UNIX® System V
AT&T C++ Language System
Release 2.0

Selected Readings
Select Code 307-144

e
A

© 1989 AT&T
All Rights Reserved .
Printed In USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

Amdabhl is a registered trademark of Amdahl Corporation.

DEC is a registered trademark of Digital Equipment Corporation.

IBM is a registered trademark of International Business Machines.
Intel is a registered trademark of Intel Corporation.

Motorola MC68000 is a trademark of Motorola Inc.

MS and MS-DOS are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of AT&T.

VAX is a registered trademark of Digital Equipment Corporation.
VMS is a trademark of Digital Equipment Corporation.

Contents

Preface

Preface i

Acknowledgements i
1 Evolution of C++

The Evolution of C++: 1985 to 1989 -1

Footnotes 1-49
2 An Introduction to C++ _

An Introduction to C++ 21

A C++ Example 23

The Specification 2-7

The Implementation 2-15

Other Uses for Abstract Data Types 2-26

Object-Oriented Programming in C++ 2-28

The Current Status of C++ 2-36

The Future of C++ 2-37

Footnotes 2-38
3 An Overview of C++

An Overview of C++ 31

Footnotes 3-16
4 Object-Oriented Programming

What is “Object-Oriented Programming”? 4-1

Footnotes 4-25
5 Multiple Inheritance

Multiple Inheritance for C++ 5-1

Footnotes 5-20
6 Type-Safe Linkage for C++

Type-safe Linkage for C++ 6-1

Footnotes 6-23

Table of Contents

Table of Contents

Access Rules for C++
Access Rules for C++

7-1
Footnotes 7-12
Appendix A
Manual Pages for C++ Language System A-1

Index
Index

Selected Readings

D

Figures and Tables

Figure 1-1: A Directed Acyclic Graph

Figure 2-1: The Heritage of C++

Figure 2-2: An Abstract Data Type

Figure 2-3: Combining the specification (BigInt.h) and implementation (Bigint.c) of an abstract data type
(Biglnt) with the source code of a client program (client.c) to produce an executable
program(client).

Figure 2-4: A diagram of the Biglnt data structure for the number 654321

Flgure 2-5: Client programs can access the private member variables of an instance of a class only by
calling public member functions of the class.

Figure 2-6: Organization of Classes for a Graphics Package

Figure 2-7: Improved Organization of Classes for a Graphics Package

Figure 2-8: The data structure of a simple picture. Instances of OOPS library classes are shown as dashed
rectangles.

Figure 7-1: Derivation Relationship

Table of Contents

1-17
2-1
24

2-6
2-8
29
2-29
2-31

2-34
7-4

Preface

Preface

Acknowledgements

Table of Contents

Preface

The AT&T C++ Language System Selected Readings contains papers about the C++ language. The
manual is part of a set of four documents that are supplied with your C++ Language System. The
other documents are:

m the Release Notes, which describe the contents of this release, how to install it, and changes to the
language :

m the Product Reference Manual, which provides a complete definition of the C++ language sup-
ported by the Release 2.0 C++ Language System

m the Library Manual, which describes the three C++ class libraries and tells you how to use them

The seven chapters in this manual are based on technical memoranda by authors working with various
aspects of the C++ language. These chapters cover features of the language provided by Release 2.0 of

the translator.

Chapter 1 lists the new features of C++ and describes each one briefly

Chapter 2 is a tutorial showing you how to use the special features that C++ provides
Chapter 3 is an overview of the language provided with Release 2.0

Chapter 4 describes support for object-oriented programming in C++

Chapter 5 explains the new multiple inheritance feature and describes its use

Chapter 6 explains the new type-safe linkage capabilities

Chapter 7 explains levels of protection in C++ class definitions

Appendix A contains the manual pages for the C++ Language System, including the CC, c++filt,
and demangle commands

To make the best use of the Selected Readings, you should be familiar with the C programming
language and the C programming environment under the UNIX® operating system. Refer to Appen-
dix B of the Release Notes for further sources of information about these topics.

Preface i

Acknowledgements

m Chapter 1 is based on the paper, ““The Evolution of C++; 1985 to 1989,” by Bjarne Stroustrup.

That paper acknowledges the following contributions:

Most of the credit for these extensions goes to the literally hundreds of C++ users who provided
me with bugs, mistakes, suggestions, and most importantly with sample problems.

Phil Brown, Tom Cargill, Jim Coplien, Steve Dewhurst, Keith Gorlen, Laura Eaves, Bob Kelley,
Brian Kernighan, Andy Koenig, Archie Lachner, Stan Lippman, Larry Mayka, Doug Mcllroy, Pat
Philip, Dave Prosser, Peggy Quinn, Roger Scott, Jerry Schwarz, Jonathan Shopiro, and Kathy
Stark supplied many valuable suggestions and questions.

The C++ multiple inheritance mechanism was partially inspired by the work of Stein Krogdahl
from the University of Oslo.

m Chapter 2 is based on the paper, “/An Introduction to C++,” by Keith Gorlen.
m Chapter 3 is based on the paper, “An Overview of C++,” by Bjarne Stroustrup, published in

ACM Sigplan Notices, October 1986, pp. 7-18. That paper acknowledges the following contribu-
tions:

C++ could never have matured without the constant help and constructive criticism of my col-
leagues and users; notably Tom Cargill, Jim Coplein, Stu Feldman, Sandy Fraser, Steve Johnson,
Brian Kernighan, Bart Locanthi, Doug Mcliroy, Dennis Ritche, Ravi Sethi, and Jon Shopiro.
Brian Kernighan and Andy Koenig made many helpful comments on drafts of this paper.

Chapter 4 is based on the paper, ““What is Object-Oriented Programming,” by Bjarne Stroustrup,
published in IEEE Software Magazine, May 1988, pp. 10-20. That paper acknowledges the follow-
ing contributions:

An earlier version of this paper was presented to the Association of Simula Users meeting in
Stockholm. The discussions there caused many improvements both in style and content. Brian
Kernighan and Ravi Sethi made many constructive comments. Also thanks to all who helped
shape C++.

Chapter 5 is based on the paper, ‘“Multiple Inheritance for C++,” by Bjarne Stroustrup, pub-
lished in the proceedings of the EUUG Spring Conference, May 1987 (revised for this manual).
That paper acknowledges the following contributions:

In 1984 I had a long discussion with Stein Krogdahl from the University of Oslo, Norway. He
had devised a scheme for implementing multiple inheritance in Simula using pointer manipula-
tion based on addition and subtraction of constants. His paper, ““An Efficient Implementation of
Simula Classes with Multiple Prefixing” (Research Report No. 83, June 1984, University of Oslo,
Institute of Informatics) describes this work. Tom Cargill, Jim Coplien, Brian Kernighan, Andy
Koenig, Larry Mayka, Doug Mcllroy, and Jonathan Shopiro sopplied many valuable suggestions
and questions.

Chapter 6 is based on the paper, “Type-Safe Linkage for C++,” by Bjarne Stroustrup, published
in Computing Systems, Volume VI, no. 4, Fall 1988, pp. 371-404. That paper acknowledges the fol-
lowing contributions:

The new linkage and overloading scheme was essentially a joint effort of Andrew Koenig, Doug
Mcliroy, Jerry Schwarz, Jonathan Shopiro, and me. Brian Kernighan made many useful com-
ments. The name encoding scheme is based on a proposal by Stan Lippman and Steve
Dewhurst with input from Andrew Koenig and me. Steve Dewhurst, Bill Hopkins, Jim Howard,
Mike Mowbray, Tim O’Konski, and Roger Scott also made valuable comments on earlier ver-
sions on this paper.

Selected Readings

B

Acknowledgements

C m Chapter 7 is based on the paper, ““Access Rules for C++,” by Phil Brown.

C

Preface i

1 Evolution of C++

The Evolution of C++: 1985 to 1989

1-1
Abstract 1-1
Introduction 1-1
Overview 1-2
Access Control 1-3

= protected Members 1-3

m Access Control Syntax 1-5

® Adjusting Access 1-6

m Details 1-7

Overloading Resolution 1-8
Type-Safe Linkage 1-11
Multiple Inheritance 1-14
Base and Member Initialization 1-18
Abstract Classes 1-21
Static Member Functions 1-22
const Member Functions 1-23
Initialization of static Members 1-24
Pointers to Members 1-25
User-Defined Free Store Management 1-28
m Assignment to this 1-28
m Class-Specific Free Store Management 1-29
u Inheritance of operator new() 1-30

m Overloading operator new() 1-31
m Controlling Deallocation 1-32
C i m Placement of Objects 1-34
o m Memory Exhaustion 1-35
m Explicit Calls of Destructors 1-35
m Size Argument to operator delete() 1-35
Assignment and Initialization 1-36
Operator > 1-39
Operator, 1-40
Initialization of static Objects 1-41
Resolutions 1-41
a Function Argument Syntax 1-41
m Declaration and Expression Syntax 1-42
m Enumerators 1-43
m The const Specifier 1-44
m Function Types 1-45
m Lvalues 1-45
m Multiple Name Spaces 1-46
w Function Declaration Syntax 1-47
Conclusions 1-48
Footnotes 1-49

C

Table of Contents i

The Evolution of C+4+: 1985 to 1989

This chapter is taken directly from a paper by Bjarne Stroustrup.

Abstract

The C++ Programming Language describes C++ as defined and implemented in August 1985. This paper
describes the growth of the language since then and clarifies a few points in the definition. It is
emphasized that these language modifications are extensions; C++ has been and will remain a stable
language suitable for long term software development. The main new features of C++ are: multiple
inheritance, type-safe linkage, better resolution of overloaded functions, recursive definition of assign-
ment and initialization, better facilities for user-defined memory management, abstract classes, static
member functions, const member functions, protected members, overloading of operator ~>, and
pointers to members. These features are provided in the 2.0 release of C++.

Introduction

As promised in The C++ Programming Language, C++ has been evolving to meet the needs of its users.
This evolution has been guided by the experience of users of widely varying backgrounds working in
a great range of application areas. The primary aim of the extensions has been to enhance C++ as a
language for data abstraction and object-oriented programming in general and to enhance it as a tool
for writing high-quality libraries of user-defined types in particular. By a high-quality library I mean a
library that provides a concept to a user in the form of one or more classes that are convenient, safe,
and efficient to use. In this context, safe means that a class provides a specific type-secure interface
between the users of the library and its providers; efficient means that use of the class does not impose
large overhead in run-time or space on the user compared with hand written C code.

Portability of at least some C++ implementations is a key design goal. Consequently, extensions that
would add significantly to the porting time or to the demands on resources for a C++ compiler have
been avoided. This ideal of language evolution can be contrasted with plausible alternative directions
such as making programming convenient

m at the expense of efficiency or structure;

m for novices at the expense of generality;

m in a specific application area by adding special purpose features to the language;

m by adding language features to increase integration into a specific C++ environment

For some ideas of where these ideas of language evolution might lead C++ see Chapter 4.
A programming language is only one part of a programmer’s world. Naturally, work is being done in
many other fields (such as tools, environments, libraries, education and design methods) to make C++

programming more pleasant and effective. This paper, however, deals strictly with language and
language implementation issues.

Evolution of C++ 1-1

The Evolution of C++: 1985 to 1989

Overview

This paper is a brief overview of new language features; it is not a manual or a tutorial. The reader is
assumed to be familiar with the language as described in The C++ Programming Language and to have
sufficient experience with C++ to recognize many of the problems that the features described here are
designed to solve or alleviate. Most of the extensions take the form of removing restrictions on what
can be expressed in C++.

m Access Control

First some extensions to C++’s mechanisms for controlling access to class members are
presented. Like all extensions described here, they reflect experience with the mechanisms they
extend and the increased demands posed by the use of C++ in relatively large and complicated
projects.

® Overloading Resolution

m Type-Safe Linkage

C++ software is increasingly constructed by combining semi-independent components (modules,
classes, libraries, etc.) and much of the effort involved in writing C++ goes into the design and
implementation of such components. To help these activities, the rules for overloading function
names and the rules for linking separately compiled code have been refined.

m Multiple Inheritance
m Base and Member Initialization
m Abstract Classes

Classes are designed to represent general or application specific concepts. Originally, C++ pro-
vided only single inheritance, that is, a class could have at most one direct base class, so that the
directly representable relations between classes had to be a tree structure. This is sufficient in a
large majority of cases. However, there are important concepts for which relations cannot be
naturally expressed as a tree, but where a directed acyclic graph is suitable. As a consequence,
C++ has been extended to support multiple inheritance, that is, a class can have several immedi-
ate base classes, directly. The rules for ambiguity resolution and for initialization of base classes
and members have been refined to cope with this extension.

static Member Functions
const Member Functions

Initialization of static Members

Pointers to Members

The concept of a class member has been generalized. Most important, the introduction of const
member functions allows the rules for const class objects to be enforced.

m User-Defined Free Store Management

The mechanisms for user-defined memory management have been refined and extended to the
point where the old and inelegant “assignment to this”” mechanism has become redundant.

m Assignment and Initialization

The rules for assignment and initialization of class objects have been made more general and
uniform to require less work from the programmer.

1-2 Selected Readings

The Evolution of C++: 1985 to 1989

Operator —>
Operator ,
Initialization of static objects

Some minor extensions are presented.

Resolutions

The last section does not describe language extensions but presents the resolution of some details
of the C++ language definition.

m In addition to the extensions mentioned here, many details of the definition of C++ have been
modified for greater compatibility with the proposed ANSI C standard.

Access Control

The rules and syntax for controlling access to class members have been made more flexible.

protected Members

The simple private/public model of data hiding served C++ well where C++ was used essentially as a
data abstraction language and for a large class of problems where inheritance was used for object-
oriented programming. However, when derived classes are used there are two kinds of users of a
class: derived classes and “the general public.” The members and friends that implement the opera-
tions on the class operate on the class objects on behalf of these users. The private/public mechanism
allows the programmer to distinguish clearly between the implementors and the general public, but

C does not provide a way of catering specifically to derived classes. This often caused the data hiding

mechanisms to be ignored:

class X { // One bad way:
/7 ...
public:
int a; // "a" should have been private
// don’t use it unless you are
// a member of a derived class
// ...
}:

Another symptom of this problem was overuse of friend declarations:

C

Evolution of C++ 1-3

The Evolution of C++: 1985 to 1989

class X { // BAnother bad way:
friend class D1; // make derived classes friends)
friend class D2; // to give access to private member "a"
// ...
friend class Dn;
// ...
int a;
public:
/! ...
}:

The solution adopted was protected members. A protected member is accessible to members and
friends of a derived class as if it were public, but inaccessible to “the general public” just like private
members. For example:

class X {
// private by default:
int priv;
protected:
int prot;
public:
int publ;
}:
class Y : public X { -
void mf (),)
}:
Y::mf ()
{
priv = 1; // error: priv is private
prot = 2; // OK: prot is protected and mf2() is a member of Y
publ = 3; // OK: publ is public

void £(Y* p)
{

p—>priv = 1; // error: priv is private

p—>prot = 2; // error: prot is protected and f() is not a friend
// or a member of X or Y

p—>publ = 3; // OK: publ is public

A more realistic example of the use of protected can be found in this chapter under “Multiple Inheri-
tance.”

1-4 Selected Readings

(.

The Evolution of C++: 1985 to 1989

A friend function has the same access to protected members as a member function.
A subtle point is that accessibility of protected members depends on the static type of the pointer used

in the access. A member or a friend of a derived class has access only to protected members of objects
that are known to be of its derived type. For example:

class Z : public Y {

/7 ...
}:
void Y: :mf ()
{
prot = 2; // OK: prot is protected and mf() is a member function
X a;
a.prot = 3; // error: prot is protected and a is not a Y
X* p = this;
p~>prot = 3; // error: prot is protected
// and p is not a pointer to Y
Z b;

b.prot = 4; // OK: prot is protected
// and mf() is a member and a Z is a ¥

A protected member of a class base is a protected member of a class derived from base if the deriva-
tion is public and private otherwise.

Access Control Syntax

The following example confuses most beginners and even experts get bitten sometimes:

class X {
/! ...
public:
int £():
};
class Y : X { /* ... */ };
int g(Y* p)
{
// ...
return p—>£(); // error!

}:
Here X is by default declared to be a private base class of Y. This means that X is not a subtype of Y

so the call p—>£() is illegal because Y does not have a public function f(). Private base classes are quite
an important concept, but to avoid confusion it is recommended that they be declared private

Evolution of C++ 15

The Evolution of C++: 1985 to 1989

explicitly:)

class Y : private X { /* ... */ };

Several public, private, and protected sections are allowed in a class declaration:

class X {
public:

int i1;
private:

int i2;
public:

int i3;

};

These sections can appear in any order. This implies that the public interface of a class may appear
textually before the private “implementation details”:

class S {

public:
£():
int il;
/! ...

private:
g(); .
int i2; “;>
// ... N

};

Adjusting Access

When a class base is used as a private base class all of its members are considered private members of
the derived class. The syntax base-class-name :: member-name can be used to restore access of a member
to what it was in the base:

class base {

public:

int publ;
protected:

int prot;
private:

int priv;

}:

D

1-6 Selected Readings

C

C

The Evolution of C++: 1985 to 1989

class derived : private base {
protected:
base: :prot; // protected in derived
public:
base: :publ; // public in derived
}:

This mechanism cannot be used to grant access that was not already granted by the base class:

class derived2 : public base {
public:

base: :priv; // error: base::priv is private
};

This mechanism can be used only to restore access to what it was in the base class:

class derived3: private base {
protected:

base: :publ; // error: base::publ was public
}:

This mechanism cannot be used to remove access already granted:

class derived4: public base {
private:

base: :publ; // error: base::publ is public
}:

We considered allowing the last two forms and experimented with them, but found that they caused
total confusion among users about the access control rules and the rules for private and public deriva-
tion. Similar considerations led to the decision not to introduce the (otherwise perfectly reasonable)
concept of protected base classes.

Details

A friend function has the same access to base class members as a member function. For example:

class base {
protected:

int prot;
public:

int pub;
}:

class derived : private base {

public:
friend int fr(derived *p) { return p—>prot; }
int mem() { return prot:; }

}:

In particular, a friend function can perform the conversion of a pointer to a derived class to its private
base class:

Evolution of C++ 1-7

The Evolution of C++: 1985 to 1989

class derived2 : private base {

public:
friend base* fr(derived *p) { return p; }
base* mem() { return this; }

};

base* f (derived* p)
{
return p; // error: cannot convert;
// base is a private base class of derived

}
However, friendship is not transitive. For example:

class X {
friend class Y;
private:

int a;
};

class Y {
friend int fr(Y *p)
{ return p—>a; } // error: fr() is not a friend of X
int mem(Y* p)
{ return p—>a; } // OK: mem() is a friend of X
|

Overloading Resolution

The C++ overloading mechanism was revised to allow resolution of types that used to be “too similar”
and to gain independence of declaration order. The resulting scheme is more expressive and catches
more ambiguity errors. Consider:

double abs (double) ;
float abs(float);

To cope with single precision floating point arithmetic it must be possible to declare both of these
functions; now it is. The effect of any call of abs() given the declarations above is the same if the order
of declarations was reversed:

float abs(float);
double abs (double) ;

Here is a slightly simplified explanation of the new rules. Note that with the exception of a few cases
where the the older rules allowed order dependence the new rules are compatible and old programs
produce identical results under the new rules. For the last two years or so C++ implementations have
issued warnings for the now “outlawed” order dependent resolutions.

1-8 Selected Readings

C

C

C k
-~ /’

The Evolution of C++: 1985 to 1989

C++ distinguishes five kinds of “matches”:

Match using no or only unavoidable conversions (for example, array name to pointer, function
name to pointer to function, and T to const T).

Match using integral promotions (as defined in the proposed ANSI C standard; that is, char to
int, short to int and their unsigned counterparts) and float to double.

Match using standard conversions (for example, int to double, derived* to base*, unsigned int
to int).

Match using user defined conversions (both constructors and conversion operators).

®m Match using the ellipsis ... in a function declaration.

Consider first functions of a single argument. The idea is always to choose the “best” match, that is
the one highest on the list above. If there are two best matches the call is ambiguous and thus a com-
pile time error. For example,

float abs(float);
double abs(double) ;
int abs(int);

unsigned abs (unsigned);
char abs(char);

abs(l); // abs(int);

abs (1V) ; // abs(unsigned);

abs(1.0); // abs (double) ;

abs (1.0F); // abs(float);

abs(’a’); // abs(char);

abs (1L) ; // error: ambiguous, abs(int) or abs (double)

Here, the calls take advantage of the ANSI C notation for unsigned and float literals and of the C++
rule that a character constant is of type char 1. The call with the long argument 1L is ambiguous since
abs(int) and abs(double) would be equally good matches (match with standard conversion).

Hierarchies established by public class derivations are taken into account in function matching and
where a standard conversion is needed the conversion to the “most derived” class is chosen. A void*
argument is chosen only if no other pointer argument matches. For example:

Evolution of C++ 1-9

The Evolution of C++: 1985 to 1989

class B { /* ... */ };

class BB : public B { /* ... */ }; :::>
class BBB : public BB { /* ... */ };

£(B*);

£(BB*) ;

f (void¥) ;

void g(BBB* pbbb, int* pi)

{
£ (pbbb) ; // £(BB*);
f(pi); // £(void*);

This ambiguity resolution rule matches the rule for virtual function calls where the member from the
most derived class is chosen.

If two otherwise equally good matches differ in terms of const, the const specifier is taken into account
in function matching for pointer and reference arguments. For example:

char* strtok(char*, const char*);
const char* strtok(const char*, const char*);

void g(char* vc, const char* vcc))
{
char* pl = strtok(vc,"a");// strtok(char*, char¥*); -
const char* p2 = strtok(vcc,"a");// strtok(const char*, char¥*);
char* p3 = strtok(vcc,"a"):;// error
}

In the third case, strtok(const char*, const char*) is chosen because vcc is a const char*. This leads to
an attempt to initialize the char* p3 with the const char* result.

For calls involving more than one argument a function is chosen provided it has a better match than

every other function for at least one argument and at least as good a match as every other function for
every argument. For example:

1-10 Selected Readings

The Evolution of C++: 1985 to 1989

class complex { ... complex(double); };

f (int,double) ;
f (double,int) ;
f (complex, int) ;
f(int ...):
f(complex ...):

complex z = 1;

£(1, 2.0); // £ (int,double);

£(1.0, 2); // £ (double,int);

f(z, 1.2); // f(complex, int);

£(z, 1, 3): // f(complex ...);

£(2.0, z); // £lint ...);

£(1, 1); // error: ambiguous, f(int,double) and f(double,int)

The unfortunate narrowing from double to int in the third and the second to last cases causes warn-
ings. Such narrowings are allowed to preserve compatibility with C. In this particular case the nar-
rowing is harmless, but in many cases double to int conversions are value destroying and they should
never be used thoughtlessly. ‘

As ever, at most one user-defined and one built-in conversion may be applied to a single argument.

Type-Safe Linkage

Originally, C++ allowed a name to be used for more than one name (“to be overloaded”) only after an
explicit overload declaration. For example:

overload max; // ‘overload’ now obsolete
int max(int,int);
double max(double,double) ;

It used to be considered too dangerous simply to use a name for two functions without previous
declaration of intent. For example:

int abs(int);
double abs (double); // used to be an error

This fear of overloading had two sources:

m concern that undetected ambiguities could occur

m concern that a program could not be properly linked unless the programmer explicitly declared
where overloading was to take place.

The former fear proved largely groundless and the few problems found in actual use have been taken
care of by the new order-independent overloading resolution rules. The latter fear proved to have a
basis in a general problem with C separate compilation rules that had nothing to do with overloading.

Evolution of C++ 1-11

The Evolution of C++: 1985 to 1989

On the other hand, the redundant overload declarations themselves became an increasingly serious -
problem. Since they had to precede (or be part of) the declarations they were to enable, it was not)
possible to merge pieces of software using the same function name for different functions unless both

pieces had declared the function overloaded. This is not usually the case. In particular, the name one

wants to overload is often the name of a C standard library function declared in a C header. For

example, one might have standard headers like this:

/* Header for C standard math library, math.h: */
double sqrt (double) ;
/* ... */

// header for C++ standard complex arithmetic library, complex.h:
overload sqrt;
complex sqrt (complex) ;
/] ...

and try to use them like this:

#include <math.h>
#include <complex.h>

This causes a compile time error when the overload for sqrt() is seen after the first declaration of
sqrt(). Rearranging declarations, putting constraints on the use of header files, and sprinkling over-
load declarations everywhere “just in case” can alleviate this kind of problem, but we found the use of
such tricks unmanageable in all but the simplest cases. Abolishing overload declarations (and getting B
rid of the overload keyword in the process) is a much better idea. ‘)

Doing things this way does pose an implementation problem, though. When a single name is used for
several functions, one must be able to tell the linker which calls are to be linked to which function
definitions. Ordinary linkers are not equipped to handle several functions with the same name. How-
ever, they can be tricked into handling overloaded names by encoding type information into the
names seen by the linker. For example, the names for these two functions:

double sqrt (double);
complex sqrt (complex);

become:

sqrt__Fd
sqrt__ F7complex

in the compiler output to the linker. The user and the compiler see the C++ source text where the
type information serves to disambiguate and the linker sees the names that have been disambiguated
by adding a textual representation of the type information. Naturally, one might have a linker that
understood about type information, but it is not necessary and such linkers are certainly not common.

Using this encoding or any equivalent scheme solves a long standing problem with C linkage. Incon-
sistent function declarations in separately compiled code fragments are now caught. For example:

o

1-12 Selected Readings

The Evolution of C++: 1985 to 1989

// filel.c:

extern name* lookup (table* tbl, const char* name);
/7 ...

void some_ fct (char* s)
{

name* n = lookup (gtbl,s);
}

looks plausible and the compiler can find no fault with it. However, if the definition of lookup() turns
out to be:

// file2.c:

int lookup (table* tbl, const char* name, int index)
{

// ...
}

the linker now has enough information to catch the error.

Finally, we have to face the problem of linking to code fragments written in other languages that do
not know the C++ type system or use the C++ type encoding scheme. One could imagine all com-
pilers for all languages on a system agreeing on a type system and a linkage scheme such that linkage
of code fragments written in different languages would be safe. However, since this will not typically
be the case we need a way of calling functions written in a language that does not use a type-safe link-
age scheme and a way to write C++ functions that obey the different (and typically unsafe) linkage
rules for other languages. This is done by explicitly specifying the name of the desired linkage con-

vention in a declaration:

extern "C" double sqrt (double);

or by enclosing whole groups of declarations in a linkage directive:

extern "C" {
#include <math.h>
}

By applying the second form of linkage directive to standard header files one can avoid littering the
user code with linkage directives. This type-safe linkage mechanism is discussed in detail in Chapter
6.

Evolution of C++ 1-13

The Evolution of C++: 1985 to 1989

Multiple Inheritance

Consider writing a simulation of a network of computers. Each node in the network is represented by
an object of class Switch, each user or computer by an object of class Terminal, and each communica-
tion line by an object of class Line. One way to monitor the simulation (or a real network of the same
structure) would be to display the state of objects of various classes on a screen. Each object to be
displayed is represented as an object of class Displayed. Objects of class Displayed are under control
of a display manager that ensures regular update of a screen and/or data base. The classes Terminal
and Switch are derived from a class Task that provides the basic facilities for co-routine style
behavior. Objects of class Task are under control of a task manager (scheduler) that manages the real
processor(s).

Ideally Task and Displayed are classes from a standard library. If you want to display a terminal,
class Terminal must be derived from class Displayed. Class Terminal, however, is already derived
from class Task. In a single inheritance language, such as Simula67, we have only two ways of solv-
ing this problem: deriving Task from Displayed or deriving Displayed from Task. Neither is ideal
since they both create a dependency between the library versions of two fundamental and independent
concepts. Ideally, one would want to be able to say that a Terminal is a Task and a Displayed; that a
Line is a Displayed but not a Task; and that a Switch is a Task but not a Displayed.

The ability to express this class hierarchy, that is, to derive a class from more than one base class, is
usually referred to as multiple inheritance. Other examples involve the representation of various kinds
of windows in a window system and the representation of various kinds of processors and compilers
for a multi-machine, multi-environment debugger.

In general, multiple inheritance allows a user to combine concepts represented as classes into a compo-
site concept represented as a derived class. C++ allows this to be done in a general, type-safe, com-
pact, and efficient manner. The basic scheme allows independent concepts to be combined and ambi-
guities to be detected at compile time. An extension of the base class concept, called virtual base
classes, allows dependencies between classes in an inheritance DAG (Directed Acyclic Graph) to be
expressed. .

Ambiguous uses are detected at compile time:

class A { £(); /* ... */ };
class B { £(); /* ... */ };
class C : public A, public B { };

void g() {

p—>£(): // error: ambiguous

Note that it is not an error to combine classes containing the same member names in an inheritance
DAG. The error occurs only when a name is used in an ambiguous way — and only then does the
compiler have to reject the program. This is important since most potential ambiguities in a program
never azppear as actual ambiguities. Considering a potential ambiguity an error would be far too res-
trictive®.

1-14 Selected Readings

C\
\
i
/

C/ \‘

The Evolution of C++: 1985 to 1989

Typically one would resolve the ambiguity by adding a function:

class C : public A, public B {
public:
£0
{
// C's own stuff
A::£();
B::£();

}:

This example shows the usefulness of naming members of a base class explicitly with the name of the
base class. In the restricted case of single inheritance, this way is marginally less elegant than the
approach taken by Smalltalk and other languages (simply referring to “‘my super class” instead of
using an explicit name). However, the C++ approach extends cleanly to multiple inheritance.

A class can appear more than once in an inheritance DAG:

class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { /* ... */ };

In this case, an object of class C has two sub-objects of class L, namely AL and B:L. This is often
useful, as in the case of an implementation of lists requiring each element on a list to contain a link
element. If in the example above L is a link class then a C can be on both the list of As and the list of
Bs at the same time.

Virtual functions work as expected; that is the version from the most derived class is used:

class A { public: virtual £(); /* ... */ };

class B { public: virtual g():; /* ... */ };
class C : public A, public B { public: £0); g(); /* ... */ };
void ££()
{
C obj:
A* pa = &obj:
B* pb = &obj;
pa->£(); // calls C::f
po->g() ; // calls C::g
}

This way of combining classes is ideal for representing the union of independent or nearly indepen-
dent concepts. However, in some interesting cases, such as the window example, a more explicit way
of expressing sharing and dependency is needed.

Evolution of C++ 1-15

The Evolution of C++: 1985 to 1989

Virtual base classes provide a mechanism for sharing between sub-objects in an inheritance DAG and -
for expressing dependencies among such sub-objects:)
class A : public virtual W { /* ... */ };
class B : public virtual W { /* ... */ };
class C : public A, public B, public virtual W { /* ... */ };

In this case there is only one object of class W in class C.

Constructing the tables for virtual function calls can get quite complicated when virtual base classes

are used. However, virtual functions work as usual by choosing the version from the most derived
class in a call:

class W {
/! ...

public:
virtual void £():
virtual void g():
virtual void h();
virtual void k{);

// ...
}:
class AW : public virtual W { /* ... */ public: void g(); /* ... */ };
class BW : public virtual W { /* ... */ public: void £(); /* ... */ };
class CW : public AW, public BW, public virtual W {
/" D,
public:
void h();
// ..

};

CW* pcw = new CW;

pew—>£() ; // invokes BW::f()
pcw—>g() ; // invokes AW::g()
pcw->h() ; // invokes CW::h()
((AW*) pcw) =>£() ; // invokes BW::£() !!!

The reason that BWz£() is invoked in the last example is that the only f() in an object of class CW is
the one found in the (shared) sub-object W, and that one has been overridden by B::f().

Ambiguities are easily detected at the point where CW'’s table of virtual functions is constructed. The
rule for detecting ambiguities in a class DAG is that all re-definitions of a virtual function from a vir-
tual base class must occur on a single path through the DAG. The example above can be drawn like

D

1-16 Selected Readings

The Evolution of C++: 1985 to 1989

Cn‘\ this:

Figure 1-1: A Directed Acyclic Graph

W{fghk}

TN

AW {g} BW{f}

~_. _

CW{h}

Note that a call “up” through one path of the DAG to a virtual function may result in the call of a
function (re-defined) in another path (as happened in the call ((AW*)pcw)->f() in the example above).
In this example, an ambiguity would occur if a function f() was added to AW. This ambiguity might
be resolved by adding a function f() to CW.

Programming with virtual bases is trickier than programming with non-virtual bases. The problem is
to avoid multiple calls of a function in a virtual class when that is not desired. Here is a possible style:

class W {
// ...
protected:
_£0 { my stuff }

C/ /...
/ public:

£O { _£0:)
// ...
}:

Each class provides a protected function doing “its own stuff,” _f(), for use by derived classes and a
public function f() as the interface for use by the “general public.”

class A : public virtual W {

// ...

protected:
_£(O) { my stuff }
/..

public:
£O { _£0; Wi £0: }
// ...

};

A derived class £() does its “‘own stuff”’ by calling _f() and its base classes’ “own stuff” by calling their
_f0s.

C

Evolution of C++ 1-17

The Evolution of C++: 1985 to 1989

class B : public virtual W (D
// ...
protected:
_f£0 { my stuff }
// ...
public:
£O { _£0; W::_£0; }
/...

}:

In particular, this style enables a class that is (indirectly) derived twice from a class W to call Wz:f()
once only:

class C : public A, public B, public virtual W {
// ...

protected:
_£(O) { my stuff }
/] ...

public:
£O0 (_£0:; A::_£(); B::_£0; W::_£0; }
/...

};

Method combination schemes, such as the ones found in Lisp systems with multiple inheritance, were

considered as a way of reducing the amount of code a programmer needed to write in cases like the

one above. However, none of these schemes appeared to be sufficiently simple, general, and efficient o
enough to warrant the complexity it would add to C++.)

As described in Chapter 5 a virtual function call is about as efficient as a normal function call — even
in the case of multiple inheritance. The added cost is 5 to 6 memory references per call. This com-
pares with the 3 to 4 extra memory references incurred by a virtual function call in a C++ compiler
providing only single inheritance. The multiple inheritance scheme currently used causes an increase
of about 50% in the size of the tables used to implement the virtual functions compared with the older
single inheritance implementation. To offset that, the multiple inheritance implementation optimizes
away quite a few spurious tables generated by the older single-inheritance implementations so that the
memory requirement of a program using virtual functions actually decreases in most cases.

It would have been nice if there had been absolutely no added cost for the multiple inheritance scheme
when only single inheritance is used. Such schemes exist, but involve the use of tricks that cannot be
done by a C++ compiler generating C.

Base and Member Initialization

The syntax for initializing base classes and members has been extended to cope with multiple inheri-

tance and the order of initialization has been more precisely defined. Leaving the initialization order

unspecified in the original definition of C++ gave an unnecessary degree of freedom to language

implementors at the expense of the users. In most cases, the order of initialization of members doesn’t

matter and in most cases where it does matter, the order dependency is an indication of bad design.

In a few cases, however, the programmer absolutely needs control of the order of initialization. For

example, consider transmitting objects between machines. An object must be re-constructed by a :)

1-18 Selected Readings

The Evolution of C++: 1985 to 1989

receiver in exactly the reverse order in which it was decomposed for transmission by a sender. This
cannot be guaranteed for objects communicated between programs compiled by compilers from dif-
ferent suppliers unless the language specifies the order of construction.

Consider:
class A { public: A(int); AQ); /* ... */ };
class B { public: B(int); B(); /* ... */ };

class C : public A, public B {
const a;
int& b;

public:
C(integ);

}:

In a constructor the sub-objects representing base classes can be referred to by their class names:
C::C(int& rx) : A(l), B(2), a(3), b(rxr) { /* ... */ }

The initialization takes place in the order of declaration in the class with base classes initialized before
memberss, so the initialization order for class C is A, B, a, b. This order is independent of the order
of explicit initializers so

C::C(int& rr) : b(rr), B(2), a(3), A(L) { /* ... */ }

also initializes in the declaration order A, B, a, b.

