value of L? 

9.14 Using the function PH 
defined in the text, determine 
the value of the expression pPR X 
for the following values of X: 
10, 15, and 20. 

9.15 Using the functions FToe 
and eTOF defined in the text, 
evaluate the following 
expressions: 

FToe 20+110 

eTOF FTOe 20+110 

FToe 20+110 

eTOF FTOe 20+110 

9.16 Using the function A 
defined for adding rationals, 
evaluate the following 
expressions: 

3	 4 A 2 

f/3 4 A 2 

(~/3 4)+(~/1 2) 

5	 7 A 4 6 

21 3 A 15 8 

27 7 A 1 10 

14 13 A 26 29 

9.17 Define a function M which 
mUltiplies rationals in the same 
manner that the function P adds 
then. Then evaluate the 
following expressions: 

3	 4 f',J 1 2 

~/3 4 M 1 2 

(~/3 4)x(~/1 2) 

5	 7 M 4 6 

213M 15 8 

277Mll0 

9.18 Define a function D which 
divides one rational by a second. 
Then evaluate the following 
expressions: 

3	 4 D 2 

~/3 4 D 2 

(~/3 4)f( ~/1 2) 

5	 7 D 4 6 

9.19 Using the function R of the 
text, show the results produced 
by the following execution 
traces: 

T6R+14 
Q+R 3 
Q+R 4 

T6R+2 4 
Q+R 3 
Q+R 4 
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CHAPTER 10 

10.1 Analyze each of the four 
following function tables, that 
is, determine a function to fit 
each table: 

0 .4 0 3.9 
1 2.1 1 2. 7 
2 3.8 2 -1 . 5 

-3 5.5 3 O. 3 
4 7.2 4 0.9 
5 8.9 5 2.1 

0 4.7 0 15 
1 1.9 1 19 
2 0.9 2 23 
3 3.7 3 27 
4 5. 5 4 31 
5 9.3 5 35 

10.2 For each of the tables of 
Exercise 10.1 make a 
corresponding map and use it to 
determine an expression 
representing the table. Compare 
the results with the results of 
Exercise 10.1. 

10.3 Graph each of the functions 
of Exercise 10.1. 

10.4 Graph each of the following 
two functions: 

0 - 12.4 0 - 51 
-1 8.9 1 - 50.59-2 5.5 2 - 41.32 

-
3 2.5 3 33.13 

-
4 0.4 4 25.95 -
5 3.1 5 19.75 

-5 5.5 5 14.44 
7 7.9 7 -9.97 
B 10.0 8 - 6.28 
9 11. 9 9 - 3.31 

-10 13.6 10 1. 00 
11 15.1 11 0.71 
12 15.4 12 1. 88 
13 17. 5 13 2.57 
14 18.4 14 2.84 
15 19.1 15 2.75 

16 19.6 16 2. 36 
17 19. 9 17 1. 73 
18 20.0 18 0.92 

-19 19.9 19 0.01 
20 19.6 20 - 1. 00 
21 19. 1 21 1. 99 
22 18.4 22 - 2.92 

-23 17. 5 23 3. 73 
24 16.4 24 - 4.36 
25 15. 1 25 - 4.75 
26 13.6 26 - 4.84 
27 11. 9 27 - 4.57 

-28 10.0 28 3.88 
29 7.9 29 - 2.71 
30 5.5 30 - 1. 00 
31 3. 1 31 1. 31 
32 0.4 32 4.28 

-33 2.5 33 7.97-34 5.6 34 12.44 
35 - 8.9 35 17.75 

-35 12.4 35 23.96 
37 15. 1 37 31. 13 

-38 20.0 38 39.32 
39 - 24. 1 39 48.59 

10.5 Use the graphs of Exercise 
10.3 to analyze each of the 
functions they represent. 
Compare the results with those of 
Exercise 10.1. 

10.6 Consider the function L as 
defined below: 

'VZ+C L X
 
Z+C[ 1 ] tC[ 2] xXV
 

When applied to any two-element 
vector left argument and any 
vector right argument it produces 
a function which plots as a 
straight line. For example, if 
X+0,15, then X is the first 
column of the first table of 
Exercise 10.1 and .4 1.7 L X is 
the second column. 

a) Write expressions using L to 
produce the second column of 
each of the tables of Exercise 
10.1. 

b) Use the function L to 
produce a number of new 
function tables. Then graph 
each function and use the graph 
to analyze the function (i.e., 
determine an expression for 
it). It is best if you do not 
know or remember the expression 
which produced the table 
either exchange tables with 
fellow students or lay your 
tables aside for a few days 
before analyzing them. 

10.7 Use the graphs produced in 
Exercise 10.4 to answer the 
following questions about each of 
the functions they represent: 

a) For what value (or values) 
of the argument does the 
function have the value o? 

b) For what values of the 
argument is the function equal 
to 3, to -3, to 100? 

c) For what argument values 
does the function reach a local 
high point? 

d) For what argument value does 
the function appear to be 
changing most rapidly. 

10.8 For each of the function 
tables of Exercise 10.4 attempt 
to find an expression which 
represents the function. For 
each expression you try, evaluate 
it for some or all of the 
argument values in the table to 
see how closely your proposed 
function fits the given function. 
You may find some of the results 
of Exercise 10.7 useful. 

10.9 Evaluate the following 
expressions: 

3h 5 

3 t 1 5 

3h 5
 

3h 5
 

7h 5
 

7t 15
 

A +1 2 3 4 5
 
B+6 7 8 
pA 

pB 

(pB)tA 

Bt(pE)tA 

At( pA)tB 

10.10 a) Evaluate the following 
expressions:
 

Y+O 1 4 9 16 25 36
 
HY
 

HY
 

V+( HY) -( -HY)
 
V 

W+(HV)-(-HV) 

W 

(HW)-( -HW) 

b) Repeat Part (a) with 

Y+(0,15)*3 

c) Repeat Part (a) with Y 
specified as the column of 
Fahrenheit values from Table 
10.1. 

d) Repeat Part (a) with Y 
specified as the second column 
of the first table of Exercise 
10.4.
 

e) Repeat Part (a) with Y+18
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10.11 Make a difference table 
for each of the functions of 
Exercise 10.1. 

10.12 Make a difference table 
for each of the function tables 
produced in Exercise 10.6. 

10.13 Use the difference tables 
produced in Exercise 10.11 to 
determine expressions to fit each 
of the functions. Compare the 
results with those of Exercise 
10.1. 

10.14 Use the difference tables 
produced in Exercise 10.12 to 
determine expressions to fit each 
of the functions. Compare the 
results with those of Exercise 
10.6. 

10.15 Make a difference table 
for each of the functions of 
Exercise 10.4. Be sure to 
include enough columns in the 
table so that the last column has 
a constant value. 

10.16 Use the difference tables 
of Exercise 10.15 to determine an 
expression for each of the 
functions represented. Evaluate 
your expressions for a few 
arguments (say, 0 5 10 20 30) to 
see if your expressions do 
properly represent the functions. 

10.17 Extend each of the 
difference tables produced in 
10.15 by appending two further 
columns. What can you say about 
any column which follows a 
constant column? 

10.lB Consider the following 
function: 

'1/ Z+C QUADRATIC X 
Z+(X-C[lJ)x(X-C[2J)'I/ 

When applied to any two-element 
vector left argument and any 
vector right argument it produces 
a function called a g~~9K~ti~ 

function. Choose various values 
of the left argument and the 
value 0,16 for the right argument 
to produce tables for a number of 
functions. Make difference 
tables to analyze each of the 
functions produced and apply each 
of the expressions produced to 
the argument 0,16 to see if the 
expressions properly represent 
the functions. 

