Checked Out And Long Overdue:
Experiences in the Design of a C++ Class Library

Mary Fontana

Texas Instruments Incorporated
Computer Science Center
Dallas, Texas, 75265

Martin Neath

Texas Instruments Incorporated
Information Technology Group
Austin, Texas, 78759

ABSTRACT

The Texas Instruments C++ Object-Oriented Library is a portable collec-
tion of classes, templates and macros for use by C++ programmers writing
complex applications. Developed over a two year period, it has been used on
several internal projects and undergone significant design changes and improve-
ments. In this paper, we discuss the initial goals of the project, the design and
implementation approaches considered, and some of the reasons behind our
decisions. Finally, we analyze what was learned in building this library, exam-
ine the overal issue of code reuse through C++ class libraries, and suggest
some guidelines that can lead to wider acceptance and use of future class
libraries.

1. Introduction

The Texas Instruments (Tl) C++ Object-Oriented Library (COOL) is a portable collection of
classes, templates, and macros for use by C++ programmers writing complex applications. It
raises the level of abstraction to allow the programmer to concentrate on the problem domain,
not on implementing basic data structures, macros, and classes. In addition, COOL provides a
system independent software platform to ease the porting of applications which are built on top
of it. In this paper we discuss the rationale behind some of the important aspects of COOL,
such as its use of polymorphism, parameterized templates, and a resumptive exception handling
mechanism. We also share what we learned in designing and implementing COOL and the
feedback obtained from application programmers who have used it.

Our motivation for use of C++ and development of a rich class library has its roots in our
extensive experience with Lisp Machine environments. Tl has had considerable success using
Lisp to design and implement complex, symbolic applications, such as diagnostic expert sys-
tems and production scheduling advisors. While most customers were willing to see Lisp used
for prototyping, many showed considerable resistance to Lisp Machines as delivery vehicles.

The authors may be reached via electronic mail at fontana@csc.ti.com and martin@tivoli.com.
Martin Neath now works for TIVOLI Systems, Inc., Austin, TX.



2.

As a result, we began investigating other, more mainstream languages that can provide some of
the expressiveness of Lisp and which are well supported on a variety of conventiona plat-
forms. After evaluating severa languages, we decided (for mainly non-technical reasons) on
C++ and began the design of a comprehensive class library.

Over the course of about one year we designed and implemented many generalized classes.
We began with the basics (such as, String, Date_Time, and Complex) to gain experience with
the language, examine possible design approaches, and understand portability and efficiency
issues. We next added an implementation of Stroustrup’s templates [12] (such that there
would be minimal source code conversion necessary when this feature is finally implemented
in the C++ language) and proceeded to design and implement a variety of parameterized,
polymorphic container classes (such as, Vector<Type> and N_Tree<Node Typenchild>). As
the project proceeded, we realized the need for an object-oriented exception handling mechan-
ism. Since no such facility had yet been proposed, we designed and implemented a resumptive
capability for raising and handling exceptions similar in spirit to the Common Lisp Condition
System [2]. Findly, a comprehensive, automatic runtime type query system was completed to
round out the symbolic capabilities of the library.

COOL has been an ever-changing and growing C++ class library, with considerable effort
spent reimplementing internal details, adding new features, extracting common functionality
into base classes, etc. As such, some constraints were necessary in order to achieve compati-
ble and seamless integration of new or modified features. Overall, the design and development
of a C++ class library has been a very valuable experience, as much for the things we learned
not to do, as well as for the positive feedback we received for the things we did correctly.
This class library is currently in use on severa interna projects and is largely in a
maintenance-only mode of development. We expect to make the necessary changes to support
the standard parameterized template and exception handling mechanisms when those features
become available in commercial compilers. For more detailed information and examples of the
COOL classes, the reader is referred to the appropriate sections of the reference document, The
COOL User’s Guide [13].

2. Core Technology Components

The fundamenta cornerstones of COOL are an implementation of parameterized templates, a
resumptive exception handling mechanism, an automated runtime type checking facility, and
consistent polymorphic operations. This functionality is implemented through an enhanced
preprocessor with a sophisticated macro facility [4] which generates conventional C++ source
code acceptable to any conforming C++ translator or compiler [3]. The use of this compiler
independent front-end allowed us to define powerful and portable extensions to the C++
language in an unobtrusive manner. This enabled us to experiment and gain experience with a
variety of proposed language extensions long before they were available in a commercial pro-
duct.