The reason for ignoring the order of initializers is to preserve the usual FIFO ordering of constructor
and destructor calls. Allowing two constructors to use different orders of initialization of bases and
members would constrain implementations to use more dynamic and more expensive strategies.

Using the base class name explicitly clarifies even the case of single inheritance without member ini-
tialization:

class vector {
/! ...
public:
vector (int) ;
// ...
}:

class vec : public vector {

// ...
public:
vec{int,int);
/7 ...
};

It is reasonably clear even to novices what is going on here:

Evolution of C++ 1-19

The Evolution of C++: 1985 to 1989

vec::vec(int low, int high) : vector(high-low-1l) { /* ... */ } D
On the other hand, this version:
vec::vec(int low, int high) : (high-low-1l) { /* ... */ }

has caused much confusion over the years. The old-style base class initializer is of course still
accepted. It can be used only in the single inheritance case since it is ambiguous otherwise.

A virtual base is constructed before any of its derived classes. Virtual bases are constructed before any
non-virtual bases and in the order they appear on a depth-first left-to-right traversal of the inheritance
DAG. This rule applies recursively for virtual bases of virtual bases.

A virtual base is initialized by the “most derived” class of which it is a base. For example:

class V { public: V(); V({int); /* ... */ };
class A : public virtual V { public: A(); A(int); /* ... */ };
class B : public virtual V { public: B(); B(int); /* ... */ };

class C : public A, public B { public: C(); C(int); /* ... */ };

A::A(int i) : V() { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int 1) { /* ... */ }

V v(1);// use V(int) .
A a(2);// use V(int))
B b(3);// use V() ‘

C c(4);// use V()

The order of destructor calls is defined to be the reverse order of appearance in the class declaration
(members before bases). There is no way for the programmer to control this order — except by the
declaration order. A virtual base is destroyed after all of its derived classes.

It might be worth mentioning that virtual destructors are (and always have been) allowed:
struct B { /* ... */ virtual ~B(); };
struct D : B { ~D(); };
void g() {

B* p = new D;
delete p:;// D::~D() is called

The word virtual was chosen for virtual base classes because of some rather vague conceptual similari-
ties to virtual functions and to avoid introducing yet another keyword.

1-20 Selected Readings

The Evolution of C++: 1985 to 1989

Abstract Classes

One of the purposes of static type checking is to detect mistakes and inconsistencies before a program
is run. It was noted that a significant class of detectable errors was escaping C++'s checking. To add
insult to injury, the language actually forced programmers to write extra code and generate larger pro-
grams to make this happen.

Consider the classic “shape” example. Here, we must first declare a class shape to represent the gen-
eral concept of a shape. This class needs two virtual functions rotate() and draw(). Naturally, there
can be no objects of class shape, only objects of specific shapes. Unfortunately C++ did not provide a
way of expressing this simple notion.

The C++ rules specify that virtual functions, such as rotate() and draw(), must be defined in the class
in which they are first declared. The reason for this requirement is to ensure that traditional linkers
can be used to link C++ programs and to ensure that it is not possible to call a virtual function that
has not been defined. So the programmer writes something like this:

class shape {
point center;
color col;
/7 ...
public:
where() { return center; }
move (point p) { center=p; draw(); }
virtual void rotate(int) { error("cannot rotate"); abort () H
virtual void draw() { error("cannot draw"); abort(); }
// ...
};

This ensures that innocent errors such as forgetting to define a draw() function for a class derived from
shape and silly errors such as creating a “plain” shape and attempting to use it cause run time errors.
Even when such errors are not made, memory can easily get cluttered with unnecessary virtual tables
for classes such as shape and with functions that are never called, such as draw() and rotate(). The
overhead for this can be noticeable.

The solution is simply to allow the user to say that a virtual function does not have a definition; that
is, that it is a “pure virtual function.” This is done by an initializer =0:

class shape {
point center;
color col;
/7 ...
public:
where() { return center; }
move (point p) { center=point; draw(); }
virtual void rotate(int) = 0;// pure virtual function
virtual void draw() = 0;// pure virtual function'
// ...
};

A class with one or more pure virtual functions is an abstract class. An abstract class can only be used
as a base for another class. In particular, it is not possible to create objects of an abstract class. A class

Evolution of C++ 1-21

The Evolution of C++: 1985 to 1989

derived from an abstract class must either define the pure virtual functions from its base or again
declare them to be pure virtual functions.

The notion of pure virtual functions was chosen over the idea of explicitly declaring a class to be
abstract because the selective definition of functions is much more flexible.

Static Member Functions

A static data member of a class is a member for which there is only one copy rather than one per
object and which can be accessed without referring to any particular object of the class it is a member
of. The reason for using static members is to reduce the number of global names, to make obvious
which static objects logically belong to which class, and to be able to apply access control to their
names. This is a boon for library providers since it avoids polluting the global name space and
thereby allows easier writing of library code and safer use of multiple libraries. These reasons apply
for functions as well as for objects. In fact, most of the names a library provider wants local are func-
tion names. It was also observed that nonportable code, such as

(X*)0)—>£():

was used to simulate static member functions. This trick is a time bomb because sooner or later some-
one will make an £() that is used this way virtual and the call will fail horribly because there is no X
object at address zero. Even where f() is not virtual such calls will fail under some implementations of
dynamic linking. '

A static member function is a member so that its name is in the class scope and the usual access con-
trol rules apply. A static member function is not associated with any particular object and need not be
called using the special member function syntax. For example:

class X {

int mem;
public:

static void f(int,X¥*);
}:

void g({()
{
X obj;
£(1,&ob3); // error (unless there really is
// a global function £())
X::£(1, &obj); // fine
obj.f(1,&o0bj); // also fine

}

Since a static member function isn’t called for a particular object it has no this pointer and cannot
access members without explicitly specifying an object. For example:

1-22 Selected Readings

(\)
S

void X::f(int i, X* p)

{
mem = i; // error: which mem?
p—omem = i; // fine

const Member Functions

Consider this example:

class s {
int aa;
public:
void mutate() { aa++; }
int value() { return aa; }
}:

void g{)
{

s ol;

const s 02;

ol.mutate();

o2.mutate();

int i = ol.value() + o2.value():
}

It seems clear that the call 02.mutate() ought to fail since 02 is a const.

The reason this rule until now has not been enforced is simply that there was no way of distinguishing
a member function that may be invoked on a const object from one that may not. In general, the com-
piler cannot deduce which functions will change the value of an object. For example, had mutate()
been defined in a separately compiled source file the compiler would not have been able to detect the
problem at compile time.

The solution to this has two parts. First const is enforced so that “ordinary’” member functions cannot
be called for a const object. Then we introduce the notion of a const member function, that is, a
member function that may be called for all objects including const objects. For example:

class X {

int aa;
public:

void mutate() { aa++; }

int value() const { return aa; }
}:

Now X::value() is guaranteed not to change the value of an object and can be used on a const object
whereas X::mutate() can only be called for non-c const objects:

Evolution of C++ 1-23

The Evolution of C++: 1985 to 1989

The Evolution of C++: 1985 to 1989

int g()
{
X ol;
const X 02;
ol.mutate() ; // fine
o2.mutate() ; // error

return ol.value() + o2.value(); // fine

In a const member function of X the this pointer points to a const X. This ensures that non-devious
attempts to modify the value of an object through a const member will be caught:

class X {

int a;

void cheat () const { a++; } // error
}:

Note that the use of const as a suffix to () is consistent with the use of const as a suffix to *.

Initialization of static Members

A static data member of a class must be defined somewhere. The static declaration in the class
declaration is only a declaration and does not set aside storage or provide an initializer.

This is a change from the original C++ definition of static members, which relied on implicit definition
of static members and on implicit initialization of such members to 0. Unfortunately, this style of ini-
tialization cannot be used for objects of all types. In particular, objects of classes with constructors can-
not be initialized this way. Furthermore, this style of initialization relied on linker features that are
not universally available. Fortunately, in the implementations where this used to work it will continue
to work for some time, but conversion to the stricter style described here is strongly recommended.

Here is an example:

class X {
static int i;
int 3j;
X({int) ;
int read():
};

class Y {
static X a;
int b;
Y(int);
int read():
}:

Now Xzi and Y:a have been declared and can be referred to, but somewhere definitions must be

1-24 Selected Readings

U

.
C /
)

;

The Evolution of C++: 1985 to 1989

provided. The natural place for such definitions is with the definitions of the class member functions.
For example:

// file X.c:

X::X(int 33) (3 = 33; 1}
int X::read() { return j; }
int X::1i = 3;

// file Y.c:

Y::Y(int bb) { b = bb; }
int Y::read() { return b; }
X Y::a=17;

Pointers to Members

As mentioned in The C++ Programming Language, it was an obvious deficiency that there was no way
of expressing the concept of a pointer to a member of a class in C++. This lead to the need to ““cheat”
the type system in cases, such as error handling, where pointers to functions are traditionally used.

. Consider this example:

struct S {
int mf (char¥*);
}:

The structure S is declared to be a (trivial) type for which the member function mf() is declared.
Given a variable of type S the function mf() can be called:

S a;
int i = a.mf("hello");

The question is ““What is the type of mf()?”

The equivalent type of a non-member function
int f(char¥*);

is
int (char*)

and a pointer to such a function is of type
int (*) (char¥)

Such pointers to “normal” functions are declared and used like this:

Evolution of C++ 1-25

The Evolution of C++: 1985 to 1989

int f(char¥*); // declare function o
int (*pf) (char*) = &f; // declare and initialize pointer to function)
int i = (*pf) ("hello"); // call function through pointer

A similar syntax is introduced for pointers to members of a specific class. In a definition mf() appears
as:

int S::mf(char¥)
The type of Suzmf is:
int S:: (char¥*)

that is, “member of S that is a function taking a char* argument and returning an int.” A pointer to
such a function is of type:

int (S::*) (char*)
That is, the notation for pointer to member of class S is S:*. We can now write:

// declare and initialize pointer to member function
int (S::*pmf) (char*) = &S::mf;

5 ® // call function through pointer for the object ‘‘a’’

int i = (a.*pmf) ("hello"); ;
The syntax isn’t exactly pretty, but neither is the C syntax it is modeled on.)
A pointer to member function can also be called given a pointer to an object:

S* p;

// call function through pointer for the object ‘‘*p’’:
int i = (p—>*pmf) ("hello");

In this case, we might have to handle virtual functions:

D

1-26 Selected Readings

The Evolution of C++: 1985 to 1989

struct B {
C’ virtual £();
) }:

struct D : B {

£();
};

int £f(B* pb, int (B::*pbf) ())
{

return (pb—>*pbf) ():
}:

void gg()
{

D dd;

int i = ff(&dd, &B::£f);
}

This causes a call of D=f(). Naturally, the implementation involves a lookup in dd’s table of virtual
functions exactly as a call to a virtual function that is identified by name rather than by a pointer. The

overhead compared to a “‘normal function call” is the usual about five memory references (dependent
on the machine architecture).

It is also possible to declare and use pointers to members that are not functions:

C struct S {

int mem;
};
int S::* psm = &S::mem;

void £ (S* ps)
{
ps—>*psm = 2;

}
void g()
{
S a;
f(&a):
}

This is a complicated way of assigning 2 to a.mem.

C

Evolution of C++ 1-27

The Evolution of C++: 1985 to 1989

User-Defined Free Store Management

C++ provides the operators new and delete to allocate memory on the free store and to release store
allocated this way for reuse. Occasionally a user needs a finer-grained control of allocation and deallo-
cation. The first section below shows “the bad old way’’ of doing this and the following sections
shows how the usual scope and overloaded function resolution mechanisms can be exploited to
achieve similar effects more elegantly. This means that assignment to this is an anachronism and will
be removed from the implementations of C++ after a decent interval. This will allow the type of this
in a member function of class X to be changed to X *const.

Assignment to this

If a user wanted to take over allocation of objects of a class X the only way used to be to assign to this
on each path through every constructor for X. Similarly, the user could take control of deallocation by
assigning to this in a destructor. This is a very powerful and general mechanism. It is also non-
obvious, error prone, repetitive, too subtle when derived classes are used, and essentially unmanage-
able when multiple inheritance is used. For example:

class X {
int on_free_ store;
/...
public:
X0
X(int i);
~X();
/...

}

Every constructor needs code to determine when to use the user-defined allocation strategy:

X::X() {
if (this == 0) { // ‘new’ used
this = myalloc(sizeof (X)) :
on _free_store = 1;
}
else { // static, automatic, or member of aggregate
this = this; // forget this assignment at your peril
on_free store = 0;
}
// initialize
}

The assignments to this are “magic” in that they suppress the usual compiler generated allocation
code.

Similarly, the destructor needs code to determine when to use the user-defined de-allocation strategy
and use an assignment to this to indicate that it has taken control over deallocation:

1-28 Selected Readings

The Evolution of C++: 1985 to 1989

e X::~X() |
C_ // cleanup
) if (on_free store) {

myfree (this) ;
this = 0; // forget this assignment at your peril

}

This user-defined allocation and de-allocation strategy isn’t inherited by derived classes in the usual
way.

The fundamental problem with the “assign to this”” approach to user-controlled memory management
is that initialization and memory management code are intertwined in an ad hoc manner. In particu-
lar, this implies that the language cannot provide any help with these critical activities.

Class-Specific Free Store Management

The alternative is to overload the allocation function operator new() and the deallocation function
operator delete() for a class X:

class X {
/!l ...

public:
void* operator new(size_t sz) { return myalloc(sz); }
void operator delete (X* p) { myfree(p):; }

. X() { /* initialize */ }
C X(int i) { /* initialize */ }

~X{) { /* cleanup */ }

/] ...
};

The type size_t is an implementation defined integral type used to hold object sizes®. It is the type of
the result of sizeof.

Now X:operator new() will be used instead of the global operator new() for objects of class X. Note
that this does not affect other uses of operator new within the scope of X:

C

Evolution of C++ 1-29

The Evolution of C++: 1985 to 1989

void* X::operator new(size t s))
{

void* p = new char([s]; // global operator new as usual
//...

return p;

void X::operator delete (X* p)
{
//...

delete (void*) p; // global operator delete as usual

When the new operator is used to create an object of class X, operator new() is found by a lookup
starting in X’s scope so that X::operator new() is preferred over a global ::operator new().

Inheritance of operator new()

The usual rules for inheritance apply:

class Y : public X // objects of class Y are also allocated

{ // using X::operator new
// ...
}:

This is the reason X:operator new() needs an argument specifying the amount of store to be allocated;

sizeof(Y) is typically different from sizeof(X). Naturally, a class that is never a base class need not use
the size argument:

void* Z::operator new(size t) { return next_ free Z(); }

This optimization should not be used unless the programmer is perfectly sure that Z is never used as a
base class because if it is disaster will happen.

An operator new(), be it local or global, is used only for free store allocation so

X al; // allocated statically
void £()
{
X a; // allocated on the stack
X v[10]; // allocated on the stack
}

does not involve any operator new(). Instead, store is allocated statically and on the stack.

X::operator new() is only used for individual objects of class X (and objects of classes derived from
class X that do not have their own operator new()) so

1-30 Selected Readings

The Evolution of C++: 1985 to 1989

C X* p = new X[10];
does not involve X::operator new() because X[10] is an array.

Like the global operator new(), X::operator new() returns a void*. This indicates that it returns unini-
tialized memory. It is the job of the compiler to ensure that the memory returned by this function is

converted to the proper type and — if necessary — initialized using the appropriate constructor. This
is exactly what happens for the global operator new().

X:operator new() and X::operator delete() are static member functions. In particular, they have no
this pointer. This reflects the fact that X::operator new() is called before constructors so that initializa-

tion has not yet happened and X::operator delete() is called after the destructor so that the memory no
longer holds a valid object of class X.

Overloading operator new()

Like other functions, operator new() can be overloaded. Every operator new() must return a void*
and take a size_t as its first argument. For example:

void* operator new(size t sz); // the usual allocator

void* operator new(size t sz, heap* h)// allocate from heap ‘h’

{
return h->allocate(sz);
}
) void* operator new(size t, void* p)// place cbject at ‘p’
' {
N return p;
}

The size argument is implicitly provided when operator new is used. Subsequent arguments must be
explicitly provided by the user. The notation used to supply these additional arguments is an argu-
ment list placed immediately after the new operator itself:

Evolution of C++ 1-31

The Evolution of C++: 1985 to 1989

static char buf [sizeof(X)];

class heap {
/7 ..
};

heap hl;

£0O {
* pl = new X;

X* p3 = new(&hl) X;

X* p2 = new(buf) X;

}

// static buffer D

// use the default allocator
// operator new(size t sz):
// operator new (sizeof (X))

// use hl’s allocator
// operator new(size_t sz, heap* h):
// operator new (sizeof (X),&hl)

// explicit allocation in ‘buf’
// operator new(size t, void* p):
// operator new(sizeof (X),buf)

Note that the explicit arguments go after the new operator but before the type. Arguments after the
type goes to the constructor as ever. For example:

class Y {

void* operator new(size t, const char*);

Y (const char¥*);
}:

Y* p = new("string for the allocator") Y("string for the constructor"):;

Controlling Deallocation

Where many different operator new() functions are used one might imagine that one would need
many different and matching operator delete() functions. This would, however, be quite inconvenient
and often unmanageable. The fundamental difference between creation and deletion of objects is that
at the point of creation the programmer knows just about everything worth knowing about the object
whereas at the point of deletion the programmer holds only a pointer to the object. This pointer may
not even give the exact type of the object, but only a base class type. It will therefore typlcally be
unreasonable to require the programmer writing a delete to choose among several variants®.

Consider a class with two allocation functions and a single deallocation function that chooses the
proper way of deallocating based on information left in the object by the allocators:

1-32

D

Selected Readings

class X {
enum { somehow, other _way } which allocator;

void* operator new(size t sz)
{ void* p = allocate somehow() ;
((X*)p) ->which _allocator = somehow;
return p;
}

void* operator new(size t sz , int i)
{ void* p = allocate scme_other way() ;
((X*)p)—>which allocator = other_way;
return p;
}

void operator delete (void*);
// .
}:

Here operator delete() can look at the information left behind in the object by the operator new() used
and deallocate appropriately:

void X::operator delete(void* p)
{
switch (((X*)p)->which allocator) {
case somehow:
deallocate_somehow() ;
break;
case other way:
deallocate_some other way();
break;
default:
/* something is funny */
}
}

Since operator new() and operator delete() are static member functions they need to cast their “object
pointers” to use member names. Furthermore, these functions will be invoked only by explicit use of
operators new and delete. This implies that X:which_allocator is not initialized for automatic objects
so in that case it may have an arbitrary value. In particular, the default case in X::operator delete()
might occur if someone tried to delete an automatic (on the stack) object.

Where (as will often be the case) the rest of the member functions of X have no need for examining the
information stored by allocators for use by the deallocator this information can be placed in storage
outside the object proper (“in the container itself’) thus decreasing the memory requirement for
automatic and static objects of class X. This is exactly the kind of game played by “ordinary” alloca-
tors such as the C malloc() for managing free store.

The example of the use of assignment to this above contains code that depends on knowing whether
the object was allocated by new or not. Given local allocators and deallocators, it is usually neither
wise nor necessary to do so. However, in a hurry or under serious compatibility constraints, one
might use a technique like this:

Evolution of C++ 1-33

The Evolution of C++: 1985 to 1989

The Evolution of C++: 1985 to 1989

class X {
static X* last X;
int on_free_ store;
/...

X0

void* operator new(long s)
{
return last_X = allocate somehow () ;

}

// ..
}:

X::X()

if (this == last _X) { // on free store
on_free store = 1;

}

else { // static or automatic or member of aggregate
on_free store = 0;

}

/...

}

Note that there is no simple and implementation independent way of determining that an object is
allocated on the stack. There never was.

Placement of Objects

For ordinary functions it is possible to specifically call a non-member version of the function by
prefixing a call with the scope resolution operator . For example,

::open({filename, "rw");

calls the global open(). Prefixing a use of the new operator with :: has the same effect for operator
new(); that is,

X* p = ::new X;

uses a global operator new() even if a local X::operator new() has been defined. This is useful for plac-
ing objects at specific addresses (to cope with memory mapped 1/0, etc.) and for implementing con-
tainer classes that manage storage for the objects they maintain. Using :: ensures that local allocation
functions are not used and the argument(s) specified for new allows selection among several global
operator new() functions. For example:

1-34 Selected Readings

The Evolution of C++: 1985 to 1989

// place object at address p:
void* operator new(size t, void* p) { return p; }

char buf [sizeof(X)]: // static buffer

£()

{
X* p = ::new(buf) X; // explicit allocation in ‘buf’
p = ::new((void*)0777) X; // place an X at address 0777

}

Naturally, for most classes the :: will be redundant since most classes do not define their own alloca-
tors. The notation :: delete can be used similarly to ensure use of a global deallocator.

Memory Exhaustion

Occasionally, an allocator fails to find memory that it can return to its caller. If the allocator must
return in this case, it should return the value 0. A constructor will return immediately upon finding
itself called with this==0 and the complete new expression will yield the value 0. In the absence of

more elegant error handling schemes, this enables critical software to defend itself against allocation
problems. For example:

void £()

{
X* p = new X;
if (p == 0) { /* handle allocation error */ }
// use p

}

The use of a new_handler can make most such checks unnecessary.

Explicit Calls of Destructors

Where an object is explicitly “placed” at a specific address or in some other way allocated so that no
standard deallocator can be used, there might still be a need to destroy the object. This can be done
by an explicit call of the destructor:

p—>X: :~X();

The fully qualified form of the destructor’s name must be used to avoid potential parsing ambiguities.
This requirement also alerts the user that something unusual is going on. After the call of the destruc-
tor, p no longer points to a valid object of class X.

Size Argument to operator delete()

Like X::operator new(), X::operator delete() can be overloaded, but since there is no mechanism for the
user to supply arguments to a deallocation function this overloading simply presents the programmer

with a way of using the information available in the compiler. X:operator delete() can have two forms
(only):

Evolution of C++ 1-35

The Evolution of C++: 1985 to 1989

class X {
void operator delete (void* p);
void operator delete(void* p, size t sz);
// ...

};

If the second form is present it will be preferred by the compiler and the second argument will be the
size of the object to the best of the compiler's knowledge. This allows a base class to provide memory
management services for derived classes:

class X {
void* operator new(size t sz);
void operator delete(void* p, size t sz);

virtual ~X();
// ..
}:

The use of a virtual destructor is crucial for getting the size right in cases where a user deletes an
object of a derived class through a pointer to the base class:

class Y : public X {
/7 ...
~¥();

}:

X* p = new Y;
delete p;

Assignment and Initialization

C++ originally had assignment and initialization default defined as bitwise copy of an object. This
caused problems when an obiject of a class with assignment was used as a member of a class that did
not have assignment defined:

1-36 Selected Readings

The Evolution of C++: 1985 to 1989

- class X {
Q‘ // ...

public:
X& operator=(const X&) ;
// .
}:
class Y {
X a;
// .
}:
void £()
{
Y yl, y2;
// ...
vyl = y2;
}

Assuming that assignment was not defined for Y, y2.a is copied into yl.a with a bitwise copy. This
invariably turns out to be an error and the programmer has to add an assignment operator to class Y:

class Y {
X a;
//
Q, const Y& operator=(const Y& arg)
{
a = arg.a;
/...

}:

To cope with this problem in general, assi gnment in C++ is now defined as memberwise assignment of
non-static members and base class objects®. Naturally, this rule applies recursively until a member of a
built-in type is found. This implies that for a class X, X(const X&) and const X& X:operator=(const
X&) will be supplied where necessary by the compiler, as has always been the case for X:X() and
X:"X(). In principle every class X has X::X(), X:X(const X&), and X::operator=(const X&) defined. In
particular, defining a constructor X:X(T) where T isn’t a variant of X& does not affect the fact that
X:X(const X&) is defined. Similarly, defining X::operator=(T) where T isn’t a variant of X& does not
affect the fact that X::operator=(const X&) is defined.

To avoid nasty inconsistencies between the predefined operator=() functions and user defined opera-
tor=() functions, operator=() must be a member function. Global assignment functions, such as
uoperator(X&, X&) are anachronisms and will be disallowed after a decent interval.

Note that since access controls are correctly applied to both implicit and explicit copy operations we
actually have a way of prohibiting assignment of objects of a given class X:

Evolution of C++ 1-37

The Evolution of C++: 1985 to 1989

class X {
// Objects of class X cannot be copied)
// except by members of X
void operator=(X&);
X (X&) ;
// ..
public:
X(int) ;
/...
}:

void £() {
X a(l);
X b =a; // error: X::X(X&) private
b= a; // error: X::operator=(X&) private

The automatic creation of X:X(const X&) and X:operator=(const X&) has interesting implications on
the legality of some assignment operations. Note that if X is a public base class of Y then a Y object is
a legal argument for a function that requires an X&. ‘For example:

class X { public: int aa; };
class Y : public X { public: int bb; };

void £() {)

X xx;

Y vy

XX = yy; // ok: aY is an X
// Xx==yy; Means xx.operator=((X&)yy):
// and is optimized to xx.aa = yy.aa

Defining assignment as memberwise assignment implies that operator=() isn’t inherited in the ordinary
manner. Instead, the appropriate assignment operator is — if necessary — generated for each class.
This implies that the “opposite’ assignment of an object of a base class to a variable of a derived class
is illegal as ever:

void £() {
X xx;
Y yy:
YY = XX; // error: an X isnot a Y

The extension of the assignment semantics to allow assignment of an object of a derived class to a vari-
able of a public base class had been repeatedly requested by users. The direct connection to the recur-
sive memberwise assignment semantics became clear only through work on the two apparently
independent problems.

D

1-38 Selected Readings

N

The Evolution of C++: 1985 to 1989

Operator —>

Until now —> has been one of the few operators a programmer couldn’t define. This made it hard to
create classes of objects intended to behave like ““smart pointers.” When overloading, —> is considered
a unary operator (of its left hand operand) and —> is reapplied to the result of executing operator—>().
Hence the return type of an operator—>() function must be a pointer to a class or an object of a class
for which operator—>() is defined. For example:

struct Y { int m; };

class X {
Y* p;
// ...
Y* operator—>() {
if (p == 0) {
// initialize p
}
else (
// check p
}
return p;
}
// .
};

Here, class X is defined so that objects of type X act as pointers to objects of class Y, except that some
suitable computation is performed on each access.

void £(X x, X& xr, X* xp)
{

x->m; // x.p—>m
Xr->m; // xx.p—>m
Xp~>m; // error: X does not have a member m

}

Like operator=(), operator[l(), and operator()(), operator->() must be a member function (unlike
operator+(), operator-(), operator<(), etc., which are often most useful as friend functions).

The dot operator still cannot be overloaded.

For ordinary pointers, use of —> is synonymous with some uses of unary * and [1. For example, for
Y* p;

it holds that:
p~>m == (*p) .m == p[0].m

As usual, no such guarantee is provided for user-defined operators. The equivalence can be provided
where desired:

Evolution of C++ 1-39

The Evolution of C++: 1985 to 1989

class X {

Y* p;
public:

Y* operator—->() { return p:; }

Y& operator*() { return *p; }

Y& operator[] (int i) { return p[i]; }
};

If you provide more than one of these operators it might be wise to provide the equivalence exactly as
it is wise to ensure that x+=1 has the same effect as x=x+1 for a simple variable x of some class if +=,
=, and + are provided.

The overloading of —> is important to a class of interesting programs, just like overloading [, and not
just a minor curiosity. The reason is that indirection is a key concept and that overloading —> provides
a clean, direct, and efficient way of representing it in a program. Another way of looking at operator
—> is to consider it a way of providing C++ with a limited, but very useful, form of delegation.

Operator ,

Until now the comma operator , has been one of the few operators a programmer couldn’t define.
This restriction did not appear to have any purpose so it has been removed. The most obvious use of
an overloaded comma operator is list building:

class Xlist {
// ..

public:

v Xlist();

Xlist (X&)

Xlist& operator, (X&) ;

friend Xlist operator, (X&,X¢&):;

}:

void £()
X a,b,c;

Xlist x1 = (a,b,c): // meaning operator, (a,b) .operator, (c)
}

If you have a bit of trouble deciding which commas mean what in this example you have found the
reason overloading of comma was originally left out.

1-40 Selected Readings

The Evolution of C++: 1985 to 1989

Initialization of static Objects

In C, a static object can only be initialized using a slightly extended form of constant expressions. In
C++, it has always been possible to use completely general expressions for the initialization of static
class objects. This feature has now been extended to static objects of all types. For example:

#include <math.h>
double sqrt2 = sqrt(2):;

main ()
{

if (sqrt(2)!'=sqrt2) abort():
}

Such dynamic initialization is done in declaration order within a file and before the first use of any
object or function defined in the file. No order is defined for initialization of objects in different source
files except that all static initialization takes place before any dynamic initialization.

Resolutions

This section does not describe additions to C++ but gives answers to questions that have been asked
often and do not appear to have clear enough answers in the reference manual of The C++ Program-

ming Language. These resolutions involve slight changes compared to earlier rules. This was done to
bring C++ closer to the ANSI C draft.

Function Argument Syntax

Like the C syntax, the C++ syntax for specifying types allows the type int to be implicit in some cases.
This opens the possibility of ambiguities. In argument declarations, C++ chooses the longest type pos-
sible when there appears to be a choice:

typedef long I;

fl(const I); // £1() takes an unnamed ‘const long’ argument

£2 (const i); // £2() takes a ‘const int’ argument (called ‘i’)
This rule applies to the const and volatile specifiers, but not to unsigned, short, long, or signed7:

£3 (unsigned int I); // ok
f4 (unsigned I); // ok: equivalent to f4 (unsigned int I);

A type cannot contain two basic type specifiers so

fS5(char I) { I++; }
£6(I I) { I+ }

are legal.

Evolution of C++ 1-41

The Evolution of C++: 1985 to 1989

Declaration and Expression Syntax J

There is an ambiguity in the C++ grammar involving expression-statements and declarations: An
expression-statement with a “function style” explicit type conversion as its leftmost sub-expression can
be indistinguishable from a declaration where the first declarator starts with a (. For example:

T(a); //declaration or type conversion of ‘a’
In those cases the statement is a declaration.

To disambiguate, the whole statement may have to be examined to determine if it is an expression-
statement or a declaration. This disambiguates many examples. For example, assume T is the name of

some type:

T(a)->m = 7; // expression—-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement
T (*d) (double(3)); // expression-statement
T (*e) (int); // declaration
T(£)[1; // declaration
T(g)={ 1,2 }; // declaration

The remaining cases are declarations. For example:

T(a):; // declaration

T(*b) () // declaration J
T(c)=7; // declaration -
T(d) ,e, £=3; // declaration

T(g) (h,2); // declaration

The disambiguation is purely syntactic; that is, the meaning of the names, beyond whether they are
names of types or not, is not used in the disambiguation.

This resolution has two virtues compared to alternatives: It is simple to explain and completely compa-
tible with C. The main snag is that it is not well adapted to simple minded parsers, such as YACC,
because the lookahead required to decide what is an expression-statement and what is a declaration in a
statement context is not limited.

However, note that a simple lexical lookahead can help a parser disambiguate most cases. Consider
analyzing a statement; the troublesome cases look like this:

T (d-or—e) tail
Here, d-or-e must be a declarator, an expression, or both for the statement to be legal. This implies that
tail must be a semicolon, something that can follow a parenthesized declarator or something that can
follow a parenthesized expression. That is, an initializer, const, volatile, (, or [or a postfix or infix
operator.

A user can explicitly disambiguate cases that appear obscure. For example:

1-42 Selected Readings

The Evolution of C++: 1985 to 1989

void £{()

{
auto int (*p) (); // explicitly declaration
(void) int (*p) ():;// explicitly expression-statement
0,int (*p) () ; // explicitly expression-statement
(int (*p)) // explicitly expression-statement
int (*p) (); // resolved to declaration

}

Enumerators

An enumeration is a type. Each enumeration is distinct from all other types. The set of possible
values for an enumeration is its set of enumerators. The type of an enumerator is its enumeration.
For example:

enum wine { red, white, rose, bubbly }:
enum beer { ale, bitter, lager, stout };

defines two types, each with a distinct set of 4 values.

wine w = red;
beer b = bitter;

w=oDb; // error, type mismatch: beer assigned to wine
w = stout; // error, type mismatch: beer assigned to wine
w=2; // error, type mismatch: int assigned to wine

Each enumerator has an integer value and can be used wherever an integer is required; in such cases
the integer value is used:

int i = rose // the value of ‘rose’ (that is, 2) is used
i=Db; // the value of ‘b’ is assigned to ‘i’

This interpretation is stricter than what has been used in C++ until now and stricter than most C
dialects. The reason for choosing it was ANSI C’s requirement that enumerations be distinct types.
Given that, the details follow from C++’s emphasis on type checking and the requirements of con-
sistency to allow overloading, etc. For example:

Evolution of C++ 1-43

The Evolution of C++: 1985 to 1989

int £(int);
int f(wine);

void g{()

{
£(i);
£(w);
£(1);
f (white);
£(b):

}

// £(int)
// £(wine)

// £(int)
// £(wine)

// £({int), standard conversion
from beer to int used

//

C++'s checking of enumerations is stricter than ANSI C’s, in that assignments of integers to enumera-
tions are disallowed. As ever, explicit type conversion can be used:

w = wine (257); /* caveat emptor */

An enumerator is entered in the scope in which the enumeration is defined. In this context, a class is
considered a scope and the usual access control rules apply. For example:

class X {
enum { X, Vv, 2 }:
// ...

public:
enum { a, b, ¢ };

f(int i = a) { g(itx); ...

/...

void h{) {
int i = a;
i=X::a;
i=X::x;

The const Specifier

}

// error:
// ok
// error:

X::a’ is not in scope

X::x’ is private

Use of the const specifier on a non-local object implies that linkage is internal by default; that is, the
object declared is local to the compilation in which it occurs. To give it external linkage it must be

explicitly declared extern.

Similarly, inline implies that linkage is internal by default.

External linkage can be obtained by explicit declaration:

1-44

Selected Readings

The Evolution of C++: 1985 to 1989

extern const double g:
const double g = 9.81;

extern inline f(int);
inline f(int i) { return i+c; }

Function Types

It is possible to define function types that can be used exactly like other types, except that variables of
function types cannot be defined — only variables of pointer to function types:

typedef int F(char*); // function taking a char* argument
// and returning an int
F* pf; // pointer to such function
F £; // error: no variables of function type allowed

Function types can be useful in friend declarations. Here is an example from the C++ task system:

class task : public scheduler {
friend SIG_FUNC_TYP sig_func; // the type of a function must be specified

// in a friend function declaration
// ...
}

The reason to use a typedef in the friend declaration sig_func and not simply to write the type
directly is that the type of signal() is system dependent:

// BSD signal.h:
typedef void SIG_FUNC TYP(int, int, sigcontext*):;

// 9th edition signal.h:
typedef void SIG_FUNC TYP (int):;

Using the typedef allows the system dependencies to be localized where they belong: in the header
files defining the system interface.

Lvalues
Note that the default definition of assignment of an X as a call of

X& operator=(const X&)

makes assignment of Xs produce an lvalue. For uniformity, this rule has been extended to assign-
ments of built-in types. By implication, +=, -=, *=, etc., now also produce lvalues. So — again by
implication — does prefix ++ and - (but not the postfix versions of these operators).

In addition, the comma and ?: can also produce lvalues. The result of a comma operation is an lvalue
if its second operand is. The result of a ?: operator is an lvalue provided both its second and third
operands are and provided they have exactly the same type.

