

Graphics Application Using Complex
Numbers in APL2
by James A. Brown Harlan Crowder

Graphics Applications using Complex Numbers in APL2

by
James A. Brown
Harlan Crowder

International Business Machines Corporation General Products Division
Santa Teresa Laboratory San Jose, California

ABSTRACT

This report explains and demonstrates the use of complex numbers in APL2 for two-dimensional graphics applications. We discuss the APL2 concepts of data and data types, complex numbers, arrays, and operations on arrays. We show how complex numbers and arrays of complex numbers can be used for two dimensional computer graphics. Finally, we demonstrate these graphical concepts and techniques, using examples from elementary fractal geometry

> The graphic images for this report were created using the Graphical Data Displav Manager running under APL2. Text and graphics were integrated using the Document Composition Facility. The report was produced on the sM 4250 printer

Introduction

Techniques for using graphics in computer applications is currently a popular topic among software designers and users. APL has traditionally been a good graphics programming tool because graphics data structures are easily created and manipulated using APL arrays and functions, and because APL has provided good interfaces to exasting graphics services. In IBM's new APL 2 [1]. the domain of numeric data has been expanded to include complex numbers. This development. in conjunction with the APL2 interface to the Graphical Data Display Manager (GDDM)[2]. has implications for APL graphics applications. The purpose of this report is to explore and demonstrate how complex numbers can be used for two dimensional graphice applications

First. we discuss the APL2 concepts of data and data types, complex numbers, arrays, and operations on arrays. Then we show how complex numbers and arrays of complex numbers can be used for two dimensional computer graphics. Finally, we demonstrate these graphical concepts and techniques. using examples from elementary fractal geometry.

APL2 data and operations

In this section, we describe how APLí represents data, and. in particular how complex numbers are used and exhibited. We look at some of the operations that manipulate complex numbers, and develop the concept of general operations on arrays.

APL2 data

APL2 has two kinds of data .. numbers and characters .. from which arrays are structured. The elements of character data are the APL2 character set. for example. ' A ' and ' c '. Previous implementations of APL limited numeric data to boolean (0 and 1). integers (e.g., 7). and reals (e.g.. 3.14159). APL 2 has extended the doman of numeric data to include complex numbers. The complex domain is a superset of previous APL numeric data. there are complex number representations for boolean, integer and real numbers.

Real numbers can be thought of as being composed of two parts .. an integer part and a fractional part. These parts are connected by a decimal point (.). Complex numbers may also be thought of as being composed of two parts - a real part and an imaginary part. These parts are connected by the letter ' J ' with the real part on the left and the imaginary part on the right. For example. the complex number 3 J 4 has real part equal 3 and imaginary part equal 4. Real numbers can be interpreted as complex numbers with imaginary part equal zero. 'hus, 5.3 is 5.3 J 0 .

In APL2. a complex number can be specified as $x J y$, where x is the real part and y is the imaginary part. Complex numbers can also be specified using the magnitude-phase forms $m D_{p}$ (for phase in degrees) or $m \tilde{k} p$ (for phase in radians). The relationships between these representations is illustrated in Figure 1.

Figure 1: Complex number representations.

The same number can be represented as $x J y$ or $m \Sigma p$. In the e^{\prime} form. x and s are displacements along the real (horizontal) and imaginary (vertical) axes. respectively. In the I form. m is the distance of the complex point from the origin and p is the angular displacement. in degrees. from the horizontal.

In APL2. complex numbers are always displayed using the J form notation. For example.
4 e 3
$5 D 36.869897$
$4 J 3$
$5 R 0.6435011$
$4 \mathrm{e}^{\top} 3$

Operations on complex numbers

All the usual arithmetic operations in APL2 are defined on complex numbers. We will be concerned here primarily with addition and multuplication

Multiplication of complex numbers

Multiplication of complex numbers is best understood using the D form. If R and S are complex numbers. then their distance from the origin is $\mid R$ and $\mid S$.
respectively. Their angular relationship to the real axis (phase) is 120 R and 120 S radians. respectively The product $P \times S$ has a magnitude, which is the product of the magnitudes $(\mid R) \times(\mid S)$. and phase. the sum of the phases $+/ 120 R S$. For example.

