COOL — C++ Object-Oriented Library

Mary Fontana
LaMott Oren

Texas Instruments Incorporated
Computer Science Center
Dallas, TX

Martin Neath

Texas Instruments Incorporated
Information Technology Group
Austin, TX

1. Introduction

The C++ Object-Oriented Library (COOL) is a collection of classes, templates, and macros for use by C++ pro-
grammers writing complex applications. It raises the level of abstraction for the programmer to concentrate on
the problem domain, not on implementing base data structures, macros, and classes. In addition, COOL also pro-
vides a system independent software platform on top of which applications are built, since COOL encapsulates
such system specific functionality as date/time and exception handling. This paper discusses the following
COOL features:

* Preprocessor and macros
 Parameterized templates

» Symbols and Packages

* Polymorphic management

» Exception handling

 Coding style and conventions
* Class hierarchy and overview

COOL is the first piece of what is expected to be an ever changing and growing C++ class library. As such,
some constraints will be necessary in order to achieve compatible and seamless integration of new or modified
features. This paper outlines the major technologies and conventions that can be used and followed to allow this
to happen. This paper should be used as an aid in understanding the COOL library, its organization, structure,
and layout. It assumes the reader to have a working knowledge of C++[1]. For more detailed information and
examples on each topic, the reader is referred to the appropriate section(s) of the COOL User’'s manual[2].

2. Preprocessor and Macros

The COOL macro facility is an extension to the standard ANSI C macro preprocessing functions available with
the #define statement. The COOL preprocessor is a modified tokenizing ANSI C preprocessor that allows a pro-
grammer to define powerful extensions to the C++ language in an unobtrusive manner. This enhanced preproces-
sor is portable and compiler independent and can execute arbitrary filter programs or macro expanders on C++
code fragments. Macros such as those that support parameterized templates are implementations of theoretical
design papers published by Bjarne Stroustrup[3]. Others provide significant language features and enhanced
power for the programmer heretofore unavailable with conventional C++ implementations. It is important to
note, however, that once a macro is expanded, the resulting code is conventional C++ 2.0 syntax acceptable to
any conforming C++ trandator or compiler[4].



The COOL preprocessor is supplied as part of the library and is the point at which all language and computing
enhancements available in COOL are implemented. The proposed draft ANSI C standard indicates that exten-
sions and changes to the language and/or features implemented in a preprocessor/compiler should be made by
using the #pragma statement. The COOL preprocessor follows this recommendation and uses this as the means
by which all macro extensions are made. The #pragma defmacro statement is the single hook through which
features such as the class macro, parameterized templates, and polymorphic enhancements have been imple-
mented.

The COOL preprocessor is derived from and based upon the DECUS ANSI C preprocessor made available by
the DEC User’s group in the public domain and supplied on the X11R3 source tape from MIT. It complies with
the draft ANSI C specification with the exception that trigraph sequences are not implemented. In addition to
support for COOL macro processing discussed above, the preprocessor has several new command line options to
support C++ comments and includes file debugging aids.

The #pragma defmacro statement is implemented in the COOL C/C++ preprocessor and is the single hook
through which features such as the class macro, parameterized templates, and polymorphic enhancements have
been implemented. The defmacro facility provides a way to execute arbitrary filter programs on C++ code frag-
ments passing through the preprocessor. When a defmacro style macro name is found, the name and everything
until the delimiter (including al matching {} [] () < #" *° and comments found along the way) is piped onto
the standard input stream of the indicated program or filter procedure. The procedure’s standard output is
scanned by the preprocessor for further processing. The expansion replaces the macro call and is passed onto the
compiler for parsing.

The implementation of a defmacro can be either external to the preprocessor (as in the case of files and pro-
grams) or internal to the preprocessor. For example, the template, declare and implement macros that implement
parameterized types is internal to the preprocessor to provide a more efficient implementation. The defmacro
facility first searches for a file or program in the same search path as that used for include files. If a match is not
found, an internal preprocessor table is searched. If a match is ill not found, the error message, "Error: Cannot
open macro file [xxx]", where xxx is the name as it appears in the source code, is sent to the standard error
stream. The fundamental COOL macros are defined with defmacro in the header file <COOL/misc.h>, which
must be included in any COOL C++ source file.