Evolution of C++ 1-45

The Evolution of C++: 1985 to 1989

Multiple Name Spaces J

C provides a separate name space for structure tags whereas C++ places type names in the same name
space as other names. This gives important notational conveniences to the C++ programmer but
severe headaches to people managing header files in mixed C/C++ environments. For example:

struct stat ({
// .
};

extern struct stat (int, struct stat *);

was not legal C++ though early implementations accepted it as a compatibility hack. The experience
has been that trying to impose the “pure C++” single name space solution (thus outlawing examples
such as the one above) has caused too much confusion and too much inconvenience to too many users.
Consequently, a slightly cleaned up version of the C/C++ compatibility hack has now become part of
C++. This follows the overall principle that where there is a choice between inconveniencing compiler
writers and annoying users, the compiler writers should be inconvenienced. It appears that the
compromise provided by the rules presented below enables all accepted uses of multiple name spaces
in C while preserving the notational convenience of C++ in all cases where C compatibility isn’t an
essential issue. In particular, every legal C++ program remains legal. The restrictions on the use of
constructors and typedef names in connection with the use of multiple name spaces are imposed to
prevent some nasty cases of hard to detect ambiguities that would cause trouble for the composition of
C++ header files.

A typedef can declare a name to refer to the same type more than once. For example:

typedef struct s { /* ... */ } s; >
typedef s s; —

A name s can be declared as a type (struct, class, union, enum) and as a non-type (function, object,
value, etc.) in a single scope. In this case, the name s refers to the non-type and struct s (or whatever)
can be used to refer to the type. The order of declaration does not matter. This rule takes effect only
after both declarations of s have been seen. For example:

struct stat { /* ... */ };

stat a;

void stat (stat* p);

struct stat b; // struct is needed to avoid the function name
stat (0) ; // function call

int £(int);

£(1):;

struct £ { /* ... */ };

struct f a; // struct is needed to avoid the function name

A name cannot simultaneously refer to two types:

)

1-46 Selected Readings

The Evolution of C++: 1985 to 1989

struct s { /* ... */ };
Q ! typedef int s; // error

The name of a class with a constructor cannot also simultaneously refer to something else:

struct s { s(); /* ... */ };

int s(): // error
struct t* p;

int t(); // ok
int 1 = t():

struct t (t(); /* ... */ } // error
i=t();

If a non-type name s hides a type name s, struct s can be used to refer to the type name. For example:

struct s { /* ... */ };
f(int s) { struct s a; s++; }

Note: If a type name hides a non-type name the usual scope rules apply:

int s
£()
{
- struct s { /* ... */ }; // new ‘s’ refers to the type
Q // and the global int is hidden
- s a;

Use of the :: scope resolution operator implies that its argument is a non-type name. For example:

int s;

£(Q)

{
struct s { /* ... */ };
s a;
18 = a;

Function Declaration Syntax

To ease use of common C++ and ANSI C header files, void may be used to indicate that a function
takes no arguments:

extern int f(void): // same as ‘‘extern int £();’’

Evolution of C++ 1-47

The Evolution of C++: 1985 to 1989

Conclusions J

C++ is holding up nicely under the strain of large scale use in a diverse range of application areas.
The extensions added so far have been have all been relatively easy to integrate into the C++ type sys-
tem. The C syntax, especially the C declarator syntax, has consistently caused much greater problems
that the C semantics; it remains barely manageable. The stringent requirements of compatibility and
maintenance of the usual run-time and space efficiencies did not constrain the design of the new
features noticeably. Except for the introduction of the keywords catch, private, protected, signed,
template, and volatile, the extensions described here are upward compatible. Users will find, how-
ever, that type-safe linkage, improved enforcement of const, and improved handling of ambiguitics
will force modification of some programs by detecting previously uncaught errors.

1-48 Selected Readings

C

Footnotes

. Surprisingly, giving character constants type char does not cause incompatibilities with C where

they have type int. Except for the pathological example sizeof(’a’), every construct that can be

expressed in both C and C++ gives the same result. The reason for the surprising compatibility
is that even though character constants have type int in C, the rules for determining the values

of such constants involves the standard conversion from char to int.

. The strategy for dealing with ambiguities in inheritance DAGs is essentially the same as the stra-

tegy for dealing with ambiguities in expression evaluation involving overloaded operators and
user-defined coercions. Note that the access control mechanism does not affect the ambiguity
control mechanism. Had B:f() been private the call p—>f() would still be ambiguous.

3. Virtual base classes force a modification to this rule; see below.

4. operator new() used to require a long; size_t was adopted to bring C++ allocation mechanisms

into line with ANSI C.

. The requirement that a programmer must distinguish between delete p for an individual object

and delete[n] p for an array is an unfortunate hack and is mitigated only by the fact that there
is nothing that forces a programmer to use such arrays.

. One could argue that the original definition of C++ was inconsistent in requiring bitwise copy of

objects of class Y, yet guaranteeing that X::operator=() would be applied for copying objects of a
class X. In this case both guarantees cannot be fulfilled.

. This resolution involves a slight change compared to earlier rules. This was done to brmg this

aspect of C++ into line with the ANSI C draft.

Evolution of C++ 1-49

2 An Introduction to C++

An Introduction to C++ 2-1

A C++ Example 2-3

Data Abstraction 2-4

Specifications and Implementations 2-5

The Specification 2-7

Classes 2-7

Encapsulation 2-8

Member Functions 2-9

Function Argument Type Checking 2-10
Function Name Overloading 2-10
Calling Member Functions 2-11
Constructors 2-11
Constructors and Type Conversion 2-12
Constructors and Initialization 2-12
Operator Overloading 2-12
Destructors 2-13
Summary 2-14
The Implementation 2-15
The BigInt(const char*) Constructor 2-15
The Scope Resolution Operator 2-16
Constant Types 2-16
Member Variable References 2-16
The new Operator 2-16
Placement of Declarations 217
The BigInt(int) Constructor 2-17
The Initialization Constructor 2-18
Reterences 2-18
The Addition Operator 2-19
The BigInt(char*,int) constructor 2-20
Class DigitStream 2-21
Friend Functions 2-22
The Keyword this 2-23
The Member Function BigInt:print() 2-23
The BigInt Destructor 2-23
Inline Functions 2-24
Summary 2-25

Table of Contents i

Table of Contents

Other Uses for Abstract Data Types 2-26
Dynamic Character Strings 2-26
Complex Numbers 2-26
Vectors 2-26
Stream 1/0 2-26
Object-Oriented Programming in C++ 2-28
Derived Classes 2-28
Virtual Functions 2-28
Class Libraries 2-31
Object 110 2-33
The Current Status of C++ 2-36
The Future of C++ 2-37
Footnotes 2-38

Selected Readings

—

An Introduction to C++

This chapter is taken directly from a paper by Keith Gorlen.

The C++ programming language was designed and implemented by Bjarne Stroustrup of AT&T Bell
Laboratories as a successor to C. It retains compatibility with existing C programs and the efficiency
of C. It also adds many powerful new capabilities, making it suitable for a wide range of applications
from device drivers to artificial intelligence. C++ will be of interest to UNIX users because of its inti-
mate relation to C and its potential use for building graphical user interfaces to UNIX, for UNIX sys-
tems programming, and for supporting large-scale software development under UNIX.

C++ evolved from a dialect of C known as ““C with Classes,” which was invented in 1980 as a
language for writing efficient event-driven simulations. Several key ideas were borrowed from the
Simula67 and Algol 68 programming languages. Figure 2-1 shows the heritage of C++.

Figure 2-1: The Heritage of C++

Simula67 Algol68

C with | c++

—— .| Classes

The definitive book on C++ is Bjarne Stroustrup’s The C++ Programming Language, which gives a
detailed description of the language and contains many examples and exercises. It also includes the
C++ reference manual, which is a concise, more formal definition of the language.

In this chapter, we’ll see how C++ corrects most of the deficiencies of C by offering improved
compile-time type checking and support for encapsulation. We'll also introduce you to many of the
new features of C++:

m classes

m type checking

m operator and function name overloading

m free store management

An Introduction to C++ 2-1

An Introduction to C++

constant types \)

references
inline functions

derived classes

virtual functions

We'll present these features in the context of a non-trivial example so that you'll understand the
motivation behind them and see how they are typically used.

By the end of the paper, you'll see how proper use of C++ can dramatically increase a programmer’s
productivity. C++ programs are shorter, clearer, and more likely to be correct from the outset. As a
result, they are also easier to debug and to maintain.

We'll conclude the paper by discussing the current status and future of C++.

2-2 Selected Readings

A C++ Example

The best way to learn about C++ is to write a program in it, and that is what we’ll do in the next three
sections. Let’s start in familiar territory by taking a look at a simple program written in plain old C:

main ()
{
int a = 193;
int b = 456;
int c=a + b + 47;
printf ("%d\n",c);

This program declares three integer variables named a, b, and ¢, initializing a and b to the values 193
and 456, respectively. The integer c is initialized to the result of adding a and b and the constant 47.
Finally, the standard C library function printf() is called to print out the value of c¢. The quoted string
"%d\n" tells how to print the result: %d prints ¢ as a decimal number, and \n adds a newline character.
If we compile and execute this program, it prints out the number 696 and exits.

Now suppose we wish to perform a similar calculation, but this time a and b are big numbers, like the
U. S. national debt expressed in dollars. Such numbers are too big to be stored as ints on most com-
puters, so if we tried to write int a = 25123654789456 the C compiler (hopefully!) would give us an
error message and fail to compile the program. There are many practical applications for big integers,
such as cryptography, symbolic algebra, and number theory, where it can be necessary to perform
arithmetic on numbers with hundreds or even thousands of digits.

It isn’t easy to write a program to deal with these big numbers in ordinary C. Coding and debugging
the algorithms that perform arithmetic operations on big integers in C involves a significant amount of
work, so we’d want to make them general-purpose. We wouldn’t be able to predict how big the
numbers might become in advance, so we would have to use a dynamic memory allocator to manage
their storage at execution time. We’d need to write a C library of functions for creating, destroying,
reading, printing, assigning, and performing basic arithmetic on big integers. These functions would
have to have distinctive names such as create_bigint, print_bigint, and add_bigints to avoid confusion
with other kinds of data that we might want to create, print, or add in the same program.

Worst of all, programmers wishing to use our big integers would have to know the names of these
functions and the rules for calling them. They would have to remember to create and initialize big
integers when they needed to use them, and to destroy them when they were finished. Even simple
arithmetic expressions would be awkward to write; ¢ = a+b would have to be coded as:

assign bigint (&c,add bigints(a,b))

and there might be problems with handling temporary results calculated during the evaluation of a
complex expression. Also, programmers would have to be careful when combining big integers with
other data types such as int. They would need to call a function to convert ints to big integers before
adding them, for example. Any C program using big integers would be both difficult to write and
difficult to read.

In C++, we still must write the code to manage the storage of big integers and functions to perform
the same operations on them. The difference is that C++ lets us “package” this code so that using our
big integers is as convenient as using the int data type that is built into C. We can, in effect, extend
the C++ language by adding our own custom data type, which we’ll call BigInt. Notice how similar
the example C program is to this C++ program which performs a similar calculation using BiglInts

An Introduction to C++ 2-3

A C++ Example

instead of ints:)
#include "BigInt.h"
main ()
{
BigInt a = "25123654789456";
BigInt b = "456023398798362";

BigInt c = a + b + 47;
c.print () ;/* print the result, c */
printf ("\n");

Data Abstraction

This technique of defining new data types that are well-suited to the application to be programmed is
known as data abstraction, and a data type such as Biglnt is called an abstract data type. Data abstrac-

tion is a powerful, general-purpose technique which, when properly used, can result in shorter, more
readable, more flexible programs.

Data abstraction is supported by several other modern programming languages such as Ada.

In these languages, and in C++ as well, a programmer can define a new abstract data type by specify-

ing a data structure together with the operations permissible on that data structure, as shown in Figure
2-2.

D

Figure 2-2: An Abstract Data Type

Abstract Data Type

Data Structure

Operations

(Functions)

N

2-4 Selected Readings

A C++ Example

It is difficult or impossible to practice data abstraction in most other programming languages currently
in widespread use, such as BASIC, C, COBOL, FORTRAN, PASCAL, or Modula-2. This is because
data abstraction requires special language features not available in these languages. To get an idea of
what these features do, let’s analyze the example C++ program.

The first three statements in the body of the main() program declare three type Biglnt variables, a, b,
and ¢. The C++ compiler needs to know how to create them — how much space to allocate for them
and how to initialize them.

The first and second statements are similar; they initialize the BigInt variables a and b with big integer
constants written as character strings containing only digits. To do this the C++ compiler must be able
to convert character strings into BigInts.

The third statement is the most complicated. It adds a, b, and the integer constant 47 and stores the
result in ¢. The C++ compiler needs to be able to create a temporary BigInt variable to hold the sum
of a and b. Then it must convert the int constant 47 into a BigInt and add this to the temporary vari-
able. Finally, it must initialize ¢ from this temporary BigInt variable.

The fourth statement prints ¢ on the standard output, and the last statement calls the C library func-
tion printf() to print a newline character. C programmers are probably familiar with printf(), but
c.print() probably looks a bit strange. It is a call on a special kind of function available in C++ called a
member function. We’ll talk more about this later, but for now just think of it as a function that prints
out a variable of type Biglnt.

Even though there are no more statements in the body of main(), the compiler isn’t finished yet. It
must destroy the Biglnt variables a, b, and ¢ and any Biglnt temporaries it may have created before
leaving a function, such as main(). This is to assure that the storage used by these variables is freed.

Let’s summarize what the C++ compiler needs to know how to do with BigInts to compile the exam-
ple program:

create new instances of BigInt variables
convert character strings and integers to Biglnts
initialize the value of one BigInt with that of another BigInt

u
u
u
m add two Biglnts together
m print Bigints

|

destroy BigInts when they are no longer needed

Specifications and Implementations

Where does the C++ compiler obtain this know-how? From the file BigInt.h, which is included by the
first line of the example program. This file contains the specification of our BigInt abstract data type.
The specification contains the information that programs that use an abstract data type need to have to
be successfully compiled. The details of how the abstract data type works, known as the implementa-
tion, are kept in another file. In our example, this file is named BiglInt.c. It is compiled separately,
and the object code produced from it is linked with the program that uses the abstract data type, also
called the client program. Figure 2-3 shows how the specification and implementation of an abstract
data type are combined with the source code of a client program to produce an executable program.

An Introduction to C++ 2-5

A C++ Example

N

Figure 2-3: Combining the specification (Bigint.h) and implementation (Bigint.c) of an abstract data type
{Bigint) with the source code of a client program (client.c) to produce an executable T
program(client).

BigInt.c > BigInt.o

BigInt.h

client

client.c client.o

We separate the code for an abstract data type into a specification part and an implementation part to

hide the implementation details from the client. We can then change the implementation and be '
confident that client programs will continue to work correctly after they are relinked with the modified)
object code. This is useful when a team of programmers work on a large software project. Once they

agree on the specifications for the abstract data types they need, each team member can implement one

or more of them independently of the rest of the team.

A well-designed abstract data type also hides its complexity in its implementation, making it as easy
as possible for clients to use.

2-6 Selected Readings

The Specification

Let’s take a look at the specification for our BigInt data type, contained in the file BigInth. (Note that
in C++, // begins a comment that extends to the end of the line.)

class BigInt ({

char* digits; // pointer to digit array in free store
int ndigits; // number of digits
public:
BigInt (const char*); // constructor function
BigInt (int); // constructor function
BigInt (const BigInté); // initialization constructor function
BigInt operator+(const BigInt&); // addition operator function
void print(); // printing function
~BigInt () ; // destructor function

}:

Much of this code may look odd, but we'll explain it as we cover the features of C++ in the next few
sections.

Classes

This is an example of one of the most important features of C++, the class declaration, which specifies
an abstract data type. It is an extension of something C programmers are probably already familiar
with: the struct declaration.

The struct declaration groups together a number of variables, which may be of different types, into a
unit. For example, in C (or in C++) we can write:

struct BigInt {
char* digits;
int ndigits;
}i
We can then declare an instance of this structure by writing:

struct BigInt a;

The individual member variables of the struct, digits and ndigits, can be accessed using the dot (.)
operator; for example, a.digits, accesses the member variable digits of the struct a.

Recall that in C we can also declare a pointer to an instance of a structure:
struct BigInt* p;

in which case we can access the individual member variables by using the —> operator; for example,
p—>digits.

An Introduction to C++ 2-7

The Specification

C++ classes work in a similar manner, and the . and —> operators are used in the same way to access a >
class’s member variables. In our example, class BigInt has two member variables named digits and -
ndigits. The variable digits points to an array of bytes (chars), allocated from the free storage area,

that holds the digits of the big integer, one decimal digit per byte. The digits are ordered beginning

with the least significant digit in the first byte of the array. The member variable ndigits contains the

number of digits in the integer. Figure 2-4 shows a diagram of this data structure for the number

654321.

Figure 2-4: A diagram of the BigInt data structure for the number 654321

digits > 1|2 | 3| 4|5 6
ndigits 6

However, the C++ class can do much more than the struct feature of regular C. We’ll now look at
these extensions in detail.

Encapsulation

In C++, a client program can declare an instance of class BigInt by writing:)

BigInt a;

But now we have a potential problem: the client program might try, for example, to use the fact that
a.ndigits contains the number of digits in the number a. This would make the client program depen-
dent on the implementation of class BigInt — after all, we might wish to change the representation of
Biglnts to use hexadecimal instead of decimal arithmetic to save storage. We need a way to prevent
unauthorized access to the member variables of the instances of a class. C++ provides this by allowing
the use of the keyword public: within a class declaration to indicate which members can be accessed
by anyone and which have restricted access. Members declared before the public: keyword are private,
as are digits and ndigits in this example, so C++ will issue an error message if a client program
attempts to use them.

Protecting the member variables of a class in this manner is known as encapsulation. It is a good pro-
gramming practice because it enforces the separation between the specification and the implementation
of abstract data types that we are trying to achieve, and it helps when debugging programs. For
example, if we find that ndigits has the wrong value in some situation, those parts of the program that
do not have access to the variable are probably not at fault.

2-8 Selected Readings

The Specification

Member Functions

But how does a client program interact with the private member variables of a class? Whereas a struct
allows only variables to be grouped together, the C++ class declaration allows both variables and the
functions that operate on them to be grouped. Such functions are called member functions, and the
private member variables of the instances of a class can be accessed only by the member functions of
that class. Thus, a client program can read or modify the values of the private member variables of an

instance of a class indirectly, by calling the public member functions of the class, as shown in Figure
2-5.

Figure 2-5: Client programs can access the private member variables of an instance of a class only by
calling public member functions of the class.

Instances of Class BigInt

Client
Program

BigInt(const char*)
(construct)

Bigint a = ""2148";

private member
variables:

char* digits
int ndigits

BigInt(const Bigint&)

(initialize) <« Bigint ¢ = a+b+47;

c.print();

operator+(const Biglnt&)
(add)

Our example class BigInt has two private member variables, digits and ndigits, and six public
member functions. The declarations of these member functions will look unusual to C programmers
for several reasons: the types of the arguments of the functions are listed within parentheses in the
function declarations, three of the functions declared have the same name, BigInt, and the function
names operator+ and “BigInt contain characters normally not allowed in function names.

An Introduction to C++ 2-9

The Specification

Function Argument Type Checking D

C++ strongly encourages a programmer to declare the types of the arguments of all functions. This
makes it possible for C++ to check for inconsistent argument types when a function call is compiled,
and can eliminate many bugs at an early stage. For example, the C statement:

fprintf ("The answer is %d",x);

will compile with no problem. However, when this statement is executed the program will abort with
a cryptic error message. The problem is that the standard C library function fprintf() expects the first
argument to be a pointer to the stream to which the output is to be written, not a format string as it is
here. On the other hand, in C++ we can declare the argument types of fprintf():

extern int fprintf(FILE*, const char*, ...);

so the compiler can give us an error message when we try to compile the incorrect function call, not-
ing the discrepancy in the argument types. Conveniently, the argument types for most standard
library functions are declared in system header files that you can include in your programs so that you
don’t have to write all these common declarations yourself.

Function Name Overloading

Listing the types of all of a function’s arguments in its declaration has a second benefit: we can define .
several functions with the same name, as long as each requires a different number and/or type of)
argument. For example, in C++ we can declare two functions with the name abs:

int abs(int);
float abs(float):;

We can then write:

x = abs(2);
y = abs(3.14);

The first statement will call abs(int), and the second will call abs(float} — the C++ compiler knows
which abs to use because 2 is an int and 3.14 is a float. When more than one function has the same
name like this, the name is said to be overloaded. One advantage of overloading is that it eliminates
“funny” function names (remember ABS, IABS, DABS, and CABS from FORTRAN?). It also leads to
more general programs; for example, we can write copy(x,y) to copy a y to an x without having to
worry about their types — they might be arrays, or strings, or files — as long as we have written a
copy function to handle each case.

2-10 Selected Readings

The Specification

Calling Member Functions

Getting back to our BigInt example and our discussion of member functions, we can now explain the
next-to-last line in our first C++ program which is:

c.print ()

Member functions are called in a manner analogous to the way member variables are normally
accessed in C; that is, by using the . or —> operators. Since ¢ is an instance of class Biglnt, the notation
c.print() calls the member function print() of class BigInt to print the current value of c¢. Similarly, if
we declared a pointer to a BigInt:

BigInt* p;

then the notation p->print() would call the same function. This notation prevents this particular
print() from inadvertently being called to operate on anything other than an instance of class BigInt.

In C++, several different classes may all have member functions with the same name, just as in regular
C several different structs may all have member variables with the same name. This lets us use simple
function names, like print, rather than distinctive names, like print_bigint, without worrying about
naming conflicts. We could add a new class, say BigFloat, to a program that also used BiglInts, and
we could also define print() as a member function of class BigFloat. Our program could contain the
statements:

BigInt a = "2934673485419";
BigFloat x = "874387430.3945798";
a.print();

xX.print();

and the C++ compiler would use the appropriate print() in both cases.

Constructors

As you’ll recall, one of the things the C++ compiler needs to know about our Biglnt abstract data type
is how to create new instances of BigInts. We can tell C++ how we want this done by defining one or
more special member functions called constructors. A constructor function is one which has the same
name as its class. When a client program contains a declaration such as:

BigInt a = "123";

the C++ compiler reserves space for the member variables of an instance of class BigInt and calls the
constructor function a.BigInt("123"). It is our responsibility as providers of the BigInt data type to
write the function BigInt() so that it initializes the instance correctly. In our example, we’ll have
BigInt("123") allocate three bytes of dynamic storage, set a.digits to point to this storage, set the three
bytes to {3,2,1}, and set a.ndigits to three. This will create an instance of class BigInt named a that is
initialized to 123.

An Introduction to C++ 2-11

The Specification

If a class has a constructor function, C++ guarantees that it will be called to initialize every instance of
the class that is created. A user of an abstract data type such as BigInt does not have to remember to
call an initialization function separately for every BigInt declared, thus eliminating a common source

of programming errors.

Constructors and Type Conversion

The second thing C++ needs to know is how to convert something that is a character string, such as
"25123654789456", or an integer, such as 47, to a BigInt. Constructors are also used for this purpose.
When the C++ compiler sees a statement like:

BigInt ¢ = a + b + 47;

it recognizes that the int 47 must be converted to a BigInt before the addition can be done, and so
checks to see if the constructor BigInt(int) is declared. If so, it creates a temporary instance of BigInt
by calling BigInt(int) with the argument 47. If an appropriate constructor is not declared, the state-
ment is flagged as an error. We have defined BigInt(char*) and BigInt(int) for class BiglInt, so we
may freely use character strings or integers wherever a BigInt can be used, and the C++ compiler will
automatically call our constructor to do the type conversion. This is an important feature of C++
because it lets us blend our own abstract data types with others and with the fundamental types built
into the language.

Constructors and Initialization

The third thing C++ must know how to do is how to initialize a BigInt with the value of another
Biglnt, as is required by a statement such as:

BigInt ¢ = a + b + 47;

The BigInt ¢ must be initialized with the value of a temporary BigInt that holds the result of the
expression a+ b + 47.

We can control how C++ initializes instances of class BigInt by defining the special constructor func-
tion BigInt(const BigInt&). In our example, we’ll make this constructor allocate storage for the new
instance and make a copy of the contents of the argument instance.

Operator Overloading

The fourth thing C++ must be able to do is to add two BigInts. We could just define a member func-
tion named add to do this, but then writing arithmetic expressions would be awkward. C++ lets us
define additional meanings for most of its operators, including +, so we can make it mean “add” when
applied to Bignts. This is known as operator overloading, and is similar to the concept of function
name overloading.

2-12 Selected Readings

L

a

The Specification

Actually, most programmers are already familiar with this idea because the operators of most pro-
gramming languages, including C, are already overloaded. For example, we can write:

int a,b,c;
float x,y,z;
¢ = atb;

z = x+y;

The operators = and + do quite different things in the last two statements: the first statement does
integer addition and assignment and the second does floating point addition and assignment. Operator
overloading is simply an extension of this.

C++ recognizes a function name having the form operator@ as an overloading of the C++ operator
symbol @. We can overload the operator +, for example, by declaring the member function named
operator+, as we have done in our example class BigInt. We can call this function using either the
usual notation for calling member functions or by using just the operator:

BigInt a,b,c;
c = a.operator+(b);
c=a+b;

The last two lines are equivalent.?

Of course, if we overload an operator, we don’t change its built-in meaning, we only give it an addi-
tional meaning when used on instances of our new abstract data type. The expression 2+2 still gives 4.

Destructors

The last thing we said was that C++ needed to know how to destroy instances of our BigInts once it
was finished with them. We can tell the C++ compiler how to do this by defining another special kind
of member function called a destructor. A destructor function has the same name as its class, prefixed
by the character ~. For class Biglnt, this is the member function "BigInt(). Since ~ is the C++ and C
complement operator, this naming convention suggests that destructors are complementary to con-
structors.

We must write the function “BigInt() so that it properly cleans-up, or finalizes instances of class BigInt
for which it is called. In our example, this means freeing the dynamic storage that was allocated by
the constructor.

If a class has a destructor function, C++ guarantees that it will be called to finalize every instance of the
class when it is no longer needed. Once again, this relieves users of an abstract data type like BigInt
from having to remember to do this, and eliminates another source of programming errors.

An Introduction to C++ 2-13

The Specification

Summary)

We've covered a lot of territory already, so let’s review where we’ve been.

We've seen how using the technique of data abstraction can lead to more reliable, more readable, and
more flexible programs, and we’ve introduced many of the features of C++ that help us practice data
abstraction:

classes, the basic language construct for defining new abstract data types;

member variables, which describe the data in an abstract class, and member functions, which define
the operations on an abstract class;

encapsulation, which lets us restrict access to certain member variables and functions;

W function argument type checking, which helps to ensure that functions are called with proper argu-

ments;

W function name overloading, which reduces the need for using unusual function names and helps to

generalize code;

constructors and destructors, which manage the storage for an abstract data type and guarantee
that instances of an abstract data type are initialized and finalized;

user-defined implicit type conversion, to let us blend our abstract data types with others and with
the fundamental data types of the language; and,

operator overloading, to let us give additional meaning to most of the existing operators when
used with our own abstract data types, making our new data types easier to use. :)

We’ve also introduced the idea of breaking up an abstract data type into its specification, which con-
tains the information that the user, or client, needs to know to use the abstract data type, and its
implementation, which hides the details of how the abstract data type works so that it may be pro-
grammed independently by a member of a programming team and be easily maintained.

2-14

Selected Readings

The Implementation

We've just taken a detailed look at the specification of our BigInt abstract data type. Now it’s time to
discuss its implementation.

As we said earlier, the implementation of an abstract data type consists of the C++ code that embodies
the details of how the data abstraction works. For our example it is kept in a separate file named
Bigint.c.

The implementation requires the information kept in the specification, so the first line in Biglnt.c is:

#include "BigInt.h"

Since both the implementation and client programs are compiled with the same specification, the C++
compiler ensures a consistent interface between them.

The BigInt(const char*) Constructor

Class BigInt has three constructors, one to create an instance of a BigInt from a character string of
digits (a char*), one to create an instance from an integer (an int), and one to initialize one BigInt from
another. We need to be able to create a BigInt from a string of digits because this is the only way we
can legally write very large integer constants in C++. Creating a BigInt from an int is provided as a
convenience, so we can write small integers in the usual way.

Here is the implementation of the first constructor:

BigInt: :BigInt (const char* digitString)
{
int n = strlen(digitString);
if (n !'=0) {
digits = new char[ndigits=n];
char* p = digits;
const char* q = &digitString[n];
while (n—) *p++ = *—q - '0';

else { // empty string
digits = new char[ndigits=1];
digits[0] = 0;

This constructor initializes the data structure of a BigInt as we described previously. We determine
the length of the character string argument, allocate enough memory to hold the digits of the number,
then scan the character string from right to left, converting each digit character to its binary represen-
tation.

If the character string is empty we treat this as a special case and create a BigInt initialized to zero.

An Introduction to C++ 2-15

The Implementation

C programmers will find this code quite recognizable, with a few exceptions that we’ll explain in the
next few sections.

The Scope Resolution Operator

The notation BigInt::BigInt identifies BigInt as a member function of class BigInt. We mentioned ear-
lier that several C++ classes can have member functions with the same names. When it is necessary to
specify exactly which class member we're dealing with, we can prefix the member name by the class
name and the :: operator. The :: operator is known as the scope resolution operator, and it may be
applied to both member functions and member variables.

Constant Types

C programmers will be familiar with use of the type char* for arguments that are character strings, but
what is a const char*? In C++, the keyword const can be used before a type to indicate that the vari-
able being declared is constant, and therefore may not appear to the left of the assignment (=) opera-
tor. When used in an argument list as it is above, it prevents the argument from being modified by
the function. This protects against another kind of common programming error.

Member Variable References

Throughout the body of the member function, you'll notice that we are able to reference the member
variables of the instance for which the function is called without using the . or —> operators, as we did
for example in the statement:

digits = new char[ndigits=n];

Since member functions reference the member variables of their class frequently, this provides a con-
venient, short notation.

The new Operator

We used the C++ new operator to allocate the dynamic storage needed to hold the digits of a Biglnt.
In C, we would call the standard C library function malloc() to do this. The new operator has two
advantages, however. First, it returns a pointer of the appropriate data type. Thus, to allocate space
for the member variables of a struct BigInt in C we would write:

(struct BigInt*)malloc (sizeof (struct BigInt))

whereas in C++ we can write:

2-16 Selected Readings

The Implementation

new BigInt

The second advantage is that if we use new to allocate an instance of a class having a constructor func-
tion (such as BigInt), the constructor is called automatically to initialize the newly allocated instance.
The result is more readable, less error-prone code.

Placement of Declarations

C programmers may have noticed that the declaration of p seems to be “misplaced”:
if (n !'=0) {
digits = new char[ndigits=n]; // a statement
char* p = digits; // a declaration!
since it appears after the first statement in a block. In C++, declarations may be intermixed with state-

ments as long as each variable is declared before its first use. You can frequently improve the reada-
bility of a program by placing variable declarations near the place where they are used.

The BigInt(int) Constructor

Here’s the implementation of the BigInt(int) constructor, which creates a BigInt from an integer:

BigInt: :BigInt (int n)
{

char d[3*sizeof (int)+1]; // buffer for decimal digits
char* dp = d; // pointer to next decimal digit
ndigits = 0; .
do { // convert integer to decimal digits
*dp++ = n%10;
n /= 10;
ndigits++;

} while (n > 0);

digits = new char[ndigits];

register int i;

for (i=0; i<ndigits; i++) digits[i] = d[i];

This constructor works by converting the integer argument to decimal digits in the temporary array d.
We then know how much space to allocate for the BigInt, so we allocate the correct amount of
dynamic storage using the new operator, and copy the decimal digits from the temporary array into it.

An Introduction to C++ 2-17

The Implementation

The Initialization Constructor

The job of the initialization constructor is to copy the value of its BigInt argument into a new instance
of Biglnt:

void BigInt::BigInt (const BigInté& n)
{
int i = n.ndigits;
digits = new char[ndigits=i];
char* p = digits;
char* g = n.digits;
while (i——) *p++ = *q++;

This function makes use of a reference, an important C++ feature we haven’t seen before.

References

The argument type of the member function BigInt(const BigInté&) is an example of a C++ reference.
References address a serious deficiency of C: the lack of a way to pass function arguments by refer-
ence.

To understand what this means, suppose we wish to write a function named inc() that adds one to its
argument. If we wrote this in C as:

void inc(x)
int x;
{

X++;
}

and then called inc() with the following program:

int y = 1;
inc(y);
printf ("$d\n",y);

we would discover that the program would print a 1, not a 2. This is because in C the value of y is

copied into the argument x, and the statement x++ increments this copy, leaving the value of y
unchanged. This treatment of function arguments is known as call by value.

To do this correctly in C we must explicitly pass a pointer as the argument to inc():

2-18 Selected Readings

The Implementation

void inc(x)
int* x;
{

*x++;
}

int y = 1;
inc(&y)
printf ("$d\n",y);

Notice that we had to change the program in three ways:

m the type of the function argument was changed from an int to an int*;
m each occurrence of the argument in the body of the function was changed from x to *x; and,

m each call of the function was changed from inc(y) to inc(&y).

The point is that passing a pointer as a function argument requires consistency in every usage of the
argument within the function body and, worse yet, in every call of the function made by client pro-
grams. This, combined with C’s lack of function argument type checking, results in ample opportunity
for error.

"Using a C++ reference, we can write the function inc() as follows:

void inc(inté& x)
{

X++;
}

int y = 1;
inc(y):
printf ("$d\n",y);

This requires changing only the argument type from int to int&.

In the function inc(), we need to pass the argument x using a reference because its value is modified
by the function. But efficiency is another reason for passing arguments by reference. When the value
of an argument requires a lot of storage, as in the case of Biglnts, it is less expensive to pass a pointer
to the argument even though its value is not to be changed. That’s why we declared the argument to
BigInt as const BigInt& — the reference BigInt& causes just a pointer to the argument to be passed,
but the const prevents that pointer from being used to change the argument’s value from within the
function.

The Addition Operator

Let’s take a look at a first draft of the function operator+, which implements BigInt addition:

An Introduction to C++ 2-19

The Implementation

BigInt BigInt: :operator+(const BigInt& n))
{
// Calculate maximum possible number of digits in sum
int maxDigits = (ndigits>n.ndigits ? ndigits : n.ndigits)+1;
char* sumPtr = new char[maxDigits]; // allocate storage for sum
BigInt sum(sumPtr,maxDigits); // must define this constructor
int i = maxDigits;
int carry = 0;
while (i—)
*sumPtr = /*next digit of this*/ + /*next digit of n*/ + carry;
if (*sumPtr > 9) {
carry = 1;
*sumPtr —= 10;
}
else carry = 0;
sumPtr++;
}
return sum;

We add two Biglnts by using the paper-and-pencil method we all learned in grammar school: we add
- the digits of each operand from right to left, beginning with the rightmost, and also add a possible
carry in from the previous column. If the sum is greater than nine, we subtract ten from the result
and produce a carry.

@

The BigInt(char*,int) constructor

We ran into a couple of problems when writing the addition function which we indicated with com-
ments in the code. The first problem is that we need to declare an instance of BigInt named sum in
which to place the result of the addition, which will be left in the array pointed to by sumPtr. We
must use a constructor to create this instance of BigInt, but none of those we have defined thus far are
suitable, so we must write another.

This new constructor takes a pointer to an array containing the digits and the number of digits in the
array as arguments and creates a BigInt from them. We don’t want our client programs to use such
an unsafe and implementation-dependent function, so we’ll declare it in the private part of class BigInt
where it can only be used by member functions. Thus, we add the declaration:

BigInt (char*,int);

just before the keyword public: in the declaration of class BigInt in the file BigInt.h, and we add the
implementation of this constructor to the file BigInt.c:

2-20 Selected Readings

The Implementation

BigInt: :BigInt (char* d, int n)
{

digits = d;

ndigits = n;

Class DigitStream

The second problem we encountered is that scanning the digits of the operands in the statement:
*sump = /*next digit of this*/ + /*next digit of n*/ + carry;

becomes complicated because one of the operands may contain fewer digits than the other, in which
case we must pad it to the left with zeros. We would also face this problem when implementing

Biglnt subtraction, multiplication, and division, so it is worthwhile to find a clean solution. Let’s use
an abstract data type!