10.19 Repeat Exercise 10.lB, 
replacing the quadratic function 
by the ~~Qig function defined as 
follows: 

'l/2+C CUBIC X 
Z+ ( X - C[ 1] ) x ( X - C[ 2] ) x ( X - C[ 3] ) '1/ 

The left argument must, of couse, 
be a 3-element vector. 

10.20 Extend one of the 
difference tables of Exercise 
10.15 by one column (of zeros) to 
make two tables of the same size 
to be used as follows: 

a) Multiply the first table by 
3 and verify that the resulting 
table is a proper difference 
table. 

b) Multiply the second table by 
4 and verify that the result is 
a proper difference table. 

c) Add the two tables and 
verify that the result is a 
proper difference table. 

d) Add 3 times the first table 
to 4 times the second table and 
verify that the result is a 
proper difference table. 

10.21	 a) Use the difference 
table produced in Exercise 
10.20(a) to determine an 
expression for the function it 
represents. Compare this 
expression with 3 times the 
expression produced in Exercise 
10.16. 

b) Repeat Part (a) for each of 
the difference tables produced 
in Exercise 10.20, comparing 
each result with an appropriate 
expression from the results of 
Exercise 10.16. 

10.22 Evaluate the factorial 
polynomial of order 7 for the 
arguments 0,17 and from the 
results form the difference table 
for the polynomial. 

10.23 Evaluate the following 
expressions: 

'JZ+G X
 
Z+-3+X*2'1/
 

X+ 11+17 
X 

V+G X 
V 

L+r/v 
s+L/V 
R+¢(-l+S)+l1+L-S 

R 

M+R » • =V 

M 

10.24 A logical table containing 
many zeros can be displayed more 
easily using squared paper, 
drawing lines to enclose a 
rectangle of the same shape as 
the table and entering a 1 in 
each square corresponding to a 1 

element in the table. The zeros 
need not be entered. Display the 
matrix M of Exercise 10.23 in 
this manner. 

10.25	 a) Evaluate the followinq 
expressions, using the scheme 
of Exercise 10.24 to display 
any logical tables produced: 

'l/Z+H X
 

Z+X*3'1/
 

X+-4+17 

V+H X 
R+¢ ( -1 +L/ V) +11+( r / V) - L/ v 
M+Ro. =V 

M 

b) Repeat Part (a), replacing 
each use of the function H by 
use of the following function 
K: 

'l/Z<--K X 
z+(X-l)x(X+2)'I/ 

10.26 Evaluate the following 
expressions, using the scheme of 
Exercise 10.24 to display the 
logical tables produced: 

X+-9+117
 

2>IXo.-X
 

5<IXo.-x 

(2) I x-: -X) r ( 5< I Xo. -X) 

72:!Xo.-X 

7<IXo.-X 

6=Xo.+X 

12=Xo.xX 

12=IXo.xX 



10.27 Evaluate the following B[1+61(17)0.+17] CHAPTER 11 
expressions, using the scheme of 
Exercise 10.24 to display any A+ALPH ,B 
logical tables produced: 11.1 The phrase "define F by the c) Evaluate the following 

A[9 29 19 9 14 7 29 15 6J expression 3+4xX" will be used to expressions:
 
X+-0,.l X110 mean "Define the function F as
 
V+-X*2 10.30 Use the graphing function follows" : X+ 3+15
 
R +-0 , • 05 x 1 2 0 GR of Section 10.12 to evaluate
 
w+-I R 0 - V the following expressions: 'JZ+F X Fl X
• 

. 01;,W Z+3+4xX'J
 
X+1 B Gl Fl X
 

. 02;,W T+Xo.sX a) Define P by the expression
 
GR T B+4xX Gl X
 

.1;,W
 
GR !SIT b) Define Q as the function Pl Gl X
 

10.28 Evaluate the following inverse to P 
expressions: M+Xo.rx d) Repeat Part (c) for each of 

GR 4<M c) Evaluate the following the other function pairs F2 and 
ALPH+'ABCDEFGHIJKLMNOPQRSTUVWXYZ , expressions: G2, F3 and G3, etc. 
ALPH[B 9 78J GR 5 <M 

Q 0,15 11.3 Take the four function 
ALPH[14J GR e<j> 5<M tables of Exercise 10.1 and 

P Q 0,15 replace the first column of each 
ALPH[<j>14J GR (5<M) r e<j>5<M by the vector 2 2.2 2.4 2.6 2.8 

PO, 1 5 3. Analyze each of the functions 
¢ALPH[14J 10.31 Evaluate the following represented by the new tables. 

expressions: Q P 0,15 Verify your work by applying each 
ALPH[6p24J of the resulting expressions to 

M+(18)0.r1B 11.2 a) Define Fl, F2, etc., by the arguments 2 2.2 2.4 2.6 2.8 
10.29 Evaluate the following C+' o-+xo*O' the following expressions: 3. 
expressions, assuming that ALPH C[MJ 
has the value assigned in 3+2xX 11.4 Repeat Exercise 11.3 but 
Exerci se 10.28: C[ 5LMJ replacing the first columns by 

B+ i o- X each of the following vectors: 
B-<-'*O +-x' C[ 5 rM J 
B[7pl 2J 2+-10xX 7 4 1 2 5 B 

C[Mre<j>MJ 
B[7p23J 4+3xX 2.5 0.523.55 

4xX 11. 5 Make maps to show the 
application of each of the pairs 

5+X of inverse functions of Exercise 
11.2. 

b) Define functions Gl, G2, 
etc., which are inverse to the 11.6 Draw graphs to represent 
functions Fl, F2, etc. each of the pairs of inverse 

functions of Exercise 11.2. 
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11.7 Define Q by the expression of the arguments 3, 5, 6, and 
CHAPTER 12X*3. Graph the function Q for 4096. Check your results by 

argument values from -2.5 to 2.5. applying the cube function. 
Draw the graph of the function R 
which is inverse to Q and use it 11.12 Solve each of the 
to evaluate (approximately) the following equations: 
exp~ession R -1.3 0 1.27 2.15. 
Check these results by applying 5=3+X 
the function Q to them. 

7=4xX 
11.8 Graph the function -x and 
from it obtain the graph for the 18=4+3xX 
inverse function. What is the 
expression f r the inverse 248=13+2xX-3 
function? 

164=-8+(2xX)-8 
11.9 Repeat Exercise 11.8 for
 
the function +X. 164=-S+( 2xX)fS
 

11.10 The function X*2 is called 11.13 Solve each of the
 
the ~gYe~~ function and its following equations:
 
inverse is called the §gYe~~
 

~QQt. Determine the square root 5=X*2
 
of each of the arguments 3, 5, 6,
 
and 4096. Check your results by 6=X*3
 
applying the square function.
 

4096=X*3 
11.11 The expression X*3 is 
called the cube function and its 256=(X-4)*2 
inverse is call~d the QY~~ ~QQt. 
Determine the cube root of each 343=(X+15)*3 

12.1 Show the complete trace of 
the first four iterations of the 
function SQRT (defined in the 
text) when applied to each of the 
arguments 5 and 25 and .25. 
Check the results by applying the 
square function to them. 

12.2 Show the complete trace of 
the function SQT when applied to 
the arguments 5 and 25 and .25 
(carryall calculations to 7 
decimal digits.) 

12.3 Show the complete trace of 
the execution of the expression 4 
5 GRF 20 for the case where F is 
the square function. 

