
My Favorite Idiom

October, 1988

Dr. James A. Brown

IBM Santa Teresa Lab J88/E42

555 Bailey Ave.

San Jose. Calif. 95141 USA

)

ii My Favorite Idiom

Introduction to Idioms

nus paper discussesAPL idioms: what they are, which ones are commonly recognized by people, which
ones can be recognized by the APL2 interpreter, and which ones are recognized by the APL2 interpreter.
Included is a discussion of why idioms are so valuable.

What Is an Idiom?

When designing and describing a programming language, it is common to borrow terminology from natural
language.. Iverson does this to a greater extent than most in his dictionary of APL (which describes exten­
sions to Sharp APL) (Ivl), The word "idiom" is one of those borrowed from natura11anguage. Unlike
Iverson's adopted words, this one may not be entirely appropriate.

Here's the definition of "idiom" in natural language:

-An expression ..• having a mean;ng which

cannot be derived as a whole from the

cojoined meanings of its elements.­

Webster's new collegiate dictionary

An APL idiom is essentially exactly the opposite .. Here's a proposed definition of idiom" in APL:

WAn expression whose meaning ;s precisely

determined from the meanings of ;ts elements

yet. as a whole. represents a single concept.­

Yours truly

nus difference in meaning exposes itself in the usefulness of idioms. For example, the translation of an
idiom from one natural language to another is the most difficult task of a translator. In fact, it is this kind
of trouble that caused the automatic translation projects of the Artificial Intelligence people in the 1950's to
fail.

On the other hand, APL idioms have a lot to do with what makes APL productive to read and write. The
reasons for this are discussed later.

Example Idioms

Here are a few idioms and the ideas each represents:

Su,..afiona +/V

This is, in some sense, a limiting case of an idiom. It certainly is a sequence of symbols that represents one
idea. Such an expression would not nonnally appear in an idiom list. If you want to sum a-vector in APL,
you wouldn't do it any other way unless you wanted to control rounding errors (in which case you might,
for example, sort the vector first),

Eli.inafe duplicates: «VtV)=tpV)/V

This is the most common example given of an APL idiom.. It is a classic case of where the combination of
symbols expresses precisely the desired operation but that fact is not immediately obvious from the indi­
vidual operations. While this is the common way to eliminate duplicates, it can be more efficient to use
other expressions. For example, if the vector is sorted (or can be sorted), (1. 2 _ IV) IV is probably faster.

Delete leading blanks: (+!A\TXT=' ').TXT

Introduction to Idioms t

This is a common idiom sometimes called the teepee idiom because the slashes and the "and" symbol
resemble the tents constructed by the American Indians. Another idiom which bas a name is "pick each

enclose' (~- c:) which is called the chipmunk idiom named after a small furry animal that collects nuts.

Why should people recognize idioms?

Idioms have a lot to do with what makes APL so powerful. The symbolic nature of APL operations and
the array orientation of data and functions means that significant computations can beexpressed in a short
space. That means you can see a whole expression at a glance and that is extremely valuable when one
expression equals one idea. In some sense, you can see the forest without any trees (to paraphrase and
American idiom). Thus, ifyou know idioms, APr, becomes more readable because you can read the idea
instead of the individual primitives, and APL becomes more productive for the programmer because she can
convert an idea into an expression faster.

Why should machines recognize Idioms?

Most APL language processors are interpretive. They alternate between scanning APL expressions looking
for single primitives and their arguments and the execution of these primitives. If an APL interpreter can.
recognize an idiom, it can evaluate the meaning of the phrase rather than its individual primitives, This
improves system performance three ways:

• Elimination of syntax analysis

Once the APL interpreter has recognized an idiom, it does not need to again scan each of the symbols
that comprise the idiom. Instead, a scheme can be used to skip to the left end of the idiom completely
eliminating the time used for syntax analysis.