2.1. Parameterized Templates

We quickly found that the development and successful deployment of application libraries such
as COOL required the planned (but not yet available) C++ language feature called type param-
eterization. This alows a class to be defined without specifying the specific data types needed.
The application programmer using the class specifies the data types for each unique use of it in
the application code.

An important and useful variety of parameterized template is known as a container class. This



-3-

is a special kind of parameterized class where objects of some type are structured and stored
together. COOL supplies the many common containers needed by typical complex applica-
tions. These have turned out to be the most important and most used classes in the COOL
library. Indeed, the container classes come closest of all the classes in COOL to fulfilling the
promise of true code reuse.

Each COOL container class supports the notion of a built-in iterator that maintains a current
position within the collection of objects. A set of consistently nhamed member functions allows
a program to move through the collection of objects in a sequential order and manipulate the
element at the current position. This might be used, for example, in a function that takes a
pointer to a generic container object. The function can iterate through the elements in the con-
tainer by using the current position member functions without needing to know whether the
object is a vector, a list, or a queue. The capability to easily replace one type of container
with another is critical since complex applications often must change their data storage
mechanisms to meet requirements that evolve over time.

Severa interesting issues arose for both the COOL and application programmers in designing
and using parameterized classes. First, should a template make assumptions about or enforce a
specific type modifier over which the class is to be parameterized or should that be part of the
usage specification? Second, how much code for a template class can be moved into a base
class to reduce code replication? Third, can the source code be effectively packaged to provide
a rich sat of member functions without burdening applications that do not use them all?
Finaly, what is the most effective mechanism for introducing a new parameterized type to the
compiler and arranging for the inclusion of the code for that type exactly once across file
boundaries?

The answers to some of these questions seemed obvious, while others required several attempts
before a comfortable and correct direction was selected. When we began considering the Type
parameter to a template, it seemed appropriate to alow the user to control the type modifier
specification. This would allow one user to use a Vector<Type> template to contain
"integers’, while another might select "pointers to integers’. Although a single template class
can satisfy both uses, some slight performance degradation and loss of efficiency may result
when copying and accessing a contained object. For example, the operator[] may return a
reference that, if it is a pointer, results in an extra pointer dereference. The design decision to
not enforce a particular type modifier resulted in the copy semantics of the contained object
being left to the user and the template member functions using the object’s operator= to copy
and move objects.

One early decision was to design each parameterized class to inherit from an appropriate base
class that results in shared type-independent code. This reduces code replication when a partic-
ular type of container is parameterized several times for different objects in a single applica
tion. The base classes typically included class-specific data members, member functions which
manipulated the current position in container classes, and member functions which raised
exceptions. There would have been more code in the base classes if we had decided
differently on the previous issue and restricted the type parameter to data type pointers only.

The third issue (which would not even be an issue if more sophisticated linkers were available
on standard operating systems) concerns the "full-featured" versus "lean-and-mean” philoso-
phies. After considerable analysis and experimentation, we decided to embrace both philoso-
phies by providing rich functionality with a template fracturing capability. This mechanism



-4 -

splits the source file on template boundaries so that each member function is copied into and
compiled from its own file. The resulting object files, one for each function, are then placed in
an application archive library for use at link time. This provides for only those member func-
tions that are actually used in an application to be pulled into the executable image.

To control the introduction of a new parameterized type to the compiler and to automate the
generation of the member functions, our first attempt used DECLARE and IMPLEMENT
macros that were carefully located in the application source code. This was later changed to
alow a command line interface through a compilation control program, where the user
specifies the parameterized type on the command line as suggested by Stroustrup with the -X
compiler option [12]. This mechanism is quite usable in traditional separate compilation sys-
tems, but more elegant solutions (which might have additional benefits) are possible for use in
emerging integrated C++ programming environments.

We have found through our experience with COOL that parameterized container classes are the
most important part of a genera C++ class library. In addition, the basic design approach
taken for container classes and the way in which the open issues with parameterization are
solved determine the ultimate acceptance and use of the class library by application program-
mers.