$5 D 3 C \times 2 D O C$

${ }^{-} 5$ J\&. 66025
EMTED $5 D 30 \times 2 D 9 C$
$\therefore 00120$
Here FMTPD is a function from the APL2 distributed workspace 1 MATHFNS which displavs complex numbers in the D form.

Addition of complex numbers

Addition of compl :x numbers is best understond when using the J form. If \bar{f} and S are complex scalars then the sum $\hat{F}+S$ hac real part equal to the sum of the real parte of R and $S \quad(+/ 90 R S)$ and imaginary part equal to the sum of the imaginary parts of F and \dot{S}
$(+/ 110 R S)$. For example,
$4 \cdot J 3+3 J 5$
$7 J 8$

Operations on arrays

An array is a collection of numbers and characters Most APL operations apply to a whole collection all at once This permits us to control the sequencing of operations by arranging the structure of the the data rather than the structure of the program．In this paper． wie will only use the APL scalar functions addition． subtraction．and multiplication All the examples here work the same way for any of these functions．

If we write a hist of numbers（a vector）on each side of a scalar function．the operation is apphed independently between pairs of corresponding items．one from each side．For example．

```
    12 ミ+10 20 ミi
means
    (1+1C) (2+20)(3+3C)
and results in
:122 33
```

If we write a vector on one side but a single number on the other side．the scalar is paired with each item of the vector．For example．

```
    1+ 20 2C 30
```

means
$(こ+1 C)(1+20)(こ+き く)$
and results in
$\because 2131$

Any item of an arrav mas itself be an array Such an array is calleri a nested arro．Here 1 a an example with a vector that contains other vectors $a=1 t e m$ ：

means

and results ir.
$\because 203030$ ジ $3-$

APL has a way to make any array into a scalar by using the function enclose $(:)$ ）．In the following example the array $=: 220$ ミ 1 s a scalar and so 1 parred with each item of the vecitor left argument

```
    : 2 3 x ヒ:: 2C こし
means
    (1\timesニ0 2こ ミこ)(2×ここ 2こ 3:)(3\times1C 2C ここ)
and results in
10 20 30 20 40 60 30 60 9?
```

There is another important way to apply functions． Outer product（ $0 . \bar{E}$ ）applies the function F to pairs of data one from each side in all combinations

```
    1020 0.-: 2 3
    ` 8 7
15 18 17
```

＂All combinations＂in a problem means＂outer product＂ in APL．Outer product applies to both primitive and user－defined functions in APL？

Complex numbers for two-dimensional graphics

In this section, we describe how points in the plane can be represented as complex scalars. how polygonal object: can be represented as simple complex vectors. and how collections of objects can be represented as nested complex arrays. We also show the geometrical effects of multiplication. addition. and subtraction of complex arrays

Graphical data representation using complex numbers

Real numbers are a special case of complex numbers: reals have imaginary part equal zero. For example.
2.5.1, and 3.145 are real numbers; they can be represented spatially as points on the real number line. as shown in Figure 2.

Similarly, complex numbers can be represented as points in the complex plane. The real part of a complex nurnber determines its location along the real or horizontal axis, and the imaginary part determines its location along the imaginary or vertical axis. For example, the numbers $3 J / 2.4,0 e^{-} 2, J^{-} 3 J^{-} 1$, and ${ }^{-} 2 J 1$ car be represented as illustrated in Figure 3.

A common operation in computer graphics is to represent two-dimensional polygonal objects as ordered lists of points in the plane. For example, the equilateral triangle TRI is defined as

$$
T R I \leftrightarrow 0 J 22^{-}-.732 e^{-1} 1 \quad \therefore 732 e^{T-} 1 \quad 0 e^{T} 2
$$

Since the first and last points are the same. connecting the points results in a closed figure in the complex plane as shown in Figure 4

Similarly, the list $A R F O W$ is defined as a vector of length 7 :

$$
\begin{array}{r}
\text { ARROW } \leftrightarrow 0 e^{\top} .25 .5 e^{\top} \cdot 25 \quad .5 \quad 1 J .5 \quad .5 e^{\top} 1 \\
.5 J .75 \text { CJ. } 75 \text { OJ. } 25
\end{array}
$$

The result of drawing $\angle R F O A^{\prime}$ in the complex plane is shown in Figure 5.

