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The state of the art

Over the past several years, C++ class authors have spent a lot of effort on container classes: classes
whose objects contain objects of some other class. During that time, a canonical style has
evolved: a container actually holds objects while an object of an auxiliary class called an iterator
marks a place in the container.

This strategy is similar to how arrays work in traditional languages: an array holds values and an
auxiliary value, usually an integer or a pointer, marks a place in the array. Thus when we write a
C program fragment like:

int al[N];
int 1i;

for (i = 0; 1 < N; i++)

we are using a as a container and i as an iterator.

Because the iterator idea fits well with data structures in traditional programming languages,
C++ programmers find it easy to adopt. However, iterators are not quite as simple in practice as
in theory. For example, the possibility that containers might be const implies that two kinds of
iterators are actually necessary for each kind of container: one that can only read the container
and one that can read and write it. This is analogous to the two kinds of pointers that might
point to an object of type T, namely T* and const T*.

In addition to requiring three classes for each kind of container, the traditional approach puts lots
of features into the container and iterators. Aside from the usual social pressure, this is
sometimes necessary to ensure proper interaction with iterators.

For example, the list class from the USL Standard Components library supports the following
operations:

o Create a list from 0—4 elements.

» Copy and assign a list.

 Determine the length of a list.

» Concatenate two lists.

 Determine if two lists are equal.

o Add, access, or delete an element at either end.

o Access the nth element.

o Sort a list.

« Print an entire list, recursively using the output operation defined on the list elements
In addition, list iterators support the following operations:

« Create, copy, assign, and compare iterators.

« Find the list associated with a given iterator.

o Determine if the iterator is at the end of its list.



« Search for an element with a given value.
o Advance the iterator to refer to the next element in the list (in either direction).
 Access the element before or after the iterator (iterators point “between” elements).

The operations add up: the USL list class has 70 members and one friend function, divided as
follows:

e List:27 members, one friend.

e Const listiter:28 members.

e Listiter: 15 members.
The implementation is more than 900 lines of source code.
A radical old idea

All this functionality is very nice, but it sometimes leaves one wishing for less. If we can have
lightweight processes and RISC (Reduced Instruction Set Computer) chips, why not a RISC
(Reduced Instruction Set Container) class? For inspiration, I went back more than a third of a
century and looked at Lisp.

Lisp has grown greatly over the years, but its original notion of a list was defined in terms of just
five operations:

e nil: a list with no elements.

» cons (a,b) : alist whose first component is a and whose subsequent components are those of
the list b.

o car (s) : the first component of s; s must be a list with at least one component.
o cdr (s) : all the components of s except the first; s must be a list with at least one component.
» null (s) : true if s has no components, false otherwise; s must be a list.

There is a very large body of theory and practice that shows that these operations are useful.
Moreover, it’s easy enough to implement in C++ if we add the restriction that all the elements of a
list must be the same type. Using templates, we can then define a class Seq<T> that represents a
list of objects of type T. It’s called Seq rather than List to avoid confusing it with any of the
other List classes out there.

Suppose we start by implementing just the five primitive Lisp operations. How might those look
in C++? Assume that t has type T and s has type Seqg<T>. Then the following C++ operations
suggest themselves:

» Seqg<T> () : a sequence with no elements.

» cons (t, s) : a sequence with first element t and subsequent elements those of s.

e s.hd () : the first element of s; s must have at least one element.

o s.tl():asequence containing all but the first element of s; s must have at least one element.
¢ (const void*) s:nonzero if s has no elements, otherwise zero.

The names hd and t1 are there because they are easier to explain to non-Lispers than car and
cdr. The conversion to const voidt is intended to be used in if and while statements.

Well, maybe a few extras...

This class is pretty easy to implement. Moreover, it is useful as it stands. However, it is hard to
resist the temptation to add a few additional operations to make it easier to use. Some of this
ease of use comes from differences in typical style between Lisp and C++ programs.



For example, suppose we want to compute the number of elements in a sequence s. A Lisp
programmer might write it this way:

template<class T>
int length(const Seg<T>& s)

{
if (s)
return (1+ (length (s.tl1())));
return 0;

}

but a C++ programmer would be prone to do it this way:

template<class T>
int length(Seg<T> s)

{

int n = 0;

while (s) {
s = s.tl();
n++;

}

return n;

}

This combination of testing for null and extracting an element happens so often that it is useful to
introduce an operation called next to do that. Using it, the inner loop looks like this:

while (s.next())
n++;

It also turns out to be useful to overload next to put the element it extracted into a variable
passed by reference, so that

int n, sum = 0;
while (intseqg.next(n))
sum += 1n;

adds the elements of a Seg<int > named intseq and puts the result in sum.