Porting COOL to a new platform or operating system starts with the preprocessor. The preprocessor contains
support for the defmacro statement and also implements several important macros internally for efficiency and
performance considerations. In addition, a powerful macro language, ssimplifying many library functions is avail-
able via the MACRO keyword. MACRO implements an enhanced #define syntax that supports multiple line,
arbitrary length, nested macros and preprocessor directives with positional, optional, optional keyword, required
keyword, rest, and body arguments. Many of the COOL features would be very difficult, if not impossible, to
implement without this enhanced macro language.

3. Parameterized Templates

The development and successful deployment of application libraries such as COOL is made easier and more use-
ful by a language feature called parameterization. Parameterized templates allow a programmer to design and
implement a class template without specifying the data type. The user customizes the template to produce a
specific class by indicating the type in a program. Several versions of the same parameterized template (each
with a different type) can exist in a single application. Parameterized templates can be thought of as meta-
classes in that only one source base needs to be maintained to support numerous variations of a type of class.

Regardless of the type of object a parameterized class is to manipulate, the structure and organization of the
class and the implementation of the member functions are the same for every version of the class. For example,
a programmer providing a vector class knows that there will be several member functions such as insert,
remove, print, sort, and so on that apply to every version of the class. By parameterizing the arguments and
return values from the various member functions, the programmer provides only one implementation of the vec-
tor class. The user of the class then specifies the type of vector at compile-time.



-3-

An important and useful type of parameterized template is known as a container class. A container class is a
special kind of parameterized class where you put objects of a particular type. For example, the Vector <Type>,
List<Type>, and Hash_Table<KTypeVtype> classes are container classes because they contain a set of
programmer-defined data types. Since container classes are so commonplace in many applications and pro-
grams, parameterized container classes provide a mechanism to maintain one source base for several versions of
very useful data structures. COOL supplies several common container class data structures that can be used in
many typical application scenarios.

Each of the COOL parameterized container classes support the notion of a built-in iterator that maintains a
current position in the container and is updated by various member functions. These member functions allow
you to move through the collection of objects in some order and manipulate the element value at that position.
This might be used, for example, in a function that takes a pointer to a generic object that is a type of container
object. The function can iterate through the elements in the container by using the current position member
functions without needing to know whether the object is a vector, alist, or a queue.

In addition to this built-in current position mechanism, COOL provides support for multiple iterators over the
same class by using the Iterator <Type> class. For example, a programmer may need to write a function that
moves through the elements of a container class and, at some point, needs to save the current position and begin
processing elements at another location. After a period of time, the secondary processing terminates, at which
point flow of control returns to the previous stopping point where the current position is restored from the itera-
tor object and processing continues.

A programmer uses the COOL C++ Control program (CCC), instead of the norma CC procedure, to control the
compilation process. This program provides al of the capabilities of the original CC program with additional
support for the COOL preprocessor, parameterized types, and the COOL macro language. CCC controls and
invokes the various components of the compilation process. In particular, however, it looks for command line
arguments specific to the parameterized template process and processes them accordingly as suggested by
Stroustrup in his design paper[2]. Other options and arguments are passed on to the system C++ compiler con-
trol program.

4. Symbols and Packages

A package provides a relatively isolated namespace for various COOL components called symbols. A symbol
that is owned by a particular package is said to be interned in that package. In general, the term interned means
that a particular object is uniquely identifiable in some context. When a symbal is interned, it becomes uniquely
identifiable by the symbol name within a namespace context. The package system provides logical groupings of
symbols supporting relationships established between named objects and the values they contain. Although the
notion of symbols being grouped into packages is fairly straightforward, the nature of the relationships that can
exist between packages and the way in which they establish a namespace can be quite complex. COOL pro-
vides several kinds of macros to simplify the usage and manipulation of symbols and packages.

A symbol is a data object that defines a relationship between a name, a package, a value, and a property list.
The name is a character string used to identify the symbol. Once a name is established for a symbal, it may not
be changed. The value field is used to refer to some C++ object. Property lists are lists of alternating names and
values. The property list alows the programmer to associate supplemental attributes with a symbol. Initialy,
the property list for a symbol is empty.