• Elimination of intermediate results

If an idiom involves more than one primitive function, its nonnal interpretive execution would involve
allocating space for the result of the rightmost function. After execution of the rightmost function, its
result becomes an argument of the next function in the idiom. When the second function completes, the
space for the result of the first function is freed (in the implementation, this is called marking the space
garbage). This process continues for other primitives in the idiom expression. If an idiom can be exe­
cuted as a whole, the time for space allocations, de-allocations, and garbage collection (the process of
reclaiming space marked garbage) can be reduced. This is more beneficial than it appears because if the
space is never allocated, machine time is never spent storing or fetching data from the area. Finally,
sometimes intermediate results are bigger than the final result. In these eases, an idiom may execute
when its individual parts would get a JlS FULL.

• Use of special implementation routines

Special execution routines can implement the idea instead of the pieces. Thus, the whole idiom executes __
in the same time as a single primitive. On the negative side, addition or an idiom to- an APL system is__-_
almost as difficult as adding a new primitive. •Almost' because no new symbol is involved and the
idiom routine can choose to not implement exceptional cases. Also, the idiom-routines themselves take
space making the APL system larger.

2 My Favorite Idiom

When are Idioms recognized?
Idioms are recognized whenever a defined operation is introduced into the workspace by any of the following
mechanisms:

• Normal completion of function editing

• [)PX

• or,.
•) COpy) PCOpy

•)IN

An implication of this style of idiom recognition is that introducing a function into the workspace is more
expensive. An application that uses function rues to dynamically introduce functions into the active work­
space will ron slower. If the function, once introduced, is executed many times, the additional time in idiom
recognition is minimal. If a function is executed once and then erased, the recognition time may be wasted.
This makes the use of packages and APL2 external functions preferred over function tiles.

Another consequence of recognition at function fix time is that new idioms added after a workspace is
) SAVEed will not be recognized until the functions are fixed again.

Finally, expressions in immediate execution, quad input, and any of the forms of execute (t • DEC, DEA) do
not benefit from idioms. This is important to know if you write performance measuring programs. If you
execute a character string, idioms are ignored. If you fix a function containing the expression you want to
time, idioms are used and the execution time is a more accurate measure of the expression in an application.
Because APL does not have an adequate conditional construction, many people use execute to simulate a
conditional as follows:

e(condifion)/'expression'

While perhaps convenient, this construction is very expensive in execution time in general and, in particular,
causes idioms to be ignored..

Problems in idiom recognition

Because idioms are not recognized at execution time, name classes are not known. This makes idiom recog­
nition difficult (and expensive source program analysis is not practical or reliable at execution time). For
example, given an expression containing the phrase A-1, it cannot be determined if - is monadic or dyadic.
Given an expression like (V \ V) =t p V, it is reasonable to assume that V is array valued. However, V
could be a shared variable or a niladic function and the expression would be well formed yet- not mean what
the idiom normally means. It is possible that V is a monadic defined function in which case the expression
contains an error. These considerations make idiom recognition difficult but not impossible.

Another characteristic of idioms is that they make execution performance bumpy. If you write exactly the
right expression, you get great performance, A slight deviation from the idiom (perhaps redundant paren­
theses or an imbedded assignment) and you resort to normal interpretive execution.

Finally. different implementations may recognize different idioms (or none at all) and so have different per­
formance characteristics. This can make selection of optimum coding techniques hard but no worse than
different special case code within primitives on different implementations. The best advice is to code what
you consider good APL style and demand good performance from the supplier of your implementation.

Introduction to Idioms 3

What constitutes a recognizable Idiom?

APL2's implementation of idioms is limited by the desire to impose no performance penalty on non-idiom
execution and by the difficulty of recognizing arbitrary expressions. The first restriction is that an expression
containing only one primitive is not considered an idiom even though it may be in a-limiting sense. Thus,
+IV is not a recognizable idiom.