12.4 Show the complete trace of 
the execution of the expression 3 
2 GRF 3, where the function F is 
defined as follows: 

'VZ+F X
 
Z+5 x(X-1.4)x(X-2.6)x(X-4.2)
 

'V 

12.5 Write an expression using 
the function GRF which would 
yield a solution to the equation 

17=X*4 

and show the appropriate 
definition of the function Fused 
within GRF. 

12.6 Repeat exercise 12.5 for 
each of the following equations: 

29=(X-2)*3 

265=X*5 

19=( 3+2 xX)*2 

47=( -2+. 5xX)*6 

12.7 Show the complete trace of 
the execution of the following 
expressions: 

GCD 35 133 

GCD 133 35 

GCD 140 35 

GCD 1728 840 

12.8	 a) Evaluate the expression 
V+GCD V for each of the 
following values of the 
argument V: 

6 8 

35 133 

54 318 

175 2025 

1024 128 

b) For each of the cases of 
Part (a) verify that V and 
V+GCD V both represent the same 
rational number, that is, 
(+/V)=(+/V+GCD V) 

c) Apply the function GCD to 
each of the results of Part (a) 
to verify that the elements . of 
the result have no common 
factor, that is, their greatest 
common divisor is 1. 



12.9	 a) Use the function 
defined in Section 9.5 (to 
rationals) to evaluate 
following expressions: 

3 4 A 

7 20 A 

3 8 A 

74 100 A 

b) Apply the 
each of the 
(a) . 

12.10 a) 

1 2 

8 45 

5 16 

13 50 

function GCD 
results of Part 

Define a dyadic 
function PLUS which adds two 
rationals (in the manner of the 
function A of Section 9.5), but 
which yields the result in 
"reduced form", that is, with 
the smallest integers possible. 
Use the functions A and GCD in 
the defini t.ion , 

A 12.14 Each of the following 
add functions is equivalent to some 
the primitive function. Evaluate 

to 

each for a few scalar arguments 
and identify the equivalent 
primitive function: 

v Z*-X A Y V Z*-B X 
[1] Z*-1 [1J Z*-l 
[ 2 J -+3xY",0 [2J I*-O 
[ 3 J Y*-Y-l [ 3 J -+4xI=X 
[4 J Z*-XxZ [ 4 J I <-I+1 
[ 5 J -+2 V [ 5 J Z*-IxZ 

[6 J -+3 V 

V	 Z*-X C Y 
[ 1] Z*-X 
[2J -+3xX<Y 
[3J Z*-Y V 

12.15 Without 
complement function 
define a function 
equivalent to the 
function. 

usin the 
(-) tself, 
D wh ch is 

complement 

12.16 Repeat Exercise 12.15 for 
b) Redefine the function of each of the following functions: 
Part (a) so that the functions 
P and GCD are DQt used within 
it but are each replaced by 
statements like those in their 
definitions. 

12.11 Define a function TIMES 

Minimum (L) 

Magnitude (I) 

Not- equal ( "') 

which multiplies rationals and 12.17 a) without using the 
produces the result in reduced 
form. 

12.12 Evalute the expression 
+/BIN N for integer values of N 
from 0 to 7. Give a simple 
expression which is equivalent to 
the function +/BIN N and test it 
by evaluating both expressions 
for the case N*-12. 

12.13 Evaluate the expression 
-/BIN N for values of N from 0 to 
7. Give a simple expression 
which is equivalent to the 
function -/BIN N. 

residue function (I) itself 
define a function equivalent to 
the residue function, at least 
for non-negative right and left 
arguments. 

b) Modify the function defined 
in Part (a) so that it is 
equivalent to the residue 
function for negative as well 
as positive right arguments. 

12.18	 a) Use the ceiling 
function (f) to define a 
function equivalent to the 
floor function (L). 

b) Without using any of the 
ceiling, floor, or residue 
functions, define a function 
which is equivalent to the 
floor function for non-negative 
arguments. 

c) Modify the function defined 
in Part (a) to make it apply to 
negative as well as 
non-negative arguments. 

12.19 Consider the function W 
defined as follows: 

V Z*-W N 
[1 J Z*-2 
[2J I*-2 
[3J I*-I+l 
[4J -+5+3xI>N 
[5J -+6-3 xf/0=zII 

[6J Z*-Z,I 
[7] -+3 V 

Evaluate W N for a few different 
values of N and state in words 
what the function W does. (For 
integer arguments greater than 1 
it is equivalent to a function 
defined in an earlier chapter). 
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CHAPTER 13 
PL.=F 7 p 1 0 

2 3 4L.=14 13.7 Evaluate the following 
expressions: 

13.1 Evaluate the following +IP<Q 13.5 Evaluate each of the 
expressions: following expressions: X+1 2 3 4 5 6 

+IP=Q />1+2 3pX 
A<-1 2 3 4 1 3 3 1+.x(5*0 1 2 3) M 
B<-S 4 3 2 L/P'-Q 
+ I AxB X-<-S pM 

I I P=Q C-<- 1 3 3 1 
+/Ar B E-<- 0 1 2 3 Pi-+-- 3 5 p X 

xIP+Q C+.x(X*I\) N 
LiAr B 

I/P+Q (X*-1+1pC)+.XC pN 
+ IAsB 

13.3 Rewrite each of the (X+1)*3 4 3p112 

L IA s8 expressions of Exercise 13.1 in 
inner product form. D+1 2 1 G/34p112 

I I AsB (X*-1+1pD)+.xD 

13.4 Evaluate the following p4 3p112 
x IA - 8 expressions: (X+l)*2 

PQ43p112 

+ IA I B P+2 3 S 7 11 B+1 4 5 4 1 
E<- 2 0 2 0 1 (X*-1+1pB)+. xB 13.8 Let M and N be the 

+ I A*B F-<-1 1 1 1 0 following matrices: 
pX.*E (X+1)*4 

+ IB *A M N 
pX.*F X+7 

C+-IO 3 14 8 0 2 (X*-1+1pD)+.xD 4 5 3 2 o 1 
lJ+S -7 2 5 -1 3 pX.*ELF 1 o 4 3 1 5 o 
+ICxD (X+1)*2 1 2 3 4 

px.*EIF 
I IC LD (X*-1+1PC)+.XC Then evaluate the following 

2 3 S 7 11x.*2 0 2 0 1 expressions: 
L lei D (X+l)*3 

o 0+. x 15 M+. sN 
1/(IC)l(ID) (X*-1+1PB)+.xB 

1 1 1 1+.X15 ML. +N 
L/(IC)l(ID) 13.6 Evaluate the following 

(-1*1 0 0) +. x \ 5 expressions: M+. LN 
+ICsD 

(-1*1 0 O)+.xP X-<-1 2 3 4 5 6 M+. xN 
+IC=D A+3pX 

(P<7)+.xP A G/(G/N)+.x(G/M) 
+IC-D 

(P'-5)+.xP pA M+. =N 
13.2 State in words what the 
following expressions mean. For (-1*P'-5)+.xP B+8pX G/(G/N)+.=G/M 
example, the first one means 
number of positions in which 

the 
the PL. =E 

B 
M+. sN 

elements of 
corresponding 

Q exceed 
elements of P: 

the 
PL. =P 

pB 
G/(G/N)+.s(G/M) 

1,(5p4 2),1 
G/(G/N)+.>(G/M) 



13.9 state in words what each of 
the first six expressions of the 

(cilM)t.xX e) 
closely 

The function 
related 

Dt.xX is 
to the 

13.15 
matrix: 