The Symbol and Package classes implement the fundamental COOL symbolic computing support as standard
C++ classes. The Symbol class implements the notion of a symbol that has a name with an optiona value and
property list. Symbols are interned into a package, which is merely a mechanism for establishing separate name
spaces. The Package class implements a package as a hash table of symbols and includes public member func-
tions for adding, retrieving, updating, and removing symbols.

COOL supports efficient and flexible symbolic computing by providing symbolic constants and run-time symbol
objectg5]. You can create symbolic constants at compile-time and dynamically create and manipulate symbol



objects in a package at run-time by using any of several simple macros or by directly manipulating the objects.
Symbols and packages in COOL manage error message textual descriptions with trandations, provide
polymorphic extensions to C++ for object type and contents queries, and support sophisticated symbolic comput-
ing not normally available in conventional languages.

5. Polymor phic Management

C++ version 2.0 as specified in the AT&T language reference manual[6] implements virtual member functions
that delay the binding of an object to a specific function implementation until runtime. This delayed (or
dynamic) binding is useful where the type of object might be one of several kinds, al derived from some com-
mon base class but requiring a specialized implementation of a function. The classic example is that of a graph-
ics editor where, given a base class graphic_object from which square, circle, and triangle are derived, special-
ized virtual member functions to calculate the area are provided. In such a system, a programmer can write a
function that takes a graphic_object argument and determine its area without knowing which of all the possible
kinds of graphical objects the argument really is.

This dynamic binding capability of C++, while powerful and providing greater flexibility than most other con-
ventional programming languages, is still not enough for some types of problems. Highly dynamic languages
such as Lisp allow the programmer to delay almost all decisions until runtime[7]. In addition, facilities for
guerying an object at runtime to determine its type or request a list of al possible member functions available
are often present. These kinds of features are commonly used in many symbolic computing and complex
knowledge-intensive operations management problems tackled today.

COOL supports enhanced polymorphic management capabilities with a programmer-sel ectable collection of mac-
ros, classes, symbolic constants, run-time symbolic objects, and dynamic packageg[1]. This is facilitated by the
Generic class that, combined with macros, symbols, and packages, provides efficient run-time object type check-
ing, object query, and enhanced polymorphic functionality unavailable in the C++ language.

The Generic class is inherited by most other COOL classes and manipulates lists of symbols to manage type
information. Generic adds run-time type checking and object queries, formatted print capabilities, and a describe
mechanism to any derived class. The COOL class macro (discussed below) automatically generates the neces-
sary implementation code for these member functions in the derived classes. A significant benefit of this com-
mon base class is the ability to declare heterogenous container classes parameterized over the Generic* type.
These classes, combined with the current position and parameterized iterator class, lets the programmer manipu-
late collections of objects of different types in a simple, efficient manner.

One of the simplest and most useful features facilitated by Generic is the runtime type checking capability. The
type of() and is type of() virtual member functions accomplish this kind of run-time type query for an object
that is derived at some point from the COOL Generic class. Type determination and function dispatch can
become quite tedious, however, if there are many types of objects. Ideally, each would be derived from a com-
mon base and include support for a virtual member function for each important operation that might be required.
However, it is sometimes not feasible to have such a situation, especially with a high number of objects
obtained from several sources. An alternate scheme similar to the one mentioned above is the type case macro,
analogous to the C++ switch statement. It gathers all possible type cases and allows the user to symbolically
dispatch on the type of object represented by the case statements. This automates some of the symbol collection
and manipulation required with the earlier mechanism.

The class keyword is implemented as a COOL macro to add symbolic computing abilities to class definitions. It
takes a standard C++ class definition and, if the class contains Generic somewhere in its inheritance hierarchy,
generates member functions for support of run-time type checking and query. In addition, a symbol for the
derived Generic class type is added to the COOL global symbol package SYM. The actual code which is
expanded in a class definition and after a class definition is controlled by the classmac macro discussed below.

