
Copyright (c) 1992

The Board of Trustees of the Leland Stanford Junior University

Permission to copy this manual or any portion thereof as necessary for use of
this software is hereby granted provided this copyright notice and statement of
permission are included.

InterViews Reference Manual
Version 3.1-Beta

June 26, 1992

Mark A. Linton
Paul R. Calder

John A. Interrante
Steven Tang

John M. Vlissides

Release Notes
The InterViews 3.1 distribution contains a README file and a single
subdirectory, “iv”, that contains the source and documentation. InterViews can be
compiled with any C++ compiler that accepts the 2.0, 2.1, or 3.0 revisions of the
language, and can run on X11R4 or X11R5. You can specify your compiler and
other site definitions in the file “iv/src/config/InterViews/local.def”.

The README file describes how to build InterViews. Under “iv/src”, the
directory “include” contains include directories, “bin” contains applications (each
in its own subdirectory), “lib” contains libraries (each in its own subdirectory),
“config” contains configuration-specific files, “man” contains PostScript or troff
for the manual, and “papers” contains PostScript for user tutorials.

The work at Stanford has been supported by Fujitsu America, Digital
Equipment Corporation, and NASA CASIS project under Contract NAGW 419,
and a grant from the Charles Lee Powell Foundation. Special thanks to Ira
Machefsky of Digital and Charles Brauer of Fujitsu America for their assistance.
We are also grateful to the ever-growing InterViews user community for its
encouragement and support.

Please address questions or comments about InterViews to

Mark Linton
linton@sgi.com

Differences between 3.0 and 3.1
InterViews 3.1 contains several improvements over 3.0.1. WidgetKit is an
improved implementation of the Kit class that was in 3.0.1. DialogKit is a class
that provides a file chooser dialog using WidgetKit compoments. LayoutKit is a
class that provides convenient operations for creating layout objects such as boxes
and glue, replacing the many independent classes such as LRBox and VGlue
in 3.0.1. Chapter 9 of the reference manual describes WidgetKit, Chapter 10
describes DialogKit, and Chapter 11 describes LayoutKit.

Glyph and other subclasses of Resource are no longer derived as virtual base
classes. This change was made primarily for efficiency and convenience because
many C++ compilers do not generate particularly efficient code for virtual base
classes (especially in space), and some compilers have bugs in this area.

The Glyph protocol has been extended with an undraw operation that notifies a
glyph that it no longer has an allocation on the canvas. This operation is primarily
for objects that cache information or perform computation when they are visible.

A new monoglyph subclass, called InputHandler, replaces the old Listener
class. InputHandler is much simpler to use than the previous combination of
Listener and PointerHandler, as well as providing limited support for focus
management.

The Window class now has a style object as one of its attributes. The style can
be set to defined attributes such as name and geometry, as well as a “visual” type
for the window. On systems that support overlay planes, the attribute “overlay”
can be used to request the window be allocated in the window planes.

InterViews 3.1 also includes a new faster implementation of the Style class and
a copy of the latest version of Sam Leffler’s TIFF library (v3.0) for reading
images. The old 2.6 structured graphics library is no longer included, though it
probably would still work with this distribution.

The documentation has been reorganized to reflect some of the 3.1 changes, as
well as provide a structure for future releases. In addition to the reference manual,
a new collection of example programs is provided under iv/src/examples.

0-2

Chapter 1

Introduction
InterViews is a software system for window-based applications. Like most user
environments, InterViews is object-oriented in that components such as windows,
buttons, menus, and documents are active elements with inherited behavior. The
name “InterViews” comes from the idea of a user interface object presenting
an interactive view of some data. For example, a text editor implements an
interactive view of the contents of a text file.

InterViews provides a set of classes that define the behavior of user interface
objects. We distinguish InterViews classes into two groups: protocols and kits. A
protocol defines the set of operations that an object can perform, such as drawing
or handling input. A kit defines a set of operations for creating other objects. The
idea of a kit is also sometimes referred to as an “object factory”. Using kits hides
the details of object construction and subclassing-instancing tradeoffs made by
the implementation, as well as providing a higher-level organizational structure to
the system.

1.1 Organization

In this first chapter, we define the basic notation and classes, as well as give
an overview of the system by way of several example programs. Chapter 2
defines the base protocol for user interface objects, called Glyph, which supports
geometry management, rendering, picking, and structuring multiple glyphs into
an aggregate. Chapter 3 describes the input event processing model and the
InputHandler protocol. InputHandler is a descendant of Glyph that receives input
events. Chapter 4 presents the View protocol, which is derived from InputHandler
and adds additional operations for creating and updating multiple views of a
shared data object.

Chapter 5 defines the Window protocol for associating glyphs with a window
on the screen and communicating with a window manager. Chapter 6 presents the
basic protocols for rendering to the screen or a printer.

Chapter 7 is reserved for the future to describe the FigureKit class that
will create common 2D graphic objects, such as rectangles, circles, and
polygons. In traditional graphics terminology, FigureKit will support “structured”
graphics, while the basic rendering protocols described in Chapter 6 support
“immediate-mode” graphics.

Chapter 8 defines the Style protocol, which manages a collection of named
attributes with string values. Chapter 9 presents the WidgetKit class for creating
common user interface components such as buttons, menus, and scrollbars.
The precise appearance and input behavior of a widget can be adjusted by the

attributes in a style. Chapter 10 presents the DialogKit class for building common
dialogs.

Chapter 11 defines the LayoutKit class for creating glyphs that control
formatting. These objects are based on the TeX document preparation system.
Chapter 12 describes the DocumentKit class for creating and editing documents.

Appendix A defines classes for interfacing to the underlying operating system.
These classes are not intended to provide a complete or standard interface to the
operating system, but merely a more convenient and portable set of protocols.

1.2 Notation

N.B.: The notation in this manual is somewhere between C++ and the OMG
Interface Definition Language (IDL). We expect to use IDL in the future.

We use a syntax similar to C++ to specify the InterViews classes and operations.
However, the specification of a class here is not identical to its C++ declaration in
a header file. To make the distinction clear between our specification and C++,
we use the keyword “interface’ instead of “class”. We assume inheritance is
always “public” in C++ terminology.

All operations are assumed public; we do not list the protected or private
members. We also do not list members that are implicitly part of the
implementation. For example, C++ destructors are normally public but often
simply free storage allocated by the object. Thus, there is no need to document
destructors as part of a class interface.

Unless explicitly specified as “static”, all operations are virtual functions in
C++. In the case of an inherited operation, the choice of whether or not to
provide the operation may depend on the implementation. We therefore do not
list inherited operations unless the subclass extends the semantics in some way.

1.2.1 Names

We use identifiers that begin with an upper case letter for types; we use lower
case for operations and parameters. In type names consisting of multiple words,
we capitalize the beginning of each word, as in FirstSecondThird. For operations
or parameters we use underscores to separate words, as in first_second_third. An
operation f for a class C is denoted by C::f.

We assume that some mechanism allows us to use whatever names we wish for
global symbols; that is, there is no need for a special prefix on all class and
type names. Ideally, this capability would be provided by the implementation
language, but this is not yet the case for C++. Currently, the implementation uses
#define macros to prepend the prefix ‘‘iv’’ to all class names and global type
names. This redefinition is hidden from the programmer, except inasmuch as it
shows up during debugging. To undefine these macros, a source file must include
“<InterViews/leave-scope.h>”. After leaving the InterViews scope, InterViews
names are specified by “_lib_iv(name)”, where name is the class or type name

1-2

defined in this manual.

1.2.2 Use of const

C++ allows the type modifier “const” to be used in a variety of different ways.
For concrete objects (int, float, char*), it refers to read-only storage. For abstract
objects, however, storage access should not be visible in an interface. For
example, an operation on a transformation matrix could be defined that returns
whether the matrix is the identity or not. A simple implementation could compute
the identity test and could be defined as const in the storage sense. However,
another implementation might cache the result of the test to avoid the overhead of
the test when the matrix is not changing. This second implementation is not const
in the storage sense because it modifies the transformation matrix object.

We use const for operations that do not change the behavior of an object.
That is, an operation is const if a call to it could be omitted without changing
the effect of subsequent operations performed on the object. This definition is
consistent with the notion that a compiler could eliminate redundant calls to the
same const function. The one important counter-example is reference counting,
where incrementing and decrementing the reference count of a shared object
changes its lifetime (an operation that could not be eliminated by the compiler)
but does not change its behavior (the operation is considered const).

Using our semantics of const, the transformation matrix identity function
mentioned above should be defined as const. This approach implies that an
implementation may be forced to cast the this pointer from const to non-const to
avoid a compiler error message because C++ compilers normally assume that a
function should not be const if the function does modifies storage.

It is also possible (indeed, likely) that a function does not follow our semantics
of const even though it does not modify the object’s storage. If an object contains
a pointer to another object and an operation performs a non-const operation on
that object, then the first operation may also need to be defined as non-const.

1.2.3 Common Symbols

Several definitions are pervasive throughout the system. These definitions are
automatically defined as a side effect of using any other InterViews classes.
The type boolean is defined in the conventional sense of a language such as
Pascal, as are the constants true and false. The constant nil is presumed to be
type-equivalent to any pointer type and represents an invalid pointer value. In
C++, we #define nil to zero.

The type String is used as a parameter to a number of operations, though no
specific interface or implementation is presumed. Whereever a string parameter
appears, one can assume that a C++ “const char*” type can also be passed.

1.2.4 Coordinates

Many objects and operations manipulate coordinates. We define the type Coord to
represent a position or a distance. The default units for a coordinate are “printers

1-3

points”, or 1/72 of an inch. The scaling factor can be customized on a per-screen
basis.

Ideally, Coord would be an abstract type with set of operations and conversions
to concrete types. However, current C++ compilers do not make it practical
to define a Coord class that is represented as a single word. The current
implementation therefore defines Coord as the C++ type “float’.

For applications with simple graphics needs, the use of floating point
coordinates is typically not a problem. Applications with more sophisticated text
or graphics usually need to manipulate floating point coordinates anyway.

The use of non-pixel units allows objects to be resolution-independent, but also
means that one cannot rely on precise output at low resolutions. Coordinates are
rounded-off to guarantee that objects that abut in coordinates will abut on the
screen. This choice means that a one point line might generate one or two pixels,
depending on where it is on the screen. Objects that need to generate consistent
pixel sizes can explicitly round to whole-pixel coordinate values using Canvas
to_pixels_coord.

1.2.5 Dimensions

Many composition strategies manipulate coordinates in one dimension. To use a
single strategy in any dimension, we define the type DimensionName and values
Dimension_X, Dimension_Y, or Dimension_Z. It is possible that other dimensions
may be defined in the future. The constant Dimension_Undefined is defined after
any other dimensions.

1.2.6 Parameter conventions

In specifying an operation, we list only the parameter type unless there are several
parameters to the operation with the same type. In this case, we list both the type
and a name for the parameter that clarifies what it is.

For parameters that are objects, we use a pointer type if the operation may store
a pointer to the object with a lifetime beyond the operation’s activation. If the
operation will not store a pointer, then we pass a reference type. Therefore, one
should never pass the expression “&x” for a local or parameter object “x”.

1.2.7 Storage management

Because C++ does not provide garbage collection, it is necessary to manage
shared objects within a program. We make objects easier to share by deriving
from class Resource, which manages a reference count. If we had garbage
collection, we would not need the resource class. Therefore, we do not consider
resource really part of the InterViews programming interface and it does not
appear in any function type signatures. However, it is necessary to understand
which objects can be shared and as a practical matter the implementation must
manage references correctly.

Figure 1.1 shows the Resource class interface. Every resource has a reference

1-4

count that is initially zero and must be explicitly incremented by calling
Resource::ref. The reason the count is initially zero is that an object is often
created and immediately passed as a parameter to another object that stores the
reference. Since the receiver must reference the parameter anyway, it is confusing
to force the creator to unreference the resource after passing it.
 The C++ delete operator should not be used on resources directly; instead,
Resource::unref or Resource::unref_deferred should be called to decrement the
reference count of an object. If the count is no longer positive, then the resource’s
cleanup operation will be called. In the case of Resource::unref, the object is
immediately destroyed. In the case of Resource::unref_deferred, the object will
be put on a queue of objects to be destroyed in order the next time Resource::flush
is called. Resource deferral is useful when an object initiates a delete on one of its
ancestors or some other object with an active member function.

1.2.8 Callbacks

C++ provides a pointer-to-function type, but often one wishes to encapsulate an
object and a pointer to a member function to call on the object. Our approach is
to define a base class containing the callback signature and a parameterized
subclass for a callback to an object of a specific type. For example, the action
class defines a single operation, Action::execute, with no parameters and no
return value. A macro is an action that contains a list of actions, each of which
is executed in order. An action callback is the subclass that is expanded for
each destination type. The current implementation uses preprocessor macros,
but will use templates in the future. Figure 1.2 shows the action, macro, and
action-callback class interfaces.

1.3 Basic concepts

The goal of InterViews is to make it easy to compose user interfaces from
reusable components. The central class for physical composition is Glyph because
it defines the geometry of a user interface object. The central class for logical
composition is InputHandler because it defines the input handling policy and
update management. InputHandler is a subclass of glyph, normally delegating its

1-5

interface Resource {
static void ref(const Resource*);
static void unref(const Resource*);
static void unref_deferred(const Resource*);
static void flush();
void cleanup();

};

Figure 1.1: Resource class interface

geometry and appearance to another glyph.
The Canvas class defines a 2-dimensional surface upon to which a group of

glyphs are attached. The glyphs negotiate for space on the canvas, draw on the
canvas to refresh their appearance, and damage the canvas to cause an update
traversal.

The Window class creates a canvas for a top-level input handler and allows
the user to control the canvas on a screen through a window manager. The
window class does not define a window management policy, only the mechanism
for communicating appropriate information between a window manager and the
glyphs.

The InterViews input model is ‘‘top-down’’. That is, an input event is first
received by the appropriate window as determined by the window manager. The
receiving window passes the event to the root input handler, which may pass it
down to a nested input handler.

1.3.1 Main event loop

Every application creates a Session object to run an event dispatching loop.
Sessions initially attach to the user’s display and can attach to additional displays.
A session defines a root Style object derived from user customization files and
command-line arguments. Styles define named attributes with string values,
wildcarding for matching classes of objects, and quick access to common
attributes such as fonts and colors. Figure 1.3 shows the session protocol.

The session is given an alias (class name) for the root style, an array of
command-line arguments, an optional argument description, and optional initial
style settings. The root style’s name comes from the “-name” command-line
option (if given), or the environment variable RESOURCE_NAME (if defined),
or the value of argv[0] with leading path entries stripped.

1-6

typedef long MacroIndex;

interface Action : Resource {
void execute() = 0;

};

interface Macro : Action {
Macro(Action* = nil, Action* = nil, Action* = nil, Action* = nil);
void prepend(Action*);
void append(Action*);
void insert(MacroIndex, Action*);
void remove(MacroIndex);
MacroIndex count() const;
Action* action(MacroIndex) const;

};

interface ActionCallback(T) : Action {
ActionCallback(T)(T*, void (T::*)());

};

Figure 1.2: Action and related class interfaces.

The option description is an array of structures that describe command-line
arguments. The structure contains four fields: a name that is the command-line
string, a path specifying a style attribute, a format specifying where the associated
value is, and a default value. Valid formats are OptionPropertyNext (use the next
argument as an attribute-value pair), OptionValueNext (use the next argument
as the value), OptionValueImplicit (use the default value), OptionValueIsArg
(use the agument as the value), and OptionValueAfter (use the remainder of the
argument as the value). If a command-line argument is found that matches an
option description, it will be interpreted and removed from argv. The agument
count (argc) will be set to the number of uninterpreted command-line arguments.