Here is the declaration for class DigitStream and the implementation of its member functions:

class DigitStream ({

char* dp; // pointer to current digit

int nd; // number of digits remaining
public:

DigitStream(const BigInt& n); // constructor

int operator++(); // return current digit and advance
}:

DigitStream: :DigitStream(BigInté& n)
{

dp = n.digits;
nd = n.ndigits;
}

int DigitStream: :operator++()
{
if (nd == 0) return O;
else {
nd——;
return *dp++;

}

We can now declare an instance of a DigitStream for each of the operands and use the ++ operator
when we need to read the next digit.

With these two problems solved, the implementation of the BigInt addition operator looks like:

An Introduction to C++ 2-21

The Implementation

BigInt BigInt::operator+(const BigInt& n)
{
int maxDigits = (ndigits>n.ndigits ? ndigits : n.ndigits)+1;
char* sumPtr = new char[maxDigits];
BigInt sum(sumPtr,maxDigits);
DigitStream a(*this);
DigitStream b(n);
int i = maxDigits;
int carry = 0;
while (i—) {
*sumPtr = (a++) + (b++) + carry;
if (*sumPtr > 9) {
carry = 1;
*sumPtr —= 10;
}
else carry = 0;
sumPtr++;
}

return sum;

Friend Functions

Our abstract data type DigitStream looks quite elegant, but you may be wondering how the construc-
tor DigitStream(const BigInt&) is able to access the member variables digits and ndigits of class
BigInt. After all, digits and ndigits are private, and DigitStream(const BigInt&) is not a member
function of class Biglnt.

Well, it can’t. We need a way to grant access to these variables to just this one function. C++ pro-
vides us with a way to do this — we can make this constructor a friend of class BigInt by adding the
declaration:

friend DigitStream: :DigitStream(const BigIntég);

to the declaration of class BigInt.

We can also make all of the member functions of one class friends of another by declaring the entire
class as a friend. For example, we can make all of the member functions of class DigitStream friends
of class BigInt by placing the declaration:

friend DigitStream;

in the declaration of class BigInt.

2-22 Selected Readings

5

The Implementation

The Keyword this

Going back to the implementation of the function operator+(), you may be wondering where the
pointer variable this came from in the declaration:

DigitStream a(*this);

Previously, we described how within the body of a member function we could refer to the members of
the instance for which the function was called without using the . or —> operators. C++ also gives us
the keyword this so that we may refer to the entire instance as a unit. The keyword this is essentially
a pointer to this instance, and in our example may be thought of as a variable of type BigInt*. Thus,

the declaration DigitStream a(*this) creates an instance of DigitStream for the left operand of opera-
tor+().

The Member Function BigInt::print()

The implementation of the member function print() is straightforward:

void BigInt::print ()
{

int i;

for (i = ndigits-1; i >= 0; i--) printf("%d",digits[i]);
}

It loops through the digits array from the most significant through the least significant digits, calling
the standard C library function printf() to print each digit.

The BigInt Destructor

The only thing that the BigInt destructor function “BigInt() must do is free the dynamic storage allo-
cated by the constructors:

BigInt: :~BigInt ()
{

delete digits;
}

This is done using the C++ delete operator, which in this case frees the dynamic storage that is
pointed to by digits. The delete operator does what is usually accomplished in C by calling the stan-
dard C library function free, but in addition, if we use delete to deallocate an instance of a class hav-
ing a destructor function, the destructor is called automatically to finalize the instance just before its
storage is freed. The delete operator is thus the inverse of the new operator.

An Introduction to C++ 2-23

The Implementation

Inline Functions

By now you may be thinking that the overhead of calling all of these little member functions must
make C++ inefficient. This would be unacceptable for a proper successor to C, which is renowned for
its efficiency! So C++ allows us to declare a function to be inline, in which case each call of the func-
tion is replaced by a copy of the entire function, much like the substitution performed for the #define
preprocessor command. This entirely eliminates the overhead of calling a function, and makes encap-
sulation practical.

To make a function such as “BigInt() inline, we must move its implementation from the file BigInt.c to
the file BigInt.h and add the keyword inline to the function definition:

inline BigInt: :~BigInt ()
{

delete digits;
}

The function definition must be in BigInt.h because it will be needed by the compiler whenever a
client program uses a BigInt.

Small functions make the best candidates for inline compilation. C++ gives us a convenient shorthand
for writing inline functions: we can include the function body in the function declaration within the
class declaration. Thus, we can also make “BigInt() inline by writing:

~BigInt () { delete digits; }
in the declaration of class Biglnt.
Here is a complete version of BigInt.h showing appropriate functions made inline:

#include <stdio.h>

class BigInt {

char* digits; // pointer to digit array in free store
int ndigits; // number of digits
BigInt (char* d, int n) { // constructor function

digits = d;

ndigits = n;
}
friend DigitStream;

public:
BigiInt (const char*); // constructor function
BigInt (int) ; // constructor function
BigInt (const BigInté&): // initialization constructor function
BigInt operator+(const BigInt&); // addition operator function
void print(); // printing function
~BigInt () { delete digits; } // destructor function

b
class DigitStream {

char* dp; // pointer to current digit
int nd; // number of digits remaining

2-24 Selected Readings

&

(M

The Implementation

public:
DigitStream(const BigInt& n) { // constructor function
dp = n.digits;
nd = n.ndigits;

}
int operator++() { // return current digit and advance
if (nd = 0) return 0;
else {
nd—;
return *dp++;

}:

Summary

This completes our example abstract data type BigInt. Let’s review the C++ features presented in this
section:

m the scope resolution operator, which allows us to specify which class we mean when one or more
classes have member variables or functions with the same name;

m constant types, which we can use to protect variables or function arguments from unintended
modification;

w implicit member variable references and the keyword this, which are used within member functions
to access the instance for which the function is called;

m the new and delete operators, which manage the free storage area and call class
constructors/destructors if present;

m references, which we can use to conveniently pass pointers to instances instead of the instances
themselves as function arguments;

m friend functions, which give us a way to grant access to the private member variables and func-
tions of a class to other functions and classes; and,

m inline functions, which make data abstraction in C++ efficient and practical.

An Introduction to C++ 2-25

Other Uses for Abstract Data Types

Our BiglInt abstract data type is an obvious application for the technique of data abstraction because it
is a numeric data type, like int, and it is natural to extend the meanings of C++’s arithmetic operators
to apply to Biglnts. As you become more familiar with this technique, you’ll discover many oppor-
tunities for using abstract data types in your programs. Here are a few examples:

Dynamic Character Strings

We can define a dynamic (i.e., variable length) character string abstract data type that works like the
string variables in languages such as BASIC. We can overload the operators & and &= to concatenate
character strings, overload the relational operators <, <=, ==, and so on to compare character strings,
and overload the array subscript operator [] to address the individual characters of a string. The
function call operator:

operator() (int position, int length)

can be overloaded to perform substring extraction and replacement.

Complex Numbers

C++, like C, doesn’t have a built-in complex data type, but it's easy to define one in C++. In fact, one
is distributed with the C++ compiler. Class complex has two member variables of type double that
hold the real and imaginary parts of a complex number, and all of the usual arithmetic operators are
overloaded to perform complex arithmetic when applied to instances of class complex. Many of the
functions in the math library, such as cos() and sqrt(), are overloaded for complex arguments.

Vectors

Vectors are another useful abstract data type. We can define classes for vectors of the fundamental
data types, such as FloatVec, DoubleVec, and IntVec, and overload the arithmetic operators to apply
element-by-element to vectors. The array subscript operator [] can be overloaded to check the range
of vector subscripts or to handle vectors with arbitrary subscript bounds. It’s also possible to overload
the function call operator () to subscript multi-dimensional arrays.

Stream 1/O

A stream 1/0 package is distributed with the C++ compiler that defines the class iostream
(input/output stream) for doing formatted I/O. This class defines an instance named cin connected to
the standard input file and overloads the operator >> for all the fundamental data types so we can
write:

2-26 Selected Readings

L

J

Other Uses for Abstract Data Types

float x;

int i;

char* s;

cin >> x >> i >> s;

to read a float, and int, and a character string from the standard input file, for example. The advan-
tage of this over using the C library function scanf() is that it is not possible to make the following
types of errors:

int i;
scanf ("%£", &i) ; // float format for int
scanf ("%d",1i); // int instead of int*

Similarly, class iostream defines an instance named cout connected to the standard output file and an
instance named cerr connected to the standard error file. It overloads the operator << for all the fun-
damental data types so we can write:

cout << x << 1 << s;

to write a float, and int, and a character string to the standard output file.

We can also add our own overloadings for the operators >> and << for classes we’ve written so we can
read or write instances of these classes using the same notation.

An Introduction to C++ 2-27

Object-Oriented Programming in C++

Perhaps the most interesting features of C++ are those that support the style of programming known)
as object-oriented programming. Object-oriented programming is generally useful, but is particularly
suited for interactive graphics, simulation, and systems programming applications.

Derived Classes

Suppose we have written a C++ class defining an abstract data type, and we need another abstract
data type that is similar to it. Perhaps it requires some additional member variables or functions, or a
few of its member functions must do something differently. We’d like to reuse the code we’ve already
written and debugged as much as possible. C++ gives us a simple way to accomplish this: we can
declare the new class as a derived class of our existing class, called the base class. The derived class
inherits all of the member variables and functions of its base class. We can then differentiate the
derived class from its base class by adding member variables, adding member functions, or re-defining
member functions inherited from the base class.

A base class may have more than one derived class, and a derived class may, in turn, serve as the base
class for other derived classes. Thus, we can define an entire tree-structured arrangement of related
classes. This gives us a coherent way to organize classes and to share common code among them.

Virtual Functions

\/‘/

Now suppose we’re writing a graphics package, and we’ve written some classes for various geometric
shapes, such as Line, Triangle, Rectangle, and Circle. All of these classes implement some of the —
same member functions, for example draw() and move(). The relevant class declarations for class Line

and class Circle would look like this:

class Line {
int x1,yl1,x2,y2; // end point coordinates
public:
Line (int xx1,int yyl,int xx2,int yy2) // constructor
{ x1=xx1; yl=yyl; x2=xx2; y2=yy2; }
void draw() ; // draw a line from (x1,yl) to (x2,y2)
void move (int dx, int dy); // move line by amount dx,dy
};

class Circle {

int x,y; // center of circle
int r; // radius of circle
public:
Circle(int xx,int yy,int rr) // constructor
{ x=xx; y=yy; r=rr; }
void draw(); // draw circle with center (x,y) and radius
void move (int dx, int dy): // move circle by amount dx,dy

};

)

2-28 Selected Readings

—-

Object-Oriented Programming in C++

There are a couple of things we’d like to be able to do with these related classes. First, it would be
useful to have an abstract data type called Picture that would be a collection of Lines, Triangles, Rec-
tangles, and Circles. Second, we’d like to be able to draw() and move() our Pictures.

It would be most elegant if class Picture were general, and contained no mention of the specific

shapes. That way, we could introduce a new shape, say a Pentagon, and not have to change class Pic-
ture in any way.

We can do this by defining a base class Shape with derived classes Line, Triangle, and so on, as
shown in Figure 2-6.

Figure 2-6: Organization of Classes for a Graphics Package

Picture Shape L—- Base Class

Derived

Classes —— Line Triangle Rectangle Circle

Class Shape declares functions applicable to any kind of shape such as draw() and move() as virtual
functions, and implements these functions to write out an error message if called:

class Shape {
public:
virtual void draw(); // Shape::draw() prints error message
virtual void move(int dx, int dy); // Shape::move() prints error message
};

We change the declarations of classes Line, Triangle, and so on to be derived from class Shape by
adding the name of the base class to the declaration of the derived class; for example:

class Line : public Shape { ...

class Circle : public Shape { ...

and we also add the keyword virtual to the declarations of the functions draw() and move() in the
derived classes. We don’t have to change the implementation of these functions, however.

Now we can write class Picture to deal only with Shapes. We can represent a Picture by an array
containing pointers to its component Shapes, and we can implement Picture::draw(), for example, sim-
ply by calling Shape::draw() for each shape in the picture:

An Introduction to C++ 2-29

Object-Oriented Programming in C++

const int PICTURE CAPACITY = 100; // max number of shapes in picture -
class Picture ({ ‘ ;:)
Shape* s[PICTURE CAPACITY]; // array of pointers to shapes
int n; // current number of shapes in picture
public:
Picture(){ n = 0; } // constructor
void add(const Shapes&); // add shape to picture
void draw(); // draw picture
void move (int dx, int dy): // move picture
};
void Picture::add(const Shape& t) // add a shape to a picture
{
if (n = PICTURE_CAPACITY) {
cerr << "Picture capacity exceeded\n";
exit (1),
}
s[n++] = &t; // add pointer to shape to picture
}
void Picture: :draw{) // draw a picture
{
int i;
for (i=0; i<n; i++) s[i]->draw():;
}
Since Shape::draw() is a virtual function, C++ takes care of figuring out the specific class of each com-)

ponent Shape when the program is executed and calling the appropriate implementation of draw() for
that class. This is called dynamic binding.

If we mistakenly forget to implement draw() for a derived class of Shape, it will inherit the implemen-
tation of draw() from class Shape. When we try to draw that shape, Shape::draw() will be executed,
which issues an error message, as you'll recall.

Going a step further, we might want to be able to build a more complicated picture out of a number of
simpler pictures. We can do this by thinking of a Picture as just another type of Shape, and making it
another derived class of class Shape, leading to the class structure shown in Figure 2-7.

2-30 Selected Readings

Object-Oriented Programming in C++

Q ‘ Figure 2-7: Improved Organization of Classes for a Graphics Package
Shape
Picture Line Triangle Rectangle Circle

Class Libraries

Taking this technique to its extreme, we can define a class named, say, Object and derive every class
from it, either directly or indirectly. In class Object we can declare virtual functions that apply to all
‘ classes — functions for copying, printing, storing, reading, and comparing objects, for example. We
& : then can define general data structures comprised of Objects and functions that operate on them that
will be useful for all classes, just as class Picture could work with any derived class of Shape.

The author has written a library of about 40 general-purpose classes, modeled after the basic classes of
the Smalltalk-80 programming language. The library, known as the Object-Oriented Program Support

(OOPS) class library, contains classes such as String, Date, Time, Set (hash tables), Dictionary (associa-
tive arrays), and LinkedList.

Writing C++ programs using a class library such as this is a real delight. The classes are general-
purpose, and most programs of any size will have uses for some of them. They are flexible — if a par-
ticular class doesn’t quite do what is needed it’s usually a simple matter to derive a class that does.
And the library is extensible. It provides a framework that makes it easy to add your own custom
classes and make them function along with existing ones.

As an example, let’s see how the OOPS class library can help us with the graphics package we’ve been
discussing. The OOPS library has a class Point for representing x-y coordinates. We can use it in
graphics classes such as Line:

C

An Introduction to C++ 2-31

Object-Oriented Programming in C++

class Line : public Shape {

Point a,b; // endpoints of the line
public:
Line (Point pl, Point p2) { a=pl; b=p2; } // constructor
void draw(); // draw a line from point a to point b
void move (Point delta); // move line by delta

};

Many of the arithmetic operators are defined by class Point, so we can implement move(), for exam-
ple, by writing:

void Line: :move (Point delta)
{

a += delta; b += delta;
}

Our crude implementation of class Picture allocated an array of fixed size to hold the pointers to its
component shapes. We can use the OOPS library class OrderedCltn to make this a variable-length
array. An OrderedCltn is an array of pointers to Objects, so we can use it to hold pointers to
instances of any class derived from Object, just as we used an array of pointers to Shapes to hold
pointers to Lines, Triangles, and so on. To make class Shape a derived class of Object, we modify its
declaration:

class Shape : public Object {

Now we can write class Picture as:

class Picture : public Shape {

OrderedCltn s; // collection of pointers to shapes
public:

Picture() {} // constructor

virtual void add(const Shape&); // add shape to picture

virtual void draw(); // draw picture

virtual void move (Point delta); // move picture
}:

Class OrderedCltn defines member functions such as add(), remove(), size(), first(), and last() to let us
manipulate the pointers in the array. It also overloads the subscript operator [] so we can subscript
OrderedCltns like arrays. Using these we can write the functions Picture::add() and Picture::draw as
follows:

2-32 Selected Readings

)

Object-Oriented Programming in C++

void Picture::add(const Shape& t) // add a shape to a picture
{
s.add (t); // this calls OrderedCltn::add ()
}
void Picture: :draw() // draw a picture
{
int i;
for (i=0; i<s.size(); i++) // s.size() returns # of objects in s

((Shape*)s[i])->draw(); // cast address of ith
// to Shape* and call draw()

Now Pictures can have as many shapes in them as we need; class OrderedCltn manages the required
storage for us.

Object I/0O

Let’s write a program that uses our graphics classes to create a simple picture composed of two shapes
— a line and a circle:

main ()

{
Picture pict;
pict.add(*new Line (Point (0,0),Point (10,10)));
pict.add(*new Circle(Point (10,10),2));
pict.draw (),

}

The first statement in the body of main() declares an instance of class Picture named pict, the second
statement constructs an instance of Line with endpoints at (0,0) and (10,10) and adds it to pict, and the
third statement constructs an instance of Circle with the center at (10,10) and radius 2 and also adds it
to pict. The result is the data structure shown in Figure 2-8.

An Introduction to C++ 2-33

Object-Oriented Programming in C++

rectangles.

Figure 2-8: The data structure of a simple picture. Instances of OOPS library classes are shown as dashed

D

Line
Point a
|
|__intxc=0 |
{ _intyc=0 |
Point b
. . M Sntxc = 10 1
Picture pict | Intxc= 10 +
intyc=10 1
| S AN J
OrderedCltn s
| Object* =i Obiject*"]
| Intsize=2 | L Object*
T Circle
Class OrderedCitn
increases the size of Point center
this array as shapes r=——----=-= q
are added to the I_ _uzt_x_c_:_ {0_ N
Picture. t intyc=10 1
S A . d
intr=2

What if we wanted to save this data structure on a disk file so it could be read in later and used by
another program? The OOPS class library makes this simple. We create an output stream (an instance
of class fstream) named, for example, out, and write the picture to it with the statements:

#include <iostream.h>

#include <fstream.h>

// ...

fstream out ("picturefile",output);
pict.storeOn(out);

// include header files for
// standard C++ stream I/O

// create "picturefile"

The function storeOn(), which is implemented in class Object, handles the details of finding all of the
objects in the picture data structure and writing them to the output stream in a program-independent,
machine-independent format. The storeOn() function calls the virtual function storer() to actually
write out member variables. The storer() function is declared in class Object, and is reimplemented by
each derived class to write out its own member variables. This function is already implemented for all
of the OOPS library classes, but we must write one for any classes of our own which we’ve derived
from class Object. That’s easy to do. For example, the storer() function for class Picture looks like:

2-34 Selected Readings

void Picture: :storer(iostream& strm)

{
Shape: : storer (strm) ; // store members of base class, if any
s.storeOn(strm) ; // store member of class Picture

To read a picture from a file, we create an input stream, in, (an instance of class fstream) connected to
the file we wish to read, and read the picture from it with the statements:

#include <iostream.h> // include header files for
#include <fstream.h> // standard C++ stream I/0
// ...

fstream in("picturefile",input); // open "picturefile" read-only
readFrom(in, "Picture",pict) ;

The second argument tells readFrom() that we’'re expecting an instance of class Picture to be read, and
to complain if the next object on the input stream is of any other class.

The function readFrom() works somewhat like storeOn(), calling a small “reader” function which we
must write for each of our classes.

We can use OOPS object I/O to store and read an arbitrarily complex data structure containing
instances of both OOPS library classes and our own classes. Since the data structure is converted into
a program-independent, machine-independent format, we can send it through a UNIX pipe to another
process running on the same machine, or over a network to another process running on a different
kind of machine. This capability is particularly useful for spread sheets, forms, documents, drawings,
electronic mail, and so on. The OOPS class library also gives us a framework to use when implement-
ing object I/O for our own classes. We don’t have to spend time designing a storage format, or worry
about such issues as what to do with the pointers in a data structure, for example. We can use the
general-purpose mechanism provided by the OOPS class library, and concentrate on our particular
application. '

An Introduction to C++ : 2-35

Object-Oriented Programming in C++

The Current Status of C++

The C++ programming language is currently implemented as a translator, which accepts C++ source
code as input and produces C source code as output. The C++ translator and run-time support library
are written in C++, making them easily portable to most UNIX systems.

AT&T first made the C++ translator available to universities and non-profit organizations in December,
1984. Release 1.0 became commercially available as an unsupported product in October, 1985.

The AT&T C++ Language System can run on any UNIX machine capable of running programs up to

about 500KB in size, and having a robust C compilation system that can handle variable and external

symbol names of arbitrary length. The C compiler must also allow structure assignments and the use
of structures as function arguments and return values.

Training and third-party supported ports of the AT&T C++ Translator can be obtained for various
UNIX systems, VAX VMS, MS-DOS, and others.

D

2-36 Selected Readings

The Future of C++

The definition of the C++ programming language is not yet final. When the ANSI C standard is com-
pleted, C++ will undoubtably be revised to eliminate any unnecessary incompatibilities; for example,
the ANSI C rules for doing floating point arithmetic will be adopted. Historically, C++ has met the
challenge of evolving while remaining compatible with C and earlier versions of C++.

Will the C++ programming language be as successful as its predecessor, or will it become just another
of the countless languages that never achieve widespread use? Well, C++ has a lot going for it:

m Since C++ is, with a few minor exceptions, a superset of C, it has no fatal deficiencies. It also
possesses those attributes of C that have contributed to C’s success: portability, flexibility, and
efficiency.

m C++ is less error-prone than C. It thoroughly type-checks programs, as is the trend in modern
programming languages, but not at the expense of flexibility or convenience. A programmer

may coerce (cast) types when necessary, and define his or her own implicit type conversions for
convenience.

m Support for data abstraction and object-oriented programming make C++ a much more powerful
and expressive language than C. Yet the language remains one of manageable size, much
smaller than PL/1 or ADA, for example.

m C++ programs are compatible with UNIX and with the large number of existing C libraries for
graphics, database management, math, and statistics.

m There is a large existing community of C programmers who can begin to use C++ immediately,
gradually learning and utilizing its new features.

® The AT&T C++ Language System is commercially available in source form, is inexpensive, and
is highly portable. It makes the language accessible on almost all popular operating systems.

® AT&T is developing a portable C++ compiler, which will compile C++ programs more quickly -
than the combination of the C++ Translator and C compiler now required.

m C++ was designed at the AT&T Bell Laboratories Computer Science Research Center in Murray
Hill. They have an impressive track record in producing successful software, such as the UNIX
system and C language.

The main obstacle to the widespread adoption of C++ is that to realize its benefits one must master the
techniques of data abstraction and/or object-oriented programming — techniques that are unfamiliar
to the current generation of programmers. When this educational problem is solved, C++ should
succeed C as the language of choice for a wide range of applications.

An Introduction to C++ 2-37

Footnotes

1.

2-38

This paper fits the description in the U.S. Copyright Act of a “United States Government work.”
It was written as a part of the author’s official duties as a Government employee. This means it
cannot be copyrighted. This paper is freely available to the public for use without a copyright
notice, and there are no restrictions on its use, now or subsequently.

The author’s time and the computer facilities required to prepare this paper were provided by
the Computer Systems Laboratory, Division of Computer Research and Technology, National
Institutes of Health.

Binary operators such as + are usually not defined as member functions because automatic
conversion of types is not done for the left operand. For example, the expression a + 47 is
equivalent to a.operator+(47). C++ recognizes that the function operator+(const BigInt&) is
defined and that the constructor BigInt(int) can be used to convert the int 47 to a BigInt before
calling operator+. However, the expression 47 + a is equivalent to 47.operator+(a), which is an
error because 47 is not an instance of a class and therefore has no member functions that can be
applied to it. For this reason, binary operators are usually defined as friend functions, which are
discussed later.

Selected Readings

An Overview of C++

An Overview of C++

3-1

Introduction 3-1

What is Good about C? 3-1

A Better C 3-2

m Argument Type Checking and Coercion 3-2

m Inline Functions 3-3

m Scoped and Typed Constants 3-3

m Varying Numbers of Arguments 3-3

m Declarations as Statements 3-4

Support for Data Abstraction 3-5

m Initialization and Cleanup 3-6

m Free Store Operators 3-6

m References 3-7

m Assignment and Initialization 3-8

m Operator Overloading 3-9

m Coercions 3-9
Support for Object-Oriented Programming 3-10
m Derived Classes 3-10
m Virtual Functions 3-12
m Visibility Control 3-13
What is Missing? 3-14
Conclusions 3-15
Footnotes 3-16

Table of Contents

C

An Overview of C++

1 This chapter is taken directly from a paper by Bjarne Stroustrup.
NOTE

Introduction

C++ is a general purpose programming language designed to make programming more enjoyable for
the serious programmer. Except for minor details, C++ is a superset of the C language. C++ was
designed to

m be a better C
®m support data abstraction
B support object-oriented programming

This paper describes the features added to C to achieve this. In addition to C, the main influences on
the design of C++ were Simula67 and Algol68.

C++ has been in use for about four years and has been applied to most branches of systems program-
ming including compiler construction, data base management, graphics, image processing, music syn-
thesis, networking, numerical software, programming environments, robotics, simulation, and switch-
ing. It has a highly portable implementation and there are now thousands of installations including
AT&T 3B, DEC VAX, Intel 80286, Motorola 68000, and Amdahl machines running UNIX and other
operating systems.

What is Good about C?

C is clearly not the cleanest language ever designed nor the easiest to use; so why do so many people
use it?

m C is flexible: it is possible to apply C to most every application area, and to use most every pro-
gramming technique with C. The language has no inherent limitations that preclude particular
kinds of programs being written.

m C is efficient: the semantics of C are “low level”; that is, the fundamental concepts of C mirror
the fundamental concepts of a traditional computer. Consequently, it is relatively easy for a
compiler and/or a programmer to utilize hardware resources for a C program efficiently.

m C is available: given a computer, whether the tiniest micro or the largest super-computer, the
chance is that there is an acceptable quality C compiler available and that that C compiler sup-
ports an acceptably complete and standard C language and library. There are also libraries and
support tools available, so that a programmer rarely needs to design a new system from scratch.

m Cis portable: a C program is not automatically portable from one machine (and operating sys-
tem) to another nor is such a port necessarily easy to do. It is, however, usually possible and the
level of difficulty is such that porting even major pieces of software with inherent machine
dependences is typically technically and economically feasible.

An Overview of C++ 3-1

An Overview of C++

Compared with these “first order” advantages, the “second order” drawbacks like the curious C / \)
declarator syntax and the lack of safety of some language constructs become less important. Designing \

“‘a better C” implies compensating for the major problems involved in writing, debugging, and main-

taining C programs without compromising the advantages of C. C++ preserves all these advantages and

compatibility with C at the cost of abandoning claims to perfection and of some compiler and

language complexity. However, designing a language ““from scratch” does not ensure perfection and

the C++ compilers compare favorably in run-time, have better error detection and reporting, and equal

the C compilers in code quality.

A Better C

The first aim of C++ is to be “a better C"” by providing better support for the styles of programming
for which C is most commonly used. This primarily involves providing features that make the most
common errors unlikely (since C++ is a superset of C such errors cannot simply be made impossible).

Argument Type Checking and Coercion

The most common error in C programs is a mismatch between the type of a function argument and
the type of the argument expected by the called function. For example:

double sqrt(a) double a;
{

/* ... */
}

double sq2 = sqrt(2):)

Since C does not check the type of the argument 2, the call sqrt(2) will typically cause a run time error
or give a wrong result when the square root function tries to use the integer 2 as a double precision
floating point number. In C++, this program will cause no problem since 2 will be converted to a
floating point number at the point of the call. That is, sqrt(2) is equivalent to sqrt((double)2).

Where an argument type does not match the argument type specified in the function declaration and
no type conversion is defined the compiler issues an error message. For example, in C++ sqrt("Hello")
causes a compile time error.

Naturally, the C++ syntax also allows the type of arguments to be specified in function declarations:
double sqgrt (double) ;
and a matching function definition syntax is also introduced:

double sqrt (double d)
{

/...
}

>

3-2 Selected Readings

An Overview of C++

Inline Functions

Most C programs rely on macros to avoid function call overhead for small frequently-called opera-
tions. Unfortunately the semantics of macros are very different from the semantics of functions so the
use of macros has many pitfalls. For example:

#define mul (a,b) a*b
int z = mul (x*3+2,y/4);

Here z will be wrong since the macro will expand to x*3+2*y/4. Furthermore, C macro definitions do
not follow the syntactic rules of C declarations, nor do macro names follow the usual C scope rules.
C++ circumvents such problems by allowing the programmer to declare inline functions:

inline int mul(int a, int b) { return a*b; }

An inline function has the same semantics as a “normal” function but the compiler can typically inline
expand it so that the code-space and run-time efficiency of macros are achieved.

Scoped and Typed Constants

Since C does not have a concept of a symbolic constant macros are used. For example:

#define TBIMAX (TBLSIZE-1)

Such “constant macros” are neither scoped nor typed and can (if not properly parenthesized) cause
problems similar to those of other macros. Furthermore, they must be evaluated each time they are
used and their names are “lost” in the macro expansion phase of the compilation and consequently are
not known to symbolic debuggers and other tools. In C++ constants of any type can be declared:

const int TBIMAX = TBLSIZE-1;

Varying Numbers of Arguments

Functions taking varying numbers of arguments and functions accepting arguments of different types
are common in C. They are a notable source of both convenience and errors.

C functions where the type of arguments or the number of arguments (but not both) can vary can be
handled in a simple and type-secure manner in C++. For example, a function taking one, two, or three
arguments of known type can be handled by supplying default argument values which the compiler
uses when the programmer leaves out arguments. For example:

void print (char*, char* = "-", char* = "-");
print ("one", "two", "three");

print("one", "tWO"),' // that iS, print ("one", "tWO", lv_n);
print ("one"); // that is, print ("one", "-", "-");

An Overview of C++ 3-3

An Overview of C++

Some C functions take arguments of varying types to provide a common name for functions perform- J
ing similar operations on objects of different types. This can be handled in C++ by overloading a func- ‘

tion name. That is, the same name can be used for two functions provided the argument types are

sufficiently different to enable the compiler to “pick the right one”” for each call. For example:

void print (int);
void print (char*);

print (1) ; // integer print function
print ("two"); // string print function

The most general examples of C functions with varying arguments cannot be handled in a type-secure
manner. Consider the standard output function printf, which takes a format string followed by an
arbitrary collection of arguments supposedly matching the format string:!

printf("a string");
printf("x = %d\m",x);
printf ("name: %s\m size: %d\n", obj.name, obj.size);

However, in C++ one can specify the type of initial arguments and leave the number and type of the
remaining arguments unspecified. For example, printf and its variants can be declared like this:

int printf (const char* ...);

int fprintf(FILE*, const char* ...);

int sprintf(char*, const char* ...); D
These declarations allow the compiler to catch errors such as

printf (stderr,"x = %d\m",x); // error: printf does not take a FILE*

fprintf ("x = %d\m",x); // error: fprintf needs a FILE*

Declarations as Statements

Uninitialized variables are another common source of errors. One cause of this class of errors is the
requirement of the C syntax that declarations can occur only at the beginning of a block (before the
first statement). In C++, a declaration is considered a kind of statement and can consequently be
placed anywhere. It is often convenient to place the declaration where it is first needed so that it can
be initialized immediately. For example:

void some_function(char* p)

{
if (p==0) error("p==0 in some_function");
int length = strlen(p);
/] ...

D

3-4 Selected Readings

An Overview of C++

Support for Data Abstraction

C++ provides support for data abstraction: the programmer can define types that can be used as con-
veniently as built-in types and in a similar manner. Arithmetic types such as rational and complex
numbers are common examples: :

class complex {
double re, im;
public:
complex (double
complex (double

friend complex
friend complex
friend complex
friend complex
friend complex
/! ...

r, double i) { re=r; imi; }
r) { re=r; im=0; } // float->complex conversion

operator+ (complex, complex);

operator- (complex, complex); // binary minus
operator- (complex) ; // unary minus
operator* (complex, complex)

operator/ (complex, complex);

The declaration of class (that is, user-defined type) complex specifies the representation of a complex
number and the set of operations on a complex number. The representation is private; that is, re and
im are accessible only to the functions defined in the declaration of class complex. Such functions can

be defined like this:

complex operator+(complex al, complex a2)

{

return complex(al.re+a2.re, al.imt+a2.im);

}

and used like this:

main()

{
complex a = 2.3;
complex b = 1/a;

complex ¢ = at+bt+complex(1,2.3);

/7 ..

Functions declared in a class declaration using the keyword friend are called friend functions. They do
not differ from ordinary functions except that they may use private members of classes that name
them friends. A function can be declared as a friend of more than one class. Other functions declared
in a class declaration are called member functions. A member function is in the scope of the class and
must be invoked for a specific object of that class.

An Overview of C++

3-5

An Overview of C++

Initialization and Cleanup D

When the representation of a type is hidden some mechanism must be provided for a user to initialize
variables of that type. A simple solution is to require a user to call some function to initialize a vari-
able before using it. This is error prone and inelegant. A better solution is to allow the designer of a
type to provide a distinguished function to do the initialization. Given such a function, allocation and
initialization of a variable becomes a single operation (often called instantiation) instead of two
separate operations. Such an initialization function is called a constructor. In cases where construction
of objects of a type is non-trivial one often needs a complementary operation to clean up objects after
their last use. In C++ such a cleanup function is called a destructor. Consider a vector type:

class vector {

int sz; // number of elements

int* v; // pointer to integers
public:

vector (int) ; // constructor

~vector() ; // destructor

/7 .

i
The vector constructor can be defined to allocate a suitable amount of space like this:

vector: :vector (int s)

{
if (s<=0) error("bad vector size");
sz = §; .
v = new int[s]; // allocate an array of "s" integers ;)

} R

The cleanup done by the vector destructor consists of freeing the storage used to store the vector ele-
ments for re-use by the free store manager: .
vector: :~vector()
{

delete v; // deallocate the memory pointed to by v
}

C++ does not support garbage collection. This is, however, compensated for by enabling a type to
maintain its own storage management without requiring intervention from a user. Class vector is an
example of this.

Free Store Operators

The operators new and delete were introduced to provide a standard notation for free store allocation
and deallocation. A user can provide alternatives to their default implementations by defining func-
tions called operator new and operator delete. For built-in types the new and delete operators pro-
vide only a notational convenience (compared with the standard C functions malloc() and free()). For
user-defined types such as vector the free store operators ensure that constructors and destructors are
called properly:

3-6 Selected Readings

C“
b
;

An Overview of C++

vector* fctl(int n)
{
vector v(n); // allocate a vector on the stack
// the constructor is called
vector* p = new vector(n); // allocate a vector on the free store
// the constructor is called
/7 ...
return p;

// the destructor is implicitly called for "v" here

void fct2 ()
{
vector* pv = fctl(10);
// ...
delete pv; // call the destructor and free the store

References

-C provides (only) “call by value” semantics for function argument passing; “call by reference” can be

simulated by explicit use of pointers. This is sufficient, and often preferable to using ‘“pass by value”
for the built-in types of C. However, it can be inconvenient for larger objects2 and can get seriously in
the way of defining conventional notation for user-defined types in C++. Consequently, the concept of
a reference is introduced. A reference acts as a name for an object; T& means reference to T. A refer-
ence must be initialized and becomes an alternative name for the object it is initialized with. For
example:

int a = 1; // "a" is an integer initialized to "1"
int& r = a; // "r" is a reference initialized to "a"

The reference r and the integer a can now be used in the same way and with the same meaning. For
example:

int b = r; // "b" is initialized to the value of "r", that is, "1"
r=2; // the value of "r", that is, the value of "a" becomes "2"

References enable variables of types with “large representations” to be manipulated efficiently without
explicit use of pointers. Constant references are particularly useful:

matrix operator+(const matrix& a, const matrix& b)
{

// code here cannot modify the value of "a" or "b"
}

matrix a = b+c;

In such cases the “call by value”” semantics are preserved while achieving the efficiency of “call by
reference.”