The classmac macro provides two hooks as a point of customization by user defined macros. A combination of
data members and member functions of a class definition are passed as arguments to macros that can be changed



-5-

or customized by the application programmer. The COOL Generic class uses the data member hook to imple-
ment the map_over_dots() member function. There may be more than one classmac macro hook specified by the
programmer. COOL has several, and other user-defined macros are simply chained together in a calling sequence
ordered according to the order of definition. Each classmac macro defines how the class macro should expand
the class definition. The class macro does not actually generate the code itself. This is defined in user-
modifiable header files that specify a classmac macro. For example, a general purpose mechanism that automati-
caly creates accessor member functions to get and set each data member can be created by defining a classmac
macro that is attached to the data member hook of the class macro . No changes to the COOL preprocessor are
required.

The member functions added by Generic and the class macro to derived COOL classes manipulate symbols
stored in the global SYM package. These symbols reflect the inheritance tree for a specific class. They may have
optional property lists containing information associating supported member functions and their respective argu-
ment lists. User-defined classes derived from Generic are also automatically supported in an identical fashion,
resulting in addition symbols in the global symbol package. As discussed earlier, these symbols must have
storage allocated for them and code to initialize the package at program startup time. This is managed by the
COOL file symbols.C that should be compiled and linked with every application that uses COOL. An automated
method for insuring correct package setup and symbol initialization is accomplished by establishing the correct
dependency in an application make file.

6. Exceptions

In COOL, program anomalies are known as exceptions. An exception can be an error, but it can also be a prob-
lem such as impossible division or information overflow. Exceptions can impede the development of object-
oriented libraries. Exception handling offers a solution by providing a mechanism to manage such anomalies
and simplify program code. The COOL exception handling scheme is a raise, handle, and proceed mechanism
similar to the Common Lisp Condition System[8]. When a program encounters an anomaly that is often (but not
necessarily) an error, it can:

 Represent the anomaly in an object called an exception

» Announce the anomaly by raising the exception

* Provide solutions to the anomaly by defining and establishing handlers
* Proceed from the anomaly by invoking a handler function

The COOL exception handling facility[9] provides an exception class (Exception), an exception handler class
(Excp_Handler), a set of predefined exception subclasses (Warning,, Fatal, System Error, System_Signal, and
Error), and a set of predefined exception handler functions. In addition, the macros EXCEPTION, RAISE,
STOP, and VERIFY allow the programmer to easily create and raise an exception at any point in a program.

When an exception is raised (through macros RAISE or STOP, for example), a search begins for an exception
handler that handles this type of exception. An exception handler, if found, deals with the exception by calling
its exception handler function. The exception handler function can correct the exception and continue execution,
ignore the exception and resume execution, or end the program. In COOL, an exception handler for each of the
predefined exception types exists on the global exception handler stack.

An exception handler invokes a specific exception handler function for a specific type of exception. Handling
an exception means proceeding from the exception. An exception handler function could report the exception to
standard error and end the program, or drop a core image for use by the programmer with a debugger. Another
way of proceeding is to query the user for a fix, store the fix in the exception object, and return to where the
exception was raised. When an exception handler object is declared, is is placed on the top of a global exception
handler stack. When an exception is raised, a call searches for a handler. The handler search starts at the top of
the exception handler stack.

There are six predefined exception type classes provided as part of COOL. The exception class is the base class
from which specialized exception subclasses are derived. Derived from Exception are Warning, System_Signal,
Fatal and Error. From the Error class, the System Error and Verify Error classes are derived. The default



-6-

exception handlers are called only if no other exception handler is established and available when an exception
is raised. COOL offers users the option of defining their own exception types. Such types can be derived from
the Exception class of one of the derived exception types. All user-defined exception classes should have public
data dots.

The COOL exception handling facility provides several macros which simplify the process of creating, raising,
and manipulating exceptions. These macros are implemented with the COOL macro facility. The EXCEPTION
macro simplifies the process of creating an instance of a particular type of exception object. The RAISE macro
allows the programmer to easily raise an exception and search for an exception handler. The STOP macro is
similar to the the RAISE macro, except that it guarantees to end the program if the exception is not handled.
The VERIFY macro raises an exception if an assertion for some particular expression evaluates to FALSE.
Finally, the IGNORE_ERRORS macro provides a mechanism to ignore an exception raised while executing a
body of statements.