2.2. Exception Handling

In COOL, program anomalies are known as exceptions. An exception can be a program error
such as an argument out of range, or an encapsulation of a more fundamental problem such as
arithmetic overflow. We believe that the current lack of an exception mechanism in the
language seriously impedes the development of flexible and portable object-oriented libraries.
An exception handling system offers a solution by providing a mechanism to manage such
anomalies, simplify program code, and ease portability of an application. As an interim meas-
ure, we developed the COOL exception handling scheme, which is a raise, handle, and proceed
mechanism similar to the Common Lisp Condition System [2].

The COOL exception handling facility [5] provides an exception class (Exception), an excep-
tion handler class (Excp_Handler), a set of predefined exception subclasses (Warning, Error,
Fatal, System_Error, and System_Signal), and a set of predefined exception handler func-
tions. In addition, an easy-to-use macro interface (EXCEPTION, RAISE, STOP, VERIFY,
DO WITH_HANDLER, and HANDLER_CASE) dlows a programmer to create and raise an
exception, and establish exception handlers at any point in a program. When a COOL class
encounters an anomaly that is often (but not necessarily) an error, it represents the anomaly in
an object called an exception and then announces the anomaly by raising the exception. The
application program using COOL classes has the option of providing solutions to the anomaly
by defining exception handler functions and establishing exception handler objects.

When an exception handler object is created, it is placed at the top of a globa exception
handler stack. This stack is maintained in a similar way to that described by Miller [11].
When an exception is raised, a search for an appropriate handler starts at the top of the excep-
tion handler stack. When a match against an exception type is found, the exception handler
object invokes its handler function. COOL provides default exception handlers for the
predefined exception types, such as reporting a description of the exception to the standard
error stream and exiting the program or dumping a core image. A default handler is only
invoked if no handler for the raised exception is found on the global exception handler stack.



-5-

The COOL exception handling macros, RAISE and HANDLER_CASE, provide the same
type of functionality as the throw and try/catch statements proposed by Koenig and Stroustrup
[9]. Both throw and RAISE transfer control to the most recently established handler for a par-
ticular type of exception. However, any object may be used as an argument in a throw expres-
sion, whereas RAISE only alows exception objects. In a similar manner, the try/catch block
and the HANDLER_CASE macro establish handlers while executing a body of statements.
The difference here is that the catch expression in a try block is like a function definition and
any data type can be gpecified in the declaration. The case statements in the
HANDLER_CASE macro, on the other hand, accept only COOL symbols which identify an
exception type.

The differences mentioned above are minor, however, when compared to the philosophical
models each system follows: termination versus resumption. In the one, the throw unwinds the
stack before the call of the exception handler in the try/catch, thus supporting a termination
model for exception handling, while in the second, RAISE expands into a function call which
searches for an exception handler to invoke, thus supporting the resumptive model of exception
handling.

It is interesting to note that although COOL allows both termination and resumptive models for
handling exceptions, only default handlers and termination (or more appropriately, retry)
handlers were used for exceptions raised in the COOL classes. Support for a resumptive
model did not require much additional implementation work, but we discovered that the
termination/retry model is the most appropriate for a generalized class library. A tight binding
(or contract) between the class member function invoking an exception and the application
function in which the exception might be resumed is absolutely necessary to ensure that all
semantic and state information is transmitted and understood effectively by a handler. It is
unlikely that this scenario is true in anything other than tightly coupled modules of a single
application, which makes the usefulness of supporting a resumptive system questionable.

2.3. Symbolic Computing

COOL supports efficient and flexible symbolic computing by providing symbolic constants and
runtime symbol objects [7]. You can create symbolic constants at compile-time and dynami-
caly create and modify symbol objects at runtime by using a simple macro interface or by
directly manipulating the objects. Symbols and packages are used within COOL to manage
error message text for trandation, to provide polymorphic extensions for object type and con-
tents queries, and to support sophisticated symbolic operations not normally available in con-
ventional compiled languages.

The fundamental COOL symbolic computing capability is supported through the Symbol and
Package classes. The Symbol class implements the notion of a symbol that has a name with
an optional value and property list. The name is a character string used to identify the symbol.
The value field refers to some C++ object. Property lists are lists of aternating names and
values which alow the programmer to associate supplemental attributes with a symbol. This
property list feature has been used, for example, to easily add an international representation
for all message strings to an application by representing the messages as symbol objects with
the tranglations for different languages stored on the property list.