An Overview of C++ 3-7

An Overview of C++

Assignment and Initialization

Controlling construction and destruction of objects is sufficient for many, but not all, types. It can also
be necessary to control all copy operations. Consider:

vector v1(100); // make vl a vector of 100 elements
vector v2 = vl; // make v2 a copy of vl
vl = v2; // assign vl to v2 (that is, copy the elements)

Declaring a function with the name operator= in the declaration of class vector specifies that vector
assignment is to be implemented by that function:

class vector ({

int* v;

int sz;
public:

/! ...

void operator=(vector&); // assignment
}:

Assignment might be defined like this:

void vector: :operator=(vector& a) // check size and copy elements
{

if (sz != a.sz) error("bad vector size for =");

for (int i = 0; i<sz; i++) v[i] = a.v[i];
}

Since the assignment operation relies on the “old value” of the vector assigned to, it cannot be used to
implement initialization of one vector with another. What is needed is a constructor that takes a vec-
tor argument:

class vector ({

/! ...

vector (int) ; // create vector

vector (vectors&); // create vector and copy elements
};

vector: :vector (vector& a) // initialize a vector from another vector
{

sz = a.sz; // same size

v = new int[sz]; // allocate element array

for (int i = 0; i<sz; i++) v[i] = a.v[i]; // same values

}

A constructor like this (of the form X(X&)) is used to handle all initialization. This includes arguments
passed “by value” and function return values:

3-8 Selected Readings

)

An Overview of C++

vector v2 = vl; // use vector(vector&) constructor to initialize

void f (vector);
£(v2); // use vector (vector&) constructor to pass a copy of v2

vector g(int sz)
{
vector v(sz);
return v; // use vector (vector&) constructor to return a copy of v

Operator Overloading

As demonstrated above, standard operators like +, -, *, / can be defined for user-defined types, as can
assignment and initialization in its various guises. In general, all the standard operators with the
exception of

can be overloaded. The subscripting operator [] and the function application operator () have proven
particularly useful. The C “operator assignment” operators, such as += and *=, have also found many
uses.

It is not possible to redefine an operator when applied to built-in data types, to define new operators,
or to redefine the precedence of operators.

Coercions

User-defined coercions, like the one from floating point numbers to complex numbers implied by the
constructor complex(double), have proven unexpectedly useful in C++. Such coercions can be applied
explicitly or the programmer can rely on the compiler adding them implicitly where necessary and
unambiguous:

complex a = complex(l);

complex b = 1; // implicit: 1 -> complex (1)
a = bt+complex(2);

a = b+2; // implicit: 2 —> complex(2)
a = 2+b; // implicit: 2 -> complex(2)

Coercions were introduced into C++ because mixed mode arithmetic is the norm in languages used for
numerical work and because most user-defined types used for “calculation” (for example, matrices,
character strings, and machine addresses) have natural mappings to and/or from other types.

Great care is taken (by the compiler) to apply user-defined conversions only where a unique conver-
sion exists. Ambiguities caused by conversions are compile time errors.

It is also possible to define a conversion to a type without modifying the declaration of that type. For
example:

An Overview of C++ 3-9

An Overview of C++

class point { D
float dist;

float angle;
public:
// ...
operator complex() // convert point to complex number
{
return polar(dist,angle);
} .
operator double () // convert point to real number
{
if (angle) error("cannot convert point to real: angle!=0");
return dist;

}:
These conversions could be used like this:

void some_ function(point a)

{

complex z = a; // z = a.operator complex()
double d = a; // d = a.operator double ()
complex z3 = a+3; // z3 = a.operator complex() + complex(3);
/7 ...
}
This is particularly useful for defining conversions to built-in types since there is no declaration for a (\)

built-in type for the programmer to modify. It is also essential for defining conversions to “standard”
user-defined types where a change may have (unintentionally) wide ranging ramifications and where
the average programmer has no access to the declaration.

Support for Object-Oriented Programming

C++ provides support for object-oriented programming: the programmer can define class hierarchies
and a call of a member function can depend on the actual type of an object (even where the actual
type is unknown at compile time). That is, the mechanism that handles member function calls handles
the case where it is known at compile time that an object belongs to some class in a hierarchy, but
exactly which class can only be determined at run time. See examples below.

Derived Classes

C++ provides a mechanism for expressing commonality among different types by explicitly defining a
class to be part of another. This allows re-use of classes without modification of existing classes and
without replication of code. For example, given a class vector:

3-10 Selected Readings

An Overview of C++

C/ class vector {
J/ /7 ...
public:
/..
vector (int) ;

int& operator[] (int); // overload the subscripting operator: []
}

one might define a vector for which a user can define the index bounds:

class vec : public vector {
int low, high;
public:
vec(int, int);
int& operator[] (int);
};

Defining vec as
: public vector

means that first of all a vec is a vector. That is, type vec has (“inherits”) all the properties of type vec-
tor in addition to the ones declared specifically for it. Class vector is said to be the base class for vec,
and conversely vec is said to be derived from vector.

Class vec modifies class vector by providing a different constructor, requiring the user to specify the
C/, two index bounds rather than the size, and by providing its own access function operator[l(). A vec’s
" operator{]J() is easily expressed in terms of vector’s operator[l():

int& vec::operator|] (int i)
{

return vector: :operator[] (i~low);
}

The scope resolution operator :: is used to avoid getting caught in an infinite recursion by calling
vec::operator[]() from itself. Note that vec::operator[]l() had to use a function like vector::operator(]() to
access elements. It could not just use vector’s members v and sz directly since they were declared
private and therefore accessible only to vector’s member functions.

The constructor for vec can be written like this:

vec::vec(int lb, int hb) : vector (hb-lb+l)
{

if (hb-1b<0) hb = 1lb;

low = 1b;

high = hb;
}

The construct :vector(hb-1b+1) is used to specify the argument list needed for the base class construc-
tor vector().

C

An Overview of C++ 3-11

An Overview of C++

Class vec can be used like this: . J

void some_function(int 1, int h)
{
vec vl(l,h);
const int sz = h-1+1;
vector v2(sz);
// ...
for (int i=0; i<sz; i++) v2[i] = v1[1l+i]; // copy elements explicitly
v2 = vl; // copy elements by using vector: :operator=()

Virtual Functions

Class derivation (often called subclassing) is a powerful tool in its own right but a facility for run-time
type resolution is needed to support object-oriented programming.

Consider defining a type shape for use in a graphics system. The system has to support circles, trian-
gles, squares, and many other shapes. First specify a class that defines the general properties of all
shapes:

class shape {
point center;
color col;

/...

public:
point where() { return center; })
void move (point to) { center = to; draw(); }
virtual void draw();
virtual void rotate(int);
// .

};

The functions for which the calling interface can be defined, but where the implementation cannot be
defined except for a specific shape, have been marked virtual (the Simula67 and C++ term for “to be
defined later in a class derived from this one”). Given this definition one can write general functions
manipulating shapes:

void rotate_all (shape* v, int size, int angle)
// rotate all members of vector "v" of size "size" "angle" degrees
{
for (int i = 0; i < size; i++) v[i].rotate(angle);
}

For each shape vlil, the proper rotate function for the actual type of the object will be called. That
“‘actual type” is not known at compile time.

To define a particular shape we must say that it is a shape (that is, derive it from class shape) and
specify its particular properties (including the virtual functions):

3-12 Selected Readings

~
}
Ve

An Overview of C++

class circle : public shape {

int radius;
public:

void draw() { /* ... */ };

void rotate (int) {} // yes, the null function
}:

In many contexts it is important that the C++ virtual function mechanism is very nearly as efficient as
a “normal” function call. The additional run-time overhead is about 4 memory references (dependent
on the machine architecture and the compiler) and the memory overhead is one word per object plus
one word per virtual function per class.

Visibility Control

The basic scheme for separating the (public) user interface from the (private) implementation details
has worked out very well for data abstraction uses of C++. It matches the idea that a type is a black
box. It has proven to be less than ideal for object-oriented uses.

The problem is that a class defined to be part of a class hierarchy is not simply a black box. It is often
primarily a building block for the design of other classes. In this case the simple binary choice
public[private can be constraining. A third alternative is needed: a member should be private as far as
functions outside the class hierarchy are concerned but accessible to member functions of a derived
class in the same way that it is accessible to members of its own class. Such a member is said to be
protected.

For example, consider a class node for some kind of tree:

class node {

// private stuff
protected:

node* left;

node* right;

// more protected stuff
public:

virtual void print();

// more public stuff
}:

The pointers left and right are inaccessible to the general user but any member function of a class
derived from class node can manipulate the tree without overhead or inconvenience.

The protection/hiding mechanism applies to names independently of whether a name refers to a func-
tion or a data member. This implies that one can have private and protected function members. Usu-
ally it is good policy to keep data private and present the public and protected interfaces as sets of
functions. This policy minimizes the effect of changes to a class on its users and consequently maxim-
izes its implementor’s freedom to make changes.

Another refinement of the basic inheritance scheme is that it is possible to inherit public members of a
base class in such a way that they do not become public members of the derived class. This can be
used to provide restricted interfaces to standard classes. For example:

An Overview of C++ 3-13

An Overview of C++

class dequeue {
/7.
void insert (elem¥*) ;
void append(elem*);
elem* remove();

};

Given a dequeue a stack can be defined as a derived class where only the insert() and remove() opera-
tions are defined:

class stack : private dequeue { // note: just ":" not ": public" members
// of dequeue are private members of stack
public:
dequeue: :insert; // make "insert" a public member of stack
dequeue: : remove; // make "remove" a public member of stack

b
Alternatively, inline functions can be defined to give these operations the conventional names:

class stack : private dequeue {

public:
void push (elem* ee) { dequeue::insert (ee); }
elem* pop() { return dequeue::remove(); }

}:

What is Missing?

C++ was designed under severe constraints of compatibility, internal consistency, and efficiency: no
feature was included that

would cause a serious incompatibility with C at the source or linker levels

would cause run-time or space overheads for a program that did not use it

would increase run-time or space requirements for a C program

would significantly increase the compile time compared with C

could only be implemented by making requirements of the programming environment (linker,
loader, etc.) that could not be simply and efficiently implemented in a traditional C program-
ming environment

Features that might have been provided but weren’t because of these criteria include garbage collec-
tion, parameterized classes, exceptions, support for concurrency, and integration of the language with
a programming environment. Not all of these possible extensions would actually be appropriate for
C++ and unless great constraint is exercised when selecting and designing features for a language a
large, unwieldy, and inefficient mess will result. The severe constraints on the design of C++ have
probably been beneficial and will continue to guide the evolution of C++.

3-14 Selected Readings

)
C y
/

An Overview of C++

Conclusions

C++ has succeeded in providing greatly improved support for traditional C-style programming
without added overhead. In addition, C++ provides sufficient language support for data abstraction
and object-oriented programming in demanding (both in terms of machine utilization and application
complexity) real-life applications. C++ continues to evolve to meet demands of new application areas.
There still appears to be ample scope for improvement even given the (self imposed) Draconian criteria
for compatibility, consistency, and efficiency. However, currently the most active areas of develop-
ment are not the language itself but libraries and support tools in the programming environment.

An Overview of C++ 3-15

Footnotes

D

1. A C++1/0 system that avoids the type insecurity of the printf approach is described in The C++
Programming Language.

2. As indicated by an inconsistency in the C semantics, arrays are always passed by reference.

3-16 Selected Readings

C }

Object-Oriented Programming

What is “Object-Oriented Programming”? 4-1
Abstract 41
Introduction 41
Programming Paradigms 4-2
s Procedural Programming 4-2
m Data Hiding 4.3
m Data Abstraction 4-5
m Problems with Data Abstraction 4-7
m Object-Oriented Programming 4-8
Support for Data Abstraction 4-9
m Initialization and Cleanup 4-9
m Assignment and Initialization 4-10
m Parameterized Types 4-12
m Exception Handling 413
u Coercions 4-14
m lterators 4-15
m Implementation Issues 4-16
Support for Object-Oriented programming 417
m Calling Mechanisms 417
m Type Checking 4-18
m Inheritance 4-19
m Multiple Inheritance 4-20
m Encapsulation 4-21
a Implementation Issues 4-23
Limits to Perfection 4-23
Conclusions 4-24
Footnotes 4-25

Table of Contents

What is “Object-Oriented Programming”?

This chapter is taken directly from a paper by Bjarne Stroustrup.

Abstract

“Object-Oriented Programming” and “Data Abstraction” have become very common terms. Unfor-
tunately, few people agree on what they mean. I will offer informal definitions that appear to make
sense in the context of languages like Ada, C++, Modula-2, Simula, and Smalltalk. The general idea is
to equate “support for data abstraction” with the ability to define and use new types and equate “sup-
port for object-oriented programming” with the ability to express type hierarchies. Features necessary
to support these programming styles in a general purpose programming language will be discussed.
The presentation centers around C++ but is not limited to facilities provided by that language.

Introduction

Not all programming languages can be “‘object oriented.”” Yet claims have been made to the effect that
APL, Ada, Clu, C++, LOOPS, and Smalltalk are object-oriented programming languages. I have heard
discussions of object-oriented design in C, Pascal, Modula-2, and CHILL. Could there somewhere be
proponents of object-oriented Fortran and Cobol programming? I think there must be. “Object-
oriented” has in many circles become a high-tech synonym for “good,” and when you examine discus-
sions in the trade press, you can find arguments that appear to boil down to syllogisms like:

Ada is good
Object oriented is good

Ada is object oriented

This paper presents one view of what “object oriented” ought to mean in the context of a general pur-
pose programming language.

m ’ " ~-ihes “object-oriented programming” and “‘data abstraction’ from each other and from
of programming and presents the mechanisms that are essential for supporting the

.18 of programming
m presents features needed to make data abstraction effective
m discusses facilities needed to support object-oriented programming

m presents some limits imposed on data abstraction and object-oriented programming by tradi-
tional hardware architectures and operating systems

Examples will be presented in C++. The reason for this is partly to introduce C++ and partly because
C++ is one of the few languages that supports both data abstraction and object-oriented programming
in addition to traditional programming techniques. Issues of concurrency and of hardware support for
specific higher-level language constructs are ignored in this paper.

Object-Oriented Programming 4-1

Object-Oriented Programming

Programming Paradigms

Object-oriented programming is a technique for programming — a paradigm for writing “good” pro-
grams for a set of problems. If the term “object-oriented programming language” means anything it

must mean a programming language that provides mechanisms that support the object-oriented style
of programming well.

There is an important distinction here. A language is said to support a style of programming if it pro-
vides facilities that make it convenient (reasonably easy, safe, and efficient) to use that style. A
language does not support a technique if it takes exceptional effort or exceptional skill to write such
programs; it merely enables the technique to be used. For example, you can write structured programs
in Fortran, write type-secure programs in C, and use data abstraction in Modula-2, but it is unneces-
sarily hard to do because these languages do not support those techniques.

Support for a paradigm comes not only in the obvious form of language facilities that allow direct use
of the paradigm, but also in the more subtle form of compile-time and/or run-time checks against
unintentional deviation from the paradigm. Type checking is the most obvious example of this; ambi-
guity detection and run-time checks can be used to extend linguistic support for paradigms. Extra-
linguistic facilities such as standard libraries and programming environments can also provide
significant support for paradigms.

A language is not necessarily better than another because it possesses a feature the other does not.
There are many examples to the contrary. The important issue is not so much what features a
language possesses but that the features it does possess are sufficient to support the desired program-
ming styles in the desired application areas:

m all features must be cleanly and elegantly integrated into the language

m it must be possible to use features in combination to achieve solutions that would otherwise
have required extra separate features

m there should be as few spurious and “special purpose” features as possible

m a feature should be such that its implementation does not impose significant overheads on pro-
grams that do not require it

m a user need only know about the subset of the language explicitly used to write a program

The last two principles can be summarized as “what you don’t know won't hurt you.” If there are
any doubts about the usefulness of a feature it is better left out. It is much easier to add a feature to a
language than to remove or modify one that has found its way into the compilers or the literature.

I will now present some programming styles and the key language mechanisms necessary for support-
ing them. The presentation of language features is not intended to be exhaustive.

Procedural Programming
The original (and probably still the most commonly used) programming paradigm is:

Decide which procedures you want;
use the best algorithms you can find.

4-2 Selected Readings

The focus is on the design of the processing, the algorithm needed to perform the desired computa-
tion. Languages support this paradigm by facilities for passing arguments to functions and returning
values from functions. The literature related to this way of thinking is filled with discussion of ways
of passing arguments, ways of distinguishing different kinds of arguments, different kinds of functions

(procedures, routines, macros, ...), etc. Fortran is the original procedural language; Algol60, Algolé8,
C, and Pascal are later inventions in the same tradition.

A typical example of “good style” is a square root function. It neatly produces a result given an argu-
ment. To do this, it performs a well understood mathematical computation:

double sqrt (double arg)
{

// the code for calculating a square root
}

void some_function()

{
double root2 = sqrt(2):
/7 ...

From a program organization point of view, functions are used to create order in a maze of algo-
rithms. : :

Data Hiding

Over the years, the emphasis in the design of programs has shifted away from the design of pro-
cedures towards the organization of data. Among other things, this reflects an increase in the program
size. A set of related procedures with the data they manipulate is often called a module. The program-
ming paradigm becomes:

Decide which modules you want;
partition the program so that data is hidden in modules.

This paradigm is also known as the “data hiding principle.” Where there is no grouping of pro-
cedures with related data the procedural programming style suffices. In particular, the techniques for

designine zood procedures” are now applied for each procedure in a module. The most common
exa .o is a definition of a stack module. The main problems that have to be solved for a good solu-
tion are:

m provide a user interface for the stack (for example, functions push() and pop())

m ensure that the representation of the stack (for example, a vector of elements) can only be
accessed through this user interface

m ensure that the stack is initialized before its first use

Here is a plausible external interface for a stack module:

Object-Oriented Programming 4-3

Object-Orlented Programming

Object-Oriented Programming

// declaration of the interface of module stack of characters
char pop();

void push(char):

const stack _size = 100;

Assuming that this interface is found in a file called stack.h, the “internals” can be defined like this:

#include "stack.h"

static char v([stack_sizel; // “‘static’’ means local to this file/module
static char* p = v; // the stack is initially empty

char pop()
{

// check for underflow and pop
}

void push(char c)
{

// check for overflow and push
}

It would be quite feasible to change the representation of this stack to a linked list. A user does not
have access to the representation anyway (since v and p were declared static, that is local to the
file/module in which they were declared). Such a stack can be used like this:

#include "stack.h"

void some_function()
{
char ¢ = pop(push(’c’)):
if (c !'= ’c’) error("impossible");

Pascal (as originally defined) doesn’t provide any satisfactory facilities for such grouping: the only
mechanism for hiding a name from “the rest of the program” is to make it local to a procedure. This
leads to strange procedure nestings and over-reliance on global data.

C fares somewhat better. As shown in the example above, you can define a “module” by grouping
related function and data definitions together in a single source file. The programmer can then control
which names are seen by the rest of the program (a name can be seen by the rest of the progr:: - - #less
it has been declared static). Consequently, in C you can achieve a degree of modularity. How .- .

there is no generally accepted paradigm for using this facility and the technique of relying on static
declarations is rather low level.

One of Pascal’s successors, Modula-2, goes a bit further. It formalizes the concept of a module, making
it a fundamental language construct with well defined module declarations, explicit control of the
scopes of names (import/export), a module initialization mechanism, and a set of generally known and
accepted styles of usage.

4-4 Selected Readings

Object-Oriented Programming

The differences between C and Modula-2 in this area can be summarized by saying that C only enables
the decomposition of a program into modules, while Modula-2 supports that technique.

Data Abstraction

Programming with modules leads to the centralization of all data of a type under the control of a type
manager module. If one wanted two stacks, one would define a stack manager module with an inter-
face like this:

class stack id; // stack_id is a type
// no details about stacks or stack_ids are known here

stack_id create stack(int size); // make a stack and return its identifier
destroy_stack(stack_id); // call when stack is no longer needed

void push(stack_id, char):;
char pop(stack_id):

This is certainly a great improvement over the traditional unstructured mess, but “types” implemented
this way are clearly very different from the built-in types in a language. Each type manager module
must define a separate mechanism for creating “variables” of its type, there is no established norm for
assigning object identifiers, a “variable” of such a type has no name known to the compiler or pro-
gramming environment, nor do such “variables” obey the usual scope rules or argument passing rules.

A type created through a module mechanism is in most important aspects different from a built-in
type and enjoys support inferior to the support provided for built-in types. For example:

void £{()

{
stack_id sl;
stack id s2;

sl = create_stack(200);
// Oops: forgot to create s2

char cl = pop(sl,push(sl,’a’)):
if (cl != ’c’) error("impossible");

..;ar c2 = pop(s2,push(s2,’a’)):
if (c2 != ’¢’) error("impossible"):;

destroy(s2) ;
// Oops: forgot to destroy sl
}

In other words, the module concept that supports the data hiding paradigm enables this style of pro-
gramming, but it does not support it.

Object-Oriented Programming - 45

Object-Oriented Programming

Languages such as Ada, Clu, and C++ attack this problem by allowing a user to define types that
behave in (nearly) the same way as built-in types. Such a type is often called an abstract data type.! The
programming paradigm becomes:

Decide which types you want;
provide a full set of operations for each type.

Where there is no need for more that one object of a type the data hiding programming style using
modules suffices. Arithmetic types such as rational and complex numbers are common examples of
user defined types:

class complex {
double re, im;
public:
complex (double r, double i) { re=r; imei; }
complex (double r) { re=r; im=0; } // float—>complex conversion

friend complex operator+(complex, complex);

friend complex operator-(complex, complex):; // binary minus
friend complex operator- (complex) ; // unary minus
friend complex operator* (complex, complex):;

friend complex operator/(complex, complex);

// ...

The declaration of class (that is, user defined type) complex specifies the representation of a complex
number and the set of operations on a complex number. The representation is private; that is, re and
im are accessible only to the functions specified in the declaration of class complex. Such functions
can be defined like this:

complex operator+(complex al, complex a2)
{

return complex(al.re+a2.re,al.imta2.im);
}

and used like this:

complex a = 2.3;

complex b = 1/a;

complex ¢ = at+b*complex(l,2.3);
/7 ...

c = —(a/b)+2;

Most, but not all, modules are better expressed as user defined types. For concepts where the
“module representation” is desirable even when a proper facility for defining types is available, the
programmer can declare a type and only a single object of that type. Alternatively, a language might
provide a module concept in addition to and distinct from the class concept.

4-6 : Selected Readings

D

Object-Orlented Programming

C} Problems with Data Abstraction

An abstract data type defines a sort of black box. Once it has been defined, it does not really interact
with the rest of the program. There is no way of adapting it to new uses except by modifying its
definition. This can lead to severe inflexibility. Consider defining a type shape for use in a graphics
system. Assume for the moment that the system has to support circles, triangles, and squares.
Assume also that you have some classes:

class point{ /* ... */ };
class color{ /* ... */ };

You might define a shape like this:
enum kind { circle, triangle, square };

class shape {
point center;

color col;
kind k;
// representation of shape
public:
point where () { return center; }

void move (point to) { center = to; draw(); }
void draw():

void rotate(int);

// more operations

C ’

The “type field” k is necessary to allow operations such as draw() and rotate() to determine what kind
of shape they are dealing with (in a Pascal-like language, one might use a variant record with tag k).
The function draw() might be defined like this:

void shape: :draw()
{
switch (k) {
case circle:
// draw a circle
break;
case triangle:
// draw a triangle
break;
case square:
// draw a square
}
}

This is a mess. Functions such as draw() must “know about” all the kinds of shapes there are. There-
fore the code for any such function grows each time a new shape is added to the system. If you define
a new shape, every operation on a shape must be examined and (possibly) modified. You are not able
to add a new shape to a system unless you have access to the source code for every operation. Since
adding a new shape involves “touching” the code of every important operation on shapes, it requires
great skill and potentially introduces bugs into the code handling other (older) shapes. The choice of
C3 representation of particular shapes can get severely cramped by the requirement that (at least some of)

Object-Oriented Programming 47

Object-Oriented Programming

their representation must fit into the typically fixed sized framework presented by the definition of the)
general type shape. e

Object-Oriented Programming

The problem is that there is no distinction between the general properties of any shape (a shape has a
color, it can be drawn, etc.) and the properties of a specific shape (a circle is a shape that has a radius,
is drawn by a circle-drawing function, etc.). Expressing this distinction and taking advantage of it
defines object-oriented programming. A language with constructs that allow this distinction to be
expressed and used supports object-oriented programming. Other languages don’t.

The Simula inheritance mechanism provides a solution. First, specify a class that defines the general
properties of all shapes:

class shape {
point center;
color col;
/7 ...
public:
point where() { return center; }
void move (point to) { center = to; draw(); }
virtual void draw();
virtual void rotate(int);
/7 ...
}:

The functions for which the calling interface can be defined, but where the implementation cannot be ‘)
defined except for a specific shape, have been marked “‘virtual” (the Simula and C++ term for “‘may be :
re-defined later in a class derived from this one”). Given this definition, we can write general func-

tions manipulating shapes:

void rotate all (shape* v, int size, int angle)
// rotate all members of vector "v" of size "size" "angle" degrees
{
for (int 1 = 0; i < size; i++) v[i].rotate(angle);
}

To define a particular shape, we must say that it is a shape and specify its particular properties
(including the virtual functions).

class circle : public shape {

int radius:;
public:

void draw() { /* ... */ };

void rotate(int) {} // yes, the null function
}:

In C++, class circle is said to be derived from class shape, and class shape is said to be a base of class
circle. An alternative terminology calls circle and shape subclass and superclass, respectively.

4-8 Selected Readings

()

C

Object-Oriented Programming

The programming paradigm is:

Decide which classes you want;
provide a full set of operations for each class;
make commonality explicit by using inheritance.

Where there is no such commonality data abstraction suffices. The amount of commonality between
types that can be exploited by using inheritance and virtual functions is the litmus test of the applica-
bility of object-oriented programming to an application area. In some areas, such as interactive graph-
ics, there is clearly enormous scope for object-oriented programming. For other areas, such as classical
arithmetic types and computations based on them, there appears to be hardly any scope for more than
data abstraction and the facilities needed for the support of object-oriented programming seem
unnecessary.

Finding commonality among types in a system is not a trivial process. The amount of commonality to
be exploited is affected by the way the system is designed. When designing a system, commonality
must be actively sought, both by designing classes specifically as building blocks for other types, and
by examining classes to see if they exhibit similarities that can be exploited in a common base class.

Support for Data Abstraction

The basic support for programming with data abstraction consists of facilities for defining a set of
operations for a type and for restricting the access to objects of the type to that set of operations. Once
that is done, however, the programmer soon finds that language refinements are needed for con-
venient definition and use of the new types. Operator overloading is a good example of this.

Initialization and Cleanup

When the representation of a type is hidden some mechanism must be provided for a user to initialize
variables of that type. A simple solution is to require a user to call some function to initialize a vari-
able before using it. For example:

class vector {
int sz;
int* v;
Y"_,‘;"\.‘ qc:
id init (int size); // call init to initialize sz and v
// before the first use of a vector
// ...
};

vector v:

// don’t use v here
v.init (10);

// use v here

This is error prone and inelegant. A better solution is to allow the designer of a type to provide a dis-
tinguished function to do the initialization. Given such a function, allocation and initialization of a

Object-Oriented Programming 4-9

Object-Oriented Programming

variable becomes a single operation (often called instantiation) instead of two separate operations.
Such an initialization function is often called a constructor. In cases where construction of objects of a
type is non-trivial, one often needs a complementary operation to clean up objects after their last use.
In C++, such a cleanup function is called a destructor. Consider a vector type:

class vector ({

int sz; // number of elements

int* v; // pointer to integers
public:

vector (int) ; // constructor

~vector () ; // destructor

int& operator(] (int index); // subscript operator -
};

The vector constructor can be defined to allocate space like this:

vector: :vector (int s)

{

if (s<=0) error("bad vector size"):

sz = 8;

v = new int[s]; // allocate an array of "s" integers
}

The vector destructor frees the storage used:

vector: :~vector ()
{
delete v; // deallocate the memory pointed to by v
-}

C++ does not support garbage collection. This is compensated for, however, by enabling a type to
maintain its own storage management without requiring intervention by a user. This is a common use
for the constructor/destructor mechanism, but many uses of this mechanism are unrelated to storage
management.

Assignment and Initialization

Controlling construction and destruction of objects is sufficient for many types, but not for all. It can
also be necessary to control all copy operations. Consider class vector:

vector v1(100);
vector v2 = vl; // make a new vector v2 initialized to vl
vl = v2; // assign v2 to vl

It must be possible to define the meaning of the initialization of v2 and the assignment to v1. Alterna-

tively it should be possible to prohibit such copy operations; preferably both alternatives should be
available. For example: ‘

4-10 Selected Readings

()

class vector {
int* v;
int sz;
public:
/7 ...
void operator=(vector&); // assignment
vector (vectors) ; // initialization
};

specifies that user defined operations should be used to interpret vector assignment and initialization.
Assignment might be defined like this:

vector: :operator=(vector& a) // check size and copy elements
{

if (sz != a.sz) error("bad vector size for =");

for (int i = 0; i<sz; i++) v[i] = a.v[i];
}

Since the assignment operation relies on the “old value” of the vector being assigned to, the initializa-
tion operation must be different. For example:

vector: :vector (vector& a) // initialize a vector from another vector
{

Sz = a.sz; // same size

v = new int[sz]; // allocate element array

for (int i = 0; i<sz; i++) v[i] = a.v[i]; // copy elements

}

In C++, a constructor of the form X(X&) defines all initialization of objects of type X with another
object of type X. In addition to explicit initialization constructors of the form X(X&) are used to han-
dle arguments passed “by value” and function return values.

In C++ assignment of an object of class X can be prohibited by declaring assignment private:

class X {
void operator=(X&); // only members of X can
X (X&) ; // copy an X

public:

vy

Ada does not support constructors, destructors, overloading of assignment, or user defined control of
argument passing and function return. This severely limits the class of types that can be defined and
forces the programmer back to ““data hiding techniques”; that is, the user must design and use type
manager modules rather than proper types.

Object-Oriented Programming 4-11

Object-Oriented Programming

Object-Oriented Programming

Parameterized Types D

Why would you want to define a vector of integers anyway? A user typically needs a vector of ele-
ments of some type unknown to the writer of the vector type. Consequently the vector type ought to
be expressed in such a way that it takes the element type as an argument:

class vector<class T> { // vector of elements of type T
T* v;
int sz;
public:
vector (int s)
{
if (s <= 0) error("bad vector size");
v = new T[sz = s]; // allocate an array of "s" "T'"s
}
T& operator(] (int i);
int size() { return sz; }
// ...
}:

Vectors of specific types can now be defined and used:

vector<int> v1(100); // vl is a vector of 100 integers
vector<complex> v2(200); // v2 is a vector of 200 complex numbers

v2[i] = complex(vl([x],vl([y]):

Ada, Clu, and ML support parameterized types. Unfortunately, C++ does not; the notatir- D
is simply devised for illustration. Where needed, parameterized classes are “faked” usin,.

There need not be any run-time overheads compared with a class where all types involved ai«
specified directly.

Typically a parameterized type will have to depend on at least some aspect of a type parameter. For
example, some of the vector operations must assume that assignment is defined for objects of the
parameter type. How can one ensure that? One solution to this problem is to require the designer of
the parameterized class to state the dependency. For example, “T must be a type for which = is
defined.” A better solution is not to or to take a specification of an argument type as a partial
specification. A compiler can detect a “missing operation” if it is applied and give an error message
such as:

cannot define vector (non_ copy) : :operator[] (non_copyé) :
type non_copy does not have operator=

This technique allows the definition of types where the dependency on attributes of a parameter type
is handled at the level of the individual operation of the type. For example, one might define a vitor
with a sort operation. The sort operation might use <, ==, and = on objects of the parameter type. it
would still be possible to define vectors of a type for which ‘<’ was not defined as long as the vector
sorting operation was not actually invoked.

A problem with parameterized types is that each instantiation creates an independent type. For exam-

ple, the type vector<char> is unrelated to the type vector<complex>. Ideally one would like to be able

to express and utilize the commonality of types generated from the same parameterized type. For '
example, both vector<char> and vector<complex> have a size() function that is independent of the :)

412 Selected Readings

Object-Oriented Programming

parameter type. It is possible, but not trivial, to deduce this from the definition of class vector and
then allow size() to be applied to any vector. An interpreted language or a language supporting both
parameterized types and inheritance has an advantage here.

Exception Handling

As programs grow, and especially when libraries are used extensively, standards for handling errors
(or more generally: “exceptional circumstances”) become important. Ada, Algol68, and Clu each sup-
port a standard way of handling exceptions. Unfortunately, C++ does not. Where needed exceptions
are “faked” using pointers to functions, “exception objects,” “‘error states,”” and the C library signal
and longjmp facilities. This is not satisfactory in general and fails even to provide a standard frame-
work for error handling.

Consider again the vector example. What ought to be done when an out of range index value is
passed to the subscript operator? The designer of the vector class should be able to provide a default
behavior for this. For example:

class vector {

except vector_range {
// define an exception called vector_range
// and specify default code for handling it
error ("global: vector range error");
exit (99);

}

Instead of calling an error function, vector::operator[l() can invoke the exception handling code, “raise
the exception’”:

int& vector: :operator(] (int i)

{
if (0<i || sz<=i) raise vector_range;
return v[i];

}

This will cause the call stack to be unraveled until an exception handler for vector_range is found; this
handler will then be executed.

An excentinn handler may be defined for a specific block:

Object-Oriented Programming - 413

Object-Oriented Programming

void £() {
vector v(10);
try { // errors here are handled by the local
// exception handler defined below
// ...
int i = g{(); // g might cause a range error using some vector
v[i] = 7; // potential range error
}
except {

vector: :vector_range:
error ("f£() : vector range erroxr");

return;
} // errors here are handled by the global
// exception handler defined in vector
int i = g{(); // g might cause a range error using some vector
i] = 7; // potential range error

}

There are many ways of defining exceptions and the behavior of exception handlers. The facility
sketched here resembles the ones found in Clu and Modula-2+. This style of exception handling can
be implemented so that code is not executed unless an exception is raised (except possibly for some
- initialization code at the start of a program) or portably across most C implementations by using
setjmp() and longjmp(3

Could exceptions, as defined above, be completely “faked” in a language such as C++? Unfortunately,
no. The snag is that when an exception occurs, the run-time stack must be unraveled up to a point
where a handler is defined. To do this properly in C++ involves invoking destructors def:::ed in the
scopes involved. This is not done by a C longjmp() and cannot in general be done by the user.

Coercions

User-defined coercions, such as the one from floating point numbers to complex numbers implied by
the constructor complex(double), have proven unexpectedly useful in C++. Such coercions can be
applied explicitly or the programmer can rely on the compiler to add them implicitly where necessary
and unambiguous:

complex a = complex(l);

complex b = 1; // implicit: 1 -> complex(l)
a = bi+complex(2) ;
a = bt+2; // implicit: 2 —> complex(2)

Coercions were introduced into C++ because mixed mode arithmetic is the norm in languages for
numerical work and because most user defined types used for “calculation” (for exarri:i matrices,
character strings, and machine addresses) have natural mappings to and/or from othc: .y pes.