Figure 2: Points on the real number line.

Figure 3: Points in the complex plane.

Figure 4: Points of an equilateral triangle in the complex plane.

This idea can be extended by allowing collections of polygons to be represented by nested lists of hists. For example, the depth-2 list $N E S T$ is defined as

```
T - 4J 2 - 4J-1 - 1J 1 - 4e 2
S 1J1 4ei- 4J 2 ied
NESS
```

Drawing and shading the two items of NEST give the illustration in Figure 6

We can define a recursive APL2 function $D R A W$ that interprets simple arrays as collections of points describing polygonal objects. and nested arrays as collections of such objects. DRAK has the following definition:

```
[0] DRAW A
[1] }->(1<\equivA)/L
[2] MOVE 1+A+,A
[3] JOIN 1+A
[4] ->0
[5] L1: DRAW"A
```

Line [1] tests the structure of the argument A, if A is nested. then a transfer of control is made to the recursive call at line [5]. Line [2] causes a move (without drawing) of the graphics pen to the coordinates given by the first scalar in the simple vector A Line [3] joins points given by the remaining elements of A with a series of straight lines. starting at the current point. The number of line segments is $-i+c, \ldots$. Line [4] exits the current level of call to $D R F A \ddot{H}$ Line [5$]$ performs the recursive call; if A is nested. then $D F A \ddot{n}$ is applied to each item of A

The definitions of the generic subfunctions MOVE and $J O I N$ are appropriate to the graphics management subsystem used by LRAn

Note that this representation and use of complex arrays for two-dimensional polygonal objects lends itself to edge-representation as well as to point-representation Edge-representation simply requires an extra level of nesting. For example, in point-representation. the unit square is

01 1J1 OJ1 0.
The corresponding object in edge-representation is

$$
\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 J 1
\end{array}\right)\left(\begin{array}{lll}
1 J 1 & 0 J 1
\end{array}\right)\left(0 e^{\prime} 10\right) .
$$

Applying $D R A W$ to these two objects gives the same graphical result.

Figure 5: Points of an arrow in the complex plane.

Figure 6: A nested array as a collection of objects

Complex multiplication

We previously gave a mathematical description of complex multiphication. here is the geometric interpretation If Q is a point in the complex plane. then the product of Q and a complex number in the degree-form $m \mathscr{L} p$ gives a result that has distance from the origin of Q altered by a fartor m. and has been rotated through p degrees with respect to the origin

For example, if A is $2 e^{\top} 1$. then $1 D 90 \times A$ has the same magnitude as A but has been rotated 90 degrees anticlockwise with respect to the origin. The product $2 D 180 \times A$ is twice as far from the origin as A and has been rotated 180 degrees with respect to 0 . The product . $5 D^{-}-120 \times A$ is half the distance from the origin as A and has been rotard 120 degrees clockwise around the origin. These examples are illustrated in Figure i.

What has been described here for multiplication of scalars carries over to other instances of APi, scalar multiplication. For example, $1 D 90 \times A R R O$ is drawn and shaded in Figure \&

Similarly. nested collections of objects can be created and transformed using scalar multiplication. For example, the result of

```
1 1LOE 1D180 1D270 x CAFFOÖ
```

is drawn and shaded in Figure 9. (Recall that the enclose function makes AREON a scalar. which is then paired with each of the 4 numbers on the left.)

All points that define $T R I$ have the same magnitude, as do all points that result from

```
- 1D3C 1DES 1DOO < CTRE
```

The collection of objects resulting from this expression are drawn in Figure 10

Figure 7: Geometric effects of complex multiplication.

Figure 8: Rotation of points by complex multiplication.

Figure 9: Replication and rotation of arrow points.