The COOL exception handling mechanism is similar in several ways to that proposed by Koenig and
Stroustrup[10]. Their try statement and catch clauses can be implemented by using a COOL exception handler
with the system functions setimp and longjmp. In addition, both designs treat exceptions as objects that are
instantiated and passed as arguments to handler functions. The AT& T proposal proposes a grouping of exception
objects as a mechanism for organizing exceptions into groups similar to the compile-time mechanism for organ-
izing classes into hierarchies. COOL, on the other hand, maintains an exception derivation hierarchy and uses
some of the COOL symbolic computing facilities for run-time type checking and query. A grouping of excep-
tion names similar to the AT&T proposal is currently being implemented where alias hame(s) may be defined
for an exception object. For example, rather than defining a new exception class derived from Error, an Error
exception can be raised with the specified alias/group name(s) passed as an argument. This is expected to reduce
the need for many different types of exception classes whose only difference is the type name.

7. Coding Style and Conventions

A standard source code style alows several programmers to easily maintain and understand each other’s code
because additional semantic information can be inferred from a section’s format and style. In addition, a single
style presents a more coherent, professional software package for potential source code users. This is particularly
important for COOL, since parameterized templates require complete access to al source code. Finally, one of
the foundations of object-oriented programming is code reuse. This is much easier if a programmer is able to
browse through source code and understand its organization and layout. The COOL source code addresses the
following C++ coding style conventions:

 Variable and class naming conventions

* Organization and contents of class header files
* Private/Protected/Public data members

* Source code documentation

» Source code indentation and layout

 Error message text resource package

» Regression test suite

* Source code system independence

Build procedure

7.1. Naming Conventions

A prime objective for a naming convention is alowing programmers to recognize what sort of component a
name refers to. Another goal is using meaningful names, which has not typically been done in C applications.
The following naming conventions are used throughout the COOL source code. The reader is strongly
encouraged to follow the same guidelines:

* Directory, .C, and .h file names should be the same or close to the class being defined and the declara-
tion and implement files should be in a single directory. For example, the String class is defined and



implemented in the files String.h and String.C and contained in the OCOOL/String subdirectory.

* Class, struct, and typedef names should be capitalized with the words separated by underscores:

class Generic_Window { ... };
struct String_Layout { ... };
typedef int Boolean;

« All function names should be lowercase with each word separated by an underscore character:

void my_fun (int foo);
char* get_name (ostream&.);

Predicate functions should begin with is_:

Boolean is_type of (int);

» Variable and data member names should be lowercase with words separated by underscores:

int ref_count;
char* name;

Global and static variables should be appended with _g or _s, respectively:

int node_count_g;
gtatic char* version s,

* Preprocessor statements and MACRO names should be uppercase:
#define ABS ((x < 0) ? (-X) : X)

Constants (const) declarations should be uppercase:

const int FALSE=0;
const int TRUE=!FALSE;

7.2. Class Header File Organization

All header files defining the structure of a class or parameterized template should be organized into sections in
the following order:

* Included files and typedefs necessary for the class.

« Definition of private data members.

* Declaration of private member functions and friends.

Definition of protected data members.

* Declaration of protected member functions and friends.

* Declaration of public member functions and friends.

* Inline member functions of the class follow the class definition.
» Other member/friend function definitions are in a separate file.

In general, only the data member definitions and function prototypes of the member functions and friend func-
tions should appear in the class construct. This separates the implementation from the specification and reduces
clutter. Define inline functions after the class {...}; statements. In addition, the keyword inline should appear in
both the class definition and in the actual implementation as a documentation aid. The optional private keyword
usage is explicitly stated. Finally, avoid multiple instances of scoped sections: There should be no more than one
each of the private, protected, and public labels.



7.3. Private, Protected, and Public Data

In general, class data should be encapsulated in either the private or protected sections. Data specific to a partic-
ular class with no use for possible derived classes should be located in the private section. Data located in the
protected section might include such things as configuration or adjustment data members that a derived class
might want to monitor or change. No COOL classes contain public data, and the user should not declare such
data. Aside from being bad object-oriented programming style, classes with public data cannot be made per-
sistent and stored in the OODB. The one exception to this standard are the derived exception classes which may
require public data members in order to allow query and/or update of alternate values.