In addition to the program-specified options, the Session constructor
automatically matches the options listed in Table 1.1. The optional initial style
settings are specified by a nil-terminated array of pairs <s1,s2>, where s1 is an
attribute name and s2 is the value. User defaults will override any initial settings,

1-7

struct PropertyData {
const char* path;
const char* value;

};

struct OptionDesc {
const char* name;
const char* path;
OptionStyle format;
const char* value;

};

interface Session {
Session(

const char* name, int& argc, char** argv
const OptionDesc* = nil, const PropertyData* = nil

);
static Session* instance();
int argc() const;
char** argv() const;
Style* style() const;
void default_display(Display*);
Display* default_display() const;
Display* connect(const String&);
Display* connect(const char*);
void disconnect(Display*);
int run();
int run_window(Window*);
void quit();
boolean done();

};

Figure 1.3: Session protocol

Figure 1.4:

and command-line arguments will override user defaults.

1.3.2 Common widgets

InterViews provides common behavior objects, such as buttons and menus, which
are built using glyphs and input handlers. Unlike many other toolkits, InterViews
objects are cheap enough that behavior objects are separate from appearance
objects. For example, the button class is given a separate glyph that denotes its
appearance; the button only implements input behavior.

This approach of separating input and output objects makes the toolkit more
flexible and the individual objects simpler, but it can make the task of constructing
higher-level user interface objects more confusing. In particular, it becomes less
obvious whether it is appropriate to subclass or instance to create a particular
component.

InterViews provides a widget kit object that encapsulates these decisions in a
single programming interface while allowing various appearances and behaviors.
A widget kit is an object that creates common user interface objects such as
buttons, scrollbars, and menus. For example, a push button has button behavior, a

1-8

-background next argument sets the background color
-bg same as -background
-dbuf double-buffer windows by default
-display next argument specifies the target workstation display
-dpi next argument is coordinates-to-pixels ratio
-fg same as -foreground
-flat next argument sets the base color for bevels
-fn same as -font
-font next argument sets the default text font
-foreground next argument sets the foreground color
-geometry next argument sets the first window’s position and size
-iconic starts up first window in iconic form
-malloc run with memory-management debugging on
-monochrome use monochrome style
-motif use Motif style
-name next argument sets the instance name of the session
-nodbuf do not double-buffer windows
-openlook use OpenLook style
-synchronous force synchronous operation with the window system
-title next argument sets the session’s default title bar name
-visual next argument is visual class to use for windows
-visual_id next argument is visual id number to use for windows
-xrm next argument is “name:value”; sets named attribute

Table 1.1: Predefined command-line options

beveled or highlighted appearance when pressed, and a style for customization.
The WidgetKit class provides a function to create a push button object; the
implementation is free to compose what objects are necessary to provide the
appropriate functionality. Each application normally creates a single WidgetKit
object, which is typically a subclass defined for a particular look-and-feel
such as OpenLook or Motif. The application can call the static function
WidgetKit:::instance to return the object and therefore be unaware which specific
look-and-feel is being used.

1.4 A simple example

Figure 1.5 shows a simple InterViews application that display the text “hi mom!”
in a window. The application creates a session and runs it starting with a window
containing the text over a background. The window is an “application window”,
meaning it is recognized by other desktop services (window manager, session
manager) as the main window for the application.

The window contains a background that contains a label. A background glyph
paints a given color behind its contents. The label’s font and color are obtained
from the default style for the session.

This application does not handle user input. It must therefore be terminated
externally, either from a window manager menu or through the system.

1.5 Geometry management

See iv/src/examples/box[12].

1-9

#include <IV-look/kit.h>
#include <InterViews/background.h>
#include <InterViews/session.h>
#include <InterViews/window.h>

int main(int argc, char** argv) {
Session* session = new Session("Himom", argc, argv);
WidgetKit& kit = *WidgetKit::instance();
return session->run_window(

new ApplicationWindow(
new Background(

kit.label("hi mom!"), kit.background()
)

)
);

}

Figure 1.5: InterViews "hi mom!" program.

1.6 Creating a push button

See iv/src/examples/button[123].

1.7 Summary

This chapter has presented a broad overview of the InterViews architecture,
introducing the basic concepts and giving some simple examples. In the next
chapter, we focus on the semantics of glyphs as the smallest unit of user interface
construction.

1-10

Chapter 2

Glyphs
Glyphs are the basic building blocks for the presentation side of a user
interface, providing a unified substrate for interactive objects, structured graphics,
and formatted text. The glyph protocol supports geometry, drawing, picking,
composition, and structure. Glyph subclasses provide higher-level operations,
such as input handling and update management.

The base class defines no storage and operations are passed contextual
information during rendering. Thus, glyphs may be shared and a glyph structure
need not be strictly hierarchical; it may be a directed acyclic graph. Figure 2.1
shows the glyph protocol.

2.1 Geometry management

Glyph::request asks a glyph to specify its desired geometry. This operation should
be fast to allow a composite glyph to compute rather than store the desired
geometry of its components. Glyph::allocate notifies a glyph that a portion of the
canvas has been allocated for it and returns an area that represents a conservative
estimate of the actual area where the glyph will draw.

2.2 Drawing

Glyph::draw displays the glyph on the canvas at the position and size specified by
the allocation. No clipping or translation is implicit in this operation–the canvas is
the entire drawing area and the allocation is in canvas coordinates. However, a
composite glyph may set clipping on the canvas before drawing its children.

There is no guarantee that a call to draw will affect the screen immediately
because of the possibility (indeed, likelihood) that the canvas is double-buffered.
Furthermore, drawing order is important for glyphs when they are partially
transparent and are drawn in the same plane. A glyph’s draw operation therefore
should not be called directly, but rather is implicitly called during screen update.

Glyph::undraw notifies a glyph that its allocation is no longer valid. This
operation is generally a performance hint to free cached information associated
with drawing or inhibit some operation that is unnecessary while the glyph is not
visible, such as cursor blinking. Glyph::undraw is not to be used when a glyph’s
allocation changes; in that case, allocate and draw can simply be called with
different parameters.

Glyph::print generates a representation of the glyph graph suitable for printing.
The canvas and printer rendering interfaces are identical, and the default

2- 1

implementation of print is simply to call draw. Most glyphs therefore need not
define a print operation. The reason for a distinct print operation is to allow
a glyph to use different rendering requests for the screen and a printer. For
example, a glyph might use 3D requests to the screen, or might compute more
precise output for printing.

Glyph::pick finds the glyphs that intersect a point or rectangle specified
in canvas-relative coordinates. Conceptually, picking is like drawing and
determining what glyphs intersect the specified point or rectangle. The
coordinates are contained in the hit parameter. The depth parameter specifies
which level in the Hit object to store the intersecting glyphs. When pick returns,
the Hit parameter contains the glyphs that were hit.

Figure 2.2 shows the hit protocol. A hit object may be constructed with a point,
a rectangle, or an event. In the case of the event, the event pointer coordinates are
used to detect intersection and glyphs can associate a handler with the pick result.

Hit::event, Hit::left, Hit::bottom, Hit::right, Hit::top return information about
the specified hit area. Hit::event returns nil if the point or rectangle constructors
were used.

Hit::push_transform, Hit::transform, and Hit::pop_transform modify the current
intersection area for picking. These operations are just like the canvas operations
with the same names except they apply to the hit information instead of a canvas.

Glyphs record information in a hit object with Hit::begin, Hit::target and

typedef long GlyphIndex;
typedef unsigned int GlyphBreakType;

interface Glyph : Resource {
void request(Requisition&) const;
void allocate(Canvas*, const Allocation&, Extension&);
void draw(Canvas*, const Allocation&) const;
void undraw();
void print(Printer*, const Allocation&) const;
void pick(Canvas*, const Allocation&, int depth, Hit&);

enum { no_break, pre_break, in_break, post_break };
Glyph* compose(GlyphBreakType) const;

void append(Glyph*);
void prepend(Glyph*);
void insert(GlyphIndex, Glyph*);
void remove(GlyphIndex);
void replace(GlyphIndex, Glyph*);
void change(GlyphIndext);
GlyphIndex count() const;
Glyph* component(GlyphIndex) const;
void allotment(GlyphIndext, DimensionName, Allotment&) const;

};

Figure 2.1: Glyph protocol

2- 2

Hit::end. Hit::target indicates that a glyph’s output intersects the hit region.
Hit::begin and Hit::end are used by composite glyphs that should be on the hit
list if and only if one of their components calls Hit::target. The parameters to
Hit::begin and Hit::target have the same meaning. The depth is the level in the hit
list where the information should be stored. The glyph is the hit glyph. The index
is additional information about the hit. For a composite glyph, this is typically
the index of the hit child. Hit::remove and Hit::retarget modify the current hit
information.

The remaining hit operations return information about a pick. The result is
a list of paths, each of which contains a list of glyphs terminating with the
glyphs that would draw through the pick region. Hit::count returns the number of
paths. Hit::depth returns the index of the last glyph in a specified path. The path
corresponding to the top-most glyph is in position zero. Hit::target and Hit::index
return the information for a given path and depth.

If a pick is done on a hit object constructed from an event, and one or more
glyphs find the event of interest, they will associate a handler with the hit object.
Hit::handler returns the top-most, deepest handler, or nil if there is none.

2- 3

interface Hit {
Hit(const Event*);
Hit(Coord x, Coord y);
Hit(Coord left, Coord bottom, Coord right, Coord top);

const Event* event() const;
Coord left() const, bottom() const, right() const, top() const;

void push_transform();
void transform(const Transformer&);
void pop_transform();

void begin(int depth, Glyph*, GlyphIndex, Handler* = nil);
void target(int depth, Glyph*, GlyphIndex, Handler* = nil);
void end();
void remove(int depth, GlyphIndex target = 0);
void retarget(

int depth, Glyph*, GlyphIndex, Handler* = nil, GlyphIndex = 0
);

boolean any() const;
int count() const;
int depth(GlyphIndex target = 0) const;
Glyph* target(int depth, GlyphIndex target = 0) const;
GlyphIndex index(int depth, GlyphIndex = 0) const;
Handler* handler() const;

};

Figure 2.2: Hit class interface.

2.3 Composition

BreakType defines the choices for how a composite glyph might break a group of
glyphs in a layout. The break may occur before a glyph (pre_break), in the glyph
(in_break), or after the glyph (post_break).

Glyph::compose returns a new glyph that should be used to replace the target
glyph when the break occurs. For example, discretionary white space in a
document will turn into zero-size glue if a line-break or page-break occurs on it.

2.4 Structure

Several operations are provided to manipulate the list of components that make up
a composite glyph. Primitive glyphs ignore these operations, while monoglyphs
pass the operation through to their body. A monoglyph is therefore ‘‘transparent’’
with respect to structure, allowing one to put a monoglyph around a composite and
pass the result to another object that manipulates the components of the composite.

Glyph::append (prepend) adds a given glyph to the end (beginning) of the
component list. Glyph::insert adds a given glyph at a specified index in the list.
Glyph::remove removes the glyph at the specified index. Glyph::replace replaces
the glyph at the specified index with the given glyph. Glyph::change notifies a
glyph that its component at the given index has changed, and therefore it might be
necessary to reallocate it.

Glyph::count returns the number of glyphs in its component list.
Glyph::component returns the glyph in its component list at the given index.
Glyph::allotment returns the allocation information in the given dimension for the
glyph at the given index in its component list.

2.5 Requisitions

Glyphs define their geometric needs with a requisition, which specifies a
requirement in each dimension. Figure 2.3 shows the requisition and requirement
class interfaces.

Requisition::penalty is overloaded to set or get the penalty associated with
choosing a break at the position defined by the requisition. Requisition::require
sets a requirement in a given dimension. Requisition::requirement returns the
requirement for a given dimension.

A requirement consists of a natural size, stretchability, shrinkability, and
alignment. The maximum size is the natural size plus the stretchability; the
minimum is the natural minus the shrinkability. It is possible to have negative
minimum sizes. The alignment is a fraction that indicates the origin of the area.
An alignment of zero means the origin is at the lower coordinate value; an

2- 4

alignment of one means it is at the upper coordinate value.
There are four constructors for requirement: with no parameters, which makes

the natural size undefined and the other fields zero; with a single coordinate that
defines the natural size and makes the other fields zero; with explicit coordinates
for the natural size, stretchability, and shrinkability, and a float value for the
alignment; and with explicit coordinates for specifying the distances on each side
of the origin.

Requirement::equals compares two requirements (the target object and the
argument) using a given tolerance for the individual coordinate comparisons.
Requirement::defined returns whether the natural size has been defined. The
overloaded functions natural, stretch, shrink, and alignment set and get the
respective values.

2.6 Allocations

The actual size a glyph is given is defined by an allocation, which specifies
an allotment in each dimension. Figure 2.4 shows the allocation and allotment
class interfaces. An allotment specifies one dimension of an allocation with three
values: an origin, a span, and an alignment. The origin is a position within the
allotment and the span is the size of the allotment. The alignment is a fraction
specifying the position of the origin. For example, if the origin is 1, span is 10,

2- 5

interface Requisition {
void penalty(int);
int penalty() const;
boolean equals(const Requisition&, float epsilon) const;
void require(DimensionName, const Requirement&);
const Requirement& requirement(DimensionName) const;
Requirement& requirement(DimensionName);

};

interface Requirement {
Requirement(Coord natural);
Requirement(Coord natural, Coord stretch, Coord shrink, float);
Requirement(

Coord natural_lead, Coord max_lead, Coord min_lead,
Coord natural_trail, Coord max_trail, Coord min_trail

);

boolean equals(const Requirement&, float epsilon) const;
boolean defined() const;
void natural(Coord), stretch(Coord), shrink(Coord);
Coord natural() const, stretch() const, shrink() const;
void alignment(float);
float alignment() const;

};

Figure 2.3: Requisition and Requirement classes.

and alignment is 0.5, then the allotment begins at -4 and ends at 6.
The allocation constructor initializes each allotment to have zero values.

Allocation::equals compares two allocations using a tolerance for individual
coordinate comparisions. Allocation::allot sets the allotment for a given
dimension. Allocation::allotment returns the allotment for a specified dimension.

Several operations are provided for convenience when accessing allotments in
the X and Y dimensions. Allocation::x and Allocation::y return the X and Y
origins. Allocation::left and Allocation::right return the X dimension end-points,
Allocation::bottom and Allocation::top return the Y dimension end-points.

The Allotment class also provides an equals operation for comparing two
allotments with a given tolerance. Allotment::origin, Allotment::span, and
Allotment::alignment are overloaded names for setting and getting the allotment
values. Allotment::offset adds to the current origin.

Allotment::begin and Allotment::end return the end-points of an allotment.
Allotment::begin is equivalent to the origin minus the alignment times the span.
Allotment::end is equivalent to Allotment::begin plus the span.

2.7 Extensions

The area that defines where a glyph actually draws is called an extension. This
area is typically used for update. If a glyph needs to be completely redrawn, the
glyph’s extension must be damaged.

Extensions are represented in device-independent units, but must be rounded

2- 6

interface Allocation {
boolean equals(const Allocation&, float epsilon) const;
void allot(DimensionName, const Allotment&);
Allotment& allotment(DimensionName);
const Allotment& allotment(DimensionName) const;
Coord x() const, y() const;
Coord left() const, right() const, bottom() const, top() const;

};

interface Allotment {
Allotment(Coord origin, Coord span, float alignment);
boolean equals(const Allotment&, float epsilon) const;
void origin(Coord), offset(Coord), span(Coord);
Coord origin() const, span() const;
void alignment(float);
float alignment() const;
Coord begin() const;
Coord end() const;

};

Figure 2.4: Allocation and allotment class interfaces

out to the nearest device-dependent units. For example, if one of the bounds for
one glyph’s extension is 10.2 and another is 10.5, we would need to redraw
both glyphs if the bounds translate to the same pixel coordinate. Because
extensions are typically used to damage a canvas, the extension coordinates are
canvas-relative.