Complex addition

You have seen that addition on complex numbers requires only adding the real and imaginary parts. In graphics terms complex addition gives translation of points in the complex plane

For example. if A is $\left\langle e^{\circ} 1\right.$. then $A+A$ is $4 J 2 . A-5$ is ${ }^{-} 3 J 1,-A$ is ${ }^{-} 2 e^{-} 1 . A-e^{+} 2$ is $1 e^{--} 1$. and $A+0 e^{--} 3$ is $2 J^{-}$2. These examples are shown in Figure 11.

Scalar addition of simple arrays representing polygonal objects corresponds to translation of these objects in the plane. For example. the $A R R O W$ array can be translated by the expression

```
ARROW+- 1e-
```

This expression is drawn and shaded in Figure 12.
In a similar way. objects can be translated and replicated by addition of nested arrass. For example. the expression

$$
0-_{1}-1 J_{1} 0 J^{-}+C \text { ARROW }
$$

is drawn and shaded in Figure 13.
The scalar function $C_{e}{ }^{7}$ is useful for creating and manipulating complex numbers in APL2. Ce has the following definition and use:

```
[0] Z+R CJ I
[1] 2+R+0.11\timesI
        3 CJ 5
3J5
    5 Cej i 2 3
5J1 5J2 5e``
    2460.CJ=357
2J^ 2J3 2J5 2e'7
4e'1 4JЗ 4e'5 4e-
6J1 6J3 6e'5 Ee'?
```

The result of C_{J} is an array of complex numbers. the real parts of which are composed of the left argument and the imaginary parts of which are composed of the right argument, following the rules for scalar functions.

Figure 10: Replication and rotation of triangle points.

Figure 11: Geometric effects of complex addition.

Figure 12: Translation of points by complex addition.

The function C_{J} can be used in the context of complex addition to fill the complex plane with replications of the $A R F O W$ object. The expression

$$
\left(\left({ }^{-} 1+110\right) \cdot . C e^{-} 1+16\right)+C \text { ARROW }-5 e^{\prime} 3
$$

is drawn and shaded in Figure 14. We subtract $5 J 3$ to move to the bottom left corner. We then add to the scalar arrow at that spot, complex integers corresponding to the other grid points on our complex plane. (The grid lines are elided in this picture.)

Complex multiplication and addition can be combined to simultaneously translate, rotate, and replicate objects in the plane. For example, the following sequence involves all three operations:

```
A&1 1D30 1D60
B+1 1D90 1D180 1D270
B }\timesCA\timesCARROW+1.66\mp@subsup{J}{}{-}.
```

The result of the final expression is drawn and shaded in Figure 15.
$A R R O W$ is first translated, replicated, and rotated in the first quadrant, and then this intermediate result is replicated and rotated into the other three quadrants.

Figure 13: Replication and translation of arrow points.

Figure 14: Multiple replication of arrow points.

Figure 15: Translation, rotation, and translation of arrow points.

Examples from elementary fractal geometry

Fractal geometry is a relatively new mathematical discipline concerned with characterizing the irregularity and fragmentation we encounter when attempting to give a geometrical description to natural objects. In the Introduction to The Fractal Geometry of Nature [3]. Mandelbrot gives the following motivation for inventing a "geometry of nature":

Why is geometry often described as "cold" and "dry"" One reason hes in its inability to describe the shape of a cloud. a mountan. a coastline. or a tree. Clouds are not spheres. mountains are not cones. coastlines are not circles. and bark is not smooth. nor does lightning travel in a straight line.

Many patterns of Nature are so irregular and fragmented that. compared with ... standard geometry, Nature exhibits not simply a higher degree but an altogether different level of complexity:

The existence of these patterns challenges us to study those forms that (standard geometry) leaves aside as being "formless." to investigate the morphology of the "amorphous

Responding to this challenge. I conceived and developed a new geometry of nature and implemented its use in a number of diverse fields. It describes many of the irregular and fragmented patterns around us. and leads to full-fledged theories, by jdentifying a family of shapes I call fractals.

We will not pursue here the theory and application of fractals and fractal geometry; a growing body of literature addresses those topics. Rather, we want to show some simple fractal constructions in order to demonstrate the recursive computational facilities of APL2.

Initiators and Generators

Fractal constructions are carried out in successive stages. with refinements being applied at each stage of the process. One begins with two shapes, an initiator and a generator At each stage, the generator shape replaces each instance of the initiator shape; the resulting object is then operated on in a similar manner at the next stage of construction.