7.4. Documentation

Documentation of all files is very important. Terseness should be the general rule for al header files and com-
pleteness the rule for all code files. Parameterized templates have a single header/source file and all documenta-
tion should be located there. If in doubt, more documentation is better than less documentation. A high-level
abstract at the top of each file should provide a description of the file's functionality. Class header files should
also contain a brief description of the public interface.

Each function in a source code file should have a preceding block comment specifying the input and output
parameters as well as giving a brief synopsis of the functionality. For complex inline definitions in header files,
a block comment of this type should only be used when the purpose is not obvious because these comments do
not appear in the code file. Since most inline functions contain trivial code (usualy providing an accessor to
some private data member), comment requirements for inline function can be relaxed.

All source code should be commented every few source lines. Specifically, large block comments every 100
lines is unacceptable. No comment should contain operating system specific names or terms unless that section
of code is truly specific. When this is necessary, the code should be surrounded by conditional compilation con-
structs. These are handled by the preprocessor relative to that specific operating system.

Finally, documentation in the form of a man page should be written for every class. Layout and organization
will be as that with the -man macro package available for nroff(1)/troff(1). Section names and requirements for a
class man page include Name, Synopsis, Base Class, Friend Classes, Description, Constructors (public or pro-
tected as necessary), Protected Member Functions (when appropriate), Public Member Functions, Files, See
Also, and Bugs (when necessary). Introductory and high-level material can and should aso be documented.

7.5. Source Code Indentation

Indentation and source code structure is relaxed, but it is suggested that the programmer use the C++ mode
available for GNU Emacs and supplied with COOL. In general, statements should be restricted to one line with
indentation reflecting block and scoping visibility. Location of such items as braces, spacing around parentheses,
and so on is left up to the programmer. If the C++ mode is used, whole regions can be marked and indented
appropriately, providing a simple means by which al source code can be brought into the same format.

7.6. Error Message Resour ce Package

All error message text strings in an application should use the ERR_MSG package available in COOL. The
COOL exception handling scheme automatically uses this package insuring that all text strings associated with
error messages are stored as the value of a symbol. All error message symbols are automatically processed and
located in one file, thus facilitating easy update or configuration. In particular, a language translation can be
added to the property list of each symbol entry, providing an efficient and convenient means for internationaliz-
ing the text messages in an application.

7.7. Regression Test Suite

Each new or modified class contained in or added to COOL must also include a standalone test program. This
should fully exercise al features and functions and report success or failure via the test macros contained in the



-9-

CCOOL/includeftest.h header file. This test program is used in regression tests for new releases and ports to
other software platforms to insure a complete and working implementation.

7.8. Source Code System Independence

COOL places great importance upon system independent code and features. As such, system-specific functions
should be surrounded with #if preprocessor directives where appropriate. In general small performance sacrifices
in implementation are preferred if system independence and portability is improved.

7.9. Build Procedure

COOL contains a modified Imake utility from the MIT X11R3 source tape that implements a system-
independent build procedure. This should be used for all new classes and source code. Imake provides
configuration and rules files for localization and/or customization of system build utilities and commands to aid
in porting activities to other operating systems and hardware platforms.

8. Class Hierarchy

The C++ Object-Oriented Library (COOL) class hierarchy implements a rather flat inheritance tree, as opposed
to the deeply nested SmallTalk model. All complex classes are derived from the Generic class, to facilitate run-
time type checking and object query Simple classes are not derived from Generic due to space efficiency con-
cerns. The parameterized container classes all inherit from a base class that results in shared type-independent
code. This reduces code replication when a particular type of container is parameterized several times for
different objects in a single application. The COOL class hierarchy is as follows:

Pair<T1,T2>
Range
Range<Type>
Rational
Complex
Generic
String
Gen_String
Regexp
Vector
Vector<Type>
Association<Pair<T1,T2>>
List Node
List Node<Type>
List
List<Type>
Date Time
Timer
Bit_Set
Exception
Warning
Error
System_Error
Fatal
System_Signal
Verify_Error
Excp_Handler
Jump_Handler
Hash Table
Set
Hash_Table<Key,Value>