Symbols are interned into a package, which is merely a mechanism for establishing isolated
namespaces. The Package class implements a package as a hash table of symbols and
includes member functions for adding, retrieving, updating, and removing symbols. This



-6-

package information is maintained across file module boundaries in an application-specific file,
providing a crude application database for the registration of shared information. This file is
used in COOL to store such things as class hierarchy information, class names, and the loca
tion of where a parameterized template class is generated. This last item is necessary in order
to automate the expansion of a template exactly once within a single application. Clearly, such
implementation techniques are an indication that C++ is stretching the limits of the separate
compilation model of software development traditional in the UNIXO environment. We have
found this type of inter-file support, from both the language and the supporting programming
tools, to be absolutely necessary for the productive development of complex C++ applications
using libraries of reusable components.

2.4. Runtime Type Support

COOL supports an efficient runtime type checking and query capability, and a describe
mechanism for classes which derive from the Generic class [6]. The COOL preprocessor
automatically generates for each Generic-derived class a list of symbols which provides the
class type and class inheritance information and which is used by the type of() and
is type of() member functions of the Generic class.

The Generic class is inherited by most of the COOL classes. A significant benefit of this
common base class is the ability to declare heterogeneous container classes parameterized over
the Generic* type. These classes, combined with the current position and parameterized Itera-
tor class, alow the programmer to manipulate collections of objects of different types in a
simple, efficient, and extensible manner.

The symbols generated by the COOL preprocessor are added to a single file that functions as
the application symbol repository. This file is compiled and linked with the application to allo-
cate storage, and to initialize the symbols and the global symbol package at program startup
time. An automated method for insuring correct package setup and symbol initialization is
accomplished by establishing the correct dependency in an application makefile, and through
global static object initialization supported by the C++ language.

The power of the symbolic computing features available in COOL significantly enhances the
ability of the application programmer to solve problems in a variety of domains. Unfortunately,
the complexity of the symbol system and the necessity for an application-specific database to
support it has severely limited its use. We believe that many of the questions and difficulties
reported to us are directly or indirectly related to this feature. The basic problem is the lack of
a containing environment with knowledge about the whole application structure. This problem
is reflected in the template expansion process, the runtime type system, and the
symbol/package mechanism. In addition, the difficulty C++ compilers are having with enforce-
ment of the "one-definition" rule and 100% type-safe linkage can also be directly traced to this
problem. We do not believe that file-based storage repositories are the answer, no matter how
much automation and "magic" is used. Fundamentally, these types of issues require a suppor-
tive environment for a robust and elegant solution, much as is found in other languages such as
Lisp and Smalltalk.

UNIX is aregistered trademark of UNIX Systems Laboratories, Inc.



3. Class Hierarchy Overview

The COOL class hierarchy is a rather flat inheritance tree, as opposed to the deeply nested
Smalltalk model. All complex classes are derived from the Generic class to facilitate runtime
type checking and object query. Simple classes are not derived from Generic due to space and
efficiency concerns. Each parameterized container class inherits from a base class which
includes all type-independent code. The COOL class hierarchy is as follows:

Bignum

Complex

Pair<Typel, Type2>

Range
Range<Type>

Rational

Generic
Binary_Node
Binary_Node<Type>
Binary Tree
Binary Tree<Type>
AVL_Tree<Type>
Bit_Set
Date Time
Exception
Error
System_Error
Verify Error
Fatal
System_Signal
Warning
Excp_Handler
Jump_Handler
Generic<Type>
Gen_String
Vector
Vector<Type>
Association<Typel, Type2>
List Node
List Node<Type>
List
List<Type>
Hash_Table
Hash_Table<Typel, Type2>
Package
Set<Type>
Iterator<Type>
Matrix
Matrix<Type>
D_Node<Type,nchild>
N_Node<Type,nchild>
N_Tree<Node, Type,nchild>



Generic (cont’ d)

Queue
Queue<Type>

Stack
Stack<Type>

Symbol

String

Timer

Random

Regexp

4. Who Tried To Use COOL And Were They Successful?

A C++ class library should be targeted for a particular audience and domain in order for some
measure of success to be easily determined. Initially, the COOL project had no specific custo-
mer in mind. Our project goals were to gain experience with the C++ language and determine
if arich collection of classes could be designed and used by a variety of application program-
mers in a practical and worthwhile manner. At the time, there were severa groups in different
parts of the corporation that had expressed some interest in the language. Many of these users
were former Lisp programmers. Others were considering using ADA, while still others were C
programmers on UNIX and PC platforms. To collect and disseminate information to this
diverse user-group, we established an e-mail forum for discussion of ideas, issues, design
reviews, and so forth. This provided vauable information and insight into the needs of a
variety of customers. It aso, however, resulted in many conflicting requests that required
space/time tradeoffs in the class designs and implementations.