One use of coercions has proven especially useful from a program organization point of view:

4-14 Selected Readings

complex a = 2;
complex b = a+2; // interpreted as operator+(a,complex(2))
b = 2+a; // interpreted as operator+(complex(2),a)

Only one function is needed to interpret ““+” operations and the two operands are handled identically
by the type system. Furthermore, class complex is written without any need to modify the concept of
integers to enable the smooth and natural integration of the two concepts. This is in contrast to a
“pure object-oriented system” where the operations would be interpreted like this:

a+2; // a.operator+(2)
2+a; // 2.operator+(a)

making it necessary to modify class integer to make 2+a legal. Modifying existing code should be
avoided as far as possible when adding new facilities to a system. Typically, object-oriented program-
ming offers superior facilities for adding to a system without modifying existing code. In this case,
however, data abstraction facilities provide a better solution.

Iterators

It has been claimed that a language supporting data abstraction must provide a way of defining con-
trol structures. In particular, a mechanism that allows a user to define a loop over the elements of
some type containing elements is often needed. This must be achieved without forcing a user to
depend on details of the implementation of the user defined type. Given a sufficiently powerful
mechanism for defining new types and the ability to overload operators, this can be handled without a
separate mechanism for defining control structures. :

For a vector, defining an iterator is not necessary since an ordering is available to a user through the
indices. I'll define one anyway to demonstrate the technique. There are several possible styles of
iterators. My favorite relies on overloading the function application operator ():*

class vector_iterator {

vector& v;

int i;
public:

vector_iterator(vector& r) { i = 0; v=1r; }

int operator() () { return i<v.size() ? v.elem(i++) : 0; }
}:

A vector_iterator can now be declared and used for a vector like this:

vector v(sz);

vector_iterator next (v);

int i;

while (i=next()) print(i);
More than one iterator can be active for a single object at one time, and a type may have several dif-
ferent iterator types defined for it so that different kinds of iteration may be performed. An iterator is

a rather simple control structure. More general mechanisms can also be defined. For example, the
C++ standard library provides a co-routine class.

Object-Oriented Programming - 4-15

Object-Oriented Programming

Object-Oriented Programming

For many “container” types, such as vector, one can avoid introducing a separate iterator type by

defining an iteration mechanism as part of the type itself. A vector might be defined to have a
“current element’”:

class vector ({
int* v;
int sz;
int current;
public:
// ...
int next () { return (current++<sz) ? v[current] : 0; }
int prev() { return (0<-——current) ? v[current] : 0; }
}:

Then the iteration can be performed like this:

vector v(sz):;
int i;
while (i=v.next()) print(i);

This solution is not as general as the iterator solution, but avoids overhead in the important special
case where only one kind of iteration is needed and where only one iteration at a time is needed for a
vector. If necessary, a more general solution can be applied in addition to this simple one. Note that
the “simple” solution requires more foresight from the designer of the container class than the iterator
solution does. The iterator-type technique can also be used to define iterators that can be bound to
several different container types thus providing a mechanism for iterating over different container
types with a single iterator type.

Implementation Issues

The support needed for data abstraction is primarily provided in the form of language features imple-
mented by a compiler. However, parameterized types are best implemented with support from a
linker with some knowledge of the language semantics, and exception handling requires support from
the run-time environment. Both can be implemented to meet the strictest criteria for both compile
time speed and efficiency without compromising generality or programmer convenience.

As the power to define types increases, programs to a larger degree depend on types from libraries
(and not just those described in the language manual). This naturally puts greater demands on facili-
ties to express what is inserted into or retrieved from a library, facilities for finding out what a library
contains, facilities for determining what parts of a library are actually used by a program, etc.

For a compiled language facilities for calculating the minimal compilation necessary after a change
become important. It is essential that the linker/loader is capable of bringing a program into memory
for execution without also bringing in large amounts of related, but unused, code. In particular, a
library/linker/loader system that brings the code for every operation on a type into core just because
the programmer used one or two operations on the type is worse than useless.

4-16 Selected Readings

Object-Oriented Programming

Support for Object-Oriented programming

The basic support a programmer needs to write object-oriented programs consists of a class mechan-
ism with inheritance and a mechanism that allows calls of member functions to depend on the actual
type of an object (in cases where the actual type is unknown at compile time). The design of the
member function calling mechanism is critical. In addition, facilities supporting data abstraction tech-
niques (as described above) are important because the arguments for data abstraction and for its
refinements to support elegant use of types are equally valid where support for object-oriented pro-
gramming is available. The success of both techniques hinges on the design of types and on the ease,
flexibility, and efficiency of such types. Object-oriented programming simply allows user defined
types to be far more flexible and general than the ones designed using only data abstraction tech-
niques.

Calling Mechanisms

The key language facility supporting object-oriented programming is the mechanism by which a
member function is invoked for a given object. For example, given a pointer p, how is a call p—>f(arg)
handled? There is a range of choices.

In languages such as C++ and Simula, where static type checking is extensively used, the type system
can be employed to select between different calling mechanisms. In C+4+, two alternatives are avail-
able:

m A normal function call: the member function to be called is determined at compile time (through
a lookup in the compiler’s symbol tables) and called using the standard function call mechanism
with an argument added to identify the object for which the function is called. Where the “stan-
dard function call” is not considered efficient enough, the programmer can declare a function
inline and the compiler will attempt to inline expand its body. In this way, one can achieve the
efficiency of a macro expansion without compromising the standard function semantics. This
optimization is equally valuable as a support for data abstraction.

m A virtual function call: The function to be called depends on the type of the object for which it is
called. This type cannot in general be determined until run time. Typically, the pointer p will
be of some base class B and the object will be an object of some derived class D (as was the case
with the base class shape and the derived class circle above). The call mechanism must look
into the object and find some information placed there by the compiler to determine which func-
tion f is to be called. Once that function is found, say D:f, it can be called using the mechanism
described above. The name f is at compile time converted into an index into a table of pointers
to functions. This virtual call mechanism can be made essentially as efficient as the “‘normal
function call” mechanism. In the standard C++ implementation, only five additional memory
references are used.

In languages with weak static type checking a more elaborate mechanism must be employed. What is
done in a language like Smalltalk is to store a list of the names of all member functions (methods) of a
class so that they can be found at run time:

m A method invocation: First the appropriate table of method names is found by examining the
object pointed to by p. In this table (or set of tables) the string "f" is looked up to see if the
object has an £(). If an £() is found it is called; otherwise some error handling takes place. This
lookup differs from the lookup done at compiler time in a statically checked language in that the
method invocation uses a method table for the actual object.

A method invocation is inefficient compared with a virtual function call, but more flexible. Since static

Object-Oriented Programming - 417

Object-Oriented Programming

type checking of arguments typically cannot be done for a method invocation, the use of methods
must be supported by dynamic type checking.

Type Checking

The shape example showed the power of virtual functions. What, in addition to this, does a method
invocation mechanism do for you? You can attempt to invoke any method for any object.

The ability to invoke any method for any object enables the designer of general purpose libraries to
push the responsibility for handling types onto the user. Naturally this simplifies the design of
libraries. For example:

class stack { // assume class any has a member next
any* v;
void push(any* p)
{
p—>next = v;
v =p;
}
any* pop()
{
if (v == 0) return error_obj;
any* r = v;
v = v->next;
return r;

i
It becomes the responsibility of the user to avoid type mismatches like this:
stack<any*> cs;

cs.push (new Saab900);
cs.push(new Saab37B);

plane* p = (plane*)cs.pop():
p—>takeoff () ;

p = (plane*)cs.pop():
p—>takeoff () ; // Oops! Run time error: a Saab 900 is a car
// a car does not have a takeoff method.

An attempt to use a car as a plane will be detected by the message handler and an appropriate error
handler will be called. However, that is only a consolation when the user is also the programmer.
The absence of static type checking makes it difficult to guarantee that errors of this class are not
present in systems delivered to end-users. Naturally, a language designed with methods and without
static types can express this example with fewer keystrokes.

Combinations of parameterized classes and the use of virtual functions can approach the flexibility,
ease of design, and ease of use of libraries designed with method lookup without relaxing the static
type checking or incurring measurable run time overheads (in time or space). For example:

4-18 Selected Readings

»

Object-Oriented Programming

stack<plane*> cs;

c¢s.push (new Saab900) ; // Compile time error:

// type mismatch: car* passed, plane* expected
cs.push(new Saab37B) ;

plane* p = cs.pop():
p->takeoff () ; // fine: a Saab 37B is a plane

p = cs.pop();
p—>takeoff () ;

The use of static type checking and virtual function calls leads to a somewhat different style of pro-
gramming than does dynamic type checking and method invocation. For example, a Simula or C++
class specifies a fixed interface to a set of objects (of any derived class) whereas a Smalltalk class
specifies an initial set of operations for objects (of any subclass). In other words, a Smalltalk class is a
minimal specification and the user is free to try operations not specified whereas a C++ class is an

exact specification and the user is guaranteed that only operations specified in the class declaration
will be accepted by the compiler.

Inheritance

_Consider a language having some form of method lookup without having an inheritance mechanism.

Could that language be said to support object-oriented programming? I think not. Clearly, you could
do interesting things with the method table to adapt the objects’ behavior to suit conditions. However,
to avoid chaos, there must be some systematic way of associating methods and the data structures
they assume for their object representation. To enable a user of an object to know what kind of
behavior to expect, there would also have to be some standard way of expressing what is common to
the different behaviors the object might adopt. This “systematic and standard way” would be an
inheritance mechanism.

Consider a language having an inheritance mechanism without virtual functions or methods. Could
that language be said to support object-oriented programming? I think not: the shape example does
not have a good solution in such a language. However, such a language would be noticeably more
powerful than a “plain” data abstraction language. This contention is supported by the observation
that many Simula and C++ programs are structured using class hierarchies without virtual functions.
The ability to express commonality (factoring) is an extremely powerful tool. For example, the prob-
lems associated with the need to have a common representation of all shapes could be solved. No
union would be needed. However, in the absence of virtual functions, the programmer would have to
resort to the use of “type ficlds” to determine actual types of objects, so the problems with the lack of
modularity of the code would remain.?

This implies that class derivation (subclassing) is an important programming tool in its own right. It

" can be used to support object-oriented programming, but it has wider uses. This is particularly true if

one identifies the use of inheritance in object-oriented programming with the idea that a base class
expresses a general concept of which all derived classes are specializations. This idea captures only
part of the expressive power of inheritance, but it is strongly encouraged by languages where every
member function is virtual (or a method). Given suitable controls of what is inherited (see The C++
Programming Language), class derivation can be a powerful tool for creating new types. Given a class,
derivation can be used to add and/or subtract features. The relation of the resulting class to its base
cannot always be completely described in terms of specialization; factoring may be a better term.

Object-Oriented Programming 4-19

Object-Oriented Programming

Derivation is another tool in the hands of a programmer and there is no foolproof way of predicting
how it is going to be used — and it is too early (even after 20 years of Simula) to tell which uses are
simply mis-uses.

Muitiple Inheritance

When a class A is a base of class B, a B inherits the attributes of an A; that is, a B is an A in addition
to whatever else it might be. Given this explanation it seems obvious that it might be useful to have a
class B inherit from two base classes Al and A2. This is called multiple inheritance.

A fairly standard example of the use of multiple inheritance would be to provide two library classes
displayed and task for representing objects under the control of a display manager and co-routines
under the control of a scheduler, respectively. A programmer could then create classes such as

class my displayed task : public displayed, public task {
// my stuff
}:

class my task : public task { // not displayed
// my stuff
}:

class my displayed : public displayed { // not a task
// my stuff
}:

Using (only) single inheritance only two of these three choices would be open to the programmer.
This leads to either code replication or loss of flexibility — and typically both. In C++ this example
can be handled as shown above with no significant overheads (in time or space) compared to single
inheritance and without sacrificing static type checking.

Ambiguities are handled at compile time:

class A { public: £(); ... }:
class B { public: £(); ... }:
class C : public A, public B { ... };
void g{() {
C* p;

p—>£(); // error: ambiguous
}

In this, C++ differs from the object-oriented Lisp dialects that support multiple inheritance. In these
Lisp dialects ambiguities are resolved by considering the order of declarations significant, by consider-
ing objects of the same name in different base classes identical, or by combining methods of the same
name in base classes into a more complex method of the highest class.

In C++, one would typically resolve the ambiguity by adding a function:

4-20 Selected Readings

e

@

e

Object-Oriented Programming

class C : public A, public B {
public:
£()
{
// C’'s own stuff
A::f();
B::£();

In addition to this fairly straightforward concept of independent multiple inheritance there appears to
be a need for a more general mechanism for expressing dependencies between classes in a multiple
inheritance lattice. In C++, the requirement that a sub-object should be shared by all other sub-objects
in a class object is expressed through the mechanism of a virtual base class:

class W { ... };

class Bwindow // window with border
: public virtual W
{ ... };

class Mwindow // window with menu
: public virtual W
{ ... &

class BMW // window with border and menu
: public Bwindow, public Mwindow
{ ... &;

Here the (single) window sub-object is shared by the Bwindow and Bwindow sub-objects of a BMW.
The Lisp dialects provide concepts of method combination to ease programming using such compli-
cated class hierarchies. C++ does not.

Encapsulation

Consider a class member (either a data member or a function member) that needs to be protected from
“unauthorized access.”” What choices can be reasonable for delimiting the set of functions that may
access that member? The “obvious” answer for a language supporting object-oriented programming is
“all operations defined for this object”; that is, all member functions. A non-obvious implication of
this answer is that there cannot be a complete and final list of all functions that may access the pro-
tected member since one can always add another by deriving a new class from the protected member’s
class and define a member function of that derived class. This approach combines a large degree of
protection from accident (since you do not easily define a new derived class “by accident”) with the
flexibility needed for “tool building’” using class hierarchies (since you can “grant yourself access” to
protected members by deriving a class).

Unfortunately, the “obvious” answer for a language oriented towards data abstraction is different:
“list the functions that need access in the class declaration.” There is nothing special about these func-
tions. In particular, they need not be member functions. A non-member function with access to
private class members is called a friend in C++. Class complex above was defined using friend func-
tions. It is sometimes important that a function may be specified as a friend in more than one class.

Object-Oriented Programming 4-21

Object-Oriented Programming

Having the full list of members and friends available is a great advantage when you are trying to
understand the behavior of a type and especially when you want to modify it.

Here is an example that demonstrates some of the range of choices for encapsulation in C++:

class B
// class members are default private
int il;
void £1():
protected:
int i2;
void £2();
public:
int i3;
void £3():

friend void g(B*); // any function can be designated as a friend
}:

Private and protected members are not generally accessible:

void h(B* p)

{
p—>f1(); // error: B::fl is private
pP—>£2() ; // error: B::f2 is protected
p—>£3(); // fine: B::fl is public

}
Protected members, but not private members, are accessible to members of a derived class:

class D : public B {

public:
void g()
{
£1(); // error: B::fl is private
£2(); // fine: B::£f2 is protected, but D is derived from B
£30: // fine: B::fl is public

}:
Friend functions have access to private and protected members just like member functions:

void g(B* p)
{

p—>£1() ; // fine: B::fl is private, but g() is a friend of B
p—>£2() ; // fine: B::f2 is protected, but g() is a friend of B
p—>£3(); // fine: B::fl is public

}

Encapsulation issues increase dramatically in importance with the size of the program and with the
number and geographical dispersion of its users. See The C++ Programming Language for more detailed
discussions of language support for encapsulation.

4-22 Selected Readings

U

W

Implementation Issues

The support needed for object-oriented programming is primarily provided by the run-time system
and by the programming environment. Part of the reason is that object-oriented programming builds

on the language improvements already pushed to their limit to support for data abstraction so that
relatively few additions are needed.®

The use of object-oriented programming blurs the distinction between a programming language and its
environment further. Since more powerful special- and general-purpose user defined types can be
defined their use pervades user programs. This requires further development of the run-time system,
library facilities, debuggers, performance measuring, monitoring tools, etc. Ideally these are integrated
into a unified programming environment. Smalltalk is the best example of this.

Limits to Perfection

A major problem with a language defined to exploit the techniques of data hiding, data abstraction,

and object-oriented programming is that to claim to be a general purpose programming language it
must

m run on traditional machines
m coexist with traditional operating systems

m compete with traditional programming languages in terms of run time efficiency

m cope with every major application area

This implies that facilities must be available for effective numerical work (floating point arithmetic
without overheads that would make Fortran appear attractive), and that facilities must be available for
access to memory in a way that allows device drivers to be written. It must also be possible to write
calls that conform to the often rather strange standards required for traditional operating system inter-
faces. In addition, it should be possible to call functions written in other languages from an object-
oriented programming language and for functions written in the object-oriented programming
language to be called from a program written in another language.

Another implication is that an object-oriented programming language cannot completely rely on
mechanisms that cannot be efficiently implemented on a traditional architecture and still expect to be
used as a general purpose language. A very general implementation of method invocation can be a
liability unless there are alternative ways of requesting a service.

Similarly, garbage collection can become a performance and portability bottleneck. Most object-
oriented programming languages employ garbage collection to simplify the task of the programmer
and to reduce the complexity of the language and its compiler. However, it ought to be possible to
use garbage collection in non-critical areas while retaining control of storage use in areas where it
matters. As an alternative, it is feasible to have a language without garbage collection and then pro-
vide sufficient expressive power to enable the design of types that maintain their own storage. C++ is
an example of this.

Exception handling and concurrency features are other potential problem areas. Any feature that is
best implemented with help from a linker is likely to become a portability problem.

Object-Oriented Programming 4-23

Object-Oriented Programming

Object-Oriented Programming

The alternative to having “low level” features in a language is to handle major application areas using .
separate “low level” languages. :

Conclusions

Object-oriented programming is programming using inheritance. Data abstraction is programming
using user defined types. With few exceptions, object-oriented programming can and ought to be a
superset of data abstraction. These techniques need proper support to be effective. Data abstraction
primarily needs support in the form of language features and object-oriented programming needs
further support from a programming environment. To be general purpose, a language supporting
data abstraction or object-oriented programming must enable effective use of traditional hardware.

4-24 Selected Readings

Footnotes

1. I prefer the term ““user defined type”: ““Those types are not “abstract"; they are as real as int and
float.” — Doug Mcllroy. An alternative definition of abstract data types would require a
mathematical “abstract’”” specification of all types (both built-in and user defined). What are

referred to as types in this paper would, given such a specification, be concrete specifications of
such truly abstract entities.

2. However, more advanced mathematics may benefit from the use of inheritance: Fields are spe-
cializations of rings; vector spaces a special case of modules.

3. See the C library manual for your system.

4. This style also relies on the existence of a distinguished value to represent “‘end of iteration.”
Often, in particular for C++ pointer types, 0 can be used.

5. This is the problem with Simula’s inspect statement and the reason it does not have a counter-
part in C++.

6. This assumes that an object-oriented language does indeed support data abstraction. However,
the support for data abstraction is often deficient in such languages. Conversely, languages that
support data abstraction are typically deficient in their support of object-oriented programming.

Object-Oriented Programming 4-25

5 Multiple Inheritance

Multiple Inheritance for C++ 5-1
Abstract 5-1
Introduction 5-1
Multiple Inheritance 5-1
C++ Implementation Strategy 5-2
Multiple Base Classes 5-4
m Object Layout 5-4
m Member Function Call 5-5
8 Ambiguities 5-6
m Casting 5-6
m Zero Valued Pointers 5-7
Virtual Functions 5-8
m Implementation 5-8
= Ambiguities 5-9
Muttiple Inclusions 5-10
® Multiple Sub-objects 5-10
a Naming 5-11
m Casting 5-11
Virtlual Base Classes 5-12
m Representation 5-13
m Virtual Functions 5-14
Constructors and Destructors 5-15
Visibility 5-17
Overheads 517
T But is it Simple to Use? 5-18
Q Conclusions 5-19
Footnotes 5-20

C

Table of Contents I

Multiple Inheritance for C++

This chapter is taken directly from a paper by Bjarne Stroustrup.

Abstract

Multiple Inheritance is the ability of a class to have more than one base class (super class). In a
language where multiple inheritance is supported a program can be structured as a set of inheritance
lattices instead of (just) as a set of inheritance trees. This is widely believed to be an important struc-
turing tool. It is also widely believed that multiple inheritance complicates a programming language
significantly, is hard to implement, and is expensive to run. I will demonstrate that none of these last
three conjectures are true.

Introduction

This paper describes an implementation of a multiple inheritance mechanism for C++ (described in The
C++ Programming Language). It provides only the most rudimentary explanation of what multiple
inheritance is in general and what it can be used for. The particular variation of the general concept
implemented here is primarily explained in terms of this implementation.!

First a bit of background on multiple inheritance and C++ implementation technique is presented, then
the multiple inheritance scheme implemented for C++ is introduced in two stages:

m the basic scheme for multiple inheritance, the basic strategy for ambiguity resolution, and the
way to implement virtual functions

-~ m handling of classes included more than once in an inheritance lattice; the programmer has the
choice whether a multiply included base class will result in one or more sub-objects being
created

Finally, some the complexities and overheads introduced by this multiple inheritance scheme are sum-
marized.

Multiple Inheritance

Consider writing a simulation of a network of computers. Each node in the network is represented by
an object of class Switch, each user or computer by an object of class Terminal, and each communica-
tion line by an object of class Line. One way to monitor the simulation (or a real network of the same
structure) would be to display the state of objects of various classes on a screen. Each object to be
displayed is represented as an object of class Displayed. Objects of class Displayed are under control
of a display manager that ensures regular update of a screen and/or data base. The classes Terminal
and Switch are derived from a class Task that provides the basic facilities for co-routine style
behavior. Objects of class Task are under control of a task manager (scheduler) that manages the real
processor(s).

Multiple Inheritance 5-1

Multiple Inheritance

Ideally Task and Displayed are classes from a standard library. If you want to display a terminal J
class Terminal must be derived from class Displayed. Class Terminal, however, is already derived ‘
from class Task. In a single inheritance language, such as C++ or Simula67, we have only two ways

of solving this problem: deriving Task from Displayed or deriving Displayed from Task. Neither is

ideal since they both create a dependency between the library versions of two fundamental and

independent concepts. Ideally one would want to be able to choose between saying that a Terminal is

a Task and a Displayed; that a Line is a Displayed but not a Task; and that a Switch is a Task but not

a Displayed.

The ability to express this using a class hierarchy, that is, to derive a class from more than one base
class, is usually referred to as multiple inheritance. Other examples involve the representation of vari-
ous kinds of windows in a window system and the representation of various kinds of processors and
compilers for a multi-machine, multi-environment debugger.

In general, multiple inheritance allows a user to combine independent (and not so independent) con-
cepts represented as classes into a composite concept represented as a derived class. A common way
of using multiple inheritance is for a designer to provide sets of base classes with the intention that a
user creates new classes by choosing base classes from each of the relevant sets. Thus a programmer
creates new concepts using a recipe like “pick an A and/or a B.” In the window example, a user
might specify a new kind of window by selecting a style of window interaction (from the set of
interaction base classes) and a style of appearance (from the set of base classes defining display
options). In the debugger example, a programmer would specify a debugger by choosing a processor
and a compiler.

Given multiple inheritance and N concepts each of which might somehow be combined with one of M

other concepts, we need N+M classes to represent all the combined concepts. Given only single inheri-

tance, we need to replicate information and provide N+M+N*M classes. Single inheritance handles -
cases where N==1 or M==1. The usefulness of multiple inheritance for avoiding replication hinges on)
the importance of examples where the values of N and M are both larger than 1. It appears that o
examples with N>=2 and M>=2 are not uncommon; the window and debugger examples described

above will typically have both N and M larger than 2.

4

C++ Implementation Strategy

Before discussing multiple inheritance and its implementation in C++ I will first describe the main
points in the traditional implementation of the C++ single inheritance class concept.

An object of a C++ class is represented by a contiguous region of memory. A pointer to an object of a
class points to the first byte of that region of memory. The compiler turns a call of a member function
into an “ordinary”” function call with an “extra” argument; that “extra” argument is a pointer to the
object for which the member function is called.

Consider a simple class A2

class A |

int a;

void £{int i);
};

An object of class A will look like this

D

5-2 Selected Readings

Multiple Inheritance

C int a; |

No information is placed in an A except the integer a specified by the user. No information relating to
(non-virtual) member functions is placed in the object.

A call of the member function A::f:

A* pa;
pa—>£(2);

is transformed by the compiler into an “ordinary function call”:

f Fla(pa,2);

Objects of derived classes are composed by concatenating the members of the classes involved:
class A { int a; void f(int); };
class B : A { int b; void g(int); };
class C : B { int ¢; void h{(int); };

Again, no “housekeeping’’ information is added, so an object of class C looks like this:

| int a; [
C ,f | int b; |

| int c; |

The compiler “knows” the position of all members in an object of a derived class exactly as it does for
an object of a simple class and generates the same (optimal) code in both cases.

Implementing virtual functions involves a table of functions. Consider:

class A {
int a;
virtual void £(int);
virtual void g(int):
virtual void h(int);
}i

class B : A { int b; void g(int):; };
class C : B { int c¢; void h(int); };

In this case, a table of virtual functions, the vtbl, contains the appropriate functions for a given class
and a pointer to it is placed in every object. A class C object looks like this:

Multiple Inheritance 5-3

Multipie Inheritance

A call to a virtual function is transformed into an indirect call by the compiler. For example,

C* pc;
pc->g(2) ;

becomes something like:

(* (pc—>vptr[l])) (pc,2) ;

A multiple inheritance mechanism for C++ must preserve the efficiency and the key features of this
implementation scheme.

“Multiple Base Classes

Given two classes

class A { ... };)

class B { ... };
one can design a third using both as base classes:
classC : A, B{ ... };
This means that a C is an A and a B. One might equivalently® define C like this:

class C : B, A { ... };

Object Layout

An object of class C can be laid out as a contiguous object like this:

5-4 Selected Readings

e

Multiple Inheritance

| A part I

| B part [

| C part |

Accessing a member of classes A, B or C is handled exactly as before: the compiler knows the location
in the object of each member and generates the appropriate code (without spurious indirections or
other overhead).

Member Function Call

Calling a member function of A or C is identical to what was done in the single inheritance case. Cal-
ling a member function of B given a C* is slightly more involved:

C* pc;

pc—>bE(2) ; // assume that bf is a member of B
// and that C has no member named bf
// except the one inherited from B

Naturally, B::bf() expects a B* (to become its this pointer). To provide it, a constant must be added to
pc. This constant, delta(B), is the relative position of the B part of C. This delta is known to the com-
piler that transforms the call into:

bf F1B((B*) ((char*)pc+delta(B)),2);

The overhead is one addition of a constant per call of this kind. During the execution of a member
function of B the function’s this pointer points to the B part of C:

2 1o S >
| |
I A part I
| i
B::bf’s this >
| |
| B part |
| |
| |
| C part |

Note that there is no space penalty involved in using a second base class and that the minimal time
penalty is incurred only once per call.

Multiple Inheritance 5-5

Multiple Inheritance

Ambiguities

Consider potential ambiguities if both A and B have a public member ii:
class A { int ii; };
class B { char* ii; };
class C : A, B { };

In this case C will have two members called ii, A::ii and B:ii. Then

C* pc;
pc—>ii; // error: A::ii or B::ii ?

is illegal since it is ambiguous. Such ambiguities can be resolved by explicit qualification:

pc—>A::ii; // C’'s A’s ii
pc—>B::ii; // C's B’s ii

A similar ambiguity arises if both A and B have a function £():
class A { void £(); };

class B { int £(): }:
class C : A, B { };

C* pc;

pc—>£(); // error: A::f or B::f ?
pc—>A::£(); // C's A’'s £
pc—>B::£(); // C’'s B's £

As an alternative to specifying which base class in each call of an £(), one might define an £() for C.
C=:£() might call the base class functions. For example:

class C : A, B {
int £() { A::£(); return B::£(); }
}:
C* pc;
pc—>f(); // C::f is called

Casting

Explicit and implicit casting may also involve modifying a pointer value with a delta:

5-6 Selected Readings

.

&\J/}

Multiple Inheritance

C* pc;

B* pb;

pb = (B*)pc; // pb = (B*) ((char*)pc+delta (B))
pb = pc; // pb = (B*) ((char*)pc+delta (B))
pc = pb: // error: cast needed

pc = (C*)pb; // pc = (C*) ((char*)pb-delta (B))

Casting yields the pointer referring to the appropriate part of the same object.

pPCc ...>
I |
| A part |
[|
Pb ...>
| |
| B part I
| |
| |
| C part |

Comparisons are interpreted in the same way:

pc = pb; // that is, pc == (C*)pb
// or equivalently (B*)pc = pb

// that is, (B*) ((char*)pc+delta(B)) == pb
// or equivalently pc == (C*) ((char*)pb—delta(B))

Note that in both C and C++ casting has always been an operator that produced one value given
another rather than an operator that simply reinterpreted a bit pattern. For example, on almost all
machines (int).2 causes code to be executed; (float)(int).2 is not equal to .2. Introducing multiple inher-
itance as described here will introduce cases where (char*)(B*)v!=(char*)v for some pointer type B*.
Note, however, that when B is a base class of C, (B¥*)v==(C*)v==v,

Zero Valued Pointers

Pointers with the value zero cause a separate problem in the context of multiple base classes. Consider
applying the rules presented above to a zero-valued pointer:

C* pc = 0;

B* pb = 0;

if (pb == 0) ...

pb = pc; // pb = (B*) ((char*)pc+delta (B))
if (pb == 0)

The second test would fail since pb would have the value (B*)((char*)0+delta(B)).

Multiple Inheritance 5-7

Multiple Inheritance

The solution is to elaborate the conversion (casting) operation to test for the pointer-value 0:

C* pc = 0;

B* pb = 0;

if (pb = 0)

pb = pc; // pb = (pc==0) ?0: (B*) ((char*)pc+delta(B))
if (pb == Q)

The added complexity and run-time overhead are a test and an increment.

Virtual Functions

Naturally, member functions may be virtual:

class A { virtual void £(); }:
class B { virtual void £(); virtual void g(); };
class C : A, B { void £(); }:

A* pa = new C;
B* pb = new C;
C* pc = new C;

pa->£():
pb—>£() ;
pc—>£();

All these calls will invoke C::f(). This follows directly from the definition of virtual since class C is
derived from class A and from class B.

Implementation

On entry to C:f, the this pointer must point to the beginning of the C object (and not to the B part).
However, it is not in general known at compile time that the B pointed to by pb is part of a C so the
compiler cannot subtract the constant delta(B). Consequently delta(B) must be stored so that it can be
found at run time. Since it is only used when calling a virtual function the obvious place to store it is
in the table of virtual functions (vtbl). For reasons that will be explained below the delta is stored
with each function in the vtbl so that a vtbl entry will be of the form:

struct vtbl entry {
void (*fct) () ;
int delta;

}:

An object of class C will look like this:

5-8 Selected Readings

I I vtbl
| vptr >
| A part | | C::f | 0
| |
| | vtbl
| vptr >
| B part | | C::f | —delta(B) |
| | | B::g | 0 |
| |
| C part |
| |
pb—>£(); // call of C::f:

// register vtbl entry* vt = &pb->vtbl([index(f)];
// (*vt—>fct) ((B*) ((char*)pb+vt->delta))

Note that the object pointer may have to be adjusted to point to the correct sub-object before looking

-for the member pointing to the vtbl. Note also that each combination of base class and derived class

has its own vtbl. For example, the vtbl for B in C is different from the vtbl of a separately allocated
B. This implies that in general an object of a derived class needs a vtbl for each base class plus one
for the derived class. However, as with single inheritance, a derived class can share a vtbl with its
first base so that in the example above only two vtbls are used for an object of type C (one for A in C
combined with C’s own plus one for B in C).

Using an int as the type of a stored delta limits the size of a single object; that might not be a bad
thing.

Ambiguities

The following demonstrates a problem:

class A { virtual void £(); };
class B { virtual void £(); };
class C : A, B { void £(0); };

C* pc = new C;

pc—>£();
pc—>A::£();
pc—>B::£();

Explicit qualification “suppresses” virtual so the last two calls really invoke the base class functions.
Is this a problem? Usually, no. Either C has an f() and there is no need to use explicit qualification or
C has no £() and the explicit qualification is necessary and correct. Trouble can occur when a function
£0 is added to C in a program that already contains explicitly qualified names. In the latter case one

Multiple Inheritance 5-9

Multiple Inheritance

Multiple Inheritance

could wonder why someone would want to both declare a function virtual and also call it using expli-
cit qualification. If £() is virtual, adding an f() to the derived class is clearly the correct way of resolv-
ing the ambiguity.

The case where no C::f is declared cannot be handled by resolving ambiguities at the point of call.
Consider:

class A { virtual void £(); }:
class B { virtual void £(); }:
classC: A, B{ }; // error: C::f needed

C* pc = new C;

pc—>£(); // ambiguous
A* pa = pc; // implicit conversion of C* to A*
pa—>f(); // not ambiguous: calls A::f():

The potential ambiguity in a call of £() is detected at the point where the virtual function tables for A
and B in C are constructed. In other words, the declaration of C above is illegal because it would
allow calls, such as pa—>f(), which are unambiguous only because type information has been “lost”
through an implicit coercion; a call of £() for an object of type C is ambiguous.

Multiple Inclusions

A class can have any number of base classes. For example,
class A : Bl, B2, B3, B4, B5, B6 { ... };

It illegal to specify the same class twice in a list of base classes. For example,
classA : B, B{ ... }; // error

The reason for this restriction is that every access to a B member would be ambiguous and therefore
illegal; this restriction also simplifies the compiler.

Multiple Sub-objects

A class may be included more than once as a base class. For example:

class L { ... };
classA : L { ... };
class B : L { ... };
classC: A, B{ ... };

In such cases multiple objects of the base class are part of an object of the derived class. For example,
an object of class C has two L’s: one for A and one for B:

5-10 Selected Readings

/

C

C

L part (of A)

A part

L part (of B)

B part

| C part |

This can even be useful. Think of L as a link class for a Simula-style linked list. In this case a C can
be on both the list of As and the list of Bs.

Naming

Assume that class L in the example above has a member m. How could a function C:f refer to Lum?
The obvious answer is “by explicit qualification’:

void C::£f() { A::m = B::m; }

This will work nicely provided neither A nor B has a member m (except the one they inherited from
L). If necessary, the qualification syntax of C++ could be extended to allow the more explicit:

void C::£() { A::L::m = B::L::m; }

Casting

Consider the example above again. The fact that there are two copies of L makes casting (both explicit
and implicit) between L* and C* ambiguous, and consequently illegal:

C* pc = new C;

L* pl = pc; // error: ambiguous

Pl = (L*)pc; // error: still ambiguous
pl = (L*) (A*)pc; // The L in C’s A

pc = pl; // error: ambiguous

pc = (L*)pl; // error: still ambiguous
pc = (C*) (A*)pl; // The C containing A’s L

Multiple Inheritance 511

Muitiple Inheritance

Muitiple Inheritance

I don’t expect this to be a problem. The place where this will surface is in cases where As (or Bs) are)
handled by functions expecting an L; in these cases a C will not be acceptable despite a C being an A:

extern f(L*); // some standard function

A aa;

C cc

f(&aa); // fine

f(s&ce) ; // error: ambiguous

£ ((A*) &cc) ; // fine

Casting is used for explicit disambiguation.

Virtual Base Classes

When a class C has two base classes A and B these two base classes give rise to separate sub-objects
that do not relate to each other in ways different from any other A and B objects. I call this indepen-
dent multiple inheritance. However, many proposed uses of multiple inheritance assume a dependence
among base classes (for example, the style of providing a selection of features for a window described
in this chapter under “Multiple Inheritance”). Such dependencies can be expressed in terms of an
object shared between the various derived classes. In other words, there must be a way of specifying
that a base class must give rise to only one object in the final derived class even if it is mentioned as a
base class several times. To distinguish this usage from independent multiple inheritance such base

classes are specified to be virtual:)
class AW : virtual W { ... };
class BW : virtual W { ... };
Class CW : AW , BW { ... };

A single object of class W is to be shared between AW and BW; that is, only one W object must be
included in CW as the result of deriving CW from AW and BW. Except for giving rise to a unique
object in a derived class, a virtual base class behaves exactly like a non-virtual base class.

