Context sensitive editing as an approach to incremental

compilation

L. V. Atkinson, J. J. McGregor and S. D. North
Department of Computer Science, University of Sheffield, Sheffield, S10 2TN, UK

An incremental compiler for a block-structured language has been implemented. The system
performs minimal recompilation in response to changes made to a program. To achieve this, a
context sensitive editor was designed. This paper describes the internal representation of the

program and gives a detailed account of the editor.

(Received March 1980)

1. Introduction

BASIC is the language most widely used in interactive systems.
It has been designed specifically with a view to making
incremental compilation easy. The language has been defined
in such a way that a line of a program can be checked or
compiled independently of the rest of the program. This lack of
structure makes BASIC a very poor vehicle for teaching good
programming technique. Programs are input on a line by line
basis (one statement to a line) and the system will usually
detect only simple syntax errors which are local to a line, each
line of program being stored in something close to the original
text form, and possibly also in machine code.

There are very few possibilities in BASIC for syntactic or
semantic errors whose detection requires a more global analysis
of the program. The only examples of such errors are an
incomplete or wrongly nested FOR loop and use of an array or
function which does not agree with its declaration (wrong
number of subscripts or parameters). Recognition of such
errors by a BASIC system is usually left until run-time. We thus
have the undesirable possibility of the user developing a
syntactically or semantically invalid program and not being
informed of this until at some stage during the execution of the
program, and then only if the invalid part is executed.

A good conversational system should never fail to inform the
user when his program is syntactically or semantically incorrect.
This aim is more difficult to achieve with a language like
ALGOL 60 which permits a nested statement structure and
which has sophisticated variable scoping rules. In such a
language, a simple local alteration to one line of the text can
result in a change to the global syntactic or semantic structure
of the program. Thus a simple line by line approach as used in
BASIC systems involves frequent rescanning of the whole
program, if syntax and semantic errors are to be reported as
soon as they appear.

Such an approach to conversation ALGOL 60 was found
quite acceptable in a system developed for use in an intro-
ductory programming course for first year students (Atkinson
and McGregor, 1978). However, for the more sophisticated
user, these additional overheads are quite unacceptable, and an
internal representation for the program is required such that a
small change to the syntactic or semantic structure of the
program requires only a small amount of reprocessing in order
to represent the change in the internal representation of the
program. Such a representation facilitates the implementation
of a truly incremental compiler which performs minimal
recompilation in response to commands which change the
program. In addition since the linear textual structure of a
program is far removed from the syntactic and semantic
structure of the program, the usual form of text editor is not
necessarily the best vehicle for expressing such changes.

There have been several approaches to the problem of
providing a truly incremental conversational system for a
structured language, the earliest being that of Lock (1965). He
describes a data structure representation for an ALGOL 60
program which reflects its syntactic structure at a statement
level. The editor is oriented towards altering this structure, the
unit handled by the editor being the statement. Edit commands
are provided for inserting, deleting and replacing groups of one
or more statements. Execution efficiency is achieved by storing
machine code for each statement. Similar approaches are
described by Ryan er al. (1966), Bolliet et al. (1967) and
Berthaud and Griffiths (1973).

In all these systems, semantic checking of the program is left
until run-time, variable references being interpreted via a
symbol table.

Breitbard and Wiederhold (1968) avoid the problem of
incremental semantic checking in their ACME compiler for a
subset of PL/I by treating all variables including procedure
parameters as global, and postponing checks on the overall
structure of the program until a run is requested.

Ayres and Derrenbacher (1971) describe an incremental
compiler for JOVIAL in which edits are on a statement by
statement basis. Their system attempts to identify the sections
of the program which may need to be recompiled as a result of
the alterations. Earley and Caizergues (1972) describe a similar
system for VERS, an ALGOL-like language. In this case the
edits are specified textually and no recompilation is done until
the user indicates that no further edits are forthcoming. Both
these systems are fairly liberal in their selection of statements
requiring recompilation as a result of an edit. For example,
Ayres and Derrenbacher recompile a whole subroutine if any
statement in the subroutine is altered and Earley and Caizergues
recompile all statements within the scope of a declaration if the
declaration is altered.