Let M be the followin", 

preceding exercise represent. XX.*M difference function defined in 

13.10 Let Q and C be specified (x/ltX), (x/2tX), (x/3tX), 
Section 10.6. State exactly 
what this relationship is. 2 

M 
3 1 4 

as follows: (x/'+tX), (x/StX) o 1 2 0 
f) State in words how the 2 3 2 4 

Q~1 SpO 1 2 3 4 and Xx.*cilM matrix D should be modified to o 1 0 0 
C~S Sp1 1 1 1 1 0 1 2 3 4 0 0 1 3 produce a matrix D1 such that 1 0 0 1 

600 0 1 4 0 000 1 13.12 Let the matrices I and D the function D1t. xX is exactly 
be defined as follows: the difference function of a) Evaluate the following 

Then Q and C are the following Section 10.6. expressions: 
matrices: I D 

g) Write an expression using P~2 3 5 7 11 

Q C 1 0 0 0 0 1 0 0 0 0 outer products to define the NrP> • *M 
o 1 2 3 4 1 1 1 1 1 0 1 0 0 0 1 1 

-
0 0 0 matrix D1 of part (f). N 

0 1 2 3 4 0 0 1 0 0 0 1 1 0 0 
0 0 1 3 6 0 0 0 1 0 0 0 1 1 0 13.14 Let D be the matrix CCD~px.*L/M 

0 0 0 1 4 0 0 0 0 1 0 0 0 1 1 defined in Exercise 13.12, and CCD 
0 0 0 0 1 let S be the following matrix: 

Then evaluate the following N'oCCD 
Now evaluate the following expressions: S 
expressions: 1 0 0 0 0 b) Verify that CCD is the 

X~2*IS 1 1 0 0 0 greatest common divisor of the 
X~3 X 1 1 1 0 0 elements of N. 
(X*Q)t.xC 1 1 1 1 0 

It. «x 1 1 1 1 1 c) Choose any other value for 
(Xt1)*Q M, except that the matrix must 

It. x 1 4 3 16 7 0 a) Evaluate the following have S rows and must contain 
X+4 expressions: only non-negative integer 
(X*Q)+.xC Dt.xX elements. Then repeat Parts 

X~1 4 9 16 25 (a) and (b). 
(Xt1)*Q Dt.x14 3 16 7 0 Dt.xX 

13.16 a) Using the matrix M of 
(hQ)t.xC 13.13 a) write an expression St.x(Dt.xX) Exercise 13.15, evaluate the 

using outer product to define following expressions: 
(7t1)*Q the matrix I of Exercise 13.12. St.xD 

P~2 3 5 7 11 

13.11 Evaluate 
expressions: 

the following 
b) Write an expression using 

(St.xD)t.xX NsP>, *M 
N 

outer products to define the St. «x 
M+ ( l S ) 0 • :5 1 S 
M 

matrix D of Exercise 13.12. 
Dt.x(St.xX) 

LCM~px.*r/M 

LCM 
c) Modify the expressions 

X+2 3 S 7 11 derived in Parts (a) and (b) to Dt.xS LCM'oN 
Xt. xM 

(t/1tX),(t/2tX),(t/3tX), 
(t/4tX) .r t/stX) is ad) The expression It.xX 

define similar matrices of any 
specified dimension N. 

b) 

(Dt.xS)t.xX 

State in words the relation 

b) Verify 
least common 
elements of N. 

that LCM 
multiple 

is the 
of the 

function of the vector X. between the functions Dt.xX and 
n«. «x State in words what this St.xX. c) Choose another value for M 

function is. (as in Exercise 13.15 (c» and 
repeat Parts (a) and (b). 
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13.17 Let M be the matrix: +/0 0 7 OxX*E 

M	 7xX*2 
2 3 
0 1 2 b) Ioentify each of the curves 
4 2 2 of Figure 13.1, labelling each 

as a "first term", "second 
a) Evaluate the following term", etc. 
expressions: 

13.20 Let the functions SUM and 
A+(M[;lJx:)+(M[ ;2Jxl )+(M[ ;3J x3) TERNS be defined as follows: 
B<·M+ • x 2 1 3 
V*-2 -4 3 V Z+SUM X 
C«M[;lJxV[lJ)+(M[;2JxV[2J) [lJ Z<+/xv 

+(M[;3JxV[:1]) 
D4.-M+ .xV v Z*-C TERMS X
 

[11 Z+-CXX*-1+1PCV
 
b) Display and compare the 
values of A and B and of C and Evaluate the following 
D. state in words the expressions:
 
relationship this comparison
 
suggests. C*-2 1 0
 

X+ 5
 
c) Test the relationship you C TERMS X
 
expressed in Part (b) by
 
evaluating C and U for several "V.1f C TEFIMS X
 
different values of V and of M.
 

13.21 Repeat Exercise 13.20	 for 
13.18 Follow the steps of the followino values of X and C: 
Exercise 13.17 to establish a ­
similar relationship between the .\ C 
expression V+.xM and expressions II 1 3 3 1 

involving the £Q~§ of M. 5 0 0 0 1 
5 1 3 3 1 

13.19 a) Evaluate the following fo 0 0 0 1 
expressions:	 0 1 3 3 1
 

1 0 0 0 1
 
IjX*-4 2 1 fo 4
 

X*O 1 2 3 3 0 0 0 0
 

5 2 0 1 «x« 0 1 2 3 13.22 Use the function POL 
defined in Section 13.6 to 

+/5 2 0 1 x X*O 1 2 3 evaluate the following 
expressions: 

E*-O 1 2 3 
+/5 0 0 OxX*E 5 0 7 2 POL 0 1 2 3 4 5 

+/0 5 0 OxX*E 5	 0 7 2 POL 0 1 2 

5xX*1 5	 0 7 2 POL 4 3 2 
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POL 0,15	 it'*- 5 0 2 3 1 POLO, I 7 
W 

o 1 POL 1+0,15 
[) [I [I D W 

2 1 POL 0, 1 5 
13.24 Use the matrix S defined 

0	 0 1 POL 1 + 0,15 in Exercise 13.14 to evaluate the 
following expressions: 

3 3 1 POL 0, "1 S 
N+lS 

0 0 0 1 POL 1 + 0 , 1 5 S+. xN 

13.23 Use the difference o O. 5 O. 5 PO L N 
function D defined in Section 
10.6 to evaluate the following S+.xN*2 
expressions: 

(0 1 3 2ifo) POL N 
V+~) 023 POI, 0,15 

V S+.xN*3 

D V o 0 0.25 0.5 0.25 POL N 

D J) V S+.xN*O 

D D D V o 1 POL IV 
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14.9 Extend the table of Exercise b) make a table to test whether 
CHAPTER 14 14.8 

+ x 
(e) to include 

- I and L. 
the functions 

You are not 
subtraction 
maximum. 

distributes over 

expected to provide proofs of 

a) Whether you 
commutative or not. 

14.1 For each of 
functions + - x + A 

and L, state: 

~ > ~< $the dyadic the dyadic functions 
v < $ = I I and L. 

14.5 Make a table similar to 
think it is Table 14.5 to prove that the 

minimum function is associative. 

commutativity, but test the 
matter thoroughly by evaluating a 
number of expressions looking for 
values which will prove 
non-commutativity. Be sure to 
use some negative values in this 
search. For each function stated 

c) If in Exercise 14.9 you 
concluded that multiplication 
distributes over maximum, then 
evaluate the following pair of 
expressions and compare the 
results: 

b) An example proving that 
function is non-commutative 

the 
for 

14.6 Make 
labelled 0 0 

a 
0 

table 
and 0 

(of 8 cases 
Oland 0 1 

to be non-commutative, give 
example which proves it so. 

an 6x419 

14.2 Modify the function COM 
defined in Section 14.2 so as to 14.7 Repeat Exercise 14.6 for 
include in its domain all of the each of the following functions: 
function symbols appearing in v ~ ¥. 