The “virtualness” of W is a property of the derivation specified by AW and BW and not a property of
W itself. Every virtual base in an inheritance DAG refers to the same object. This object is constructed
once using a default constructor. A class that can only be constructed given an argument cannot be a
virtual base.

A class may be both a normal and a virtual base in an inheritance DAG:

class A : virtual L { ... };
class B : virtual L { ... };
class C: A, B{ ... };
class D : L, C{ ... };

A D object will have two sub-objects of class L, one virtual and one “normal.”

D

5-12 Selected Readings

7N

Multiple Inheritance

Representation

The object representing a virtual base class W object cannot be placed in a fixed position relative to
both AW and BW in all objects. Consequently, a pointer to W must be stored in all objects directly
accessing the W object to allow access independently of its relative position. For example:

AW* paw = new AW;
BW* pbw = new BW;
CW* pcw = new CW;

paw ..> | ...,
| AW part |)
| | v
| I<oou....
| W part |
| |

pow ..> | L.
| BW part | .
| | v
| |
| W part |
| |

pew ..> | L.,
[AW part | .
| | v
| e
| BW part | .
| [v
| |
| CW part |)
| | v
| I<evennns
| W part |

A class can have an arbitrary number of virtual base classes.

Multiple Inheritance 5-13

Muitiple Inheritance

One can cast from a derived class to a virtual base class, but not from a virtual base class to a derived
class. The former involves following the virtual base pointer; the latter cannot be done given the infor-
mation available at run time. Storing a “back-pointer’” to the enclosing object(s) is non-trivial in gen-
eral and was considered unsuitable for C++ as was the alternative strategy of dynamically keeping
track of the objects “for which” a given member function invocation operates.

Virtual Functions

Consider:
class W {
virtual void £():
virtual void g{();
virtual void h{():
virtual void k()
};
class AW : virtual W { void g(); ... }:
class BW : virtual W { void £(); ... }:
class CW : AW , BW { void h(); ... };

CW* pcw = new CW;

pew—>£() ; // BW::£()
pcw->g() ; // BW::g()
pcw—>h() ; // CW::h()

((AW*)pcw)—>£(); // BW::£();

A CW object might look like this:

5-14 Selected Readings

w

.

Multiple Inheritance

. | AW part |
v | [
......... |
. | BW part |
v |
| |
| CW part |
v | [vtbl
- vptr >| BW::f | delta(BW)-delta(W) |
| | | AW::qg | —delta (W) |
| W part | | CW::h | —delta (W) |
| | | Wik | 0 [

In general, the delta stored with a function pointer in a vtbl is the delta of the class defining the func-
tion minus the delta of the class for which the vtbl is constructed.

If W has a virtual function f that is re-defined in both AW and BW but not in CW an ambiguity
results. Such ambiguities are easily detected at the point where CW'’s vtbl is constructed.

The rule for detecting ambiguities in a class lattice, or more precisely a directed acyclic graph (DAG) of
classes, is that all re-definitions of a virtual function from a virtual base class must occur on a single
path through the DAG. The example above can be drawn as a DAG like this:

...>W{fghk}<...

Note that a call “up” through one path of the DAG to a virtual function may result in the call of a
function (re-defined) in another path (as happened in the call ((AW*)pcw)->£() in the example above).

Constructors and Destructors

Constructors for base classes are called before the constructor for their derived class. Destructors for
base classes are called after the destructor for their derived class. Destructors are called in the reverse
order of their declaration.

Multiple Inheritance 5-15

Multiple Inheritance

Arguments to base class constructors can be specified like this: ' ”“)

class A { A(int); };
class B { B(int); };
class C : A, virtual B {
C{(int a, int b) : A(a) , B(b) { ... }
};

Constructors are executed in the order their objects are declared. This rule is applied to members and
base classes separately and the base class constructors and applied before the member constructors.
When a class has more than one base class all argument lists for its base class constructor must be
qualified with the name of the base class. This rule applies even if only one of the base classes actually
requires arguments.

A virtual base is constructed before any of its derived classes. Virtual bases are constructed before any
non-virtual bases and in the order they appear on a depth first left-to-right traversal of the inheritance
DAG (directed acyclic graph). This rule applies recursively for virtual bases of virtual bases.

A virtual base is initialized by the “most derived” class of which it is a base. For example:

class V { public: V(); V(int); /* ... */ };

class A : public virtual V { public: A(); A(int); /* ... */ };
class B : public virtual V { public: B(); B(int); /* ... */ };
class C : public A, public B { public: C(); C(int); /* ... */ };

A::A(int i) : V(@) { /* ... */ })
B::B(int i) { /* ... */ } -
C::C{int i) { /* ... */ }

VvV v(l); // use V(int)

Aa(2); // use V(int)

B b(3); // use V()

C cd); // use V()

The order of destructor calls is defined to be the reverse order of appearance in the class declaration
(members before bases). There is no way for the programmer to control this order — except by the
declaration order. A virtual base is destroyed after all of its derived classes.

Assignment to this in the constructor of a class that takes part in a multiple inheritance lattice is likely
to lead to disaster. See Chapter 1 for alternatives.

B

5-16 Selected Readings

Visibility

The examples above ignored visibility considerations. A base class may be public or private. In addi-
tion, it may be virtual. For example:

class D
: Bl // private (by default), non-virtual (by default)
, virtual B2 // private (by default), virtual
, public B3 // public, non—virtual (by default)
, public virtual B4 {
// ...

}i
Note that a visibility or virtual specifier applies to a single base class only. For example,
class C : public A, B { ... };

declares a public base A and a private base B.

Overheads

The overhead in using this scheme is:

1. one subtraction of a constant for each use of a member in a base class that is included as the
second or subsequent base

2. one word per function in each vtbl (to hold the delta)
3. one memory reference and one subtraction for each call of a virtual function

4. one memory reference and one subtraction for access of a base class member of a virtual base
class

Note that overheads [1] and [4] are only incurred where multiple inheritance is actually used, but
overheads [2] and [3] are incurred for each class with virtual functions and for each virtual function
call even when multiple inheritance is not used. Overheads [1] and [4] are only incurred when
members of a second or subsequent base are accessed “from the outside”; a member function of a vir-
tual base class does not incur special overheads when accessing members of its class.

This implies that except for [2] and [3] you pay only for what you actually use; [2] and [3] impose a
minor overhead on the virtual function mechanism even where only single inheritance is used. This
latter overhead could be avoided by using an alternative implementation of multiple inheritance, but I
don’t know of such an implementation that is also faster in the multiple inheritance case and as port-
able as the scheme described here.

Fortunately, these overheads are not significant. The time, space, and complexity overheads imposed
on the compiler to implement multiple inheritance are not noticeable to the user.

Muttiple Inheritance 517

Muitiple Inheritance

Multiple Inheritance

But is it Simple to Use?)

What makes a language facility hard to use?

1. Lots of rules.

2. Subtle differences between rules.

3. Inability to automatically detect common errors.
4. Lack of generality.

5. Deficiencies.

The first two cases lead to difficulty of learning and remembering, causing bugs due to misuse and
misunderstanding. The last two cases cause bugs and confusion as the programmer tries to circum-
vent the rules and “simulate”” missing features. Case [3] causes frustration as the programmer discov-
ers mistakes the hard way.

The multiple inheritance scheme presented here provides two ways of extending a class’s name space:

® a base class
W a virtual base class

These are two ways of creating/specifying a new class rather than ways of creating two different kinds
of classes. The rules for using the resulting classes do not depend on how the name space was
extended:
m ambiguities are illegal | >
m rules for use of members are what they were for single inheritance
m visibility rules are what they were for single inheritance
m initialization rules are what they were for single inheritance

Violations of these rules are detected by the compiler.

In other words, the multiple inheritance scheme is only more complicated to use than the existing sin-
gle inheritance scheme in that

m you can extend a class’s name space more than once (with more than one base class)
m you can extend a class’s name space in two ways rather than in only one way

This appears minimal and constitutes an attempt to provide a formal and (comparatively) safe set of
mechanisms for observed practices and needs. I think that the scheme described here is “as simple :s
possible, but no simpler.”

A potential source of problems exists in the absence of “system provided back-pointers” from a virtual
base class to its enclosing object.

In some contexts, it might also be a problem that pointers to sub-objects are used extensively. This
will affect programs that use explicit casting to non-object-pointer types (such as char*) and “extra
linguistic” tools (such as debuggers and garbage collectors). Otherwise, and hopefully normally, all
manipulation of object pointers follows the consistent rules explained previously and is invisible to the
user.

5-18 Selected Readings

Multiple Inheritance

Conclusions

Multiple inheritance is reasonably simple to add to C++ in a way that makes it easy to use. Multiple
inheritance is not too hard to implement, since it requires only very minor syntactic extensions, and
fits naturally into the (static) type structure. The implementation is very efficient in both time and
space. Compatibility with C is not affected. Portability is not affected.

Multiple Inheritance 5-19

Footnotes

1. An earlier version of this paper was presented to the European UNIX Users” Group conference ‘)
in Helsinki, May 1987. This paper has been revised to match the multiple inheritance scheme
that was arrived at after further experimentation and thought. For more information see “The
Evolution of C++: 1985-1987”” and ““What is ‘Object-Oriented Programming?’.”

2. In most of this paper data hiding issues are ignored to simplify the discussion and shorten the
examples. This makes some examples illegal. Changing the word class to struct would make
the examples legal, as would adding public specifiers in the appropriate places.

3. This definition is equivalent except for possible side effects in constructors and destructors
(access to global variables, input operations, output operations, etc.).

—~—

W,

5-20 Selected Readings

6 Type-Safe Linkage for C++

Type-safe Linkage for C++

6-1
Abstract 6-1
Introduction 6-1
The Original Problem 6-1
The Original Solution 6-2
Problems with the Original Solution 6-2
a The overload Linkage Problem 6-2
m The General Linkage Problem 6-4
m Combining Libraries 6-4
A General Solution 6-5
m Type-safe C++ Linkage 6-6
m Implicit Overloading 6-7
m C Linkage 6-8
m Caveat 6-9
Experience 6-10
s Making Linkage Specifications Invisible 6-10
m Error Handling 6-11
a Upgrading Existing C++ Programs 6-12
Details 6-12
m Default Linkage 6-12
a Declarations in Different Scopes 6-13
m Local Linkage Specification 6-14
Alternative Solutions 6-15
m The Scope Trick 6-15
R = C “Storage Class” 6-15
< a Overload “Storage Class” 6-16
- m Calling Stubs 6-16
m Encode Only C++ Functions 6-17
m Nothing 6-18
Syntax Alternatives 6-18
» Why extern? 6-18
u Linkage for Individual Functions 6-18
m Linkage Pragmas 6-18
m Special Linkage Blocks 6-19
Conclusions 6-20
m The Function Name Encoding Scheme 6-20
Footnotes 6-23

4

Table of Contents

Type-safe Linkage for C++

This chapter is taken directly from a paper by Bjarne Stroustrup.

Abstract

This paper describes the problems involved in generating names for overloaded functions in C++ and
in linking to C programs. It also discusses how these problems relate to library building. It presents a
solution that provides a degree of type-safe linkage. This eliminates several classes of errors from C++
and allows libraries to be composed more freely than has hitherto been possible. Finally the current
encoding scheme for C++ names is presented.

Introduction

This paper describes the type-safe linkage scheme used by the 2.0 release of C++ and the mechanism
provided to allow traditional (unsafe) linkage to non-C++ functions. It describes the problems with
the scheme used by previous releases, the alternative solutions considered, and the practicalities
involved in converting from the old linkage scheme to the new.

The new scheme makes the overload keyword redundant, simplifies the construction of tools operating
on C++ object code, makes the composition of C++ libraries simpler and safer, and enables reliable
detection of subtle program inconsistencies. The scheme does not involve any run-time costs and does
not appear to add measurably to compile and link time.

The scheme is compatible with older C++ implementations for pure C++ programs but requires expli-
cit specification of linkage requirements for linkage to non C++ functions.

The Original Problem

C++ allows overloading of function names; that is, two functions may have the same name provided
their argument types differ sufficiently for the compiler to tell them apart. For example,

double sqrt (double)
complex sqrt (complex);

Naturally, these functions must have different names in the object code produced from a C++ pro-
gram. This is achieved by suffixing the name the user chose with an encoding of the argument types
(the signature of the function). Thus the names of the two sqrt() functions become:

sqrt__ Fd // the sqrt that takes a double argument
sqrt__ F7complex // the sqrt that takes a complex argument

Some details of the encoding scheme are described under “The Function Name Encoding Scheme.”

Type-Safe Linkage for C++ 6-1

Type-safe Linkage for C++

When experiments along this line began five years ago it was immediately noticed that for many sets
of overloaded functions there was exactly one function of that name in the standard C library. Since C
does not provide function name overloading there could not be two. It was deemed essential for C++
to be able to use the C libraries without modification, recompilation, or indirection. Thus the problem
became to design an overloading facility for C++ that allowed calls to C library functions such as sqrt()
even when the name sqrt was overloaded in the C++ program.

The Original Solution

The solution, as used in all non-experimental C++ implementations up to now, was to let the name
generated for a C++ function be the same as would be generated for a C function of the same name
wherever possible. Thus open() gets the name open on systems where C doesn’t modify its names on
output, the name _open on systems where C prepends an underscore, etc.

This simple scheme clearly isn’t sufficient to cope with overloaded functions. The keyword overload -
was introduced to distinguish the hard case from the easy one and also because function name over-
loading was considered a potentially dangerous feature that should not be accidentally or implicitly
applied. In retrospect this was a mistake.

To allow linkage to C functions the rule was introduced that only the second and subsequent version
of an overloaded function had their names encoded. Thus the programmer would write

overload sqrt; :
double sqrt (double); // sart
complex sqrt (complex) ; // sqrt__Flcomplex

and the effect would be that the C++ compiler generated code referring to sqrt and sqrt _F7complex.
This enabled a C++ programmer to use the C libraries. This trick solves the problems of name encod-
ing, linkage to C, and protection against accidental overloading, but it is clearly a hack. Fortunately, it
was only documented in the BUGS section of the C++ manual page.

Problems with the Original Solution

There are at least three problems with this scheme:

m how to name overloaded functions so that one may be a C function
m how to detect errors caused by inconsistent function declarations

m how to specify libraries so that several libraries can be easily used together
The overload Linkage Problem

Consider a program that uses an overloaded function print() to output globs and widgets. Naturally
globs are defined in glob.h and widgets in widgeth. A user writes

6-2 Selected Readings

N
\ '

&

Type-safe Linkage for C++

// filel.c:
#include <glob.h>
#include <widget.h>

but this elicits an error message from the C++ compiler since print() is declared twice with different
argument types. The user then modifies the program to read

// filel.c:
overload print;
#include <glob.h>
#include <widget.h>

and all is well until someone in some other part of the program writes

// file2.c:
overload print;
#include <widget.h>
#include <glob.h>

This fails to link since filel.c’s output refers to print (meaning print(glob)) and print__Féwidget,
whereas file2.c’s output refers to print (meaning print(widget)) and print__F4glob.

This is of course a nuisance, but at least the program fails to link and the programmer can — after
some detective work based on relatively uninformative linker error messages — fix the problem. The
nastier variation of this will happen to the conscientious programmer who knows that print(} is over-
loaded and inserts the appropriate overload declarations, but happens to use only one variation of
print() in each of two source files:

// filel.c:
overload print;
#include <glob.h>

// file2.c:
overload print;
#include <widget.h>

The output from filel.c and file2.c now both refer to print. Unfortunately, in the output from filel.c
print means print(glob) whereas print refers to print(widget) in the output from file2.c. One might
expect linkage to fail because print() has been defined twice. However, on most systems this is not
what happens in the important case where the definitions of print(glob) and print{widget) are placed
in libraries. Then, the linker simply picks the first definition of print() it encounters and ignores the
second. The net effect is that calls (silently) go to the wrong version of print(). If we are lucky, the
program will fail miserably (core dump); if not, we will simply get wrong results.

The requirement that the overload keyword must be used explicitly and the non-uniform treatment of
overloaded functions (“the first overloaded function has C linkage”) is a cause of complexity in C++
compilers and in other tools that deal with C++ program text or with object code generated by a C++
compiler.

Type-Safe Linkage for C++ 6-3

Type-safe Linkage for C++

The General Linkage Problem

This problem of inconsistent linkage is a variation of the general problem that C provides only the
most rudimentary facilities for ensuring consistent linkage. For example, even in ANSI C and in C++
(until now) the following example will compile and link without warning:

#include <stdio.h>
extern int sqrt (int);

main ()
{

printf ("sqrt (%3d) = %d\m",2,sqrt (2)):;
}

and produce output like this
sqrt (2) == 0

because even though the user clearly specified that an integer sqrt() was to be used, the C
compiler/linker uses the double precision floating point sqrt() from the standard library. This problem
can be handled by consistent and comprehensive use of correct and complete header files. However,
that is not an easy thing to achieve reliably and is not standard practice. The traditional C and C++
compiler/linker systems do not provide the programmer with any help in detecting errors, oversights,
or dangerous practices.

These linkage problems are especially nasty because they increase disproportionately with the size of
programs and with the amount of library use.

Combining Libraries

The standard header complex.h overloads sqrt():
// complex.h:
overload sqrt;

#include <math.h>
complex sqrt (complex);

Some other header, 3d.h, declares sqrt() without overloading it:

// 3d.h:
#include <math.h>

Now a user wants both the 3d and the complex number packages in a program:

#include <3d.h>
#$include <complex.h>

Unfortunately this does not compile because this sequence of operations:

6-4 Selected Readings

"\,,f

double sgrt (double); // from <3d.h>
overload sqrt; // from <math.h> via <complex.h>

A function must be overloaded before its first declaration is processed. So the programmer, who

really did not want to know about the internals of those headers, must reorder the #include directives
to get the program to compile:

#include <complex.h>
#include <3d.h>

This will work unless 3d.h overloads some function, say atan(), that complex.h does not. Even in that

case the programmer can cope with the problem by adding sufficient overload declarations where 3d.h
and complex.h are included:

overload sqrt;
overload atan;
#include <3d.h>
#include <complex.h>

This reordering and/or adding of overload declarations is work that is really quite spurious and in
any case irrelevant to the job the programmer is trying to do. Worse, if the extra overload declara-
tions were placed in a header file the programmer has now set the scene for the users of the new pack-
age to have exactly the same problems when they try combining this new library with other libraries.
It becomes tempting to overload all functions or at least to provide header files that overload all

interesting functions. This again defeats any real or imagined benefits of requiring explicit overload
declarations.

A General Solution

The overloading scheme used for C++ (until now) interacts with the traditional C linkage scheme in
ways that bring out the worst in both. Overloading of function names that was introduced to provide
notational convenience for programmers is becoming a noticeable source of extra work and complexity
for builders and users of libraries. Either the idea of overloading is bad or else its implementation in
C++ is deficient. The insecure C linkage scheme is a source of subtle and not-so-subtle errors. In sum-

mary:
m lack of type checking in the linker causes problems
m use of the overload keyword causes problems
®m we must be able to link C++ and C program fragments

A solution to 1 is to augment the name of every function with an encoding of its signature. A solution
to 2 is to cease to require the use of overload (and eventually abolish it completely). A solution to 3 is
to require a C++ programmer to state explicitly when a function is supposed to have C-style linkage.

The question is whether a solution based on these three premises can be implemented without notice-
able overhead and with only minimal inconvenience to C++ programmers. The ideal solution would

Type-Safe Linkage for C++ 6-5

Type-safe Linkage for C++

Type-safe Linkage for C++

require no C++ language changes

provide type-safe linkage

allow for simple and convenient linkage to C
not break existing C++ code

allow use of (ANSI style) C headers

provide good error detection and error reporting

be a good tool for library building

not impose run-time overhead

® not impose compile time overhead
We have not been able to devise a scheme that fulfills all of these criteria strictly, but the adopted
scheme is a good approximation.

Type-safe C++ Linkage

First of all, every C++ function name is encoded by appending its signature. This ensures that a pro-
gram will only load provided every function that is called has a definition and that the type specified
at the point of call is the same as the type specified at the point of definition. For example, given:

flint i) { ...) /! £_Fi
f(int i, char* j) { ...} // £_ Fipc

These examples will cause correct linkage:

extern f(int):; // £_Fi - links to f(int)
£();
extern £ (int,char*); // £__FiPc - links to f(int,char*)

£(1,"asdf");

These examples will cause linkage errors independent of where in the program they occur because no
£0 with a suitable signature has been defined:

// no declaration of £() in this file
// (this is only legal in C programs)
£(1); // £ - links to ???

extern f(char*); // £ FPc - links to ???
f("asdf");

extern f(int ...);// f_Fie - links to ???
£(1,"asdf");

One might consider extending this encoding scheme to include global variables, etc., but this does not
appear to be a good idea since that would introduce at least as many problems as it would solve. For
example:

6-6 Selected Readings

&

// filel.c:
int aa = 1;
extern int bb;

//file2.c:
char* aa = "asdf";// error: aa is declared int in filel.c
extern char* bb; // error: bb is declared int in filel.c

Under the current C scheme, the double definition of aa will be caught and the inconsistent declara-
tions of bb will not. Using an encoding scheme, the double definition of aa would not be caught since
the difference in encoding would cause two differently named objects to be created — contrary to the
rules of C and C++. The fact that the inconsistent declarations of bb would be caught by some linkers

(not all) does not compensate for the incorrect linkage of aa. Consequently only functions are encoded
using their signatures.

This linkage scheme is much safer than what is currently used for C, but it is not meant to solve all
linkage problems. For example, if two libraries each provides a function f(int) as part of their public
interface there is no mechanism that allows the compiler to detect that there are supposed to be two
different f(int)s. If the .o files are loaded together the linker will detect the error, but where a library
search mechanism is employed the error may go undetected.

Note that this linking scheme simply enforces the C++ rules that every function must be declared
before it is called and that every declaration of an external name in C++ must have exactly the same

type.

In essence, we use the name encoding scheme to “trick” the linker into doing type checking of the
separately compiled files. More comprehensive solutions can be achieved by modifying the linker to
understand C++ types. For example, a linker could check the types of global data objects and might
also be able to provide features for ensuring the consistency of global constants and classes. However,
getting an improved linker into use is typically a hard and slow process. The scheme presented here
is portable across a great range of systems and can be used immediately.

Implicit Overloading

If a function is declared twice with different argument types it is overloaded. For example:

double sgrt (double);
complex sqrt (complex);

is accepted without any explicit overload declaration. Naturally, overload declarations will be
accepted in the foreseeable future; they are simply not necessary any more.

Does this relaxation of the C++ rules cause new problems? It does not appear to be the case. For
example, originally I imagined that obvious mistakes such as

double sqrt (double); // sqrt__Fd
double d = sqrt(2.3);

double sqrt(int d) { ... } // sqrt__Fi
would cause hard-to-find errors. It certainly would with the traditional C linkage rules, but with

type-safe linkage the program simply will not link because there is no function called sqrt__Fd
defined anywhere. Even the standard library function will not be found because its name is sqrt as

Type-Safe Linkage for C++ 6-7

Type-safe Linkage for C++

Type-safe Linkage for C++

always.

Another imagined problem was that a call
£(x);

would suddenly change its meaning when a function became overloaded by the inclusion of a new
header file containing the declaration of another function f(). This is not the case, because the C++
ambiguity rules ensure that the introduction of a new £() will either leave the meaning of f(x)
unchanged (the new £() was unrelated to the type of x) or will cause a compile time error because an
ambiguity was introduced.

C Linkage

This leaves the problem of how to call a C function or a C++ function “masquerading’” as a C func-
tion. To do this a programmer must state that a function has C linkage. Otherwise, a function is
assumed to be a C++ function and its name is encoded. To express this an extension of the “extern”
declaration is introduced into C++:

extern "C" {
double sqrt (double); // sqrt (double) has C linkage
}

This linkage specification does not affect the semantics of the program using sqrt() but simply tells the
compiler to use the C naming conventions for the name used for sqrt() in the object code. This means
that the name of this sqrt() is sqrt or _sqrt or whatever is required by the C linkage conventions on a
given system. One could even imagine a system where the C linkage rules were the type-safe C++
linkage rules as described above so that the name of sqrt() was sqrt__Fd. Linkage specifications nest,
so that if we had other linkage conventions such as Pascal linkage we could write:

// default: C++ linkage here
extern "C" {
// C linkage here
extern "Pascal" {
// Pascal linkage here
extern "C++" {
// C++ linkage here
}
// Pascal linkage here

// C linkage here

// C++ linkage here
Such nestings will typically only occur as the result of nested #includes.

The {} in a linkage specification does not introduce a new scope; the braces are simply used for group-
ing. This strongly resembles the use of {} in enumerations.

6-8 Selected Readings

W

The keyword extern was used because it is already used to specify linkage in C and C++. Strings (for
example, “C” and “C++") were chosen as linkage specifiers because identifiers (e.g., C and Cplusplus)

would de facto introduce new keywords into the language and because a larger alphabet can be used
in strings.

Naturally, only one of a set of overloaded functions can have C linkage, so the following causes a com-
pile time error:

extern "C" {
double sqrt (double);
complex sqrt (complex);
}

Note that C linkage can be used for C++ functions intended to be called from C programs as well as
for C functions. In particular, it is necessary to use C linkage for C++ functions written to implement
standard C library functions for use by C programs. However, using the encoded C++ name from C
preserves type-safety at link time. This technique can be valuable in other languages too. I have
already seen an example of the C++ scheme applied to assembly code to prevent nasty link errors for
low level routines. One might consider using this C++ linkage scheme for C also, but I suspect that
the sloppy use of type information in many C programs would make that too painful.

In an “all C++” environment no linkage specifications would be needed. The linkage mechanism is
intended to ease integration of C++ code into a multi-lingual system.

Caveat

One could extend this linkage specification mechanism to other languages such as Fortran, Lisp, Pas-
cal, PL/1, etc. The way such an extension is done should be considered very carefully because one
“obvious”” way of doing it would be to build into a C++ compiler the full knowledge of the type struc-
ture and calling conventions of such “foreign” languages. For example, a C++ compiler might handle
conversion of zero terminated C++ strings into Pascal strings with a length prefix at the call point of
function with Pascal linkage and might use Fortran call by reference rules when calling a function with
Fortran linkage, etc.

There are serious problems with this approach:

m The complexity and speed of a C++ compiler could be seriously affected by such extensions.
m Unless an extension is widely available, accepted programs using it will not be portable.

m Two implementations might “‘extend” C++ with a linkage specification to the same “foreign”
language, say Fortran, in different ways so as to make identical C++ programs have subtly dif-
ferent effects on different implementations.

Naturally, these problems are not unique to linkage issues or to this approach to linkage specification.

I conjecture that in most cases linkage from C++ to another language is best done simply by using a
common and fairly simple convention such as “C linkage” plus some standard library routines and/or
rules for argument passing, format conversion, etc., to avoid building knowledge of non-standard cal-
ling conventions into C++ compilers. This ought to be simpler from C++ than from most other
languages. For example, reference type arguments can be used to handle Fortran argument passing
conventions in many cases and a Pascal string type with a constructor taking a C style string can trivi-
ally be written. Where extensions are unavoidable, however, C++ now provides a standard syntax for
expressing them.

Type-Safe Linkage for C++ 6o

Type-safe Linkage for C++

Type-safe Linkage for C++

Experience :)

The natural first reaction to this scheme is to look for a way of handling linkage and overloading
without requiring explicit linkage specifications. We have not been able to come up with a system that
enabled C linkage to be implicit without serious side effects. I will summarize the advantages of the
adopted scheme here and discuss several possible objections to it. ““Alternative Solutions” below
describes alternative schemes that were considered and rejected.

Making Linkage Specifications Invisible

One obvious advantage of this scheme is that it allows a programmer to give a set of functions C link-
age with a single linkage specification without modifying the individual function declarations. This is
particularly useful when standard C headers are used. Given a C header (that is, an ANSI C header
with function prototypes, etc.)

// C header:
// C declarations

one can trivially modify the header for use from C++:
// C++ header:

extern "C" {
// C header:
// C declarations

This creates a C++ header that cannot be shared with C.

Sharing with C can be achieved using #ifdef:
// C and C++ header:

#ifdef _ cplusplus
extem IQCII {
#endif
// C header:
// C declarations
#ifdef __ cplusplus
}
#endif

where _ _cplusplus is defined by every C++ compiler.

In cases where one for some reason cannot or should not modify the header itself one can use an
indirection:

D

6-10 Selected Readings

// C++ header:

extern "C" {
#include "C_header"
}

Fortunately, such transformations can be done by trivial programs so that most of the effort in convert-
ing C headers need not be done by hand.

It was soon discovered that even though programmers tend to scatter function declarations throughout
the C++ program text, most C functions actually come from well defined C libraries for which there
are — or ought to be — standard header files.

Placing all of the necessary linkage specifications in standard header files means that they are not seen
by most users most of the time. Except for programmers studying the details of C library interfaces,
programmers installing headers for new C libraries for C++ users, and programmers providing C++
implementations for C interfaces, the linkage specifications are invisible.

Error Handling

The linker detects errors, but reports them using the names found in the object code. This can be com-
pensated for by adding knowledge about the C++ naming conventions to the linker or (simpler) by
providing a filter for processing linker error messages. This output was produced by such a filter:

C++ symbol mapping:

PathListHead: :~PathListHead () __dt_ 12PathListHeadFv
Path_list::sepWork () sepiWork__SPath_listFv
Path: :pathnorm() pathnorm 4PathFv
Path: :operator& (Path&) __ad__4PathFR4Path
Path::first () first 4PathFv
Path::last () last__ 4PathFv
Path::rmfirst () mmfirst 4PathFv

Path: :rmlast () rmlast__4PathFv

Path: :rmdots () rmdots__4PathFv

Path: : findpath (String&) findpath 4PathFR6String
Path: :fullpath() fullpath 4PathFv

Bringing this filter into use had the curious effect of replacing the usual complaint about “ugly C++
names” with complaints that the linker didn’t provide sufficient information about C functions and
global data objects.

The reason for presenting the encoded and unencoded names of undefined functions side by side is to
help users who use tools, such as debuggers, that haven’t yet been converted to understand C++
names.

A plain C debugger such as sdb, dbx, or codeview can be used for C++ and will correctly refer to the
C++ source, but it will use the encoded names found in the object code. This can be avoided by
employing a routme that “reverses” the encoding, that is, reads an encoded name and extracts infor-
mation from it.! The encoding scheme is described under “The Function Name Encoding Scheme.” A
standard C++ name decoder should be generally available for use by debugger writers and others who
deal directly with object code. Until such decoders are in widespread use the programmer must have
at least a minimal understanding of the encoding scheme.

Type-Safe Linkage for C++ 6-11

Type-safe Linkage for C++

Type-safe Linkage for C++

Upgrading Existing C++ Programs

Decorating the standard header files with the appropriate linkage specifications had two effects. The
first phenomenon observed was that most of the declarations scattered in the program text that were
referring to C functions were either redundant (because the function had already been declared in a
header) or at least potentially incorrect (because they differed from the declaration of that header file
on some commonly used system). The second phenomenon observed was that every non-trivial pro-
gram converted to the new linkage system contained inconsistent function declarations. A noticeable
number of declarations found in the program text were plain wrong, that is, different from the ones
used in the function definition. This was caused in part by sloppiness, for example, where a program-
mer had declared a function

f(int ...):

to shut up the compiler instead of looking up the type of the second argument. A more common
problem was that the “standard” header files had changed since the function declaration was placed in
the text so that the “local” declaration didn’t match any more; this often happens when a file is
transferred from one system to another, say from a BSD to a System V.

In summary, introducing the new linkage system involved adding linkage specifications. Typically,
these linkage specifications were only needed in standard header files. The process of introducing
linkage specifications invariably revealed errors in the programs — even in programs that had been
considered correct for years. The process strongly resembles trying lint on an old C program.

As was expected, some programmers first tried to get around the requirements for explicit C linkage
by enclosing their entire program in a linkage directive. This might have been considered a fine way
of converting old C++ programs with minimum effort had it not had the effect of ensuring that every
program that uses facilities provided by such a program would also have to use the unsafe C linkage.
To achieve the benefits from the new linkage scheme most C++ programs must use it. The require-
ment that at most one of a set of overloaded functions can have C linkage defeats this way of convert-
ing programs. The slightly slower and more involved method of using standard header files (already
containing the necessary linkage specifications) and adding a few extra linkage specifications in local
headers where needed must be used. This also has the benefit of unearthing unexpected errors.

Details

The scope of C function declarations has always been a subject for debate. In the context of C++ with
linkage specifications and overloaded functions it seems prudent to answer some variations of the
standard questions.

Default Linkage

Consider:

6-12 Selected Readings

W,

.....

Type-safe Linkage for C++

extern "C" {
int f£(int);
}
int £(int):; // default: £() has C++ linkage

Is it the same f() that was defined with C linkage above and does it have C or C++ linkage? It is the
same f() and it does (still) have C linkage. The first linkage specification “wins” provided the second
declaration has “only” default (that is, C++) linkage.

Where linkage is explicitly specified for a function, that specification must agree with any previous
linkage. For example:

extern "C" {
int f£(int); // £() has C linkage
}

int g(); // default: g() has C++ linkage

extern "C++" {
int f£(int); // error: inconsistent linkage specification
int g(): // fine

}

The reason to require agreement of explicit linkage specifications is to avoid unnecessary order depen-
dencies. The reason to allow a second declaration with implicit C++ linkage to take on the linkage
from a previous explicit linkage specification is to cope with the common case where a declaration
occurs both in a .c file and in a standard header file.

Declarations in Different Scopes

Consider:
extern "C" {
int £(int);
}
void gl{()

{
int £(int);
£(1);

}

Is the £() declared local to g1 the same as the global f() and does the function called in g1() have C
linkage? It is the same £() and it does have C linkage.

Consider:

Type-Safe Linkage for C++ 6-13

Type-safe Linkage for C++

extern "C" {)
int f(int); -
}
void g2()
{
int f(char*);
£(1);
f("asdf");

}

Does the local declaration of f() overload the global £() or does it hide it? In other words, is the call
f(1) legal? That call is an error because the local declaration introduces a new £(). In the tradition of
C, the declaration of f(char*) also draws an warning.

Consider:

void g3()
{

int ff(int);
}:

void g4()

{
int f£f(char¥*);
£f ("asdf");)
££(1);

};

Does the second declaration of £f() overload the first? In other words, is the call £f(1) legal? The call is
an error and a warning is issued about the two declarations of £f() because (as in the example above)
overloading in different scopes is considered a likely mistake.

Local Linkage Specification
Linkage specifications are not allowed inside function definitions. For example:

void g5()
{
extern "C" { // error: linkage specification in function
int h();
}
}

The reason for this restriction is to discourage the use of local declarations of C functions and to sim-
plify the language rules.

6-14 Selected Readings

I4

Alternative Solutions

So, the linkage specification scheme works, but isn’t there a better way of achieving the benefits of that
scheme? Several schemes were considered. This section presents the first two or three alternatives
people usually come up with and explains why we rejected them. Naturally, we also considered more
and weirder solutions, but all the plausible ones were variations of the ones presented here.