Another common operation is to put a new value at the head of a list. Using the primitives, that
looks like this:

s = cons (s, Xx);
and is again sufficiently common to warrant a built-in operation:
s.insert (x) ;

There are efficiency reasons for these extra built-ins, too; we will discuss those later. Of course, it
is a hard judgment call where to stop adding things.

Example of use

The best way to give a feel for how this class works is with a complete example. We will begin
with a function to merge two sequences, assumed to be in ascending order:



template<class T>

Seg<T> merge (const Seqg<T>& x, const Seg<T>& y)
if (!x) return y;
if (!y) return x;

T xh = x.hd() ;
T yvh = y.hd();

if (xh < vyh)
return cons (xh, merge(x.tl (), v));
return cons (yh, merge(x, y.tl()));

}

Programmers who aren’t used to recursion might prefer doing it this way:

template<class T>
Seg<T> merge (Seg<T> x, Seqg<T> y)

{

Seg<T> r;

while (x && y) {
if (x.hd() < y.hd()) {
r.insert (x.hd()) ;
x.next () ;
} else {
r.insert (y.hd());
y.next () ;
}
}
while (x) {
r.insert (x.hd()) ;
x.next () ;

}

while (y) {
r.insert (y.hd());
y.next () ;

}

r.flip();
return r;

}

Aside from the primitives and insert and next, this second implementation uses one other
built-in: s. £1ip () reverses the elements of s in place.

Which of these two versions is easier to understand probably depends on where you were
brought up.

Next we’ll look at a function that splits a sequence into two piles, much the way one would deal a
deck of cards. We will assume either that the piles are empty to start, or that our caller doesn’t
mind our piling the elements on top of the ones already there. The elements are reversed in the
process, just as they are when dealing cards:



template<class T>
void split (Seg<T> x, Seq<T>& y, Seq<T>& z)

{
while (x) {
y.insert (x.hd());
x.next () ;
if (x) |
z.insert (x.hd()) ;
x.next () ;
}
}
}
The only thing the least bit tricky here is that
x.next () ;
if (x) { //

cannot be collapsed into

if (x.next()) { //
because we want to see if x is non-empty only after removing the first element.
Finally, we can use these two functions to make a simple sort function:

template<class T>
Seqg<T> sort (const Seg<T>& X)

{
if (I1x || !'x.tl())
return Xx;
Seqg<T> p, g;
split(x, p, Q) ;
return merge (sort (p), sort(qg));
}

Simple as it is, this merge sort has O(log n) performance, even in the worst case. Perhaps a
measure of the utility of the Seq class is how rare it is to find a sort that can be explained to
novices and also has good asymptotic performance.

Experience

I implemented this class using a straightforward use-counted memory allocation technique. That
means that copying a Seqg<T> object does not copy its components, so it is not particularly
expensive to pass Seg<T> objects directly to functions instead of references. This
implementation partly motivates some of the “extra” operations, because some optimizations are
possible if the right use counts happen to be 1. For example, if the use counts of all the elements
of a sequence are 1, it is possible to concatenate another sequence onto the end of it in place. This
can be substantially faster than the obvious implementation:



template<class T> Seg<T> operator+ (const Seqg<T>& r, const Seqg<T>& s)

{
if (!s)
return r;
if (!r)
return s;
return cons(r.hd(), r.tl()+s);
}

A similar optimization is possible for the £1ip operation.

Even with the extra operations and optimizations, the class has only fourteen members and four
friends. The complete implementation is less than 200 lines of source code; the manual page fits
on one (double sided) sheet of paper. For the operations it supports, it runs about as fast as the
USL list class.

Future directions

Right now, this class is used by the author and a few of his colleagues. That experience shows
that it is indeed useful, but a few more operations would make it even more useful. One is a
length function. Of course it is possible to find the length of a sequence, but it is sometimes
important to be able to do so without looking through the whole thing. For instance, one may
wish to copy a sequence into an array, in which case it is important to know how much memory
to allocate before beginning the copy. The price of this ability is storing the length in every
sequence. However, once that is done, updating it is inexpensive.

Another useful operation is the ability to compare entire sequences, especially in a lexical sense.
That makes it easy, for example, to sort a container full of sequences.

More generally, it would be interesting to apply the RISC approach to other data structures. It
works well for sequences because it is possible to get away without modifying the elements of a
sequence after it has been created. This restriction is harder for more general data structures, but
the functional programming community has shown that it is possible. The interesting question is
whether that style can be transplanted into C++ and, if so, whether people will find it worthwhile
to use. This is an open question that deserves an answer.