Exercise 14.1. 

each case you declare to 
non- commutati ve . 

14.3 a) Make tables to 
that the functions gD9 
are commutative. 

which will 
function is 

14.8 a) Write an example to show 
that addition does not 
distribute over multiplication. 

be 0, etc., to 1 1 1) 
show whether the gD9 
associative. 

prove 
and Q!" 

a) v distributes over A 

b) v distributes over v 

c) A distributes over A. 

14.11 Summarize the results of 
Table 14.6 and of Exercise 14.10 
in a distributivity table of the 

14.10 Make tables to determine 
whether: 

(-6 x4) I( -6x9) 

14.15 Make a table of the form 
of Table 14.8 to summarize all of 
the results obtained thus far. 
Enter o's and l'S QDly for 
results that have been 2KQY§D, 
and leave other entries blank. 
Include the dyadic functions + 
x + I L v A ¥ and .... Fill out 

14.14 Repeat Exercise 14.13 
substituting miniIDum for maximum. 

OAl 

0"'1 

0"'1 

OVl 

X+O 0 1 1 
1'+0 1 0 1 
XAY 

b) Evaluate 
expressions: 

the following b) Write an example to show 
that addition does not 
distribute over itself. 

c) Write an example to show 
that multiplication does not 
distribute over itself. 

d) Write a few examples to 
ill~~tKgt§ that multiplication 
distributes over addition 
(include some negative numbers 
in the example). 

Iv A
--1---­

vi 
I 

AI 

entering a 1 in the Ith row and 
Jth column of the table if the 
function headinq the Ith row 
distributes ove~ the function 
heading the Jth column, and a 0 
otherwise. 

form 

14.16 The proof (i.e., 
derivation) that (A+B)xC is 
equivalent to (AxC)+(BxC) which 
was given in Section 14.5 can be 
illuminated by evaluating each 
expression occurring in it for 
some chosen value of A, B, and C. 
For example, if A+3 and B+7 and 
C+4, the illumination would 
appear as follows: 

blank spaces in the table by 
constructing further proofs if 
you wish. 

14.4 Use the method of 
exhaustion to examine the commut­
ativity (or non-commutativity) of 

X"'Y 

XvY 

X¥Y 

table 
the 

1 to 
o to 

1+ x--1---­

+1 
I 

xl 

e) Complete the following 
so as to summarize 
foregoing results, using a 
denote commutativity and a 
denote non-commutativity: 

14.12 Extend the distributivity 
table of Exercise 14.11 to 
include the functions v A'" and 
¥. Make tables of the form of 
Table 14.6 to develop any results 
you may need for this table. 

14.13 a) Make a table similar to 
Table 14.7 to prove that 
addition distributes over 
maximum. 

40 

40 

40 

40 

(3+7) x4 

q x (3+7) 

(4 x3)+(4x7) 

(3 x4)+(4 x 7) 
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Illuminate the proof for each of 
the following values of A, B, and 
C: 

A B C 
3 14 8 

3 5 7 

3 5 7 

14.17	 a) Prove that (PLQ)IR is 
equivalent to (RIP)L(QIR). Use 
the first such proof in section 
14.5 as a model, writing the 
justification of each step to 
the right of it. 

b) Choose values of P, Q, and R 
and illuminate the proof in the 
manner defined in Exercise 
14.16. 

14.18 Repeat Exercise 14.17 to 
show the equivalence of each of 
the following pairs of 
expressions: 

AI\(BAC) 
C1\ (13 AA ) 

A+(B+C) 
C+(B+A) 

A »e-c-» 
Dx CxBxA 

14.19 For each of the proofs of 
Exercises 14.17 and 14.18 add the 
abbreviated form of the ~ote to 
the right of each note in the 
proof. 

14.20 Choose values of A, 13, C, 
and D and use them to illuminate 
the proof (given in the text) 
that (A+B)x(C+D) is eauivalent to 
(AxC)+(AxD)+(BxC)+(BxD) 

14.21 Make (and illuminate) 
proofs for the following pairs of 
equivalent statements: 

(ALB)+(CLD) 
(A+C)L(A+D)L(B+C)L(B+D) 

A A( BvCvD) 
(AAB)v(AAC)v(AAD) 

14.22 a) Determine a value of 
the vector C such that the 
expression +/CxX*o 1 2 is 
equivalent to the expression 
x/X+4 1. 

b) Evaluate the expressions in 
Part (a) for several values of 
X and compare the results 
(which should agree). 

14.23 Repeat Exercise 14.22 for 
each of the following 
expressions: 

(X+4)x(X+1l 

x/X-4 1. 

x/X+1 1 

x/X+1 0 

x/X+O 1 

(X+-1)x(X+-1) 

(X-1)x(X-1) 

R+3 5
 
x / X+R
 

x/X+( -R) 

x/X-R 

14.24 Choose vector values of 
the arguments to illuminate the 
proof illuminated in Exercise 
14.16. 

14.25 Chose vector values to 
illuminate each of the proofs of 
Exercise 14.18. 

14.26 Evaluate the 
expressions: 

A+3 8 15 5 
B-<- - 5 0 18 Lj 3 7 
+/A ,13 

(+/A)+(+/B) 

1/A, B 

(I/A)I(I/B) 

L/ A, B 

(L/A)L(L/B) 

x/A,B 

(x/A)x(x/B) 

-/A, B 

(-/A)-(-/B) 

C-<1 0 1 0 1 
D+O 1 

v/C,D 

(v/C)v(V/D) 

14.27 Evaluate the 
expressions: 

A+3 8 15 5 
13+4 2 1 'I 

+/ A +B 

(+/A)+(+/B) 

x/AxB 

(x/A)x(x/B) 

I /M B 

(I/A)I(I/B) 

following 

following 

- / A-B 

(-/A)-(-/B) 

14.28 Use each of the following 
pairs of values of V and W to 
illuminate the identity expressed 
by Theorem 4: 

V W 
10 2 3 2 0 5 

2 o	 5 2 3 

3 10 2 8 2 0 2 3 

14.29 Use the following values 
to illuminate Theorem 5: 

A-< 3 1 0 4 2 
-

B~ 5 2 5 
P+ 2 2 1 0 5 -Q+ 7 2 4 

14.30	 a) Repeat Exercise 14.29, 
substituting the function + for 
every occurrence of x in 
Theorem 5. 

b) Repeat Part (a) using 
instead of +. 

14.31 Use the values of A, B, P, 
and Q from Exercise 14.29 and the 
values 1+4 and J+2 to illuminate 
the proof of Theorem 5. 

14.32 Use the following sets of 
values of A, B, and C to 
illuminate Theorem 6: 

A B C
 
3 2 4
 

2 3 5
 
3 4 4
 

14.33 Choose some values for X, 
E, and F and use them to 
illuminate Theorem 7. 
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14.34	 a) For each of the 
following pairs of values of A 
and B, determine a vector D 
such that the expression D P X 
is equivalent to (A P X)+(B P 
X) (where P is the polynomial 
function defined in Section 
14.8): 

A	 B 

-
2 1 4 3 2 5 
5 18 4 2 3 3 8 4 

2 0 4 8 0 0 0 2 

b) Verify each of the foregoing 
results by evaluating the 
expressions D P X and (A P 
X)+(B P X) for X+-3+15. 