A glyph computes its extension as part of the allocate operation. Typically, a
glyph will simply return its allocation rounded according to the canvas.

Figure 2.5 shows the Extension protocol. Extension::set initializes an extension
to the given allocation transformed and rounded for the given canvas.
Extension::clear sets an extension to be an empty area. Extension::merge extends
an extension to include a new area in addition to its current one.

Extension::set_xy and Extension::merge_xy are short-hand for adjusting an
extension to include a given bounding box. Extension::left, bottom, right, and top
return the bounding box.

2.8 Polyglyphs

A composite glyph contains one or more components. Any glyph subclass
may contain subcomponents, but composite glyphs are typically derived from
PolyGlyph to be able to store and retrieve their children.

The PolyGlyph protocol, shown in Figure 2.6 adds one operation beyond the
base class, PolyGlyph::modified(GlyphIndex), which notifies the glyph that the
given component has changed. This operation is called when a glyph is inserted
or removed from the composite.

2.9 MonoGlyphs

MonoGlyph is an abstract class for glyphs that contain a single glyph, called its
body. The default behavior of monoglyphs is to pass operations on to the body.
For example, the implementation of MonoGlyph::draw simply calls draw on

2- 7

interface Extension {
void set(Canvas*, const Allocation&);
void set_xy(Canvas*, Coord left, Coord bottom, Coord right, Coord top);
void clear();
void merge(const Extension&);
void merge(Canvas*, const Allocation&);
void merge_xy(

Canvas*, Coord left, Coord bottom, Coord right, Coord top
);
Coord left() const, bottom() const, right() const, top() const;

};

Figure 2.5: Extension protocol

the body. This feature is very useful because it means that a monoglyph can
affect one aspect of the body’s behavior without changing other aspects. In
particular, monoglyphs usually do not change structure management. Therefore, a
monoglyph can be “wrapped” around a composite glyph and the result passed to
an object that modifies the structure of the composite without knowing about the
presence of the monoglyph. For example, suppose a prototype menu is built and
returned to a function that appends the items. All the function need assume is that
the prototype is some glyph; it can use Glyph::append to put in the items. The
arrangement of the items will be defined by the aggregate and any additional
decoration, such as a 3D borderframe or shadow, can be wrapped around the
aggregate independently.

Figure 2.7 shows the MonoGlyph base class interface. A non-nil glyph specifies
the initial body. MonoGlyph::body is overloaded to set and return the body.

2.9.1 Patches

A patch stores its canvas and allocation for subsequent use to update its body. A
patch is useful for objects that need to be redrawn independently, such as those
that depend on some external data. Typically, a patch appears in the middle of a
glyph instance graph, where a change would be too expensive to redraw the entire
graph.

Figure 2.8 shows the Patch class interface. Patch::canvas and Patch::allocation
return the canvas and allocation most recently passed to Patch::draw.
Patch::reallocate calls allocate on the body using the current allocation, usually
because the body has changed in some way and will allocate its itself differently.
Patch::redraw calls draw on the body using the current allocation. Patch::repick
returns the result of calling pick on the body with the current canvas and allocation.

2- 8

interface PolyGlyph : Glyph {
PolyGlyph(GlyphIndex initial_size = 10);
void modified(GlyphIndex);

};

Figure 2.6: Polyglyph protocol

interface MonoGlyph : Glyph {
void body(Glyph*);
Glyph* body() const;

};

Figure 2.7: MonoGlyph protocol

2.10 Example

See iv/src/examples/circle.

2- 9

interface Patch : MonoGlyph {
Patch(Glyph*);
Canvas* canvas() const;
const Allocation& allocation() const;
void reallocate();
void redraw() const;
boolean repick(int depth, Hit&);

};

Figure 2.8: Patch protocol

Chapter 3

Event processing
This chapter describes the InterViews mechanisms for processing user input. An
event is an object that represents a user input action, such as pressing a mouse
button or a keystroke. Events are low-level objects that application code should
rarely need to access directly. A handler is an object that processes events. An
input handler is a glyph that provides a handler that translates events to operations
such as press, release, and keystroke.

3.1 Events

The event class interface is shown in Figure 3.1. Input events arrive in a single
stream (per display) to an application. EventType is the kind of event (mouse
motion, button down, etc.). An application receives all window system events,
but Event::type is only defined for device input. Other events have the type
Event::other_event. EventButton is the number of a button on a pointing device,
where Event::any refers to any one of the buttons.

Event::window returns the window that received the event. Event::pending
tests if more events are waiting to be read. Event::unread puts the event at the
front of the input queue for the display.

3- 1

typedef unsigned int EventType;
typedef unsigned long EventTime;
typedef unsigned int EventButton;
typedef unsigned int EventModifierKey;

interface Event {
enum { undefined, motion, down, up, key, other_event };
enum { none, any, left, middle, right, other_button };
enum { control, shift, capslock, meta };

Window* window() const;
boolean pending();
void unread();
EventType type() const;
EventTime time() const;
Coord pointer_x() const, pointer_y() const;
EventButton pointer_button() const;
boolean button_is_down(EventButton) const;
boolean modifier_is_down(EventModifierKey) const;
unsigned char keycode() const;
unsigned int mapkey(char*, unsigned int len) const;

};

Figure 3.1: Event protocol

Event::time returns a timestamp in milliseconds for the event. Event::pointer_x
and Event::pointer_y return the pointer location for the event in coordinates
relative to the lower-left corner of the window. Pointer locations are defined
for motion, button, and keyboard events. Event::pointer_button returns the
EventButton for a down or up event, Event::none for all other events.
Event::button_is_down (Event::modifier_is_down) returns whether the given
button (modifier key) was down before the event occurred.

Event::keycode returns the code associated with a keystroke. Key codes are
potentially platform-specific and should be avoided if possible. Event::mapkey
finds the string binding for a given key. Event::mapkey is passed a buffer for
the result and the size of the buffer; it returns the number of characters in the
translated string. If the event is not a key event, Event::mapkey returns -1.

3.2 Handlers

A handler is an object that is passed an event to process. The only operation
is Handler::event, which translates a raw event into an abstract operation.
InputHandler is a monoglygph subclass that uses a handler to translate events.
ActiveHandler is a subclass of input handler that detects when the input pointer
enters or leaves its body. Figure 3.2 shows the handler, input handler, and active
handler protocols.

The InputHandler constructor is passed the glyph body (which can also
be set with MonoGlyph::body) and a style. Though a glyph can in general
have multiple parents, input handlers form a hierarchy for focus management.
InputHandler::append_focusable adds a child, setting the child’s parent to
the target input handler. InputHandler::remove_focusable removes a child.
InputHandler::focus sets the current focus for the input handler. The effect of
setting focus is that key events (or in general any focusable event) will be
processed by the focus input handler as opposed to an input handler under the
input pointer coordinates.

InputHandler::next_focus and InputHandler::prev_focus move the focus
forward and backward through the children of an input handler.
InputHandler::focus_in moves the focus “down” the hierarchy and returns the
handler that now has focus. InputHandler::focus_out notifies an input handler
that it no longer will receive focusable events, in case it wishes to change its
appearance.

InputHandler::move, press, drag, release, and keystroke are called by the
handler in response to motion, button down, motion while a button is down,
button up, and key events. InputHandler::double_click is called when two
button down events occurs within a threshold time. The threshold is set by the
“clickDelay” style attribute; the default is 250 milliseconds.

InputHandler::allocation_changed is a notification that the glyph’s size or
position has changed; subclasses can override this operation and therefore

3- 2

typically do not need to define an allocate operation. InputHandler::redraw
damages the canvas and area where the input handler was most recently drawn.

The implementation of ActiveHandler notices when motion events first
intersect the glyph’s body, in which case ActiveHandler::enter is called, and when
the motion next leaves the body, in which case ActiveHandler::leave is called.
The default enter and leave operations do nothing; subclasses should define these
operations as desired.

3.3 Targets

A target controls the behavior of picking on its body. A target is useful for
defining a pick area that is not identical to the underlying object. For example, if
one wanted to pick in a line of characters then one might wish to interpret the pick
based on the line height instead of the heights of the individual characters. So, a

3- 3

interface Handler : Resource {
boolean event(Event&) ;

};

interface InputHandler : MonoGlyph {
InputHandler(Glyph*, Style*);

Handler* handler() const;
InputHandler* parent() const;
Style* style() const;
void append_input_handler(InputHandler*);
void remove_input_handler(InputHandler*);
void focus(InputHandler*);
void next_focus();
void prev_focus();
InputHandler* focus_in();
void focus_out();

void move(const Event&);
void press(const Event&);
void drag(const Event&);
void release(const Event&);
void keystroke(const Event&);
void double_click(const Event&);

void allocation_changed(Canvas*, const Allocation&);
void redraw() const;

};

interface ActiveHandler : InputHandler {
ActiveHandler(Glyph*, Style*);
void enter();
void leave();

};

Figure 3.2: Handler and InputHandler protocols

pick lower than the top of the ‘‘h’’ in ‘‘the’’ but above the ‘‘e’’ will not miss.
Figure 3.3 shows the target class interface. The target behavior is controlled by

the sensitivity parameter to the constructor. TargetPrimitiveHit means the body is
hit if the pick region intersects the target’s allocation. TargetCharacterHit means
the body is hit if the area intersects the target’s allocation in the X dimension.

3- 4

enum TargetSensitivity {
TargetPrimitiveHit,
TargetCharacterHit

};

interface Target : MonoGlyph {
Target(Glyph* body, TargetSensitivity);

};

Figure 3.3: Target class interface

Chapter 4

Views
This chapter describes the mechanisms for supporting multiple views of data.
Currently, this support consists of three protocols: observable, observer, and
adjustable. An observable object is one that has one or more observers that it can
notify (typically when it changes). An adjustable object uses an observable for
each dimension to keep track of observers that can scroll or zoom the visible areas
of the object.

4.1 Observable and Observer

Figure 4.1 shows the observable and observer protocols. An observer can be
attached or detached to an observable. Observable::notify calls Observer::update
on each of the attached observers. When an observable object is destroyed, it will
call Observer::disconnect on any attached observers.

4.2 Adjustable

An adjustable is an object that handles requests to modify its viewing area. For
example, a scrollable list is adjustable in that a scrollbar or other object can
request that a particular subrange of items in the list be shown.

Figure 4.2 shows the adjustable protocol. Adjustable::attach and
Adjustable::detach add an observer to the list of objects notified when a particular
dimension changes. Adjustable::notify calls update on those observers attached to
the given dimension. Adjustable::notify_all is equivalent to calling notify on
every dimension.

4- 1

interface Observable {
void attach(Observer*);
void detach(Observer*);
void notify();

};

interface Observer {
void update(Observable*);
void disconnect(Observable*);

};

Figure 4.1: Observable and observer protocols

Adjustable::lower and Adjustable::upper define a coordinate range for
adjustment in a specific dimension. Adjustable::length is equivalent
to Adjustable::upper minus Adjustable::lower. Adjustable::cur_lower and
Adjustable::cur_upper define the region within a coordinate range that is currently
in view. Adjustable::cur_length is equivalent to Adjustable::cur_upper minus
Adjustable::cur_lower.

Adjustable::scroll_forward and Adjustable::scroll_backward add a small fixed
amount to Adjustable::cur_lower (where the amount is determined by the
adjustable object). Adjustable::page_forward and Adjustable::page_backward
add a larger fixed amount. Adjustable::scroll_to sets the adjustable’s current
lower coordinate to a specific value. Adjustable::scale_to sets the current length
to a given fraction of the total length. Adjustable::zoom_to sets the scale in
all dimensions at once. Adjustable::constrain restricts a value to be within the
adjustable’s lower and upper bounds.

Example: see iv/src/examples/bvalue/main.c.

4.3 View

This section will be completed in the future.

4- 2

interface Adjustable {
Observable* observable(DimensionName) const;
void attach(DimensionName, Observer*);
void detach(DimensionName, Observer*);
void notify(DimensionName) const;
void notify_all() const;

Coord lower(DimensionName) const;
Coord upper(DimensionName) const;
Coord length(DimensionName) const;
Coord cur_lower(DImensionName) const;
Coord cur_upper(DimensionName) const;
Coord cur_length(DimensionName) const;

void scroll_forward(DimensionName);
void scroll_backward(DimensionName);
void page_forward(DimensionName);
void page_backwards(DimensionName);

void scroll_to(DImensionName, Coord lower);
void scale_to(DimensionName, float fraction);
void zoom_to(float magnification);

void constrain(DimensionName, Coord&) const;
};

Figure 4.2: Adjustable protocol

4.4 Data

This section will be completed in the future.

4.5 Inset

This section will be completed in the future.

4- 3

Chapter 5

Windows
The previous chapters covered the composition of physical (glyphs) and logical
(views) objects. This chapter discusses the other objects necessary to manage
where glyphs are drawn. A window is an object that can be mapped onto a screen
and receive input. Associated with a window is the root of a directed acyclic graph
of glyphs. The window creates a canvas that is bound to a portion of the screen
when the window is mapped. The window calls Glyph::draw on the root glyph to
refresh the canvas and Glyph::pick to determine what to do with input events

Figure 5.1 shows the Window base class interface. Window::style sets or
gets the style associated with the window. Several style attributes control
characteristics of a window: “double_buffered” controls whether the window is
double-buffered by default, “visual” specifies the name of a visual to use for the
window, “visual_id” specifies the id of the desired visual, and “overlay” specifies
whether overlay planes should be used for the window.

5- 1

interface Window {
Window(Glyph* = nil);
void style(Style*);
Style* style() const;
void display(Display*);
Display* display() const;
Canvas* canvas() const;
void cursor(Cursor*);
Cursor* cursor() const;
void push_cursor();
void pop_cursor();

void place(Coord left, Coord bottom);
void align(float x, float y);
Coord left() const, bottom() const, width() const, height() const;

void map(), unmap();
boolean is_mapped() const;
void raise(), lower();
void move(Coord left, Coord bottom);
void resize();

void receive(const Event&);
void grab_pointer(Cursor* = nil) const;
void ungrab_pointer() const;
void repair();

};

Figure 5.1: Window protocol

Window::display sets or gets the display that a window is mapped on (or nil if
the window is not currently mapped). Window::canvas returns the canvas that the
window passes to its glyph for drawing.

Window::cursor sets or gets the image that tracks a pointing device’s position
when the it is inside the window. Cursors are defined by two bitmaps and
a ‘‘hot spot’’. The mask bitmap specifies which pixels are to be drawn,
and the pattern bitmap specifies which pixels are in foreground color and
which are in background color. The hot spot specifies the location of the
pointing device relative to the cursor’s lower-left corner. The foreground and
background colors for a cursor are defined by the attributes “pointerColor” and
“pointerColorBackground” in the window’s style.

Figure 5.2 shows the cursor protocol. A cursor can be created from specific
data, pattern and mask bitmaps, a character in a font, or an index into the standard
cursor information for the target window system. If the cursor is specified with
bitmaps, the hot spot is the origin of the pattern bitmap; if specified with a
character, it is the origin of the character’s bitmap in the font. An index implies
both bitmaps as well as the hot spot. Specific values for the index are usually
defined in an include file. For example, standard X11 cursors are defined in the
file <X11/cursorfont.h>.