The Scope Trick

The first attempt to provide type-safe linkage involved the use of overload and the C++ scope rules.
All overloaded function names were encoded, but non-overloaded function names were not. This
scheme had the benefit that the linkage rules for most functions were the C linkage rules — and had
the problem that those rules are unsafe. The most obvious problem was that at first glance there is no
way of linking an overloaded function to a standard C library function. This problem was handled
using a “‘scope trick””:

overload sqrt;
camplex sqrt (complex);
inline double sqrt (double d)
{
extern double sqrt (double); // A completely new sqrt ()
// not overloaded

return sqrt (d); // not a recursive call
// but a call of the C function

// sart
}

In effect, we provided a C++ calling stub for the C function sqrt(). The snag is that having thus defined
sqrt(double) in a standard header a user cannot provide an alternative to the standard version. The
problems with library combination in the presence of overload are not addressed in this scheme, and
are actually made worse by the proliferation of definitions of overloaded functions in header files. In
particular, if two “standard” libraries each overload a function then these two libraries cannot be used
together since that function will be defined twice: once in each of the two standard headers.

There is also a compile time overhead involved. In retrospect, I consider this scheme somewhat worse
than the original “the first overloaded has C linkage” scheme.

C “Storage Class”

It is clear that the definitions providing a calling stub are redundant. We could simply provide a way
of stating that a member of a set of overloaded functions should be a C function. For example:

complex sqrt (complex);
cdecl double sqrt (double); // sart (double) has C linkage

This is equivalent to

Type-Safe Linkage for C++ 6-15

Type-safe Linkage for C++

Type-safe Linkage for C++

complex sqrt (complex);
extern "C" {

double sqrt (double);
}

but less ugly. However, it involves complicating the C++ language with yet another keyword. Func-
tions from other languages will have to be called too and they each have separate requirements for
linkage so the logical development of this idea would eventually make ada, fortran, lisp, pascal, etc.,
keywords. Using a keyword also requires modification of the declarations of the C functions and
those are exactly the declarations we would want not to touch since they will typically live in header

files shared with an ANSI C compiler. In some cases we would even like not to touch a file in which
such declarations reside.

Overload “Storage Class”

The use of a keyword to indicate that a function is a C function is logically very similar to the linkage
specification solution, though inferior in detail. An alternative is to have a keyword indicate that a
function should have its signature added. The keyword overload might be used. For example:

overload complex sqgrt(complex); // use C++ linkage
double sqrt (double); // C linkage by default

This has the disadvantage that the programmer has to add information to gain type safety rather than
having it as default and would de facto ensure that the C++ type-safe linkage rules would only be
used for overloaded functions. Furthermore, this would mean that libraries could only be combined if
the designers of these libraries had decorated all the relevant functions with overload. This scheme
also invalidates all old C++ programs without providing significant benefits.

Calling Stubs

One way of dealing with C linkage would be not to provide any facilities for it in the C++ language,
but to require every function called to be a C++ function. To achieve this one would simply re-
compile all libraries and have one version for C and another for C++. This is a lot of work, a lot of
waste, and not feasible in general. In the cases where recompilation of a C program as a C++ program
is not a reasonable proposition (because you don’t have the source, because you cannot get the pro-
gram to compile, because you don’t have the time, because you don’t have the file space to hold the
result, etc.) you can provide a small dummy C++ function to call the C function. Such a function
would be written in C (for portability) or in assembler (for efficiency). For example:

double sqrt_Fd(d) double d; /* C calling stub for sqrt (double) : */
{

extern double sqrt():

return sqrt(d):
}

A program can be provided to read the linker output and produce the required stubs.

This scheme has the advantage that the user works in what appears to be an “all C++” environment
(but so does the adopted scheme once a few C libraries have been recompiled with C++ and/or a few
header files have been decorated with linkage specifications). It does, however, also suffer from a few
severe disadvantages. A “C calling stub maker” program cannot be written portably. Therefore, it
would become a bottleneck for porting C++ implementations and C++ programs and thus a bottleneck
for the use of C++. It is also not clear that this approach can be implemented everywhere without loss

6-16 Selected Readings

of efficiency since it requires large numbers of functions to have two names (a C name and a C++
name). This takes up code space and introduces large numbers of extra names that would slow down
programs reading object files such as linkers, loaders, debuggers, etc. The C calling interfaces would
also be ubiquitous and available for anyone to use by mistake, thus re-introducing the C linkage prob-
lems in a new guise.

Encode Only C++ Functions

The fundamental problem with all but the last scheme outlined above is that they require the program-
mer to decorate the source code with directives to help the compiler determine which functions are C
functions. Ideally, the compiler would simply look at the program and determine the linkage neces-
sary for each individual function based on its type. Could the compiler be that smart? Unfortunately,
no. There is no way for the compiler to know whether

extern double sqgrt (double);

is written in C or C++. However, one might handle most cases by the heuristic that if a function is
clearly a C++ function it gets C++ linkage and if it isn’t it gets C linkage. For example:

complex sqrt (complex); // clearly C++: sqrt__ F7complex
double sqgrt (double); // could be C:sqrt

Since complex is a class, sqrt(complex) is clearly a C++ function and it is encoded. The other sqrt()
might be C so it isn’t.

Applying this heuristic would mean that most functions would not have type-safe linkage — but we
are used to that. It would also mean that overloading a function based on two C types would be
impossible or require special syntax:

int max(int,int);
double max(double,double) ;

Such overloading must be possible because there are many such examples and several of those are
important, especially when support for both single and double precision floating point arithmetic
becomes widespread:

float sqrt (float)
double sqgrt (double);

This implies that either overload or linkage specifications must be introduced to handle such cases.
The heuristic nature of the specification of where these directives are needed will lead to confusion,
overuse, and errors.

If overload is re-introduced, the cautious programmer will use it systematically wherever a relatively
simple class is used (in case a revision of the system should turn it into a plain C struct), wherever an
argument is typedef'd (because that typedef might some day refer to a plain C type), and wherever
there is any doubt. This will lead to the now well known problems of combining libraries. Similarly,
if linkage specifications are required anywhere, they will proliferate because of doubts about where
they are needed.

Type-Safe Linkage for C++ 6-17

Type-safe Linkage for C++

Type-safe Linkage for C++

It does not seem wise to refrain from checking linkage in a large number of cases and to introduce a
rather arbitrary heuristic into the linking rules for C++ without being able to reduce the complexity of
the language or to reduce the burden on the programmer somewhere.

Nothing

Naturally, while considering these alternative schemes the easy option of doing nothing was regularly
re-considered. However, the original scheme still suffers from the problems described in section 3:
insecure linkage, spurious overload declarations, and overloading rules that complicate the life of
library writers and library users.

Syntax Alternatives

The scheme of giving all C++ functions type-safe linkage and providing a syntax for expressing that a
given function is to have C linkage was thus chosen and tried. However, there were still several alter-
natives for expressing C linkage for this general scheme.

Why extern?

Instead of employing the existing keyword extern we might have introduced a new one such as link-
age or foreign. The introduction of a new keyword always breaks some programs (though usually
not in any serious way and for a well chosen new keyword not many programs) and extern already
has the right meaning in C and C++. In almost all cases extern is redundant since external linkage is
the default for global names and for locally declared functions. When used, extern simply emphasizes
the fact that a name should have external linkage. The use of extern introduced here merely allows
the programmer to tag an extern declaration with information of how that linkage is to be established.

Linkage for Individual Functions

One obvious alternative is to add the linkage specification to each individual function:
extern "C" double sqrt (double); // sqrt(double) has C linkage

The problem with this is that it does not serve the need to be able to give a set of C functions C link-
age with one declaration and requires the declaration of every C function to be modified. In particu-
lar, it does not allow a C header (that is, an ANSI C header) to be used from a C++ program in such a
way that all the functions declared in it get C linkage.

This notation for linkage specification of individual functions is not just an alternative to the linkage
“block” adopted but also an obvious extension to the adopted syntax. Iintend to review the situation
after the current scheme has been used a while longer to see if the use of linkage specifications war-
rants this extension.

Linkage Pragmas
The original implementation of the linkage specifications used a #pragma syntax:

6-18 Selected Readings

Type-safe Linkage for C++

#pragma linkage C
double sqrt (double) ; // sart (double) has C linkage
#pragma linkage

This was considered too ugly by many but did appear to have significant advantages. For example, it
can be argued that linkage to “foreign languages” is not part of the language proper. Such linkage
cannot be specified once and for all in a language manual since it involves the implementations of two
languages on a given system. Such implementation specific concepts are exactly what pragmas were
introduced into Ada and ANSI C to handle. The #pragma syntax was trivial to implement and easy to
read. It was also ugly enough to discourage overuse and to encourage hiding of linkage specifications
in header files.

There are problems with this view, though. For example, it is most often assumed that any #pragma
can be ignored without affecting the meaning of a program. This would not be the case with linkage
pragmas. Another problem is that for the moment many C implementations do not support a pragma
mechanism and it is not certain that those that do can be relied upon to ““do the right thing’” for link-
age pragmas used by a C++ compiler.

Linkage to a particular foreign language does not belong in C++ because such linkage will in principle
be local to a given system and non-portable. However, the fact that linkage to other languages occurs
is a general concept that can and ought to be supported by a language intended to be used in multi-
language environments. In practice, one can assume that at least C and Fortran will be available on
most systems where C++ is used and that a large group of users will need to call functions written in
these languages. Consequently, one would expect C++ implementations to support C and Fortran
linkage.

The fact that C (like most other languages) does not provide a concept of linkage to program frag-
ments written in other languages led to the absence of an explicit linkage mechanism in C++ and to
the problems of link safety and overloading.

Special Linkage Blocks

Another approach would be to introduce a new keyword, say linkage, and use it to specify both the
start and the end of a linkage block:

linkage ("C") ;
double sqrt (double); // sqrt (double) has C linkage
linkage ("");

This avoids introducing yet another meaning for {3}, allows setting and restoring of linkage to be two
separate operations, allows all linkage directives to be found by simple pattern matching in a line
oriented editor, and allows all linkage directives to be suppressed by a single macro

#define linkage (a)

The problem with this seems to be that it tempts people to think of linkage as a compiler “mode” that
can be switched on and off at random times and doesn’t obey block structure. For example:

Type-Safe Linkage for C++ 6-19

Type-safe Linkage for C++

linkage ("C") ;)
double sqrt (double); // sqrt (double) has C linkage
£ {
extern g(); // g() has C linkage
linkage ("");

extern h(); // h() has C++ linkage
}

It also becomes hard to convince people that linkage specifications come in pairs and can be nested.

The same approach, with the same educational problems, can be tried without introducing a new key-
word:

extern "C";
double sqrt (double); // saqrt (double) has C linkage
extern "";

Note that whatever syntax was chosen, linkage specifications were intended to obey block structure to
be fit cleanly into the language. In particular, if linkage “blocks” and ordinary blocks were not
obliged to nest the job of writers of tools manipulating C++ source text, such as a C++ incremental
compilation environment, would be needlessly complicated.

Conclusions |)

The use of function name encodings involving type signatures provides a significant improvement in
link safety compared to C and earlier C++ implementations. It enables the (eventual) abolition of the
redundant keyword overload and allows libraries to be combined more freely than before. The use of
linkage specifications enables relatively painless linkage to C and eventually to other languages as
well. The scheme described here appears to be better than any alternative we have been able to dev-
ise.

The Function Name Encoding Scheme

The (revised) C++ function name encoding scheme was originally designed primarily to allow the
function and class names to be reliably extracted from encoded class member names. It was then
modified for use for all C++ functions and to ensure that relatively short encodings (less than 31 char-
acters) could be achieved reliably for systems with limitations on the length of identifiers seen by the
linker. The description here is just intended to give an idea of the technique used, not as a guide for
implementors.

The basic approach is to append a function’s signature to the function name. The separator _ _ is used
so a decoder could be confused by a name that contained _ _ except as an initial sequence, so don’t use
names such as a__b_ _cin a C++ program if you like your debugger and other tools to be able to
decompose the generated names.

The encoding scheme is designed so that it is easy to determine

6-20 Selected Readings

if a name is an encoded name
what (unencoded) name the user wrote

what class (if any) the function is a member of

what are the types of the function arguments

The basic types are encoded as

void

char

short

int

long

float
double

long double

R QAHHMHFELOQOCG

Type-safe Linkage for C++

A global function name is encoded by appending _ _F followed by the signature so that
f(int,char,double) becomes f _Ficd. Since f() is equivalent to f(void) it becomes £ _Fv.

Names of classes are encoded as the length of the name followed by the name itself to avoid termina-
tors. For example, x:f() becomes £ _1xFv and rec::update(int) becomes update_ _3recFi. .

Type modifiers are encoded as
unsigned U
const C
volatile v
signed S

so f(unsigned) becomes f__FUi. If more than one modifier is used they will appear in alphabetical

order so f(const signed char) becomes f__FCSc.

The standard modifiers are encoded as

pointer * P
reference &R

array [10]A10_
function () F

ptr to member S::*M1S

So f(char*) becomes f__FPc and printf(const char* ...) becomes printf _FPCce.

To shorten encodings repeated types in an argument list are not repeated in full; rather, a reference to

the first occurrence of the type in the argument list is used. For example:

Type-Safe Linkage for C++

6-21

Type-safe Linkage for C++

f (complex, complex) ; // £ FlcomplexTl
// the second argument is of the same
// type as argument 1

£ (record, record, record, record) ; // £__F6recordN3l
// the 3 arguments 2, 3, and 4 are of
// the same type as argument 1

A slightly different encoding is used on systems without case distinction in linker names. On systems
where the linker imposes a restriction on the length of identifiers, the last two characters in the longest
legal name are replaced with a hash code for the remaining characters. For example, if a 45 character
name is generated on a system with a 31 character limit, the last 16 characters are replaced by a 2 char-
acter hash code yielding a 31 character name.

Naturally, the encoding of signatures into identifier of limited length cannot be perfect since informa-
tion is destroyed. However, experience shows that even truncation at 31 characters for the old and
less dense encoding was sufficient to generate distinct names in real programs. Furthermore, one can
often rely on the linker to detect accidental name clashes caused by the hash coding. The chance of an
undetected error is orders of magnitude less than the occurrence of known problems such as C pro-
grammers accidentally choosing identical names for different objects in such a way that the problem
isn’t detected by the compiler or the linker.

6-22 Selected Readings

C

Footnotes

1. Naturally, this would be the same function as was used to write the linker output filter. The
examples here are based on the name decoding routine written by Steve Brandt and used to
modify the UNIX System V C debugger sdb into sdb++.

Type-Safe Linkage for C++ 6-23

_/

(0

7 Access Rules for C++

Access Rules for C++

7-1
Introduction 7-1
Access Rules 7-1
Explanation 7-2
Base Member Declarations 7-5
Examples (Not Interdependent) 7-6
Footnotes 7-12

Table of Contents

Access Rules for C++

This chapter is taken directly from a paper by Phil Brown.

Introduction

One feature of C++ is the provision for function and data protection through a combination of the fol-
lowing;:
® public, protected, and private class members

Every class member has an associated level of protection. public indicates no protection,
whereas private indicates access is limited to members and friends. protected is similar to
private except that it allows access additionally to derived classes.

m inheritance

Derived classes are defined in terms of base classes. Inheritance is the name and description of
this process, by which a derived class acquires the data and functions of its base classes. As pre-
viously noted, the private members of the base classes are not accessible in the derived class.
The protection of other members is dependent on the type of the derivation. public and pro-
tected members of public base classes will have the same protection in the derived class. These
same members from a private base class will be private in the derived class. (See Figure 7-1)

m friendship
Friendship overrides all protections within a class. A friend declaration within a class denotes
another class! or function as a potential friend.

The following access rules define when a potential friend will be considered a friend.

This paper defines the C++ access rules, as they relate to the various protection methods, and explains
some of the reasoning for these rules.

Access Rules

1. Any visible non-“class member”’ is accessible.

2. If an object is accessible, then

®

public members of the object’s class type are accessible.

o

potential friends of the object’s class type will be considered friends.

C. The same level of access applies to the public base classes of the object’s class type.

Access Rules for C++ 7-1

Access Rules for C++

3. All members of a class, and public and protected members of its base classes, are accessible \)
by member and friend functions of the class?

Explanation

1. Any visible non-"class member” is accessible.

The first of the access rules is the starting point for many references. In the following:
int i;

void
£(O {

i=1; // OK - Rule #1
}

the variable i is accessible since it is not a class member and is visible in the function f.

2. If an object is accessible, then

a. public members of the object’s class type are accessible.
The first part of the second rule is a restatement of its condition. Access to public .
members of a class object is the minimal amount of accessibility (excluding no access).)
class B {
public:
int i;
b
void
£O {
B b;
b.i=1; // OK — Rule #1, #2a

In this case, the variable b is accessible by Rule #1. Since b is accessible, the public
member i of class B will be accessible (Rule #2a).

b. potential friends of the object’s class type will be considered friends.

One way to view this is to consider a friend declaration as a public member which
will not be honored unless that friend declaration is accessible. Once friendship has
been established, access is described by Rule #3.

7-2 Selected Readings

class B {
private:

};

// unnecessary
int i;
friend void £();

Access Rules for C++

class D : private B {

}i

void

£O |
B b;
b.i =1; // OK - Rule #1, #2b, #3
D d;

d.i = 1; // ERROR - Rule #1, #2a, -fail-

In this example, both variables b and d are accessible according to Rule #1. However,
in the first case, the function f is a friend of class B since, by Rule #2b, b is accessible
and class B has a friend declaration for the function f. Rule #3 states that, as a friend,
f will have access to all of the members of class B. The assignment to b.i is thus
valid. In the second case, the public members of d are accessible according to Rule
#2a. Since function f is not a friend of class D, and class B is not a public base class
of class D, there are no other access rules to apply. The assignment to d.i is invalid.

the same level of access applies to the public base classes of the object’s class type.

This rule applies when Rule #3 cannot (access is not by a member or friend). Notice
that there will be no access to private base classes.

class B {
public:
int i;

}i

class D : public B {

private: // unnecessary

int 3;

b:

void

£0 {

D d;

d.i = 1; // OK - Rule #1, #2a, #2c

d.j =
}

|
[

// ERROR - Rule #1, #2a, -fail-

In this example, the variable d is accessible according to Rule #1. According to Rule
#2a, the public members of class D are thus accessible. Since j is a private member of
class D, it will not be accessible. However, by Rule #2c, since class B is a public base
class of class D, the public members of class B will also be accessible. The assign-
ment to d.i is valid.

Access Rules for C++ 7-3

Access Rules for C++

3. All members of a class, and public and protected members of its base classes, are accessible by
member and friend functions of the class. (self-explanatory)

The reasoning for the rules as they apply to inheritance is illustrated by Figure 7-1.

Figure 7-1: Derivation Relationship

BASE: DERIVED:
PRIVATE PRIVATE
PROTECTED PROTECTED
PUBLIC PUBLIC

PRIVATE derivation
------ PUBLIC derivation

This diagram shows the level of protection of a base class member when referenced through a derived
class. As indicated in Rule #3, since friends and members of the derived class have access to all
members of the derived class, they will also have access to the public and protected members of any
base class.

When neither a friend nor member of the derived class, access to base class members will be deter-
mined by the type of derivation. If it is a private derivation, the base class members will be private in
the derived class. As such, the base class members will not be accessible. However, in a public

derivation, the same level of access will apply for base class members as applies within the derived
class.

7-4 Selected Readings

Access Rules for C++

Base Member Declarations

public and protected base member declarations in a derived class (of the form base_class::member)
can be used to alter the accessibility of class members. When given in a private derived class, a base
member declaration will make the designated base member appear to be a member of the derived
class.® Thus, accessibility of the member will be determined at the level of the derived class.

A superfluous base member declaration (i.e., one given in a public derived class) is ignored. This is
necessary since an inaccessible base member declaration can conceivably hide a validly accessible base
member.

class A {
protected:
int i;
friend £();
bi

class B : public A {
protected:

A::i;
}i

void £() {
B* p;
p—>i = 1; // This would be illegal if the base
// member declaration was not ignored

Access Rules for C++

Access Rules for C++

Examples (Not Interdependent)

/)= start of example 01 ————-

class B {

int i;

friend void £():
};

class D : public B {
}:

void
£0 {

B* p = new B;

D* g = new D;

int fil =

int fi2 = g->i; //
}
/=== start of example 02 ————-
class B {

int i;

};

class D : public B {
};

p—>i; // OK - Rule #1, #2b, #3
OK - Rule #1,

#2a, #2c, #2b, #3

void
£0O {
B* p = new B;
D* g = new D;
int fil = p->i; // ERROR - Rule #1, #2a, -fail-
int fi2 = g->i; // ERROR - Rule #1, #2a, #2c, -fail-
}
/[—m——— start of example 03 -———-—
class B {
int i;
friend C;

}:

class C : private B {
friend D;
void £1() {

int fil = i; // OK - Rule #3, #2b, #3

}

Selected Readings

~

Access Rules for C++

}:

class D : public C {

void £2() {
int £i2 = i; // ERROR - Rule #3, #2b, #3, -fail-
}
};
) start of example 04 ~———=-—
class B {
int i;
friend D;

class C : private B {
}:

class D : public C {

void f£() {
int fil = i; // ERROR - Rule #3, -fail-
}
}:
/=== start of example 05 ——————
class B {
int 1i;
friend D;

};

class C : public B {
}:

class D : private C {
void f() {
int fil = i; // OK - Rule #3, #2c, #2b, #3
}

/= start of example 06 ———-—-—

int 1i;
friend D;

class D {
void £() {
B* p = new B;
int fil = p—>i; // OK - Rule #1, #2b, #3

Access Rules for C++ 7-7

Access Rules for C++

7-8

};)
S
e start of example 07 ————-
class B {
protected:
int a;
};
class D : public B {
friend void f();
public:
int b;
};
void
£0) {
D* p;
p—>a = 1; // OK - Rule #1, #2b, #3
p=>b = 2; // OK - Rule #1, #2a
B* pp;
pp->a = 1; // ERROR - Rule #1, #2a, -fail-
pp->b = 1; // ERROR - Rule #1, #2a, -fail-
PP = p; -
pp—>a = 1; // ERROR - Rule #1, #2a, —-fail-)
pPp—>b = 2; // ERROR - Rule #1, #2a, -fail- i
v
//—=-——— start of example 08 —————-
class A {
protected:
int a;

}:

class B : public A {
};

class C : public B {
void £(B* p);
};

void
C::£(B* p) {
a=1; // OK - Rule #3, #2c¢
p—>a = 2; // ERROR - Rule #1, #2a, #2c, -fail-
}
s start of example 09 —————- }

Selected Readings

N

Access Rules for C++

class A {

int a;

friend void f();
};

class B : public A {
Vi

void
£0 |

B* p;

p—>a = 1;

A* p2;

p2->a = 2;
}
[/====— start of example 10
class B {

friend void f1();
public:

int a;
}:

class C : private B {
friend void £2();
}:

class D : public C {
}i

void
£10) |
D* pl;
pl->a = 1;
}
void
£2() {
D* p2;
p2->a = 1;
}
/[=———— start of example 11
class B {
friend void £1():;
int a;

};

class C : private B {

Access Rules for C++

// OK - Rule #1, #2a, #2c, #2b, #3

// OK — Rule #1, #2b, #3

// ERROR — Rule #1, #2a, #2c, -fail-

// OK - Rule #1, #2a, #2c, #2b, #3

7-9

Access Rules for C++

7-10

friend void £2(): Mj>
}; h

class D : public C {
}:

void
£f10) |
D* pl;
pl->a = 1; // ERROR - Rule #1, #2a, #2c, -fail-
}
void
£f2() |
D* p2;
p2->a = 1; // ERROR - Rule #1, #2a, #2c, #2b, #3, -fail-
}
/=== start of example 12 ————-
class B {
friend void £f1();
public:
int a;
};
N\
class C : public B { : S

friend void £2();
};

class D : public C {
}:

void
£f10 |
D* pl;
pl->a = 1; // OK - Rule #1, #2a, #2c, #2c
}
void
£f2() |
D* p2;
p2->a = 1; // OK - Rule #1, #2a, #2c, #2b, #3
}
e start of example 13 —————-
class B {

friend void £1();
int a;

Selected Readings

Access Rules for C++

class C : public B {
friend void f2();
bi

class D : public C {
}:

void
£10 |
D* pl;
pl->a = 1;
}
void
£2() {
D* p2;
p2->a = 1;
}
//

// OK - Rule #1, #2a, #2c, #2c, #2b, #3

// ERROR - Rule #1, #2a, #2c, #2b, #3, -fail-

Access Rules for C++

7-11

Footnotes

1. Denoting a class as a friend, in effect, denotes each function member of that class as a friend.
2. Rules #2b and #3 can be combined to override Rule #2c.

3. A public base member declaration must appear in a public section of the derived class. Similar

7-12

logic applies to the protected case.

Selected Readings

N\

{{/\\

A Appendix A

Manual Pages for C++ Language System

Table of Contents

A-1

CC(D

NAME

UNIX System V CC((

CC - C++ translator

SYNOPSIS

CC [-E] [-F|-Fc] [-.suffix] [+i] [+L] [+x file] [+e0|+e1] [+d] [+w] [+p] [+a0|+al] file ...

DESCRIPTION

CC (capital CC) translates C++ source code to C source code. The command uses cpp(1) for
preprocessing, cfront for syntax and type checking, and cc(1) for code generation.

For each C++ source file, CC creates a temporary file in /usr/tmp, file.c, containing the gen-
erated C file for compilation with cc. The +i or -.suffix options will save a copy of this file in
the current directory, with the name file..c or filesuffix.

CC takes arguments ending in .c, .C or .i to be C++ source programs. .i files are presumed to
be the output of cpp(1). Both .s and .o files are also accepted by the CC command and passed

to cc(1).

CC interprets the following options:

+i
+L

+xfile

+e[01]

+d

+w

+P

+a[01]

Run only cpp on the C++ source files and send the result to standard output.

Run only cpp and cfront on the C++ source files, and send the result to standard out-
put.

Like the —F option, but the output is C source code suitable as a .c file for cc(1).

Instead of using standard output for the ~E , —=F or —Fc options, place the output
from each .c file on a file with the corresponding .suffix.

Produce intermediate ..c C language file in the current directory.

Generate source line number information using the format "#line %d" instead of "#
%d".

Read a file of sizes and alignments. Each line contains three fields: a type name, the
size (in bytes), and the alignment (in bytes). This option is useful for cross compila-
tions and for porting the translator. See the AT&T C++ Language System Release 2.0
Release Notes for more information.

Optimize a program to use less space by ensuring that only one virtual table is gen-
erated per class. +el causes virtual tables to be external and defined, that is, initial-
ized. +e0 causes virtual tables to be external but only declared, that is, uninitialized.
When neither option is used, virtual tables will be static, that is, there will be one per
file. Usually, +el is used to compile one file that includes class definitions, while +e0
is used on all the other files including those class definitions.

Do not expand inline functions.

Warn about all questionable constructs. Without the +w option, the translator issues
warnings only about constructs that are almost certainly problems.

Disallow all anachronistic constructs. Ordinarily the translator warns about
anachronistic constructs; under +p (for “pure”), the translator will not compile code
containing anachronistic constructs, such as “assignment to this.” See the AT&T C++
Language System Product Reference Manual for a list of anachronisms.

The translator can generate either ANSI C style or “Classic C” (also known as K&R
O) style declarations. The +a option specifies which style of declarations to produce.
+a0, the default, causes the translator to produce “Classic C" style declarations. The
+al option causes the translator to produce ANSI C style declarations.

See 1d(1) for loader options, as(1) for assembler options, cc(1) for code generation options, and
cpp(1) for preprocessor options.

May 17, 1989

Page 1

CC()

FILES

UNIX System V CC(n)

Most of the default pathnames listed below can be modified by changing environmental vari-

ables in CC.

file.[Cc]
file..c
file.o
a.out
/lib/cpp
cfront
/bin/cc
/lib/libc.a

/lib/1ibC.a
/lib/libtask.a
/lib/libcomplex.a
/usr/include/CC

SEE ALSO

input file
optional cfront output
object file
linked output
C preprocessor
C front end
C compiler
standard C library; see Section (3) in the UNIX System V
Programmer Reference Manual
standard C++ library
C++ real-time library
C++ complex library
standard directory for #include files

cc(1), monitor(3), prof(1), 1d(1), cpp(1), as(1).
Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley 1986.
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall 1978.

DIAGNOSTICS

The diagnostics produced by CC itself are intended to be self-explanatory. Occasional mes-
sages may be produced by the assembler or loader. No messages should be produced by cc(1).

BUGS

Some ““used before set” warnings are wrong.

Page 2

May 17, 1989

e

c++filt(1) UNIX System V c++£ilt(1)

NAME

c++filt — C++ name demangler
SYNOPSIS

c++filt [-m] [-s] [-v]
DESCRIPTION

C++filt copies standard input to standard output after decoding tokens which look like C++
encoded symbols. Any combination of the following options may be used:

-m Produce a symbol map on standard output. This map contains a list of the
encoded names encountered and the corresponding decoded names. This out-
put follows the filtered output.

-s Produce a side-by-side decoding with each encoded symbol encountered in
the input stream replaced by the decoded name followed by the original
encoded name.

-v Output a message giving information about the version of c++filt being used.

SEE ALSO
CC(1), 1d(1), nm(1).
Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley 1986.

Page 1
May 17, 1989 age

demangle(3) UNIX System V demangle(3)

NAME

elf_demangle — decode a C++ encoded symbol name
SYNOPSIS

char *elf demangle (char const *symbol)
DESCRIPTION

demangle decodes an encoded C++ symbol name into a format which more closely resembles
the original C++ declaration. This routine should be used to convert symbols obtained from
an ELF symbol table into a form more suitable for output.

WARNING
This routine allocates space for the return buffer using the ELF allocation routines.

CAVEAT
The return value points to static data whose content is overwritten by each call.

SEE ALSO
CC(1), c++filt(1), libelf(3), nm(1).
Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley 1986.

DIAGNOSTICS
The argument, symbol , will be returned if it points to a string which does not need decoding.
A return value of NULL indicates that storage could not be allocated for the return buffer.

Page 1 May 17, 1989

(_J

_/

| Index

Index

Table of Contents

Index

A

abstract classes 1: 2, 21-22
access
adjusting 1: 6
rules for 7: 1-3
access control 1: 2-8
syntax 1: 5
ANSI-style C headers 6: 6
arguments, varying numbers of 3: 3—4
assignment 1: 2, 36-38, 3: 8~9, 4: 10-11
assignment to this 1: 28-29

B

base and member initialization 1: 2
base classes (see classes)
base members 7: 5

C

C linkage 6: 8-9

casting 5: 6-7, 11-12

class libraries 2: 31-33

classes 2: 3, 5, 7-8, 21-22, 3: 5-10, 4: 5-6, 9-17
base 1: 36, 3:11,5:1,10-11,7:1, 3

derived 1: 15-17, 20, 36, 2: 28, 3: 10, 12, 5: 3, 7:

1
implementation of 2: 5-6, 15
multiple base 5: 4
private base 1: 6
specification of 2:7
virtual base 1: 14, 16, 20, 5: 12-14, 17
coercions 3: 2, 9-10, 4: 14-15
complex arithmetic library 2: 26
const member functions 1: 2, 23-24
const specifier 1: 44—45
constants 2: 16, 3: 3
constructors 2: 11-12, 15-18, 20-21, 3: 6, 8, 4:
9-11, 5: 12, 15-16
and initialization 2: 12
and type conversion 2: 12

D

data abstraction 2: 4-5, 26, 3: 5-10, 4: 1, 5-6,
16-17, 24
problems with 4: 7-8

Index

support for 4: 9-16
data access 7: 1-12
data hiding 1: 3, 2: 8, 3: 13-14, 4: 3, 5, 11
deallocation, controlling 1: 32
declarations
as statements 3: 4
syntax for 1: 42-43
delete operator 1: 1, 28-29, 32-35, 3: 6-7
size argument to 1: 35
derived classes (see classes)
destructors 2: 13, 23, 3: 6, 4: 9-10, 5: 15-16
explicit calls of 1: 35
virtual 1: 20
directed acyclic graphs 1: 14-16
dynamic character strings 2: 26

E

encapsulation 4: 21-22
enumerators 1: 43—-44

error handling 4: 13—-14
evolution of C++ 1: 1-49
example of C++ 2: 3-25
exception handling 4: 13-14
expressions, syntax for 1: 42-43
extern “C” syntax 6: 1-23

F

free store management
class-specific 1: 29
user-defined 1: 2, 28-36
friend functions 1: 3,5, 7, 2:22,3:5
friends 7: 1
function declaration syntax 1: 47
function types 1: 45
functions
argument syntax for 1: 41
calls to member 2: 11, 4: 17-18,5: 5
member 2:9, 23, 4: 17, 21
signature of 6: 1, 5-7
virtual 1: 15-16, 18, 21-22, 2: 28-31, 3: 12-13,
4:8,17,19, 5: 3-4, 8, 14-15

I

inheritance 4: 19-20, 7: 1

1-1

Index

multiple 4: 20-21, 5: 1-20
initialization 1: 2, 36-38, 3: 8-9, 4: 9-11
of bases and members 1: 18-20
of static members 1: 2, 24-25
of static objects 1: 3
initialization and cleanup 3: 6
inline functions 2: 24-25, 3: 3, 4: 17
introduction to C++ 2: 1-38
iostream library 2: 26-27
iterators 4: 15-16

L

libraries 1: 1, 22, 4: 16
linkage

type-safe 6: 1-23

upgrading existing C++ programs for 6: 12
lvalues 1: 45

M

member functions (see functions)
memory, allocation and deallocation 4: 9-10
memory exhaustion 1: 35
modules 4: 3, 6
multiple inheritance 1: 2, 14-18, 4: 20-21, 5:
1-20
ambiguities in 5: 9-10

N

name spaces, multiple 1: 46—-47
new operator 1: 1, 28-32, 34, 2: 16~17, 3: 6-7
new() operator, inheritance of 1: 30

O

object 1/O 2: 33-35

object-oriented programming 2: 28, 3: 10-14, 4:

1-25

implementation of 4: 23

support for 4: 17-23
objects, layout of 5: 4-5
operator new(), overloading 1: 31
operators

addition (+) 2: 19

comma () 1: 3, 40

delete 1: 1, 28-29, 32-35

member of (>) 1: 3, 39-40
new 1: 1, 28-32, 34

scope resolution (::) 1: 34, 2: 16

sizeof 1: 29, 49
overload keyword 6: 1, 5
overloading

of functions 2: 10, 3: 4, 6: 1-2
of operators 2: 12-13,3:9,4: 9

of > operator 1: 1

overloading resolution 1: 2, 8-11

overview of C++ 3:1-16

P

pointers, with zero value 5: 7-8
pointers to members 1: 1-2, 25-27
private base classes (see classes)

private keyword 5: 17
private members 7: 1, 4

procedural programming 4: 2-3

protected members 1: 1, 3-5,
protection 3: 13-14, 7: 1-12
public base classes 7: 1
public keyword 2: 8, 5: 17
public members 7: 1, 4

R

references 2: 18-19, 3: 7

S

scope resolution (::) operator
scoping 6: 15

sizeof operator 1: 29, 49
static member functions 1: 2

3:13,7:1, 4

1. 34

static member functions 1: 22-23

static members, initialization
static objects, initialization of

T

this pointers 2: 23, 5: 5, 8
type checking 4: 18-19, 6: 5
of arguments 3: 2

of 1:24-25
1: 41

of function arguments 2: 10

types
parameterized 4: 12-13, 16

Selected Readings

(

_

C

user defined 2: 3, 5, 7-8, 21-22, 3: 5-10, 4:

5-6, 9-17
type-safe linkage 1: 2, 11-13

\Y%

variables
of user defined types 4: 5
references to member 2: 16
vectors 2: 26
virtual base classes (see classes)
virtual functions (see functions)

index

Index

	Contents
	Preface
	1. Evolution of C++
	2. An Introduction to C++
	3. An Overview of C++
	4. Object-Oriented Programming
	5. Multiple Inheritance
	6. Type-Safe Linkage for C++
	7. Access Rules for C++
	Appendix A. Manual Pages for C++ Language System
	CC
	c++filt
	demangle

	Index