14.35 Repeat Exercise 14.34 for 
the following values of A and B: 

A	 B 
5 1 2 3 0 -4 8 2 

2	 1 3 2 4 2 0 1 

14.36 Repeat Exercises 14.34 and 
14.35 but with the expression (A 
P X)+(B P X) replaced by (A P 
X)x(B P X). 

14.37 For each of the following 
expressions determine the 
coefficients of an equivalent 
polynomial: 

x I X+2 3 

xl X+4 7 

xl X+ 7 4 

xIX+(-7 4 ) 

xl X-7 4 

xlX+ 7 4 

xl X+2 3 4 

xl X+4 3 2 

xl X+3 2 4 

x/X-O 1 

x/X-O 1 2 

x/X-O 1 2 3 

14.38	 a) For each of the 
following expressions determine 
the coefficients of an 
equivalent polynomial: 

x/X+l 

x/X+l 1 

x/X+l 1 1 

x/X+4pl 

x/X+5pl 

x/X+5pl 

b) Compare the results of Part 
( a) with the binomial 
coefficients of Section 12.4. 

14.39 Let M be the following 
matrix: 

1 0 0 0 -
0 1 1 2 -
0 0 1 3
 
0 0 0 1
 

a) Compare the gglYillD§ of M 
with the coefficients of 
polynomials equivalent to the 
factorial polynomials and state 
how the columns correspond to 
the degrees of the factorial 
polynomials. (Note that final 
zeros appended to a vector of 
coefficients make no difference 
to the value of the 
polynomial) • 

b) Evaluate the following 
expression: 

V+O .1. ( 3 f 2) • ( 2 f 6 ) 
A+M+. x V 
A 

c) Use the results of Exercise 
13.17 (in Chapter 13) to state 
in words the relation between 
the result of Part (b) and a 
certain weighted sum of the 
columns of M (that is, of the 
coefficients of polynomials 
equivalent to the factorial 
polynomials) • 

d) Use the vector A of Part (b) 
and the polynomial function P 
defined in the text to evaluate 
the expression A P X for 
several values of X. Compare 
the results with the evaluation 
of +/(lX)*2 for the same values 
of X. 

e) Explain the agreements 
obtained in Part (d). 

14.40 Exercise 14.39 illustrated 
how the expression M+.xV would 
yield the coefficients of a 
polynomial equivalent to the sum 
of V[l] times the O-degree 
factorial polynomials, V[2] times 
the l-degree factorial 
polynomial, etc. Apply this 
result to obtain the coefficients 
of a polynomial equivalent to 
+/(lX)*3 as follows: 

a) Extend the matrix M to be a 
5 by 5 matrix incorporating the 
coefficients for the next 
factorial polynomial. 

b) Evaluate +/(lX)*3 for a 
number of values of X beginning 
with o. 

c) Use the difference table 
method of Section 10.8 to 
determine an equivalent 
function (expressed as a 
weighted sum of factorial 
polynomials) • 

d) Evaluate the expression 
Q+M+.xRf:O 1 2 3 4, where R is 
the first row of the difference 
table. 

e) Compare Q P X and +/(lX)*3 
for a number of values of X. 

14.41 Use mathematical 
induction to prove that the 
functions +/(lX)*2 and (+/0 1 3 
2xX*0 1 2 3)f6 are equivalent. 
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c) Take the result of Part (a) c) Make other maps for any 
and from it write the values of A and B that you wishCHAPTER 15 
equivalent expressions in terms to choose. For each case try 
of X and Y and compare with the to find some value of V which 
original expressions. (like the last one in Part15.1 For each of the following 15.2 Take each result of (b)maps into the origin (thatlinear expressions, write an Exercise 15.1 and (without 15.5 Repeat Exercise 15.4 for is, the point 0 0).equivalent expression in terms of looking at the original the following pairs of 

a single vector argument V, where expression in the exercise) write expressions:	 15.8 Repeat Exercise 15.7 but 
V+X,Yor V+X,Y,Z or V+W,X,Y,Z as an equivalent expression in terms with A assigned the value 0 0appropriate:	 of the arguments X and Y (and if 3+(4 xX)+(-2 x y) in every case. necessary, Z and W). Compare 6 + ( 2 x X ) + ( '/ x Y ) 

3+(4 xX)+(5 xY)	 your results with the original 15.9 Let B be the followingexpressions. 3-( -4 xX)+( 2xY) matrix: 
'a(6 xX)+7 xY 

(j-(-2 xX)+(-7xy)
15.3 Let X+3 and Y+2 and Z+4 and 

.5 .866 
-4+(6 xY)+7 xX	 W+15 and let V+X,Y or V+X,Y,Z or 

(3 xX)+(7 x y)	 .866 .5 
V+X,Y,Z,W as appropriate.	 Then 

(4 xY)+(8 xX)

3 +( -6xX) +Ox y evaluate each expression of
 a) Plot the mapping B+.xV when

Exercise 15.1 and evaluate	 each 2+3xX	 applied to each of the set of 
3+(-b x X )	 equivalent expression which you 8+7xY	 points V listed in exercise

obtained and compare the results. 15.7 (b).
8+(OxX)+ "xY 15.6 Choosing any values that

15.4 a) Determine a vector A and you wish for Z in the b) Verify that this mapping is 
8+-gxY	 a matrix B such that the evaluations, repeat Exercise	 15.4 a rotation.

expression A+B+.xX,Y	 is for the following set of 
-(8+g x Y)	 equivalent to the following expressions:	 15.10 Repeat Exercise 15.9 for

pair of expressions: each of the following values of 
0+( 3xX)+( -(jxY) 18+( 3xX)+( -4xy)+( 'Ix;;) the matrix B:

3+( 2xX)+(-4 x y) 
-13+(2 x y)

( 3 xX)+( -6 x y)	 4+( -3xX)+( 2 x Y) 
2+( OxX)+( 3xY)+( -4xZ)	 0 1 0 1 1 0 1 0 

1 0 1 0 0 1 0 1 
( 3 xX)-(6 x y)	 More precisely, A+B+,xX,Y is 15.7 a) Plot the mapping

equivalent to the catenation	 of produced by the expression .707 . 707 .707 .707 
4-(3 xX)+7 xY	 these expressions, thct is: 

A+B+.xV for the following set .707 .707 .707 .707 

of values: 
8+( 2 xX)+( 5xy)+( 10 xZ) (3+( 2 xX)+( -4 X Y) ) ,4+( -3d: )+( 2 x Y) 

15.11 a) Let B be the matrix of 
A B V Exercise 15.9. Then plot the 

8+(2 xX)+(OxY)+(10 xZ) b) Evaluate A+B+. xX, Y and 3 2 1 2 1 mappings produced by repeated
compare the result with the 3 4	 applications of B to the point

-4+(2 xX)+(10 xZ)	 result of evaluating the given 
V+l 2, that is:

expressions for each of the b) Add to the plot of Part (a)
18+10xZ	 following pairs of values of X the mappings for each of the B+.xV

and Y: following 7 values of V (shown B+.xB+.xV 
4+( 3XX)+( Oxy)+( OxZ) in columns to save space):	 B+.xB+.xB+.xV 