Window::place specifies the desired screen coordinates for a window.
Window::align specifies a desired alignment. The alignment values are fractions
that indicate where the window should appear relative to its coordinates as
specified by a call to Window::place. For example, an alignment of 0.0,1.0 means
the placement specifies the upper-left corner of the window. An alignment of
0.5,0.5 means the placement specifies the center of the window. Unless specified,
the alignment will be 0.0,0.0, meaning the placement coordinates specify the
lower-left corner of the window.

Window::map requests the window to be mapped onto the screen. If no display
has been set, then the session’s default display is used. Window::map may be
asynchronous–one cannot assume the window is usable immediately after calling
map. Window::unmap requests that the window be removed from the screen.

Window::raise and Window::lower control the stacking order of a window on
the screen. Window::raise makes the window above all the other windows on the
screen; Window::lower make the window below all the others. These operations
usually are neither necessary nor appropriate, as stacking order should normally

5- 2

interface Cursor {
Cursor(short x, short y, const int* pattern, const int* mask);
Cursor(const Bitmap* pat, const Bitmap* mask);
Cursor(const Font*, int pattern, int mask);
Cursor(int index);

};

Figure 5.2: Cursor class interface

be under control of the user through a window manager.
The window systems delivers input events to a particular window, which in turn

tries to find a handler to process each event. Window::receive examines an event,
handling window maintenance events internally. For example, X expose and
configure events are handled directly by Window::receive.

Window::grab_pointer takes control of pointer input events for the display.
Other applications will not receive pointer events until Window::ungrab_pointer
is called to release control. If a cursor is passed to Window::grab_pointer, it will
be used when the pointer is outside the window during the grab.

If any part of a window’s canvas has been damaged, Window::repair will
call draw on the root glyph and perform the necessary screen update when
double-buffering. All windows on a display will be repaired automatically
before blocking for input from the display, so applications usually need not call
Window::repair directly.

5.1 ManagedWindow

A managed window specifies information for a window manager to use.
ManagedWindow is an abstract base class with four predefined descendants:
ApplicationWindow, TopLevelWindow, TransientWindow, and IconWindow.
An application should create one application window, which makes information
about command-line arguments available to a session manager, if present on the
system. After the application window, normal windows are top-level. A top-level
window can have a ‘‘group leader’’, which is typically the application window. A
window manager may allow quick control of all windows with the same group
leader, such as when iconifying or deiconifying.

A transient window is often treated specially by window managers. It may be
decorated differently (or not at all), or automatically unmapped when the main
window is iconified. Transient windows are used for temporary controls, such as
dialog boxes, but not for unmanaged windows such as popups or pulldowns. A
transient is usually associated with another managed window.

An icon window is a window that is mapped when its associated window
is iconified and unmapped when its associated window is deiconified. Calling
Window::map on an icon window will therefore bind it to the window system, but
will not map it on the screen.

Figure 5.3 shows the ManagedWindow protocol. Most of the operations on
a managed window set or return information associated with the window. In
addition, ManagedWindow interprets additional attributes in its style inherited
from the base class. The attribute “name” specifies a string name for the
window manager to use, “iconName” specifies a string for the window’s icon,
“geometry” specifies the desired geometry, and “iconGeometry” specifies the
desired geometry for the window’s icon. Geometry specifications are strings of
the form ‘‘WxH+X+Y’’ where W is the width, H the height, X the left corner, and

5- 3

Y the top corner of the window. Either the position or the size may be omitted,
and the position can use ‘‘–’’ instead of ‘‘+’’ to denote distance from the opposite
of the display to the opposite side of the window. For example, a –X value
specifies that the right side of the window should be a distance of X from the right
edge of the screen.

ManagedWindow::icon_bitmap and ManagedWindow::icon_mask specify two
bitmaps to use to draw an icon. The mask defines the area to be drawn and the
bitmap defines the foreground and background areas. Pixels that correspond to a
one in the bitmap and a one in the mask are drawn with the foreground color.
Pixels that correspond to a zero in the bitmap and a one in the mask are draw with
the background color. Pixels that correspond to a zero in the mask are not drawn.

ManagedWindow::icon specifies a second window to map when the first
window is iconified. Using a window as an icon overrides the other icon
information. Therefore, it does not make sense to use ManagedWindow::icon
in conjunction with icon_bitmap, icon_mask, or the “iconName” and
“iconGeometry” attributes.

ManagedWindow::iconic specifies the initial state of a window. If iconic is true,
mapping a window will actually map its icon instead. ManagedWindow::iconic
need not be called directly by an application; it is called automatically if specified
by user customization information.

ManagedWindow::iconify requests the window be unmapped and the window’s
icon be mapped to the screen. ManagedWindow::deiconify reverses the operation,
unmapping the icon and mapping the original window. It does not make sense to
iconify or deiconify an icon window.

ManagedWindow::focus_event specifies handlers for the window receiving and
losing keyboard focus from the window manager. ManagedWindow::wm_delete
specifies a handler for a request from the window manager to delete the window.

5- 4

interface ManagedWindow : Window {
void icon_bitmap(Bitmap*);
Bitmap* icon_bitmap() const;
void icon_mask(Bitmap*);
Bitmap* icon_mask() const;

void icon(ManagedWindow*);
ManagedWindow* icon() const;

void iconic(boolean);
boolean iconic() const;
void iconify();
void deiconify();

void focus_event(Handler* in, Handler* out);
void wm_delete(Handler*);

};

Figure 5.3: ManagedWindow class interface

If the handler is nil (which is the initial value), then the response to this event will
be to call Session::quit.

Figure 5.4 shows the operations on the ManagedWindow subclasses.
ApplicationWindow and IconWindow provide no additional operations beyond a
constructor. TopLevelWindow provides an operation to set or return its group
leader. TransientWindow is a subclass to TopLevelWindow that can additionally
be associated with a primary window with TransientWindow::transient_for.

5.2 PopupWindow

A popup window is mapped directly to a screen without window manager
interaction (or knowledge). In the X Window System, a popup window will
override the normal redirection of map requests to window managers. Popups on
X also will request that the pixels under the popup be saved to avoid a subsequent
exposure when the popup is unmapped.

Popups should only be used for temporary windows, such as popup or pulldown
menus. Because they do not go through the window manager, popups should be
placed explicitly. Here is an example of using a popup that appears below a
menubar, aligning the top of the popup to the lower left corner of the menubar:

void pulldown(Window* menubar, Glyph* g) {
PopupWindow* popup = new PopupWindow(g);

popup->place(menubar->left(), menubar()->bottom());
popup->align(0.0, 1.0);
popup->map();

5- 5

interface ApplicationWindow : ManagedWindow {
ApplicationWindow(Glyph*);

};

interface TopLevelWindow : ManagedWindow {
TopLevelWindow(Glyph*);
void group_leader(ManagedWindow*);
ManagedWindow* group_leader() const;

};

interface TransientWindow : TopLevelWindow {
TransientWindow(Glyph*);
void transient_for(ManagedWindow*);
void ManagedWindow* transient_for() const;

};

interface IconWindow : ManagedWindow {
IconWindow(Glyph*);

};

Figure 5.4: ManagedWindow subclasses

}

5.3 Display

A display is the unit of window system control; typically it consists of a single
screen, keyboard, and a mouse or other pointing device. Application objects
typically need not deal directly with a display; the functionality of the window
class is normally sufficient.

Figure 5.5 shows the display class interface. Display::open is a static member
function that opens a connection to the display with the given name. The
interpretation of a display name is system-dependent. On X, the name is
host:number where host is a machine’s hostname and number is the index for the
display connected to that host (typically 0). If successful, Display::open returns
a pointer to a display object. If not successful, it returns nil. Display::close
terminates the connection.

Display::width and Display::height return the dimensions in coordinates of
the display’s current screen. Display::a_width and Display::a_height return the
dimensions in points (72 points = one inch).

5- 6

interface Display {
static Display* open(const String&);
static Display* open();
virtual void close();

virtual Coord width() const;
virtual Coord height() const;
virtual Coord a_width() const;
virtual Coord a_height() const;
int to_pixels(Coord) const;
Coord to_coord(int) const;

virtual void set_screen(int);

virtual void style(Style*);
virtual Style* style() const;

virtual void repair();
virtual void flush();
virtual void sync()

virtual void ring_bell(int);
virtual void set_key_click(int);
virtual void set_auto_repeat(boolean);
virtual void set_pointer_feedback(int thresh, int scale);
virtual void move_pointer(Coord x, Coord y);

};

Figure 5.5: Display class interface.

Display::to_pixels and Display::to_coord convert between coordinates and
pixels. The conversion is a function of the dpi attribute, which is 75 by default.
One coordinate unit length is a printer’s point, defined as 72/dpi pixels.

Display::set_screen sets the current screen to use for display operations.
Initially, current screen is set to 0.

Display::repair calls Window::repair for each window on the display that has
a canvas with damage. It is not necessary to call Display::repair directly, as
windows will automatically be repaired before blocking for input events.

Display::flush and Display::sync are used to synchronize with the window
system. Display::flush repairs all damaged windows on the display and ensures
that any pending requests have been sent to the window system. Display::sync is
the same as Display::flush, but additionally waits for an acknowledgement from
the window system.

Display::ring_bell sounds the workstation’s bell at a specified volume. The
parameter should be between 0 and 100, where 0 is silent and 100 is the loudest
possible bell.

The operations set_key_click, set_auto_repeat, and set_pointer_feedback
modify the key click volume, the flag determining whether keys should repeat,
and the pointer interpretation parameters, respectively. Display::move_pointer
changes the position of the input pointer. This operation can have surprising
effects to the user and should generally be avoided.

5- 7

Chapter 6

Rendering
This chapter describes the InterViews classes for drawing on the screen and on a
printer. The two primary classes are Canvas, which represents an area on the
screen, and Printer, which sends output suitable for printing to an output stream.
The drawing classes are intended to be simple and resolution-independent. The
programming interface resembles the PostScript drawing operations.

Printer is a subclass of Canvas, and as such implements the same drawing
operations as Canvas. However, it is possible that glyphs may use other rendering
operations than those provided by Canvas, such as for 3D. In this case, glyphs
should provide distinct draw and print operations. If a glyph does not need
operations other than those provided by Canvas then the glyph can rely on default
implementation of drawing on a printer, which just calls the canvas-directed draw
with the printer as the target.

6.1 Graphics Attributes

InterViews provides classes that represent graphics attributes such as colors
and fonts. The instances are all sharable, meaning the classes are derived
from Resource. The objects are also display-independent, meaning they will
correspond to several underlying objects in applications that run on multiple
displays. For example, a single InterViews color object might have different pixel
values on different displays.

6.1.1 Brush

A brush defines the line thickness and line style for drawing operations. The
effect of these operations is as if a line segment equal in length to the
brush’s width were dragged along an infinitely thin path between the specified
coordinates. At each point along the path the brush is angled perpendicular to the
path. As a special case, a brush width of zero specifies a minimal-width line.
Many devices can render minimal-width lines more quickly than wide lines, but
the resulting display may vary slightly across devices. A solid brush style paints
all pixels along the path with a single color. A dashed brush defines alternating
foreground and background segments, measured along the length of the path.
Foreground segments are painted, while background segments are not.

Figure 6.1 shows the Brush class interface. The first constructor creates a solid
brush of the given width. The second constructor creates a brush with the given
width and line style. The pattern is an array of integers that specifies the length of
successive foreground and background segments. Even-numbered array indices
(starting from 0) specify the length of foreground segments; odd-numbered

6- 1

indices specify background segments. The count is the number of entries in the
array. The count can be zero, which specifies a solid brush. The last constructor
defines a brush with a given width and a style specified by a bit vector. The
least significant 16 bits of pattern are interpreted as a bit pattern, with one bits
specifying foreground segments and zero bits specifying background segments.

6.1.2 Color

A color object defines an output color, which is specified by a mix of RGB (red,
green, and blue) intensities, and an alpha value for blending. Figure 6.2 shows the
Color class interface. RGB and alpha values are represented as floating point
numbers between 0 and 1, where 1 is full intensity (or visibility in the case of
alpha). A color object is created with the RGB intensities, an alpha value (default
is 1.0), and a drawing operation. A color drawing operation need be specified
only on rare occasions. The default operation, Copy, blends the color in directly.
The Xor operation uses a pixel value computed by taking the exclusive-or of the
color and the existing pixel value. Xor is only useful on a monochrome system.

Color::lookup returns the color with the given name as defined on the given
display or nil if the name is not defined. Color::distinguished determines if two
colors are distinct on a particular display. A common use of Color::distinguished
is to check if a highlighting color is distinct from foreground and background
colors. Color::intensities returns the RGB values for a given color on a given
display. Color::brightness creates a new color that is brighter or darker than
the given color by a certain adjustment. If the adjust parameter is positive, it
indicates the new intensity should be the given fraction of the distance between
the current intensity and full intensity. If the parameter is negative, its absolute
value specifies a distance to zero intensity.

InterViews automatically translates an RGB specification to the appropriate
pixel value for a window. This approach hides the system-dependent details of
color management from applications, making them more portable and giving
greater flexibility to graphics system implementors. Under the X Window System,
color-intensive applications might not find the default color implementation
acceptable. To assist such applications, InterViews provides a way to specify an
X visual, either on the command-line with the ‘‘-visual’’ flag, or with a ‘‘visual’’
X resource defined to the desired visual type. For example, on displays that
support TrueColor (which means pixel values can be computed directly from
RGB values) but for which the default visual is not TrueColor, a user could run an
application with ‘‘-visual TrueColor’’ or define ‘‘*app*visual:TrueColor’’ in the

6- 2

interface Brush : Resource {
Brush(Coord width);
Brush(int* pattern, int count, Coord width);
Brush(int pattern, Coord width);

};

Figure 6.1: Brush class interface

6- 2

application defaults file.

6.1.3 Font

A font defines a mapping between character codes and their appearance on the
screen. PSFont is a subclass of Font that uses PostScript metrics for character
widths, if the metrics are available on the system. Figure 6.3 shows the Font and
PSFont class interfaces. The Font constructor is given the full name of the font
and a scaling factor. If the font is used on a display that does not recognize the
name, then a default font will be used. Font::find can be used to compute a valid
fullname for a font from a given font family name, desired point size, and font
style (such as italic or bold). If a font is available that matches all but the point
size, Font::find will return the font with scale set to the ratio of the desired point
size to the actual point size.

Font::name returns the full name of the font. Font::encoding returns the
character set identification, such as ‘‘iso8859’’ for ISO Latin. Font::size returns
the point size of the font.

Font::font_bbox, Font::char_bbox, and Font::string_bbox return information
about the overall font, a specific character in the font, or a string of characters.
Each operation returns a FontBoundingBox object, which has operations to return
detailed information.

FontBoundingBox::ascent returns the extent above the font’s baseline;
FontBoundingBox::descent returns the extent below the font’s baseline.
FontBoundingBox::left_bearing returns the left edge of the bitmap associated
with a character; FontBoundingBox::right_bearing returns the right edge.

Font::width on a single character returns the width of a character’s bitmap
and on a string it returns the sum of the widths of the individual characters.

6- 36- 3

typedef float ColorIntensity;
typedef unsigned int ColorOp;

interface Color : Resource {
enum { Copy, Xor };
Color(

ColorIntensity r, ColorIntensity g, ColorIntensity b,
float alpha = 1.0, ColorOp = Copy

);
Color(const Color&, float alpha = 1.0, ColorOp = Copy);
static const Color* lookup(Display*, const String& name);
static const Color* lookup(Display*, const char*);
boolean distinguished(Display*, Color*);
void intensities(

Display*, ColorIntensity& r, ColorIntensity& g, ColorIntensity& b
) const;
const Color* brightness(float adjust) const;

};

Figure 6.2: Color class interface

Font::index returns the index of the character in a string that would be offset
coordinates from the left if the string were displayed. If between is false, the
index of the character that contains offset is returned; otherwise the index of the
character following the between-character space that is nearest offset is returned.
In either case a negative offset will return an index of zero and an offset beyond
the end of the string will return an index equal to the length of the string.