The potential users turned out to be programmers who were likely to use C++ and our class
library in the short term and programmers who had no immediate need or opportunity for use,
but were interested for possible future projects, intellectual, or personal reasons. Severa pro-
jects had just begun their design and prototyping phases when they evaluated COOL. One pro-
ject which was building a VHDL simulator, decided not to use COOL and developed their own
C++ classes for performance and efficiency reasons. A second project which was working on
an embeddable forward-chaining rules system, used our class library and the extended features
such as parameterized types and the symbolic computing capability. Another project used
some components of our class library, yet also designed their own versions of some classes
too. In each case, there was a desire and need for many of the basic data structures found in
COOL. The answer to the gquestion "Were they successful?' is "partialy”. The primary reason
for our lack of success was that programmer expectations, design, requirements, and the C++
language itself were not always in line with each other. The following sections contain details
about which COOL components were used and how they were or were not appropriate for the
work at hand.

4.1. What Did Our Users Like?

To date, the two most favorably received aspects of COOL are the implementation of
parameterized templates and the portable nature of the library. The rules compiler project men-
tioned above extensively used not only our collection of parameterized container classes, but
also wrote several application-specific template classes using the same mechanism. In general,
we have received favorable response from this project concerning the syntax and expressive
power of the template mechanism. Some project leaders expressed considerable willingness to
give up a small percentage of performance and/or efficiency if that resulted in a highly portable



-9-

software platform upon which they could design and build their applications. This position,
however, was not universally shared with the engineers responsible for implementing the appli-
cation.

Another strongly echoed statement is that the distribution of the class library in source format
significantly enhanced the understanding of the C++ language, and the use of the classes,
polymorphism, and class derivation within an application framework. Many users were in the
process of learning C++ and found the ability to examine working source code for various
class library components a great aid. We aso found that all possible uses of a given class
could not always be anticipated in our iterative design process, so that decisions such as the
private/protected interface were often incorrectly specified. In addition, when an application
uses multiple inheritance with library classes, it sometimes becomes necessary to change the
inheritance specification for one or more shared base classes to virtual. Finally, parameterized
templates can be thought of as meta-classes in that only one source base needs to be main-
tained to support numerous variations of a kind of class. This requires distribution of template
source code unless each vendor adopts its own encrypted or partially compiled format. This,
however, seems too restrictive and not desirable from the user’s point of view.

We often found that users who needed a particular type of class would examine the COOL
design and implementation for a similar class, then proceed to copy the source code and
significantly ater and modify the interface, resulting in a class very different to that initialy
supplied. The reason most often sighted for this course of action was not due to functionality
deficiencies or difficulty with the private/protected interface, but rather a perception that it
must be inefficient because it was not hand-crafted by the individua. This reaction is at the
heart of the problem of code reuse and whether or not programmers will accept such a course
of action. It seems to depend partialy upon the individua’s "pain-threshold" for modifying
and/or creating a new class verses the perceived vaue of the library class. For small-value
classes such as string, the answers seems to be variable, but for larger value classes such as
regular expression and text buffer, the decision is much more likely to favor using the library
class [1].

We fed that for the most part, COOL provides very efficient implementations of a variety of
data structures. However, the full-featured nature of the classes may be inappropriate for all
users. We originally implemented one heavy-weight String class, for example, that contained
pattern matching capabilities and implemented reference counting and other memory manage-
ment techniques. We later added a streamlined version of this class that had a subset of the
member functions and provided only the most basic string operations. In many situations, this
was the more popular class of the two. In those cases where a more full-featured class was
needed, the ability to upgrade and have a compatible interface was appreciated. A similar
request was made for the List<Type> class. We therefore feel that one possible design choice
is to provide two libraries (which, if we were in advertising, would be promoted as COOL and
COOL-Lite). This approach seems appropriate for genera purpose class libraries and could be
applied to other more specific categories. For example, a database library might have light-
weight classes that provide basic storage and retrieval facilities perhaps built on a flat file
ISAM for speed and portability, but also offered a richer and more powerful class with con-
currency control, nested transaction support, logging and recovery.