X Y
 
4+(3xX) 2 5
 

2 0 0 1 1 1 1.4 and so forth. 
3 0 - 1 0 1 0 1 1 .2
 

X+Y+Z 0 3
 b) How many applications of B 
0 0 are equivalent to the identity

Z+(2xy)+(4 xX)	 4 2 -	 function? 
3 7 -x -Y-Z	 9 3 

X+Y+Z+W 
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c) Wri te an expression of the 15.16 Define a matrix P to be a) For each of the following c) Add to the plot the points 
form B+.xB+.xB+.xB, with N used with the matrices Band M of expressions write an equivalent determined in Part (b) and show 
occurrences of B, where N Exercise 15.15 in the expression expression in terms of the the mapping produced by the 
denotes the answer to Part (b). P+B+. xM to produce the names All, A12, etc: matrix B. 
Evaluate this expression and translation 3 -5. 
compare the result with the B+. «c 15.23 a) Choose any three 3 by 3 
identity matrix. 15.17 Use the matrices P and M matrices C D and E and use them 

of Exercise 15.16 and the matrix A+.x(B+.xC) to test the associativity of 
15.12	 a) Repeat Exercise 15.11 B~2 2pO 1 -1 0 and plot the the +.x inner product in three 

for each of the matrices of mappings produced by each of the (A+.xB)+.xC dimensions. 
Exercise 15.10. following expressions: 

b) Prove that the expression b) Use the same matrices to 
b) Determine a rotation matrix P+B+ • xM obtained for the second case of test the distributivity of +.x 
whose first and last elements Part (a) is equivalent to the over +. 
are equal to .2 and repeat B+. xP+M expression obtained for the 
Exercise 15.11 for this matrix. third case. (This proves the 15.24 a) Make a plot to show 

(B+. xP)+(B+. xM)	 associativity of +.x for 2-by-2 the mapping B+.xM, where B is 
15.13	 a) Let B be a rotation matrices. ) the following 3-dimensional 

matrix with elements S, C, -C, 15.18 a) Define a stretching rotation matrix: 
and S as defined at the matrix B and apply it to the 15.21 Repeat Exercise 15.20, 
beginning of Section 15.3. matrix M of Exercise 15.15, replacing the second and third 1 o o 
Show that the product B+.x~B is that is, eva.luate the expressions of Part (a) by the o .707 .707 
the identity matrix. expression B+.xM. following expressions o .707 .707 

b) Show that (~B)+.xB is the b) Compare the matrices M and A+.x(B+C) and M is the matrix of points 
identity matrix. B+.xM and state the relation given in Exercise 15.22. 

between them. (A+. xB)+(A+. xC) 

c) Test these results by b) Repeat Part (a) for any 
applying them to the rotation c) Repeat Part (a) for a number (This proves that +.X distributes 3-dimensional rotation matrices 
matrices of Exercise 15.10 of stretching matrices which over + for 2-by-2 matrices.) you may wish to construct. 

you choose. 
15.14 Plot the mapping produced 15.22 a) Make a 3-dimensional 15.25 a) Evaluate the following 
by the translation 3 -5+V applied 15.19 a) Choose a number of plot of the eight points expressions: 
to each of the points V of matrices and use them to test represented by the following 
Exercise 15.7 (b). the distributivity of the inner matrix M: X~O 1 2 3 4 5 6 7 8 9 10 

product +.X over +.	 Y~(j>X 

15.15 Let M be the matrix given M Y 
for V in Exercise 15.7 (b), that b) Choose a number of matrices 1 2 300 0 1 1 

is, the columns of M are the and use them to test the 1 2 3 1 2 0 2 -1 M~ ( 2 x Y) 0 • + ( X - 1 2 ) 

values of V in the order shown. associativity of the +.x inner 1 2 3 1 2 0 3 1 M 
product.
 

a) Evaluate the expression b) Evaluate the expression N~Yo.+ l xX
 

B+.xM, where B is the matrix of 15.20 Let A,B, and C be 2-by-2 B+. xM for the following matrix N
 

Exercise 15.9. Compare the matrices and give names to each B:
 
resu~ts with those of Exercise of the elements according to O=M
 

15.9.	 the following scheme: B 
2 0 1 O=N
 

b) Repeat Part (a) for the All A12 Bll B12 Cll C12 1 - 2 1
 
matri ces B lis ted in Exercise A21 A22 B21 B22 C21 C22 1 1 1 , *' [1+0=M]
 

15.10. 
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x' [1+0=N] 

(O=M)v(O=N) 

( 0 =M) A ( 0 =N) 

b) Discuss the results of Part 
(a), stating as clearly as you 
can what each of the logical 
matrices represent.
 

c) Repeat Part (a) for various
 
values of X and Y and for 
various linear functions of 
your own choosing. 
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CHAPTER 16 

16.1	 a) Test the fact that the Each column of M (that is M[;I]) 
2-dimensional matrices Band IB is a solution of the equation 
given in Section 16.2 actually N[;J]=B+.xM[;I] for some Jth 
produce inverse functions by column of N, where B is the 
applying them to the set of matrix B~2 2p2 0 -1 5. Determine 
points represented by the which column of M gives the 
following matrix M: solution of the equation for each 

column of N. 
1 2 0 1 3 5 1 0 
2 5 0 1 5 -2 0 1 16.5 If B~2 2p2 3 3 5, then the 

basic solutions V1 and V2 are 
b) Evaluate the expressions among the columns of the 
B+.xIB and IB+.xB and compare following matrix: 
them with the identity matrix. 

1 1 3 0 5 1.5 2 
16.2 Repeat Exercise 16.1 for o -2 2 1 3 3.5 0 
the 3-dimensional matrices Band 
IB given in Section 16.2 and for a) Determine the basic 
the following matrix M: solutions of B 

9 3 1 o 0 8 o b) Using the values of V1 and 
16 5 0 1 0 1 o V2 obtained in Part (a) , 
20 7 0 o 1 5 o evaluate the following 

expressions: 
16.3	 a) Evaluate the expression 

A/3 7=B+.xV for the matrix B~2 N~(4xO 1)+(-2x1 0) 
2pl -3 -2 4 and for each of the N 
following values of the 
2-element vector V: V~( 4x V1)+( 2x V2) 

V 
1 0.5 4.5 3.2 1 0 
2 3.5 0.5 4.2 o 1	 B+. x V 

b) Use the results of Part (a) A/N=B+. xV 
to determine which of the given 
values of V is a solution of c) Use the scheme suggested by

-the equation 3 7=B+.xV.	 Part (b) to determine a 
solution to the equation 

16.4 Let M and N be the N=B+.xV for each of the 
following matrices: following values of N: 

M 5 7
 
7 5 1 1 5 9 3 8
 

-3 3 8 2 0 6 o 0
 
7 0
 

N o 4
 
18 10 10 - 14 2 2 -39 5 10 22 11 41 
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16.6 The basic solutions for the 
matrix B~2 2p4 2 7 3 also occur 
amonq the columns of the matrix 
give-in Exercise 16.5. Use this 
fact to repeat the work of 
Exercise 16.5 for this value of 
B. 

16.7 Let B be the following 
matrix: 

2 3
 
3 5
 

a) Determine a value for VA 
such that the second element of 
B+ • x VA is ze ro • 

b) Determine a value of K such 
that if V1+-VA~K, then Vl is a 
basic solution of B. 

16.8 The vector VA+-O 0 would 
satisfy the requirement imposed 
in Part (a) of Exercise 16.7, 
namely that the second element of 
B+. xVA must be zero. Try to use 
this value of VA to determine a 
basic solution Vl as in Part (b) 
of the same exercise. Why does 
it not work? 

16.9 Repeat Exercise 16.7 for 
each of the following values of 
B: 

4 2 2 3 8 6 
7 3 2 8 5 8 

16.10	 a) Repeat the steps of 
Exercise 16.7 but modified to 
determine the second basic 
solution V2. ----- ­

b) Repeat Part (a) for the 
matrices of Exercise 16.9. 