6.1.4 Transformer

A transformer object represents a 3x2 matrix for use in translating 2D coordinates.
Figure 6.4 shows the Transformer class interface. The transformer constructor
with no parameters creates an identity matrix. The other constructor takes the
explicit matrix values as parameters. Transformer::identity returns whether the
matrix is currently the identity matrix.

6- 46- 4

interface FontBoundingBox {
Coord left_bearing() const, right_bearing() const;
Coord width() const, ascent() const, descent() const;
Coord font_ascent() const, font_descent() const;

};

typedef long FontCharCode;

interface Font : Resource {
Font(const String&, float scale = 1.0);
Font(const char* fullname, float scale = 1.0);
static boolean find(

const char* family, int size, const char* style,
const char*& fullname, float& scale

);
static const Font* lookup(const char*);
static const Font* lookup(const String&);

const char* name() const;
const char* encoding() const;
Coord size();

void font_bbox(FontBoundingBox&) const;
void char_bbox(FontCharCode, FontBoundingBox&) const;
void stringt_bbox(const char*, int, FontBoundingBox&);
virtual Coord width(FontCharCode);
virtual Coord width(const char*, int);
virtual int index(const char*, int, float offset, boolean between);

};

interface PSFont : Font {
PSFont(

const char* psname, Coord size, const char* encoding, float scale
);

};

Figure 6.3: Font and PSFont class interfaces

Transformer::premultiply and Transformer::postmultiply set the matrix to be
the result of multiplying the matrix and the given matrix. Two operations are
necessary because matrix multiplication is not commutative for 2D coordinates.
Premultiply means the current matrix is on the left-hand side of the multiplication,
postmultiply means the current matrix is on the right. Transformer::invert sets the
matrix to its inverse.

Transformer::translate modifies the matrix to add dx to the x coordinate and dy
to the y coordinate. Transformer::scale modifies the matrix to multiply the x and
y coordinates by sx and sy, respectively. Transformer::rotate modifies the matrix
to rotate x and y coordinates by a given angle in degrees. Transformer::skew
modifies the matrix to skew coordinates by sx and sy.

Transformer::transform multiplies the given coordinates by the matrix to
compute transformed coordinates. The coordinates can either transformed in
place stored in specific out parameters (tx, ty). Transformer::inverse_transform
performs the inverse mapping; taking transformed coordinates and returning the
original coordinates.

The following example shows how to use transformers:

Transformer t; // start with identity
t.rotate(90.0);
t.translate(20.0, 10.0);
t.scale(0.5, 0.5);
float x = 1.0, y = 0.0;
float tx, ty;

6- 56- 5

interface Transformer : Resource {
Transformer();
Transformer(

float a00, float a01, float a10, float a11, float a20, float a21
);
boolean identity() const;
void premultiply(const Transformer&);
void postmultiply(const Transformer&);
void invert();
void translate(float dx, float dy);
void scale(float sx, float sy);
void rotate(float angle);
void skew(float sx, float sy);
void transform(floatx, floaty);
void transform(float x, float y, floattx, floatty);
void inverse_transform(floatx, floaty);
void inverse_transform(float tx, float ty, floatx, floaty);
void matrix(floata00, floata01, floata10, floata11, floata20, floata21);

};

Figure 6.4: Transformer protocol

t.transform(x, y, tx, ty);
// now tx = 10.0, ty = 5.5

Although the transformation is a single step, one can think of it as individual steps
for each of the rotate, translate, and scale steps. First the given point (1.0,0.0) is
rotated to (0.0,1.0), then it is translated to (20.0,11.0), finally it is scaled to
(10.0,5.5).

6.1.5 Bitmap

A bitmap is a two-dimensional array of boolean values. A bitmap is useful for
stenciling; that is, drawing through a mask that allows some pixels to be drawn
but prevents others from being changed. The Stencil class can be used to put a
bitmap in a glyph graph.

Figure 6.5 shows the Bitmap class interface. There are two constructors
for bitmaps. One takes the bitmap data, width, height, and origin. The other
constructor creates a bitmap for a given character in a font, optionally scaling by a
given factor. In this case, the bitmap width and height will reflect the actual size
of the character glyph and the bitmap origin will be the same as the character
origin.

Bitmap::open operation tries to open a file containing a bitmap definition in the
format produced by the X bitmap program. If the file is found and is a valid
format, open returns true and sets the bitmap information.

Bitmap::peek and Bitmap::poke are used to read and write at specified positions
in the bitmap. Bitmap::width and Bitmap::height return the width and height of
the bitmap in coordinates, while Bitmap::pwidth and Bitmap::pheight return the
number of bits defined in each dimension.

Treating the bitmap origin as (0,0), Bitmap::left_bearing, Bitmap::right_bearing,
Bitmap::ascent, and Bitmap::descent return the left, right, top, and bottom
coordinates of the bitmap, respectively. For example, a 16x16 bitmap with its
origin at (7,5) would have a left_bearing of -7, a right_bearing of 9, an ascent of
12, and a descent of -5.

6- 66- 6

interface Bitmap : Resource {
Bitmap(

void*, unsigned int width, unsigned int height, int x0 = -1, int y0 = -1
);
Bitmap(Font*, int code, float scale = 1.0);
static Bitmap* open(const char* filename);
void poke(boolean set, unsigned int x, unsigned int y);
void peek(unsigned int x, unsigned int y);
Coord width() const, height() const;
unsigned int pwidth() const, pheight() const;
Coord left_bearing() const, right_bearing() const;
Coord ascent() const, descent() const;

};

Figure 6.5: Bitmap protocol

6.1.6 Raster

A raster is a color image specified by a two-dimensional array of colors. The
Image class can be used to put a raster in a glyph graph. The TIFFRaster class
provides a single operation, load, for reading a TIFF image file and creating a
raster for it. If the file is not readable or not a valid TIFF file, TIFFRaster::load
will return nil.

Figure 6.6 shows the Raster and TIFFRaster class interfaces. The raster
constructor is given the size of the array of colors. Raster::width and
Raster::height return the dimensions of the raster in coordinates, while
Raster::pwidth and Raster::pheight return the dimensions of the array. A raster’s
origin is always the lower left corner.

Raster::peek and Raster::poke read and write the color array, accessing colors
in terms of the RGB intensities and an alpha value. Peek and poke operations are
guaranteed to be cheap; that is, any processing (especially interaction with the
window system) will be deferred until the raster is next displayed.

6.2 Canvas

A canvas is a 2-dimensional area on which to draw. The base implementation
draws on a portion of the screen, normally created by a window object rather
than directly by an application. The Printer subclass uses the same rendering
operations to generate PostScript to a file. Thus, it is possible to write a single
drawing routine that can be used to generate screen or printer output.

Figure 6.7 shows the canvas and printer operations. For screen canvases,
Canvas::window returns the window containing the canvas; otherwise it returns

6- 76- 7

interface Raster : Resource {
Raster(unsigned int pwidth, unsigned int pheight);
Coord width() const, height() const;
unsigned int pwidth() const, pheight() const;
void peek(

unsigned int x, unsigned int y,
ColorIntensity& r, ColorIntensity& g, ColorIntensity& b, float& alpha

) const;
void poke(

unsigned int x, unsigned int y,
ColorIntensity r, ColorIntensity g, ColorIntensity b, float alpha

);
};

interface TIFFRaster {
static Raster* load(const char* filename);

};

Figure 6.6: Raster and TIFFRaster protocols

nil. Canvas::width and Canvas::height return the dimensions of the canvas in
coordinates.

The canvas rendering operations are similar to the PostScript
drawing operations. Canvas::new_path, Canvas::move_to, Canvas::line_to,
Canvas::curve_to, and Canvas::close_path are used to define a list of coordinates
on which to perform a drawing operation. Canvas::move_to sets the position in
the path, and Canvas::line_to extends the path to a new position. Canvas::curve_to
also extends the path, but with a Bezier curve between the old and new positions.
Canvas::close_path closes the path. Canvas::stroke draws along the current path
with a given brush and color. Canvas::fill draws inside the path with a given
color. Canvas::clip restricts subsequent drawing to be inside the path. Clipping is
cumulative; that is, two consecutive clip operations will result in a clipping region
that is the intersection of the paths specified by the two requests.

Canvas::line, Canvas::rect, Canvas::fill_rect, and Canvas::clip_rect are provided
for convenience. Canvas::line is equivalent to stroking a path with two points,
Canvas::rect strokes a rectangular path, Canvas::fill_rect fills a rectangular path,
and Canvas::clip_rect restricts subsequent output to be within a rectangular path.

Drawing operations are typically batched to improve performance. For
example, a series of Canvas::character operations might be combined into a single
request on many graphics systems. An application cannot determine if or when a
particular operation has completed. No synchronization operations are defined on
a canvas, as several canvases may be active at the same time. Display::flush or
Display::sync can be used to wait until the display starts or finishes drawing,
respectively.

As an example of the drawing operations, the following code draws a filled
triangle with corners (x1,y1), (x2,y2), and (x3,y3):

canvas->new_path();
canvas->move_to(x1, y1);
canvas->line_to(x2, y2);
canvas->line_to(x3, y3);
canvas->close_path();
canvas->fill(color);

6.3 Printer

A printer is a 2-D drawing surface like a canvas, but that generates output for
hardcopy or previewing. The printer class normally generates PostScript text to a
file; other printer formats may be available at a particular site.

Printer is a subclass of Canvas with different implementations for the drawing
operations. Thus, a printer can be passed to an operation expecting a canvas. The
printer class also provides a few additional operations.

The printer constructor takes a pointer to an output stream where the print
representation will be written. Printer::resize specifies the boundaries of the
printed page. Printer::comment generates text that will appear in the output

6- 86- 8

stream, but will not show on the printed page. Printer::page generates information
about the current page. This operation will not result in any printed output, but is
used by previewers. Printer::flush forces any locally-buffered data to be written.

6- 96- 9

interface Canvas {
Window* window() const;
Coord width() const, height() const;

PixelCoord to_pixels(Coord) const;
Coord to_coord(PixelCoord) const;
Coord to_pixels_coord(Coord) const;

void new_path();
void move_to(Coord x, Coord y);
void line_to(Coord x, Coord y);
void curve_to(Coord x, Coord y, Coord x1, Coord y1, Coord x2, Coord y2);
void close_path();
void stroke(const Color*, const Brush*);
void rect(Coord l, Coord b, Coord r, Coord t, const Color*, const Brush*);
void fill(const Color*);
void fill_rect(Coord l, Coord b, Coord r, Coord t, const Color*);
void character(

const Font*, int ch, Coord width, const Color*, Coord x, Coord y
);
void stencil(const Bitmap*, const Color*, Coord x, Coord y);
void image(const Raster*, Coord x, Coord y);

void push_transform(), pop_transform();
void transform(const Transformer&);
void transformer(const Transformer&);
const Transformer& transformer() const;
void push_clipping(), pop_clipping();
void clip();
void clip_rect(Coord l, Coord b, Coord r, Coord t);

void damage(const Extension&);
void damage(Coord l, Coord b, Coord r, Coord t);
boolean damaged(const Extension&) const;
boolean damaged(Coord l, Coord b, Coord r, Coord t) const;

};

interface Printer : Canvas {
Printer(ostream*);
void resize(Coord left, Coord bottom, Coord right, Coord top);
void comment(const char*);
void page(const char*);
void flush();

};

Figure 6.7: Canvas and printer protocols

Chapter 8

Styles
User interface toolkits traditionally have coupled the management of style
attributes such as color and font with the composition of objects in a window.
This coupling is too rigid and inefficient for many applications because attributes
are logical information, whereas composition is a physical organization. For
example, a document logically contains text and graphics organized into chapters,
sections, subsections, and paragraphs. Physically, the document contains lines,
columns, and pages. The font of a string of characters in the document is
independent of whether there is a line break within the string or not, thus the style
information is orthogonal to the layout.

InterViews provides a style class for organizing user interface attributes. A
style is similar to an environment in a text formatting system such as Scribe.
Styles may be nested hierarchically, and attributes defined in an outer style are
visible in an inner style if not otherwise defined. A style consists of an optional
name, an optional list of prefixes for wildcard-matching, a collection of attributes
(name-value pairs), a collection of styles nested inside the style, and a parent style.

8.1 Defining a style

Figure 8.1 shows the style class operations for creating and accessing simple
style information. When a style is created, its name and parent style may be
specified. The default parent style is nil. Style::name sets or gets the style’s
name. Style::parent gets the style’s parent. The parent cannot be set directly, but
can be changed by appending the style to its (new) parent.

Style::append and Style::remove add and delete a style from the list of styles
nested inside another style. Style::children returns the number of nested styles.
Style::child returns the indexed child in the list. Style::find_style returns the
nested style with the given name or nil if there is none.

Style::attribute adds a <name,value> pair to the list of attributes in the style. If
an attribute is already defined with the name, the value will be updated unless
the specified priority is lower than the already-defined priority of the attribute
Style::remove_attribute deletes the named attribute from the style’s attribute list.
Style::attributes and the get form of Style::attribute can be used to retrieve all the
attributes defined on a style. The order of the list is arbitrary.

8.2 Finding an attribute

The style class provides two overloaded functions for finding an attribute value

8- 1

given the name. Style::find_attribute takes two parameters and returns a boolean
value that is true if the attribute is found and false otherwise. The first parameter
is the desired name, which can either be passed as a String object or a const
char*. The second parameter is a reference to where the value of the attribute
should be stored if found. If the parameter is a string, then the value is simply
copied directly. If it is a long or double, then value string is converted to a
number. If the result parameter is a Coord, then the value string is converted to a
number and multiplied by the units specified in the value string after the number.
The unit specification can be “in” for inches, “cm” for centimeters, “mm” for
millimeters, “em” for the width in points of the character “m” in the style’s font,
and “pt” for points.

The other function for finding an attribute is Style::value_is_on. This function
is equivalent to calling Style::find_attribute and testing if the value string is “on”
or “true”. The test is case-insensitive.

8- 2

interface Style : Resource {
Style();
Style(const String& name);
Style(Style* parent);
Style(const String& name, Style* parent);

void name(const String&);
const String* name() const;
void alias(const String&);
long alias_count() const;
const String* alias(long) const;
Style* parent() const;

void append(Style*);
void remove(Style*);
long children() const;
Style* child(long) const;

void attribute(const String& name, const String& value, int priority = 0);
void remove_attribute(const String& name);
long attributes() const;
boolean attribute(long, String& name, String& value) const;

void add_trigger(const String& , Action*);
void remove_trigger(const String&, Action* = nil);
void add_trigger_any(Action*);
void remove_trigger_any(Action*);

boolean find_attribute(const String&, String& value) const;
boolean find_attribute(const String&, long&) const;
boolean find_attribute(const String&, double&) const;
boolean find_attribute(const String&, Coord&) const;
boolean value_is_on(const String&);

};

Figure 8.1: Style protocol.

8.3 Wildcard matching

Attribute names may contain “*” characters to specify wildcard matching. A
name of the form A*B will match an attribute B in a nested style named A.
Wildcard names also may begin with a “*”, which matches in any descendant
style. Thus, *A*B will match an attribute B in any descendant style named A.
Because attributes are inherited, specifying the wildcard name *B is identical to
specifying the normal attribute B.

In addition to a name, styles may have a list of associated aliases. Style::alias
prepends a string to the list. Wildcard matches search using a style’s name first,
then search using the style’s aliases in the reverse order in which they are defined.
Aliases are typically used for indicating a subclass relationship and allowing
styles to inherit attributes specified for a superclass.