Recognizable idioms are classified according to the valence of the rightmost primitive in the expression which
is called the root function of the idiom. Thus, an idiom is classified as a monadic idiom if its rightmost
function is monadic and as dyadic if its rightmost function is dyadic. In Donna! right to left execution, the
rightmost primitive in an idiom is encountered first. The fact that this is the start of an idiom is recorded in
the internal representation of the APL program. The problem of unknown function valence is partially
solved at this time. At execution time, valence is certain. If the function is marked at the start of a monadic
idiom but a left argument has been coded, the idiom is ignored and and the function is called as an ordinary
dyadic primitive. If the function is marked as the start of a dyadic idiom but no left argument has been
coded, again the idiom is ignored. If the valence of the idiom matches the execution time valence of the
function, the function is not called and, instead, the special execution routine for the idiom is called. A
consequence of this scheme is that at the time the idiom execution routine is called, the left argument of the
rightmost function of a dyadic idiom has already been evaluated and thus does not take part in idiom exe ..
cution,

Consider the following potential dyadic idioms:

((VlV)=lPV)/V
(+/A\TXT=' ')+TXT

In each case, the left argument of the rightmost operation is the expression in parentheses which will have
been evaluated before the right operation is ready for evaluation. Thus, neither of these common idioms can
be recognized by APL2.

On the other hand, these sub-expressions can be recognized:

(VlV)=tPV
+/1\ \ TXT= • •

The rust is a monadic idiom and the second is a dyadic idiom.

For all idioms, monadic or dyadic, the right argument of the rightmost operation has already been evaluated.
This does not ncrmslly matter but it does mean that:

(VtV)=lPX

will be recognized as an idiom if:

V+X or X+V

were executed first. It is the value of the right argument not the name that participates in the idiom.

A bumpy problem

Suppose you're interested in deleting blanks from a character string. +I A \ TXT=• • is a recognized

idiom and could be used in this computation. Suppose you wrote +I A\. • =nT instead. Is this a
recognized idiom? Not necessarily! Suppose you're interested in trailing blanks and use one of these
expressions:

4 My Favorite Idiom

+/"\<tJTXT=' ,

+/1\\4>' '=TXT

+/1\\' '=fbTXT

To APL these arc all different idioms. APL2 recognizes all of these. In general, an attempt is made to
recognize all reasonable permutations of an idiom so that you can code what you feel is the most natural
with no performance penalty.

Introduction to Idioms 5

Recognized Idioms in APL2/370

Here is a partia11ist of recognized idioms classified by root function:

Comma
p .A
o relational P.

Equal
A\A=B
A\4>A=B
+/A\A=B
+/A\<s>A=B

Not equal

v\A~B

v\4>A_B
+/v\A~'B

+/v\<!'A;eB

Rho
ppA
OEPA
ItpA
-1tpA
1+pA
-1.pA
+pA
x/pA
)(/-1~pA

\pA

\ppA
\-1+pA
11+pA
N relational pA
N re/afional ppA

(A1A)=lpA
+()pA

Iota
+Ax \B
(\pA)=AtA

6 My Favorite Idiom

Take
+()tA

.---- ~~~--------- Drop
+R~A

Epsilon
flWA€B

Slash or slash bar
+(>/A
At r /A
At L/A

Equal Underbar
A relational :: A

Each
p"p ··A
+··p··I)··A

Period

+/A· • =8

Backslash

+/I\\A

Enclose
+Opc:A

Recognized Idioms in APL2/370 7

Magnitude

+/IA
-ItA
r/iA
LIlA
+flA
-,lIA
r,tlA
LflA

8 'My Favorite 'Idiom

Conclusion

Use of idioms enhances readability, writeability, understandability, and performance of APL programs.
APL2 idiom recognition can recognize a subset of the possible idioms. This paper does not list all idioms
because of the author's desire for people to use the constructions that they feel are the most appropriate and
most elegant. Implementers of APL systems should make the desirable and elegant APL expressions ron
efficiently.

Conclusion 9

References
•

(Ivl) Iverson. Kenneth, "A Dictionary of APL: APL Quote Quad. Vol. 18. No.1. Sept. 1987

10 My Favorite Idiom