16.11 Determine basic solutions 
for each of the following 
matrices: 

2 7 4 3 16 5 6 9 
1 3 8 11 -8 10 3 5 

16.12	 a) Evaluate the 
determinant of each matrix of 
Exercise 16.11 

b) Evaluate the determinant of 
each matrix of Exercise 16.9 

16.13	 a) construct a matrix B 
whose determinant is 4 

b) If the determinant of B is 
4, what is the determinant of 
the matrix -B? 

c) Modify the matrix B of Part 
(a) to obtain a matrix whose 
determinant is -4 

d) Construct at least 3 
different matrices whose 
determinants have the same 
value 100 

e) Construct at least 3 
different matrices whose 
determinants have the value 1. 

16.14 What effect does each of 
the following changes to a matrix 
have on the value of its 
determinant: 

a) Interchanging its two rows? 

b) Interchanging its columns? 

c) Interchanging the rows and 
then interchanging the columns? 

e) Changing the sign of every 
element? 

16.15	 a) Evaluate the 
determinant of the following 
matrix: 

5 12
 
4 8
 

b) Is it possible to determine 
basic solutions for this 
matrix? 

c) Construct at least three 
different matrices for which it 
is impossible to determine 
basic solutions. 

16.16 Determine the matrix BS 
which gives the basic solution in 
matrix form for each of the 
following matrices: 

3 7 8 4
 
1 3 5 3
 

16.17 Determine the matrix of 
the basic solutions for each of 
the matrices of Exercise 16.11 
and compare the results with 
those of Exercise 16.11. 

16.18	 a) Use the results of 
Exercises 16.16 and 16.17 to 
determine the solution of the 
equation 3 13=B+.xV for each of 
the matrices B involved in 
those exercises. 

16.19 Find solutions to the 
equation 

A/N=(2 2p7 5 5 3)+.xV 

for each of the following values 
of N: 

10 23 
14 12 
17 3
 

1 0
 
o 1 

16.20	 a) Determine BS as the 
matrix of basic solutions for 
the matrix B+-2 2p9 4 4 2 

b) Evaluate the expressions: 

B+. xM 

BS+.xB+.xM 

BS+ . xM 

B+.xBS+.xM 

for the matrix M given below: 

1 3 1 7 0 0 25 
1 5 0 5 1 0 3 

16.21 Repeat Exercise 16.20 for 
each of the following values of 
the matrix B: 

4 7 13 3 12 2 
8 11 3 7 11 5 

16.22	 a) For the matrices Band 
BS of Exercise 16.20, evaluate 
the following expressions: 

B+ . xBS 

BS+.xB 

b) Repeat Part (a) for each of 
the pairs Band BS of Exercise 
16.21 

16.23 If BS is the matrix of 
basic solutions for B, then 
B+.xBS is always equal to BS+.xB 
(since each is equal to the 
identity matrix). This might 
suggest that the function +.x is 
commutative. Show that this is 
not so by constructing at least 
one pair of matrices C and D such 
that C+.xD is DQ1 equal to D+.xC. 

16.24	 a) Use the Gauss-Jordan 
method to determine the matrix 
BS of basic solutions for the 
matrix B of Exercise 16.20. 
Show all of your work. 

b) Repeat Part (a) for each of 
the matrices of Exercise 16.21. 
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16.25	 a) Apply the efficient where B is the following matrix:
 
method of Section 16.13 to o Addition
 
solving the equation 10 3 14 Y Multiplication
 

2 12 1
 A Subtraction
 
A/3 -ll=B+.xV -4 7 15 o Division
 

I Maximum
 
for the matrix B of Exercise 16.29 Evaluate the expression
 C Minimum 
16.20.	 Show all of your work. ~B, where B is the matrix of Power
 

Exercise 16.28.
 F Remainder
 
b) Repeat Part (a) for each of U Relations
 
the matrices of Exercise 16.21. 16.30 Define a function F which NOr
 

is equivalent to the function	 ~ C And 
16.26	 a) Use the Gauss-Jordan when applied to a 2 by 2 matrix T Not-or 

method to determine the matrix argument. I Not-and 
BS which is inverse to the o Domino 
following	 matrix B: 16.31 Define a function G which N
 

is equivalent to the function ~
 S Repetition
 
3 1 4 when applied to a 3 by 3 matrix Catenation
 
5 8 2 argument. Base the function
 Take
 
1 7 1 definition on the Gauss-Jordan Drop
 

method and use iteration as much
 Compression
 
carryall calculations to 4 as possible.
 
decimal places. M Negation
 

o	 Reciprocal16.32 Modify the definition of 
N Magnitudeb) Check your result by	 the function G of Exercise 16.31 
A	 Factorialevaluating the expression	 so that it applies to a square o	 Ce n :ngB+.xBS.	 matrix argument of any dimension. 
I Floor 
C Complement c) Use the matrix BS to obtain	 16.33 Apply the efficient method 

Matrix Inversethe solution to the equation of Section 16.13 to the 5 by 6
 
A I 2 - 5 6 =B+ • x V matrix given in Section 16.16.
 

IntegersCompare the result with the 
16.27 Repeat Exercise 16.26 for solution C given in the same Size 

F l I pp i ngeach of the following matrices: section. 

5 2 7 12 8 4 16.34 Apply the general curve °IAssignment

T	 Indexing8 1 3 3 17 2 fitting process to the following
 
H1 4 2 1 9 16 function table:
 
E	 Function 
R Definition 

of solution to solve the 
16.28 Apply the efficient method	 x 1 y


-----1----- Parentheses
 
following equation: 1 1
 Execution order 

1 

Vectors316
 
Tables, MatricesA/12 3 14=B+. xV	 8 I 36
 

Reduction (Over) 
Outer Product 
Inner Product 

SYMBOL 
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x
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V
 

A 

¥ 
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~ 

p 

t 

+ 
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ij] 

o
 
¢ 9 lSi
 

XCI] 
M[I ;JJ 

\/Z<-F X
 
\/Z<-X F Y
 

fI 
o • f 
f.g 
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DEFINITION OR EXAMPLE ISECTION # 

3+4<-~7 1.2 
3x4<-~12 1.2 
3-4<-~-1 3.1 
3~4<-~.75 5.1 
3r4<-~4 2.4 
3L4<-~3 2.4 
3*4<-~81 A*B+~xIBpA 2.5 6.5-6 
314<-~1 7.1 
3<4<-~1 4<3+~0 4.8 

14.2 
VOl A 0 1 ¥ 0 11'<0 1 14.2 
001 0 0 0 0 1 001 1 14.2 
1 111 0 1 1 001 1 0 14.2 
B~M is soln of B=M+.xX 16.15 

3p5<-~5 5 5
 1.7 13.3
 
4 2,1 3 5+~4 2 1 3 5
 6.2
 
2t4 5 6+~4 5
 10.5 
2+4 5 6+~6 10.5 
o	 1 1 Oil 2 3 4+~2 3
 7. 5
 

-4<-~-4 8.2
 
~ 4<-~. 25
 8. 3
 

1- 4+~4
 8.4 
!4<-~lx2x3x4 8.1 

r3.4+~4 8.5 
L3.4<-~3 8.5 

-1<-~0 -0+~1 8.6 
M+.xij]M is the identity 16.15 

1 4<-~ 1 2 3 4
 1.5 
o 4 1 3 6 2+~5
 8.7 
Flip table about axis 4.3 

X+6 1.3
 
2 3 5 7[2 4J+~3 7
 4.4 

9.1 
9.2 
1.2 

3x4+5-7+~3x(4+(5-7» 1.2
 
2 3 5xl 2 3+~2 6 15
 1.6 

2.1 13.3 

+/2 3 5+~10 x/3 4+~12 11.4 4.10 
2.3 
13.2 13.4 

SUMMARY OF NOTATION 

http:ll=B+.xV
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