For example, suppose the root style defines the following attributes:
*Mover*autorepeat:off
*UpMover*autorepeat:on

Consider descendant styles S and T: S’s aliases are UpMover and Mover; T’s
aliases are DownMover and Mover. Style::find_attribute for “autorepeat” will
return “on” for S, “off” for T.

The wildcard matching algorithm is compatible with the X resource manager to
support the same user customization functionality. Wildcard attributes typically
are defined only on the root style, as loaded from the window system, application
defaults files, or command-line arguments.

8.4 Using styles with glyphs

Glyphs that draw typically contain the specific style information they need to
render. For example, a character glyph contains the font and color it uses to draw.
Higher level glyphs, such as a slider for scrolling, contain a style from which
they construct their components. When styles support trigger routines to detect
attribute value changes, these higher-level components will be able to reconstruct
their contents automatically.

Figure 8.2 shows a function that builds a vertical scrollbar by creating a
box containing an up-mover (button with up-arrow), a scroller (slider), and a
down-mover (button with down-arrow). The function creates a new style and
gives it the prefixes VScrollBar and ScrollBar for customization. If the attribute
“mover_size” is defined on the style, then its value will override the default (15.0).

8.5 Summary

User interface geometry and attribute management are two different problems that

8- 3

are best solved independently. Whereas glyphs define a physical organization
with a directed acyclic graph, styles define a logical organization with a strict
hierarchy. Both structures are simple and the connection between them is
straightforward.

Styles provide a unified framework for managing user-customizable attributes,
document formatting information, and structured graphics state. Style prefixes
support wildcarding and allow the decoupling of the implementation class
hierarchy from the logical class hierarchy offered to the user for the purposes
of customization. This approach makes applications simpler to develop, more
consistent to use, and easier to integrate.

8- 4

8- 5

Glyph* vscroll_bar(Adjustable* a) {
WidgetKit& kit = *WidgetKit::instance();
const LayoutKit& layout = *LayoutKit::instance();
kit.begin_style("VScrollBar");
kit.alias("ScrollBar");
Style* s = kit.style();
Coord mover_size = 15.0;
s->find_attribute("mover_size", mover_size);
Glyph* sep = layout.vspace(1.0);
return kit.inset_frame(

layout.vbox(
layout.v_fixed_span(up_mover(a, s), mover_size),
sep,
new VScroller(a, s),
sep,
layout.v_fixed_span(down_mover(a, s), mover_size)

),
s

);
}

Figure 8.2: Using styles to build glyphs.

Chapter 9

WidgetKit
WidgetKit defines operations for creating user interface objects with a concrete
look-and-feel. Typically, an application uses a widget kit to create specific
components, such as pulldown menus, push buttons, and scrollbars. WidgetKit
isolates the application from specific look-and-feel issues and the details of how
a concrete component is implemented. Many components are defined using
instances of existing classes. For example, a push button with a string label is
created using a button, label, and two bevel objects.

InterViews provides a base widget kit class for creating common user interface
objects. Subclasses are provided for implementing concrete objects based on the
Motif (default) and OpenLook user interfaces.

WidgetKit::instance is a static member function that returns a default kit. If a
kit has not yet been created, WidgetKit::instance creates one using the session’s
style to determine which kit subclass to construct.

9.1 Style management

WidgetKit maintains a current style for use in customizing widgets. The initial
style is the root style for all windows. WidgetKit defines the operations shown in
Figure 9.1 for querying and modifying the style.

WidgetKit::style sets or gets the current style. When the style is set or changed
via a Style::attribute call, WidgetKit::style_changed is called to allow WidgetKit
subclasses to recompute information associated with the current style (such as
colors for shading).

WidgetKit::begin_style sets the current style to a newly-created style that is
a child of the current style. The given string is the name of the new style.
WidgetKit::alias adds an alias name for the current style. Widget::end_style

9- 1

void style(Style*);
Style* style() const;
void begin_style(const String&), end_style();
void alias(const String&);
void push_style(), pop_style();
void style_changed(Style*);
const Font* font() const;
const Color* foreground() const;
const Color* background() const;

Figure 9.1: WidgetKit operations for style management

returns the current style to what it was before the call to WidgetKit::begin_style.
WidgetKit::push_style and pop_style save and restore the current style on a stack.

WidgetKit::font, foreground, and background return specific attribute
information for the current style. These operations are equivalent to (though
potentially faster than) finding the string value of a style attribute and then
looking up the resource with the given name. For example, WidgetKit::font is
the same as finding the attribute named “font” and calling Font::lookup on the
attribute’s value.

9.2 Common cursors

WidgetKit provides operations to retrieve commonly-used cursors that might be
shared among several widgets. Figure 9.2 shows the currently-defined operations.
WidgetKit::hand_cursor is the outline of a small hand. WidgetKit::lfast_cursor
is a double-arrow pointing to the left that is typically used in continuous rate
scrolling. Similarly, the other “fast” cursors are double-arrows pointing in various
directions.

9.3 Bevels

On color displays, it is often desirable to frame objects with a beveled look to give
a 3D appearance. WidgetKit provides the following three functions for creating
beveled frames:

Glyph* inset_frame(Glyph*) const;
Glyph* outset_frame(Glyph*) const;
Glyph* bright_inset_frame(Glyph*) const;

WidgetKit:inset_frame uses dark shading in the upper left and light shading
in the lower right to make the contents of the frame appear to be recessed.
WidgetKit::outset_frame reverses the shading to make the contents appear to
project out of the frame. WidgetKit::bright_inset_frame is like inset_frame but
uses a brighter background color and is thinner.

9- 2

Cursor* hand_cursor() const;
Cursor* lfast_cursor() const;
Cursor* lufast_cursor() const;
Cursor* ufast_cursor() const;
Cursor* rufast_cursor() const;
Cursor* rfast_cursor() const;
Cursor* rdfast_cursor() const;
Cursor* dfast_cursor() const;
Cursor* ldfast_cursor() const;

Figure 9.2: WidgetKit cursors

9.4 Labels

A label is a string of text with the current style’s font and color. WidgetKit
provides two operations for creating labels:

Glyph* label(const char*) const;
Glyph* label(const String&) const;

9.5 Buttons

A button is an input handler that can perform an action when pressed. Buttons
manipulate a telltale state object so that views (which are typically part of the
button’s body) can reflect the current state visually. The button itself is a view so
that it can damage the canvas when appropriate, freeing other views from the need
to store update information.

A telltale state can be part of a telltale group. When one member of a group is
chosen, then the currently chosen state becomes unchosen. Telltale groups are
useful for implementing radio buttons.

Figure 9.3 shows the button, telltale state, and telltale group protocols.
Button just provides operations to access the associated telltale state and action.
TelltaleState defines a set of flags that define the current state. TelltaleState::set
and TelltaleState::test modify and query the current state, respectively.
TelltaleState::join and TelltaleState::leave_group allow the state to be associated
with a group.

Figure 9.4 shows the WidgetKit operations that return buttons. Push button,
default button, and palette button typically have a similar appearance. Neither a
push button or a default button can be chosen, whereas a palette button can. A
default button might have a different appearance to indicate to the user that it is
the common choice.

A check box is a toggle button: choosing it when already chosen will cause it to
become unchosen. A radio button must belong to a telltale group so that within
the group only one button is chosen at any given time.

For application-specific actions, it is necessary to define action callbacks for the
relevant application classes. In the case of quitting the application WidgetKit::quit
can be used to return an action that calls Session::quit.

9.6 Menus

A menu is similar to a group of related buttons, called menu items. Like a button,
the look of a menu item is dependant on a telltalestate. Menu items can have
associated actions that are executed when the item is chosen. Menus items can
also have associated nested menus, in which case the submenu is opened when the

9- 3

item is highlighted. Figure 9.5 shows the WidgetKit menu operations and the
menu item and menu protocols.

WidgetKit::menubar creates a horizontal menu with a small amount of white
space between items. WidgetKit::pulldown and WidgetKit::pullright create
vertical menus. The top of a pulldown menu will be aligned to the bottom of the
menubar, while a pullright’s top will be aligned to the top right of its containing
item.

WidgetKit::menubar_item creates an item centered horizontally with a small
amount of white space on each side. WidgetKit::menu_item creates a left-adjusted
item, WidgetKit::check_menu_item creates a toggle item that looks like a check
box when chosen. WidgetKit::radio_menu_item creates an item that looks like
a radio button. WidgetKit::menu_item_separator returns an item for visually
separating other items (such as a horizontal line).

9- 4

interface Button : ActiveHandler, Observer {
Button(Glyph*, Style*, TelltaleState*, Action*);
TelltaleState* state() const;
Action* action() const;

};

typedef unsigned int TelltaleFlags;

interface TelltaleState : Resource, Observable {
TelltaleState(const TelltaleFlags = 0);
enum {

is_enabled, is_visible, is_enabled_visible, is_active, is_enabled_active,
is_visible_active, is_enabled_visible_active, is_chosen, is_enabled_chosen,
is_visible_chosen, is_enabled_visible_chosen,
is_enabled_active_chosen, is_active_chosen,
is_visible_active_chosen, is_enabled_visible_active_chosen,
is_running, is_choosable, is_toggle,
max_flags

};

TelltaleFlags flags() const;
void set(const TelltaleFlags, boolean);
boolean test(const TelltaleFlags) const;
void join(TelltaleGroup*);
void leave_group();

};

interface TelltaleGroup : Resource {
void update(TelltaleState*);
void remove(TelltaleState*);

};

Figure 9.3: Button, TelltaleState, and TelltaleGroup protocols.

9.7 Adjusters

Scrollbars and mover buttons are examples of interactive objects that “adjust” the
view shown by another object. WidgetKit provides the operations shown in
Figure 9.6 to create common adjusters.

WidgetKit::hscroll_bar and WidgetKit::vscroll_bar return controls for scrolling
a view in the horizontal and vertical dimensions, respectively. WidgetKit::panner
returns a control for scrolling two adjustables at once. One adjustable is controlled
by the horizontal position of the panner, one by the vertical position. Typically,
the same adjustable is passed to both parameters when creating a panners.

9- 5

Button* push_button(const String&, Action*) const;
Button* push_button(Glyph*, Action*) const;
Button* default_button(const String&, Action*) const;
Button* default_button(Glyph*, Action*) const;
Button* palette_button(const String&, Action*) const;
Button* palette_button(Glyph*, Action*) const;
Button* check_box(const String&, Action*) const;
Button* check_box(Glyph*, Action*) const;
Button* radio_button(TelltaleGroup*, const String&, Action*) const;

Glyph* push_button_look(Glyph*, TelltaleState*) const;
Glyph* default_button_look(Glyph*, TelltaleState*) const;
Glyph* palette_button_look(Glyph*, TelltaleState*) const;
Glyph* check_box_look(Glyph*, TelltaleState*) const;
Glyph* radio_button_look(Glyph*, TelltaleState*) const;

Figure 9.4: WidgetKit button operations

9- 6

Menu* menubar() const, * pulldown() const, * pullright() const;
MenuItem* menubar_item(const String&) const;
MenuItem* menubar_item(Glyph*) const;
MenuItem* menu_item(const String&) const;
MenuItem* menu_item(Glyph*) const;
MenuItem* check_menu_item(const String&) const;
MenuItem* check_menu_item(Glyph*) const;
MenuItem* radio_menu_item(TelltaleGroup*, Glyph*) const;
MenuItem* menu_item_separator() const;

Glyph* menubar_look() const, pulldown_look() const, pullright_look() const;
Glyph* menubar_item_look(Glyph*, TelltaleState*) const;
Glyph* menu_item_look(Glyph*, TelltaleState*) const;
Glyph* check_menu_item_look(Glyph*, TelltaleState*) const;
Glyph* radio_menu_item _look(Glyph*, TelltaleState*) const;
Glyph* menu_item_separator_look() const;

interface MenuItem : Observer {
MenuItem(Glyph*, TelltaleState*);
Glyph* body() const;
TelltaleState* state() const;
void action(Action*);
Action* action() const;
void menu(Menu*, Window* = nil);
Menu* menu() const;
Window* window() const;

};

interface Menu : InputHandler {
Menu(Glyph*, Style*, float x1, float y1, float x2, float y2);
void append_item(MenuItem*);
void prepend_item(MenuItem*);
void insert_item(GlyphIndex, MenuItem*);
void remove_item(GlyphIndex);
void replace_item(GlyphIndex, MenuItem*);
GlyphIndex item_count() const;
MenuItem* item(GlyphIndex) const;
void select(GlyphIndex);
GlyphIndex selected() const;

};

Figure 9.5: WidgetKit menu operations, menu, and menu item protocols.

9- 7

Glyph* hslider(Adjustable*) const;
Glyph* hscroll_bar(Adjustable*) const;
Glyph* vslider(Adjustable*) const;
Glyph* vscroll_bar(Adjustable*) const;
Glyph* panner(Adjustable*, Adjustable*) const;

Stepper* enlarger(Adjustable*) const;
Stepper* reducer(Adjustabel*) const;
Stepper* up_mover(Adjustable*) const;
Stepper* down_mover(Adjustable*) const;
Stepper* left_mover(Adjustable*) const;
Stepper* right_mover(Adjustable*) const;

Glyph* slider_look(DimensionName, Adjustable*) const;
Glyph* scroll_bar_look(DimensionName, Adjustable*) const;
Glyph* panner_look(Adjustable*, Adjustable*) const;
Glyph* enlarger_look(TelltaleState*);
Glyph* reducer_look(TelltaleState*);
Glyph* up_mover_look(TelltaleState*);
Glyph* down_mover_look(TelltaleState*);
Glyph* left_mover_look(TelltaleState*);
Glyph* right_mover_look(TelltaleState*);

Figure 9.6: WidgetKit adjuster operations

Chapter 10

DialogKit
Whereas WidgetKit provides operations for creating common look-and-feel
components such as scrollbars, menus, and buttons, DialogKit is creates
higher-level dialog objects. The current implementation of DialogKit provides
only field editors and file choosers, but in the future this kit will provide
operations for creating confirmers, quit dialogs, and information messages. Figure
10.1 shows the operations provided by DialogKit.

10.1 Field editor

Many application need simple editors for entering or browsing data. A field editor
is suitable for incorporating into other components, such as a dialog box. Figure
10.2 shows the field editor class interface.

Clicking inside the editor (or calling FieldEditor::edit) initiates an edit.
Subsequent keyboard events, regardless of the pointer location, are interpreted as
editing operations on the text. Clicking outside the editor terminates the editing.

Text is selected with the pointer or with the keyboard. A single click of the left
button selects a new insertion point between characters. Dragging across the text
selects a range of characters. A set of control characters is mapped into common
editing operations. A character not specifically associated with commands is
inserted in place of the current selection, the replaced text is discarded, and
the selection becomes an insertion point following the inserted character. The
commands defined are:

character-left (^B)
character-right (^F)
beginning-of-text (^A)
end-of-text (^E)
erase (^H or DEL)
delete (^D)
select-all (^U)
select-word(^W)

Strings that are too long to fit into the editor can be scrolled horizontally. Clicking
the middle button inside the editor initiates “grab-scrolling”. While the button is
down the editor scrolls the text to follow the pointer, giving the appearance that
the user is dragging the text. Clicking the right button engages “rate-scrolling”, a
joy-stick-like scrolling interface in which the scrolling rate increases as the user
drags the pointer away from the initial click location.

The field editor constructor is passed a sample string, used to compute its

10- 1

natural size, a style for customization, and a field editor action to execute when
editing returns. Editing normally completes when a carriage return or tab is
entered; abnormally when an escape character is entered.