-10 -

Package
Matrix
Matrix<Type>
Queue
Queue<Type>
Random
Stack
Stack<Type>
Symbol
Binary_Node
Binary_Node<Type>
Binary_Tree
Binary Tree<Type>
AVL_Tree<Type>
N_Node<Type>
D_Node<Type>
N_Tree<Type,Node,nchild>

8.1. String Classes

The String class provides dynamic, efficient strings for a C++ application. The intent is to provide efficient
char*-like functionality that frees the programmer from worrying about memory alocation and deallocation
problems, yet retains the speed and compactness of a standard char* implementation. All typical string opera-
tions including concatenation, case-sensitive and case-insensitive lexical comparison, string search, yank, delete,
and replacement are provided.

The Regexp class provides a convenient mechanism to present regular expressions for complex pattern matching
and replacement and utilizes the built-in char* data type. The Gen String class provides general-purpose,
dynamic strings for a C++ application with support for reference counting, delayed copy, and regular expression
pattern matching. The intent is to provide a sophisticated character string function for the application program-
mer. The Gen_String class combines the functions of the String and Regexp classes, along with reference count-
ing and self-garbage collection, to provide advanced character string manipulation.

8.2. Number Classes

The COOL number classes are a collection of numerically-oriented classes that augment the built-in numerical
data types to provide such features as extended precision, range-checked types, and complex nhumbers. The Ran-
dom class implements five variations of random number generators. The Complex class implements the complex
number type for C++ and provides basic arithmetic and trigonometric functions, conversion to and from built-in
types, and simple arithmetic exception handling. The Rational class implements an extended precision rational
data type for inadequate round-off and/or truncation results from the built-in numerical data types. Finally, the
parameterized Range <Type> class enables arbitrary user-defined ranges to be implemented in C++ classes.
Typically, thisis used with other number classes to select a range of valid values for a particular numerica type.

8.3. System Interface Classes

System Interface classes include classes for calculating the date and time in different timezones and countries
and measuring the time duration between two points in some application program. The Date Time class exe-
cutes time zone-independent date and time functions. This class also supports all time zones in the world, along
with several special cases requiring alternate handling based upon political or daylight saving time differences.
The Timer class is publicly derived from Generic and provides an interface to system timing. It alows a C++
program to record the time between a reference point (mark) and now.



-11 -

8.4. Ordered Sequence Classes

The ordered sequence classes are a collection of basic data structures that implement sequential access data
structures as parameterized classes, thus allowing the user to customize a generic template to create a user-
defined class. The Vector<Type> class implements single dimension vectors of a user-specified type. The
Stack<Type> class implements a conventional first-in, last-out data structure, similar to the Queue<Type> class
but it implements a conventional first-in, first-out data structure. These two classes each hold a user-specified
data type. The Matrix<Type> class implements two-dimensional arithmetic matrices for a user-specified numeric
data type. The vector, stack, and queue classes can be dynamic in size.

8.5. Unordered Sequence Classes

The unordered sequence classes are a collection of basic data structures that implement random access data
structures as parameterized classes, thus allowing the user to customize a generic template to create a specific
user-defined class. The List<Type> class implements Common Lisp style lists providing a collection of member
functions for list manipulation and management. A list consists of a collection of nodes, each of which contains
a reference count, a pointer to the next node in the list, and a data element of a user-specified type. The
Pair<T1,T2> class implements an association between one object and another. The objects may be of different
types, with the first representing the key of the pair and the second representing the value of the pair. The
Association<Ktype,Vtype> class is privately derived from the Vector<Type> class and implements a collection
of pairs. The first of the pair is called the key and the second of the pair is caled the value. The
Hash_Table<Ktype,VType> class implements hash tables of user-specified types for the key and the value.

8.6. Set Classes

The set classes implement two basic data structures for random access set operations as parameterized classes,
thus alowing the user to customize a generic template to create a specific user-defined class. The Set<Type>
class implements random access sets of objects of a user-specified type using the parameterized type capability
of C++. Classical set operations such as union, intersection, and difference are available. The Set<Type> class is
publicly derived from the Hash_Table<KType,VType> class and is dynamic in nature. The Bit_Set class imple-
ments efficient bit sets. These bits are stored in an arbitrary length vector of bytes (unsigned char) large enough
to represent the specified number of elements. Elements can be integers, enumerated values, constant symbols
from the enumeration package, or any other type of object or expression that results in an integral value.