-10 -

4.2. What Did Our Users Didlike?

The most common problem voiced from users concerned the requirement that any of their
applications that used a COOL class derived from Generic required that the entire symbol and
package mechanism also be linked into their application, even if they did not use the symbolic
computing facilities. This is a problem inherent with class hierarchies and libraries with com-
plex or intertwined dependencies. For example, a class derived from Generic will result in
implementations of the templates for Hash_Table and Package also being linked into the exe-
cutable image. An additional concern already mentioned is the complexity of the symbol setup
and the necessity for an auxiliary database file to be compiled and linked with each application.
This is partidly due to our implementation and the necessity for portability, but also because of
the state of current linker technology on many platforms. Many commercial vendors imple-
menting environments should not have this problem.

Another significant difficulty was the communication between the library developers and the
library users on the intended use of and interface for the classes. A C++ class browser utility
would greatly simplify the problems of educating a programmer about the available classes and
their functionality. As class libraries grow and the relationships between objects become more
complex, the usefulness and applicability of traditional tools such as grep(l) and more(l)
begin to break down. More modern tools designed for this problem such as the graphical class
browser in the Saber C++™ development environment will substantially ease the learning curve
and information explosion. Using such tools, a programmer will be able to more easily identify
inheritance problems, locate state and member function definitions, and assimilate a more com-
plete menta modd of the library. This will be particularly true if in fact the promise of
integrating several class libraries for different components within a single application is to be
realized.

5. What Did We Learn and What Would We Do Differently?

With what we now know, we would make several different design decisions, the first and
foremost of which would be to simplify the interdependencies between the classes. This would
be accomplished by essentialy flipping the class hierarchy. Instead of having a base class Gen-
eric that provides the run time typing capability and from which most other classes are
derived, we would provide this class as a standalone class. Classes such as String and
Vector<Type> would not be derived from Generic. In this manner, users who wanted the
functionality of one or more objects found in COOL would not get runtime type capability
linked into their application. Those users who needed the symbolic computing facilities could
use multiple inheritance to derive the appropriate class. For example, a String class with type-
guery support could be multiply derived from Generic and String to produce the desired
result.

The Exception and Excp_Handler classes are the only classes in COOL which require the
runtime type checking capability and symbol and package mechanism. This results from our
current implementation of handling exceptions. We would change this implementation and use
simple character strings instead of COOL symbol objects to represent each exception class
name. Most of the COOL classes raise exceptions and we would still want to eliminate the
necessity of including the symbol and package mechanism when using any of these classes.

In addition to removing the Generic dependency in all classes, we would also provide a

Saber C++ is a trademark of Saber Software, Inc.



-11 -

common base class for the container classes that support the notion of an iterator object to
alow for the commonality of these class objects. This base class would probably contain only
pure virtual member function specifications to enforce a particular interface in the derived
classes.

Finally, we would aso provide both a simple version and full-featured version of many of the
classes. For example, we would implement a version of the parameterized classes which res-
tricts the type parameter to data type pointers and removes the use of references. We believe
that providing the simple version of classes would satisfy many users who would otherwise
alter a COOL class implementation to reduce its complexity for space/time considerations. In
addition, it would simplify the design for the COOL classes making them easier to use, and
alowing for more code reuse.

We like the "forest" hierarchy structure and believe that it is more appropriate for applications
written in C++ than the Smalltalk deeply nested structure found in other class libraries, such as
Gorlen's NIH class library [8]. In an effort to reduce even further the complexity and size of
an application that uses the class library, we would also opt for placing every non-inline
member function in its own source file and the resulting object file in the archive. This would
force linkers to link only those member functions actually utilized in an application into the
executable image. Finally, we are concerned about the single namespace and the inevitable
name clashes that result when two independently developed class libraries are combined in a
single application. In one case we are familiar with, a user trying to use COOL with the Stan-
ford InterViews class library [10] had to make several changes to class nhames and functions
that were common to both libraries. It appears that with the current language definition, the
only reasonable solution is to require prefixing all global names with a two or three letter
prefix in order to reduce the chance of a clash. This, however, is clearly not acceptable and we
believe a language extension to isolate namespaces is the only viable long-term solution.