FieldEditor::field sets the contents of the string being edited. FieldEditor::select
sets the insertion point or subrange within the edit string. FieldEditor::edit
initiates an edit. Specifying a string and selection range is short-hand for first
calling FieldEditor::field and FieldEditor::select. FieldEditor::text returns the
current value of the string being edited. The caller must copy the string to save
the contents, as it will be modified by a subsequent edit.

10- 2

interface DialogKit {
static DialogKit* instance();
FieldEditor* field_editor(

const String& sample, Style*, FieldEditorAction* = nil
) const;
FileChooser* file_chooser(

constString& dir, Style*, FileChooserAction* = nil
) const;

};

Figure 10.1: DialogKit operations

interface FieldEditorAction Resource {
void execute(FieldEditor*, boolean accept);

};

interface FieldEditorCallback(T) : FieldEditorAction {
FieldEditorCallback(T)(T*, void (T::*)(FieldEditor*, boolean accept));

};

interface FieldEditor : InputHandler {
FieldEditor(const char* sample, Style*, FieldEditorAction* = nil);
FieldEditor(const String& sample, Style*, FieldEditorAction* = nil);

void field(const char*);
void field(const String&);
void select(int pos);
void select(int left, int right);
void edit();
void edit(const char*, int left, int right);
void edit(const String&, int left, int right);
const char* text() const;
void text(String&) const;

};

Figure 10.2: Field editor class interface.

10.2 Dialog

A dialog is an object that can be posted temporarily and grabs input until it is
dismissed. Figure 10.3 shows the Dialog protocol. Dialog::post_for creates a
transient window for the dialog and aligns over the given window using the given
x and y alignment. The default is for the dialog to be centered over the window.

Dialog::post_at creates a top-level window aligned around the given position.
Dialog::run blocks until Dialog::dismiss is called, and Dialog::run returns the
value of the parameter that is passed to Dialog::dismiss.

10.3 FileChooser

A file chooser is a dialog subclass that allows the user to select a file in a directory
and returns the file name. Figure 10.4 shows the FileChooser protocol.

10- 3

interface DIalog : InputHandler {
Dialog(Glyph*, Style*);
boolean post_for(Window*, float = 0.5, float = 0.5);
boolean post_at(Coord x, Coord y, float = 0.5, float = 0.5);
boolean run();
void dismiss(boolean accept);

};

Figure 10.3: Dialog protocol

interface FileChooserAction : Resource {
void execute(FileChooser*, boolean accept);

};

interface FileChooserCallback(T) : FileChooserAction {
FileChooserCallback(T)(T*, void (T::*)(FileChooser*, boolean accept));

};

interface FileChooser : Dialog {
const String* selected() const;
void reread();

};

Figure 10.4: FileChooser protocol

Chapter 11

LayoutKit
Composite glyphs usually manage the physical layout of their children.
LayoutKit provides operations for creating objects that are useful in managing the
arrangement of one or more glyphs. The LayoutKit objects are modelled after the
Knuth’s TeX document processing system.

11.1 Boxes

A box is a polyglyph that uses a layout object to arrange its components. A layout
object is not a glyph, but helps a glyph manage the requests and allocations of
component glyphs. Figure 11.1 shows the Layout protocol and the LayoutKit
operations that create boxes.

Layout::request is given an array of requisitions for the individual components
and computes a single requisition for the result. Layout::allocate is given the
requisitions of the components and the overall allocation, returning the allocations
of the individual components.

A box can be constructed either with a list of up to 10 initial glyph components,
or an initial size estimate on the number of components. The size is not a
maximum, but can avoid growing the list dynamically.

LayoutKit::hbox returns a box that tiles its components in the X
dimension left-to-right and aligns the component origins in the Y dimension.
LayoutKit::vbox returns a box that tiles top-to-bottom and aligns in the X
dimension. LayoutKit::overlay aligns in both the X and Y dimensions, drawing
the components in back-to-front order.

LayoutKit::hbox returns a box with its X origin at the left side of the
box; LayoutKit::vbox returns a box with its Y origin at the top of the box.
Sometimes it is more convenient to have the origin correspond to the origin
of the first component. For example, a column of text might want to have
its Y origin correspond to the base line of the first line of text. When the
aligment should correspond to the first component’s alignment, one can use
LayoutKit::hbox_first_aligned or LayoutKit::vbox_first_aligned.

A deck is a polyglyph similar in some ways to an overlay box. However,
instead of overlaying its components, a deck is a polyglyph where only one of the
components is visible at any time. Figure 11.2 shows the deck protocol and the
LayoutKit operations to create decks.

Deck::flip_to sets which component should currently be visible; Deck::card
returns the current top. The natural size of a deck is the maximum size of the
natural sizes of its components. A deck can be stretched to be as large as its
largest fully-stretched component.

11- 1

11.2 Glue

Boxes stretch or shrink their components to fit the available space. However,
many components are rigid. For example, characters in text typically do not
stretch or shrink. Instead, we prefer to stretch or shrink the white space between
words. In TeX, this flexible white space is referred to as “glue”.

LayoutKit provides the set of operations to create glue object shown in Figure
11.3. LayoutKit::glue is the most general operation. It can either be passed a
specific dimension, natural size, stretchability, shrinkability, and alignment, or it
can be passed a complete requisition.

LayoutKit::hglue and LayoutKit::vglue can create glue that is horizontally or
vertically stretchable, respectively. The requirement in the minor dimension is
undefined. If no parameters are passed to LayoutKit::hglue or vglue, then a
natural size of zero is assumed. If no stretchability is specified, then the glue is

11- 2

interface Layout {
void request(GlyphIndex count, const Requisition*, Requisition& result);
void allocate(

const Allocation& given, GlyphIndex count, const Requisition*,
Allocation* result

);
};

PolyGlyph* box(Layout*, GlyphIndex size = 10) const;
PolyGlyph* hbox(GlyphIndex size) const;
PolyGlyph* hbox(

Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil,
Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil

) const;
PolyGlyph* vbox(GlyphIndex size) const;
PolyGlyph* vbox(

Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil,
Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil

) const;
PolyGlyph* hbox_first_aligned(GlyphIndex size) const;
PolyGlyph* hbox_first_aligned(

Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil,
Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil

) const;
PolyGlyph* vbox_first_aligned(GlyphIndex size) const;
PolyGlyph* vbox_first_aligned(

Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil,
Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil

) const;
PolyGlyph* overlay(

Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil,
Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil

) const;

Figure 11.1: Layout protocol and LayoutKit box operations

assumed to be infinitely stretchable.
LayoutKit::hspace and LayoutKit::vspace create glue with a given size that is

rigid. LayoutKit::shape_of returns glue that has the same requisition as another
glyph. LayoutKit::shape_of_xy returns glue that takes its X requirement from one
glyph and its Y requirement from another glyph.

LayoutKit::spaces returns glue that correspond to a given number of spaces in

11- 3

interface Deck : PolyGlyph {
GlyphIndex card() const;
void flip_to(GlyphIndex);

};

Deck* deck(GlyphIndex size) const;
Deck* deck(

Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil,
Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil, Glyph* = nil

) const;

Figure 11.2: Deck protocol and LayoutKit operations

Glyph* glue(
DimensionName, Coord natural, Coord stretch, Coord shrink, float alignment

) const;
Glyph* glue(const Requisition&) const;
Glyph* hglue() const;
Glyph* hglue(Coord natural) const;
Glyph* hglue(Coord natural, Coord stretch, Coord shrink) const;
Glyph* hglue(Coord natural, Coord stretch, Coord shrink, float alignment) const;

Glyph* vglue() const;
Glyph* vglue(Coord natural);
Glyph* vglue(Coord natural, Coord stretch, Coord shrink) const;
Glyph* vglue(Coord natural, Coord stretch, Coord shrink, float alignment) const;

Glyph* hspace(Coord) const;
Glyph* vspace(Coord) const;
Glyph* shape_of(Glyph*) const;
Glyph* shape_of_xy(Glyph*, Glyph*) const;

Glyph* spaces(int count, Coord each, const Font*, const Color*) const;
Glyph* strut(

const Font*, Coord natural = 0, Coord stretch = 0, Coord shrink = 0
) const;
Glyph* hstrut(

Coord right_bearing, Coord left_bearing = 0,
Coord natural = 0, Coord stretch = 0, Coord shrink = 0

) const;
Glyph* vstrut(

Coord ascent, Coord descent = 0,
Coord natural = 0, Coord stretch = 0, Coord shrink = 0

) const;

Figure 11.3: LayoutKit operations for creating spacing glyphs

the current font. Unlike other glue objects, which despite being generally referred
to as “white space” do not actually have an appearance, spaces are drawn in the
given color.

11.3 Alignment

In addition to laying out a collection of glyphs, it is often desirable to modify the
positioning of a single glyph. LayoutKit provides operations to adjust the layout
of a glyph. These operations return a monoglyph.

Figure 11.4 shows the operations that affect the requisition of a glyph.
LayoutKit::center , center_dimension, hcenter, and vcenter change the origin of a
glyph as it appears in a requisition. When the glyph body is allocated, it is given
the origin it requested. Thus, the name “center” is somewhat misleading as these
monoglyphs merely return a glyph that asks to be centered at a particular position,
they do not actually change the origin themselves.

LayoutKit::fixed, fixed_dimension, hfixed, and vfixed change a glyph to appear
rigid even if it is flexible. Fixed monoglyphs are ideal for specifying sizes
that are otherwise undefined, such as the initial height of a file chooser. The
inverse functionality–making a glyph flexible that may be rigid–is provided by
the LayoutKit::flexible, flexible_dimension, hflexible, and vflexible operations.
The LayoutKit::natural, natural_dimension, hnatural, and vnatural operations are

11- 4

MonoGlyph* center(Glyph*, float x = 0.5, float y = 0.5) const;
MonoGlyph* center_dimension(Glyph*, DimensionName, float align) const;
MonoGlyph* hcenter(Glyph*, float x = 0.5) const;
MonoGlyph* vcenter(Glyph*, float y = 0.5) const;

MonoGlyph* fixed(Glyph*, Coord x, Coord y) const;
MonoGlyph* fixed_dimension(Glyph*, DimensionName, Coord) const;
MonoGlyph* hfixed(Glyph*, Coord x) const;
MonoGlyph* vfixed(Glyph*, Coord y) const;
MonoGlyph* flexible(Glyph*, Coord stretch = fil, Coord shrink = fil) const;
MonoGlyph* flexible_dimension(

Glyph*, DimensionName, Coord stretch = fil, Coord shrink = fil
) const;
MonoGlyph* hflexible(

Glyph*, Coord stretch = fil, Coord shrink = fil
) const;
MonoGlyph* vflexible(

Glyph*, Coord stretch = fil, Coord shrink = fil
) const;
MonoGlyph* natural(Glyph*, Coord x, Coord y) const;
MonoGlyph* natural_dimension(Glyph*, DimensionName, Coord) const;
MonoGlyph* hnatural(Glyph*, Coord) const;
MonoGlyph* vnatural(Glyph*, Coord) const;

Figure 11.4: LayoutKit operations that adjust alignment

similar to the fixed operations in that they change the natural size, but they do not
affect the flexibility.

LayoutKit also provides a set of operations to put a margin around a glyph.
These operations are shown in Figure 11.5. LayoutKit::margin is overloaded to
specify a fixed margin around the entire glyph, distinct horizontal and vertical
margins, separate left, right, bottom, and top margins, or flexible margins on
each side. LayoutKit::hmargin specifies horizontal margins; LayoutKit::vmargin
specifies vertical margins. LayoutKit::lmargin, rmargin, bmargin, and tmargin
specify left, right, bottom, and top margins, respectively.

11- 5

MonoGlyph* margin(Glyph*, Coord) const;
MonoGlyph* margin(Glyph*, Coord hmargin, Coord vmargin) const;
MonoGlyph* margin(

Glyph*, Coord lmargin, Coord rmargin, Coord bmargin, Coord tmargin
) const;
MonoGlyph* margin(

Glyph*,
Coord lmargin, Coord lstretch, Coord lshrink,
Coord rmargin, Coord rstretch, Coord rshrink,
Coord bmargin, Coord bstretch, Coord bshrink,
Coord tmargin, Coord tstretch, Coord tshrink

) const;
MonoGlyph* hmargin(Glyph*, Coord) const;
MonoGlyph* hmargin(Glyph*, Coord lmargin, Coord rmargin) const;
MonoGlyph* hmargin(

Glyph*,
Coord lmargin, Coord lstretch, Coord lshrink,
Coord rmargin, Coord rstretch, Coord rshrink

) const;
MonoGlyph* vmargin(Glyph*, Coord) const;
MonoGlyph* vmargin(Glyph*, Coord lmargin, Coord rmargin) const;
MonoGlyph* vmargin(

Glyph*,
Coord bmargin, Coord bstretch, Coord bshrink,
Coord tmargin, Coord tstretch, Coord tshrink

) const;
MonoGlyph* lmargin(Glyph*, Coord) const;
MonoGlyph* lmargin(Glyph*, Coord nat, Coord stretch, Coord shrink) const;
MonoGlyph* rmargin(Glyph*, Coord) const;
MonoGlyph* rmargin(Glyph*, Coord nat, Coord stretch, Coord shrink) const;
MonoGlyph* bmargin(Glyph*, Coord) const;
MonoGlyph* bmargin(Glyph*, Coord nat, Coord stretch, Coord shrink) const;
MonoGlyph* tmargin(Glyph*, Coord) const;
MonoGlyph* tmargin(Glyph*, Coord nat, Coord stretch, Coord shrink) const;

Figure 11.5: LayoutKit margin operations

Chapter 12

DocumentKit
In Chapter 11, we described the LayoutKit class, which provides operations
for creating layout objects. The DocumentKit class will provide operations
for creating document objects that use LayoutKit objects to produce formatted
documents. The DocumentKit class has not yet been implemented, so for now
we describe several objects that can be useful for building document editors in
conjunction with the LayoutKit objects.

A discretionary can take on one of several appearances depending on whether a
break occurs on it. A common use of a discretionary is for white space in a line of
text, where the white space becomes zero-width glue if a break occurs on the
discretionary. The penalty associated with a discretionary defines the relative cost
of breaking. Currently, operations to create discretionaries are defined on the
LayoutKit.

An lr-marker is a glyph that can mark a region of its body. The marking is
done by painting a color under the area or a color on top of the area (or both).
The region is a shape normally associated with text selections. The LRMarker
constructor takes two colors, either of which can be nil if the associated underlay
or overlay drawing is not desired. LRMarker::mark paints the given region. If y1
and y2 are the same, then the mark region is a single rectangle. Otherwise, the
region is defined as starting at (x1,y1) and filling a height of h1 to (x1,right()),
then filling (left(),y1+h1) to (right(),y2) and filling a height of h2 from (left(),y2)
to (x2,y2). LRMarker::unmark restores the area to its unmarked appearance. An
xy-marker is simliar to an lr-marker, but it only paints a rectangular area. While
an lr-marker is most useful for selecting text, xy-markers are useful for selecting
an item in a list or table. Figure 12.1 shows the LRMarker and XYMarker class
interfaces.

12.1 Compositions

A composition is a glyph that uses a compositor to determine suitable breaks
between groups of its components. Figure 12.2 shows the class interfaces for the
composition and its subclasses. The list of components is broken into sublists
that are put into separate composite glyphs and then inserted into the body.
The LRComposition subclass uses LayoutKit::hbox_first_aligned to create each
sublist, while the TBComposition subclass uses LayoutKit::vbox_first_aligned.