8.7. Node and Tree Classes

The node and tree classes are a collection of basic data structures that implement several standard tree data
structures as parameterized classes, thus alowing the user to customize a generic template to create a specific
user-defined class. The Binary Node<Type> class implements parameterized nodes for binary trees. The
Binary Tree<Type> class implements simple, dynamic, sorted sequences in a tree where each node has two
subtree pointers. The AVL_Tree<Type> class implements height-balanced, dynamic, binary trees. The
AVL _Tree<Type> class is publicly derived from the Binary_Tree<Type> class.

The N_Node<Type,nchild> class implements parameterized nodes of a static size for n-ary trees. This node class
is parameterized for both the type and some initial number of subtrees that each node may have. The construc-
tors for the N_Node<Type,nchild> class are declared in the public section to allow the user to create nodes and
control the building and structure of an n-ary tree where the ordering can have a specific meaning, as with an
expression tree. The D_Node<Type,nchild> class implements parameterized nodes of a dynamic size for n-ary
trees. This node class is parameterized for the type and some initial number of subtrees that each node may
have. The D_Node<Type,nchild> class is dynamic in the sense that the number of subtrees allowed for each
node is not fixed. D_Node<Type,nchild> uses the Vector<Type> class, supporting run-time growth characteris-
tics.

The N_Tree<Node, Type,nchild> class implements n-ary trees, providing the organizational structure for a tree
(collection) of nodes, but knowing nothing about the specific type of node used. N_Tree<Node, Type,nchild> is
parameterized over a node type, a data type, and subtree count, where the node specified must have a data



-12 -

member of the same Type as the tree class. The subtree count indicates the number of possible subtree pointers
(children) from any given node. Two node classes are provided, but others can also be written.

9. Status of COOL

COOL is currently up and running on a Sun SPARCstation 1 (TM) running SunOS (TM) 4.x, a Tl System 1500
running Tl System V, a PS/2 model 70 running SCO XENIX[O 2.3, a PS2 (TM) model 70 running OS2 1.1,
and a MIPS running RISC/os 4.0. The SPARC and MIPS ports utilize the AT& T C++ trandator (cfront) version
2.0 and the XENIX and OS/2 ports utilize the Glockenspiel translator with the Microsoft C compiler.

10.

(1]
(2]

(3]

[4]

(5]

6]

[7]
8]

[9]

[10]

Refer ences

Stanley Lippman, C++ Primer, Addison-Wesley, Reading, MA, 1989.

Texas Instruments Incorporated, COOL User’'s Guide, Information Technology Group, Austin, TX. Internal
Original Issue January 1990.

Bjarne Stroustrup, Parameterized Types for C++, Proceedings of the USENIX C++ Conference, Denver,
CO, October 17-21, 1988, pp. 1-18.

Mary Fontana, Martin Neath and Lamott Oren, A Sophisticated C++ Macro Facility, Information Technol-
ogy Group, Austin, TX. Internal Original Issue January 1990.

Mary Fontana, Martin Neath and Lamott Oren, Symbolic Computing for C++, Information Technology
Group, Austin, TX. Internal Original Issue January 1990.

AT&T Incorporated, C++ Language System Release 2.0, AT&T Product Reference Manual Select Code
307-146, 1989.

Guy L. Steele Jr, Common LISP: The Language, Second Edition, 1990.

Andy Daniels and Kent Pitman, Common Lisp Condition System Revision #18, ANSI X3J13 subcommittee
on Error Handling, March 1988.

Mary Fontana, Martin Neath and Lamott Oren, Exception Handling in COOL, Information Technology
Group, Austin, TX. Internal Original Issue January 1990.

Andrew Koenig and Bjarne Stroustrup, Exception Handling for C++, C++ At Work Conference, Boston,
MA, November 6-8, 1989.

SunOS and SPARCstation 1 are trademarks of Sun Microsystems, Inc.
XENIX is aregistered trademark of Microsoft Corporation.
PS/2 is a trademark of International Business Machines Corporation.