6. Conclusion

The COOL project has been an exciting and rewarding experience, serving not only to fulfill
our initial intent of providing valuable experience with C++, but also as a focal point for a
larger discussion within the company regarding software productivity and code reuse. Our
diverse user-group has provided vauable information concerning applicability and potential for
utilization of C++ class libraries in a variety of projects and platforms. We conclude that a
class library consisting of many basic data structures and templates:

» can significantly aid the portability of an application

» will be viewed with considerable skepticism by many C programmers

» must be supplied in source code format

will often be modified/decomposed to suit the purpose

* provides a medium for the dissemination and spread of ideas and techniques

While most applications require many of the basic data structures found in COOL, there are
always other necessary components. It is our conjecture (based on a limited application test
set), that many projects will actually require four types of class components:

* basic data structures -- strings, templates, containers, etc.

» user-interface widgets -- menus, buttons, dialog boxes, etc.

» network/communication -- file transfer, TCP/IP, remote access, €tc.
* application-specific -- domain-specific "high value" objects

If there is one significant lesson we have learned from COOL, it is that W.C. Fields was right



-12 -

in saying: "You can't satisfy al the people al the time!" On the other hand, a C++ data struc-
ture class library organized in a "forest" hierarchy has components that can, in combination
with other libraries, satisfy most of the people most of the time. We think this is about the best
that is possible.

7. Status

COOL is currently running on a Sun SPARCstation™ 1 running SunOS™ 4.x, and a PS/2™
model 70 running OS/2™ 1.2. The SPARC port utilizes the AT& T C++ trangator (cfront) and
the OS/2 port utilizes the Glockenspiel C++ tranglator (which is a port of the AT&T translator)
with the Microsoft C compiler.

8. Acknowledgements

Many people contributed ideas, suggestions, and criticisms that have helped shape the class
library evolution and development. Amongst these are Fred Burke, Terry Caudill, Merrill Cor-
nish, Carey Jung, Asif Malik, Dane Meyer, LaMott Oren, Jeri Steele, Dan Stenger, and Brian
Victor.

9. References

[1] James Coggins, Design Criteria for C++ Libraries, USENIX C++ Conference, San Fran-
cisco, CA, April 1990.

[2] Andy Daniels and Kent Pitman, Common Lisp Condition System Revision #18, ANSI
X3J13 subcommittee on Error Handling, March 1988.

[3] Margaret Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison
Wesley, 1990.

[4] Mary Fontana, Martin Neath and Lamott Oren, A Portable Implementation of Parameter-
ized Templates Using A Sophisticated C++ Macro Facility, Information Technology
Group, Austin, TX, Interna Original Issue April 1990.

[5] Mary Fontana, Martin Neath and Lamott Oren, A Portable Exception Handling Mechan-
ism for C++, Information Technology Group, Austin, TX, Internal Original Issue April
1990.

[6] Mary Fontana, Martin Neath and Lamott Oren, A Runtime Type Checking and Query
Mechanism for C++, Information Technology Group, Austin, TX, Internal Original Issue
November 1990.

[7] Mary Fontana, Dane Meyer, Martin Neath and Lamott Oren, Symbols and Packages in
C++, Information Technology Group, Austin, TX, Internal Original Issue November
1990.

[8] Keith Gorlen, An Object-Oriented Class Library for C++, USENIX C++ Workshop,
Santa Fe, NM, November 1987.

[9] Andrew Koenig and Bjarne Stroustrup, Exception Handling for C++, Submitted as docu-
ment X3J16/90-042 to the ANSI C++ committee, July, 1990.

[10] Mark A. Linton, Paul R. Calder, and John M. Vlissides, InterViews: A C++ Graphical
Interface Toolkit, Technical Report CSL-TR-88-358, Stanford University, July 1988.

SunOS and SPARCstation 1 are trademarks of Sun Microsystems, Inc.
PS/2 is a trademark of International Business Machines Corporation.
0S/2 is atrademark of International Business Machines Corporation.



- 13-

[11] Mike Miller, Exception Handling Without Language Extensions, Proceedings of the
USENIX C++ Conference, Denver, CO, October 17-21, 1988, pp. 327-341.

[12] Bjarne Stroustrup, Parameterized Types for C++, Proceedings of the USENIX C++
Conference, Denver, CO, October 17-21, 1988, pp. 1-18.

[13] Texas Instruments Incorporated, COOL User’s Guide, Information Technology Group,
Austin, TX, Internal Origina Issue January 1990.