Compositions can be used to break paragraphs into lines, lines into columns,
or columns into pages. A document editor might create an lr-composition for
characters that puts the resulting hboxes for lines into a tb-composition, which in
turn puts the vboxes for columns into an lr-composition, which puts the resulting

12- 1

lr-boxes for pages into a deck.
Compositions also can be used just as easily for arranging buttons in a box,

where one wants the buttons to ‘‘wrap-around’’ if there are too many to fit
horizontally. The code to do this could look as follows:

LRComposition* c = new LRComposition(
layout.vbox(), new SimpleCompositor, /* no separator */ nil, /* width */ 4*72.0

);
Discretionary* ok = layout.discretionary(0, nil, nil, nil, nil);
for (unsigned int i = 0; i < nbuttons; i++) {

c->append(button[i]);
c->append(ok);

}
c->repair();

The composition constructor takes a body in which to insert sublists, a
compositor to determine where to break, a separator to be inserted at each break
(unless it is nil), the dimension to use, the width in which the sublists must fit,
and optionally the initial size of the list of components. The initial size is not
a maximum, but the list by default starts at a small size and is dynamically
reallocated as needed. For large lists, it can be more efficient to specify an
estimate of the list size. Composition::repair updates the composition to reflect
changes to its structure. Composition::item returns the index of the sublist (in
other words, the component of the body) containing the component specified by
the given index. For example, this function could be used to return the line that
contains a particular character. Composition::beginning_of returns the index of
the component that starts the sublist specified by the given item. For example,
this function could be used to return the character that starts a particular line.
Composition::end_of is like beginning_of except it returns the end of the sublist.
Composition::margin causes space to be left at the beginning and end of the
specified item in the body. For example, this function could be used to put
margins on a line of text. Composition::view guarantees that breaks are computed

12- 2

interface LRMarker : MonoGlyph {
LRMarker(Glyph*, Color* overlay, Color* underlay);
void mark(

Coord left, Coord right, Coord x1, Coord y1,
Coord h1, Coord x2, Coord y2, Coord h2

);
void unmark();

};

interface XYMarker : MonoGlyph {
XYMarker(Glyph*, Color* overlay, Color* underlay);
void mark(Coord left, Coord bottom, Coord right, Coord top);
void unmark();

};

Figure 12.1: LRMarker and XYMarker protocols

for the components between indices first and last inclusively. By restricting
the viewing area, this operation can eliminate the computation of breaks for
components that are not visible.

A compositor computes the breaks based on assessing the penalty for a possible
breaks. Three subclasses are provided that use different levels of sophistication in
determining breaks. An array-compositor positions breaks every N elements,
where N is specified in the constructor. A simple-compositor finds a simple
set of breaks quickly. It is analogous to a line-at-a-time text formatter. A
TeX-compositor finds breaks using Knuth’s TeX algorithm.

Figure 12.3 shows the interfaces to the compositor classes.
Compositor::compose uses the natural, stretch, shrink, penalty, and span
information for each component as input parameters. The return value is the
number of breaks found. The breaks array contains the positions of the breaks;
that is, break[i] is the index of the component where the ith break occurs.

12- 3

interface Composition : MonoGlyph {
Composition(

Glyph*, Compositor*, Glyph* separator, DimensionName,
Coord width, GlyphIndex size

);
void repair();
GlyphIndex item(GlyphIndex);
lyphIndex beginning_of(GlyphIndex);
GlyphIndex end_of(GlyphIndex);
void margin(GlyphIndex, Coord begin, Coord end);
void view(GlyphIndex first, GlyphIndex last);

};

interface LRComposition : Composition {
LRComposition(

Glyph*, Compositor*, Glyph* sep, Coord, GlyphIndex = 10
);

};

interface TBComposition : Composition {
TBComposition(

Glyph*, Compositor*, Glyph* sep, Coord, GlyphIndex = 10
);

};

Figure 12.2: Composition classes

See iv/src/examples/preview.

12- 4

interface Compositor {
virtual int compose(

Coord* natural, Coord* stretch, Coord* shrink,
int* penalties, int component_count,
Coord* spans, int span_count,
int* breaks, int break_count

);
};

interface ArrayCompositor : Compositor {
ArrayCompositor(int N);

};

interface SimpleCompositor : Compositor {
SimpleCompositor();

};

interface TeXCompositor : Compositor {
TeXCompositor(int penalty);

};

Figure 12.3: Compositor classes

Appendix A

Operating System Interface
This appendix describes the classes that abstract operating system services. These
classes do not yet cover the entire range of operating system operations, but they
offer higher-level abstractions in some cases, relief from name space concerns in
other cases, and greater application portability.

The classes are presented below in alphabetical order. A directory is a list
of files or other directories. A file is a list of bytes. Both directories and
files are accessed by a string name. A list is an ordered sequence of objects,
parameterized by the element type. The math class provides an interface to
common mathematical operations on concrete types (e.g., ints and floats). The
memory class provides operations on variable-length arrays of bytes. A string is a
variable-length list of characters. A table is an associative map from a key type to
a data type.

List and table are generic classes, parameterized by other types. Because
few C++ implementations currently support a generic mechanism (though the
language defines a template construct), it is necessary to define list and table
classes using preprocessor macros and must be instantiated explicitly.

A.1 Directory

Figure A.1 shows the directory class interface. The static member functions
Directory::current and Directory::open return a pointer to a Directory.
Directory::current looks in the default directory for the application context,
Directory::open tries to find the directory with the given name. If the name cannot
be found or access is denied to the directory, Director::open returns nil.

A- 1

interface Directory {
static Directory* current();
static Directory* open(const String&);
int count() const;
const char* name(int i) const;
int index(const char*) const;
boolean is_directory(int index) const;
void close();
static String* canonical(const String&);
static boolean match(const String& name, const String& pattern);

};

Figure A.1: Directory class interface.

Directory::count returns the number of entries (files and directories), including
any special system entries such as “.” and “..” on Unix. Directory::name returns
the name of the specified entry. Directory::index returns the index of the entry
that matches the given name or -1 if no match is found. Directory::close discards
the information associated with the directory.

A.2 File

Figure A.2 shows the file class interface and subclasses for input handling. The
base class File is abstract and defines no data access functions. Currently, only
input files are implemented. File::name returns the string name of the file.
File::length returns the number of bytes in the file. File::close releases any
information associated with the file.

File::limit sets an upper bound on the size of a buffer to allocate for file storage.
By default, a file attempts to allocate contiguous storage for its entire contents.
This approach can allow for simpler application code and can be implemented
very efficiently on systems with memory-mapped files.

The contents of an input file can be accessed but not modified. InputFile::open
returns nil if the named file cannot be found or is not readable. InputFile::read
allocates a data area for the file contents, sets the start parameter to the beginning
of the area, and returns the length of the area. If no storage limit has been
specified and the file is on disk (as opposed to a terminal or pipe), then read will
return the entire file.

A.3 List

Figure A.3 shows the list generic class interfaces. The implementation of lists
uses a dynamic array with an insertion gap, meaning that large lists are very

A- 2

interface File {
const char* name() const;
long length() const;
void close();

void limit(unsigned int buffersize);
};

interface InputFile : File {
static InputFile* open(const char* name);
int read(const char*& start);

};

Figure A.2: InputFile protocols.

space-efficient. The time efficiency depends on the distribution of insertions–if
the insertion position moves frequently, the list will do excessive copying.

The list constructor takes an optional initial size for the dynamic array. For lists
that are known to be large, specifying an initial size avoids the cost of growing the
array dynamically. List::count returns the number of elements in the list (not the
size of the array). List::item returns the indexed item.

List::prepend adds an item at the beginning of the list, List::append at the end,
and List::insert before an indexed item. List::remove deletes the item specified by
the given index. List::remove_all deletes all the items in the list.

ListItr is a class for iterating through the elements of a list, parameterized
explicitly by the list type and implicitly by the element type. The constructor is
given the target list. ListItr::more returns true if additional elements are available
in the iteration. ListItr::cur returns the current iteration’s item. ListItr::cur_ref
returns a reference to the item. ListItr::remove_cur deletes the current item
from the list. ListItr::next moves the iteration to the next item in the list. No

A- 3

interface List(T) {
List(T)(long initial_size = 0);

long count() const;
T item(long index) const;
T& item_ref(long index) const;
void prepend(const T&);
void append(const T&);
void insert(long index, const T&);
void remove(long index);
void remove_all();

};

interface ListItr(ListType) {
ListItr(ListType))(const ListType&);

boolean more() const;
T cur() const;
T& cur_ref() const;
void next();

};

interface ListUpdater(ListType) {
ListUpdater(ListType)(ListType&);

boolean more() const;
T cur() const;
T& cur_ref() const;
void remove_cur();
void next();

};

Figure A.3: List and iterator class interfaces.

modifications should be made to the list during an iteration (except in the last
step), as this may cause unexpected or erroneous results.

As an example, consider a list of pointers to glyphs. We could declare such a
list in a header or source file as follows:

declarePtrList(GlyphList,Glyph)

Only one source file may contain the expansion of the implementation:

implementPtrList(GlyphList,Glyph)

A loop to iterate over all the glyphs in a list could be written as follows:

for (ListItr(GlyphList) i(list); i.more(); i.next()) {
Glyph* g = i.cur();
// do something with g

}

A list makes no assumptions about its element type. In particular, destroying a
list of pointers will not destroy the objects that are the targets of the pointers.

A.4 Math

Figure A.4 shows the math class interface. One cannot create a “math object”; all
the member functions are static. Math::min and Math::max return the minimum
and maximum of two or four numbers, respectively. For the sake of brevity only
the floating point definitions are shown, but Math::min and Math::max are also
defined for ints, longs, unsigned ints, unsigned longs, and doubles.

Math::abs returns the absolute value of a number. Math::round returns the
integer nearest to a floating point value. Math::equal compares two floating point
numbers and returns whether they are within a given epsilon (the third parameter)
of each other.

A.5 Memory

Figure A.5 shows the memory class interface. Like the math class, the memory
class consists solely of static member functions. Memory::copy writes a specified
number of bytes from one memory location to another. Memory::compare
determines if a specified number of bytes at one memory location is identical to
those at another location. If so, Memory::compare returns 0. Otherwise, it returns
a non-zero value. Memory::zero sets a specified number of bytes to zero starting
at a given memory location.

In certain circumstances, memory operations are faster than a loop over a set
of elements. Memory::zero and Memory::copy are useful for implementing a
dynamic array, quickly clearing or copying data when the array grows.

A- 4

A.6 String

Figure A.6 shows the string class interface. The purpose of the string class is to
provide a convenient set of operations for manipulating variable-length character
arrays, not to manage storage. The base class does not allocate or free any storage
associated with the characters.

Three string constructors are available. The first, with no arguments, creates an
uninitialized string that should be assigned to another string before use. The
second, with a character pointer, sets the string’s data to the given pointer. The
string’s length is computed from the pointer under the assumption that the data
is null-terminated. The third constructor takes a character pointer and explicit
length. It does not assume the data is null-terminated.

String::string returns a pointer to the character data, which may not be
null-terminated. String::length returns the number of characters in the string.
String::null_terminated returns whether the string is already known to be
null-terminated (it does not attempt to find a null). String::hash returns a value for
the string data suitable for indexing the strings into a hash table.

The string class provides operators for assignment and comparison. The second
operand for these operations can be a string or a character pointer. In the latter
case, the data is assumed to be null-terminated. String::case_insensitive_equal
tests for equality ignoring the case of the characters in the strings.

A- 5

interface Math {
static float min(float a, float b);
static float max(float a, float b);
static float min(float a, float b, float c, float d);
static float max(float a, float b, float c, float d);

static int abs(int);
static long abs(long);
static double abs(double);
static int round(float);
static int round(double);
static boolean equal(float x, float y, float e);
static boolean equal(double x, double y, double e);

};

Figure A.4: Math class interface.

interface Memory {
static void copy(const void*, void* to, unsigned int nbytes);
static int compare(const void*, const void*, unsigned int nbytes);
static void zero(void*, unsigned int nbytes);

};

Figure A.5: Memory class interface.

The subscript operator allows access to individual characters. It is an error to
pass a negative index or an index greater than or equal to the length of the string.
String::substr returns a new string representing the part of the original string
begining at the start parameter and continuing for length characters. If start is
negative, the beginning position is the end of the string offset by start. If length is
–1, then the remainder of the string is included. String::substr does not copy the
data, it simply creates another string that points into the same data as the original
string. String::left and String::right are short-hand for accessing the beginning or
end of a string. String::set_to_substr, String::set_to_left, and String::set_to_right
are convenience for changing a string to a particular substring instead of creating
a new string.

String::search returns the index of the occurrence of the given character after

A- 6

interface String {
String();
String(const char*);
String(const char*, int length);

const char* string() const;
int length() const;
boolean null_terminated() const;
unsigned long hash() const;

String& operator =(const String&);
boolean operator ==(const String&) const;
boolean operator !=(const String&) const;
boolean operator >(const String&) const;
boolean operator >=(const String&) const;
boolean operator <(const String&) const;
boolean operator <=(const String&) const;
boolean case_insensitive_equal(const String&) const;

char operator[](int index) const;
String substr(int start, int length) const;
String left(int length) const;
String right(int start) const;
void set_to_substr(int start, int length);
void set_to_left(int length);
void set_to_right(int start);

int search(int start, char) const;
int index(char) const;
int rindex(char) const;

boolean convert(int&) const;
boolean convert(long&) const;
boolean convert(float&) const;
boolean convert(double&) const;

};

Figure A.6: String class interface.

the given starting position. If the starting position is negative, it is treated as an
offset from the end of the string and the search is made right-to-left. String::index
and String::rindex are short-hand for searching from the beginning and end of the
string, respectively.

String::convert attempts to interpret the string as a number and sets its
parameter to the value. If the conversion is successful, String::convert returns true.

Three string subclasses of string are provided, all of which have the same
constructors and operations as the base class. CopyString is a subclass that
copies the string data when constructed and frees the storage when deleted.
When the copy is made, a null is appended to ensure the data is null-terminated.
NullTerminatedString is a subclass that guarantees its data is null-terminated. If
constructed with a normal string, it will copy the data much like a copy-string.
However, if the given string is already a copy-string, then no copy is made.
NullTerminatedString is useful for passing string data to external C functions,
such as printf.

The third string subclass is UniqueString, which uses a table to map identical
strings to the same data. Comparing unique strings for equality is fast because the
implementation can compare pointers instead of the string data. Unique strings
are not null-terminated.

A.7 Table

Figure A.7 shows the table class interface. Table is a generic class that is
parameterized by a key type and a value type. The constructor is given a size for
the hash table implementation. For good access performance, the size should be
roughly twice the expected number of keys.

Table::insert stores a <key,value> pair. Table::find searches an entry with
the given key. If such an entry exists, Table::find sets value and returns true.
Otherwise, it leaves the parameter unmodified and returns false. Table::remove
deletes a <key,value> pair from the table if one exists. Table::find_and_remove
combines the find and remove operations in a single call.

If the same key is inserted more than once, Table::find will return the most
recently inserted value. Similarly, Table::remove will delete the most recently
inserted pair.

TableIterator allows one to iterate over all the <key,value> pairs defined in a
table. TableIterator is parameterized explicitly by the table type, implicitly by the
key and value types. TableIterator::cur_key and TableIterator::cur_value return
the current entry information. TableIterator::more tests if additional entries are
defined. TableIterator::next moves to the next entry in the table.

A- 7

A- 8

unsigned long key_to_hash(Key);

interface Table(Key,Value) {
Table(Key,Value)(int hash_table_size);

void insert(Key, Value);
boolean find(Value&, Key);
void remove(Key);
boolean find_and_remove(Value&, Key);

};

interface TableIterator(Table(Key,Value)) {
TableIterator(Table(Key,Value))(Table(Key,Value)&);

Key& cur_key();
Value& cur_value();
boolean more();
boolean next();

};

Figure A.7: Table class interface.