A simple example of this technique is the construction of a triadic Koch island: see [3]. Chapter 6. This construction begins with an equilateral triangle with unit length sides as the initiator. The generator is given by the following shape:

Each line segment of this generator is length $1 / 3$. A single application of the generator to the initiator gives a star hexagon, or Star of David. Subsequent applications give the sequence of objects in Figure 16.

Figure 16: Triadic Koch island sequence.

An APL2 Implementation

The objects in Figure 16 can each be represented as a vector of points in the complex plane. The objects uere all computed using the APL expression

$$
2 \leftarrow N(G 1 F F A C) T R I
$$

TRI is a complex vector of length 4 that give the points of an equilateral triangle. G1 is a function with the following definition.
[0] $2+A$ G1 B
[1]
[2] \bullet
[3] $ค ~ i$

[5]
$[6] \quad Z+(E-A) \div 3$
[7] $Z+(A+0, Z,(2 \times(3 * .5) \times 1 D 3 C),(2 \times 2)), B$
The arguments A and B of $G I$ are complex simple scalars representing two points in the complex planf The result Z of $G 1$ is a complex simple vector of length 5 representing the points of the generator shape. For example,

1 G1 4
$122.5 e^{\top} 0.86634$
The operator $F R A C$ applies the generator function ($C \vdots$) to the inithator array (TRI): the number of operation stages is given by the left array argument N. The FRAC operator has the following definition.
[0] $2+N(G E N$ FRAC)INIT
[1] $2+\operatorname{INIT}$
[2] $\rightarrow(N=0) / 0$
[3] $Z+2$ GEN/Z
[4] $2+\epsilon(-(\rho 2) \pm 1 \rho Z)+\cdots 2$
[5] $2+(N-1)(G E N$ FKAC)2
At each stage of (possibly recursive) invocations of FRAC, line [1] assigns the current initiator to the result array 2 . Line [2] causes an exit if no more stages of the construction are to be performed. Line [3] performs a pairwise GEN-reduction of elements of the current initiator For example

2 G1/1 4 ?
$122.5 J 0.86634455 .500 .86667$
ค 2 G1/1 47
2

```
    c" 2G1/& 4 7
```

$=5$
Line [4] drops the last element of all but the last subarray created in the reduction step, and then ENiISTs the result. This step essentially excludes line segments of length zero from the new graphical object. Finally. line [5] recursively invokes $F R A C$ to perform the next step of the construction.

The $\overline{E R E C}$ operator is a paradigm for a family of related fractal constructions; we can use other initiator arrays and generator functions to obtain different graphical sequences. For example. the expression

$$
N(G 2 F R A C) S Q F
$$

computes the sequence of quadric Koch island in Figure 17: see [3]. Chapter 6. $S Q E$ is a complex vector of length 5 representing points of the unit square. The function $G 2$ produces the following generator shape for a unit line segment:

$G 2$ has the following definition:

Conclusion

We have introduced here the use of complex numbers in APL2 for simplifying and understanding some techniques and operations in two-dimensional computer graphics. In particular. we have demonstrated the use of complex simple scalars for representing points in the plane. complex simple vectors for representing polygonal objects. and nested arrays for representing collections of polygonal objects. We have shown how graphical objects represented by complex arrays can be scaled, translated. and rotated using scalar arithmetic in APL2. These techniques may be particularly useful in APL2 graphics applications that are primarily concerned with representing and manipulating two-dimensional graphics objects.

Figure 17: Quadric Koch island sequence

Acknowledgment

The authors wish to thank Edward Eusebi. Alan Graham. and Ray Trimble for their helpful suggestions and comments on various topics of this report. Special thanks also to Kacy Keene for her help on integrating text and graphic images.

References

[1] APL2 Programming: Language Reference, IBM Corporation. Form number SH20-9227 (1984)
[2] Graphical Data Display Manager Base Programming Reference, IBM Corporation, Form number SC33-0101 (1984)
[3] Mandelbrot, B.B., The Fractal Geometry of Nature, W.H. Freeman and Company (1982)