The present paper describes a set of edit commands which
specify alterations to a stored ALGOL 60 program. The
internal representation for these programs is also described.
This representation has been chosen so that a small alteration
to the syntax or the semantics of the program results in
minimal recompilation. Semantic errors as well as syntax
errors are detected as soon as they occur whether during the
initial input of the program or as a result of a subsequent edit
to the program. The system described has been implemented in
ALGOL 68-R.

2. Outline user view of the system

In order to meet the requirement that a good conversational
compiler should report errors as soon as they occur, a one-pass
subset of ALGOL 60 has been implemented—the defining
occurrence of an identifier must precede the corresponding

CCC-0010-4620/81/0024-0222 $04.00

222 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

© Heyden & Son Ltd, 1981

9T0Z ‘7z dunc uo 1s9nb Aq /B1o'sfeusnopioxo’ Jufwoo//:dny wouy pspeoumoq

http://comjnl.oxfordjournals.org/

applied occurrences. A number of other ALGOL 60 features
are omitted in the experimental system which has been imple-
mented. These are listed in Appendix 1 and are relatively minor
but for the omission of labels and the replacement of name
parameter transfer by reference transfer.

The user types program text and the system compiles the
program as it is supplied. At all stages during this process,
further extension of the program is permitted only if the section
of program already supplied is correct. As soon as an error is
detected, the user is expected to correct the error, possibly by
making a text edit on the unaccepted portion of the current line
of text, or by editing the stored program which has already
been accepted. An edit to the stored program would be
necessary if, for example, a declaration had been omitted.

As new program text is input by the user, it is converted into
an internal data structure which represents the syntactic and
semantic structure of the program. Further details and
examples of this data structure are given in Section 3. The
original program text is not stored internally; there is sufficient
information in the internal representation of the program for a
textual version with standard layout to be generated whenever
a listing is required.

Edits to a stored program (partial or complete) are made by
using the structure editor. This editor differs from a conven-
tional text editor in that the commands available are for
manipulating the syntactic or semantic structure of the
ALGOL 60 program rather than for changing characters in a
piece of text. In order to use this editor, the user must have a
very clear understanding of the structure of his program.

Individual parts of the program are identified by using a
numbering system which is oriented towards syntactic units of
the program rather than lines or arbitrary groups of characters
as in a conventional text editor. The declaration and statement
numbering system is illustrated in Fig. 1. This is the form in
which the system will list a stored program. No distinction is
made between blocks and compound statements as far as
numbering is concerned so we shall use the term ‘block’ to
imply either a block, in the ALGOL 60 sense, or a compound
statement. Blocks are numbered according to the order of
appearance of their begin symbols. The declarations in a block
are numbered consecutively and the statements in a block are
also numbered consecutively independently of the declarations.
Substatements following a then, else or do are identified by the
letters ‘T’, ‘E’ or ‘D’, respectively. Thus in the program of Fig.
1, the first declaration is identified as 10-10 and the statement
following do is identified as 10.10ED.

Complete statements can be inserted, deleted and replaced by
means of the above numbering system. Such alterations must be
sensible in terms of the corresponding alteration to the
syntactic structure of the program—for example, the statement
after then in an if-then statement could not be deleted. Further
facilities are available for identifying and changing units of a
program at a level lower than a complete statement. Such
changes within statements are still made by reference to the
syntactic structure of the program.

Changes to declarations have to be made with the semantic
structure of the program in mind. For example, there may be a
number of reasons for changing the name of a local variable in
an ALGOL program: we may want to change the name of the
variable and all references to it, keeping the meaning of the
program the same; we may want to change the name of the
variable only in the declaration, thus making all applied
occurrences of that variable refer to a more global variable of
the same name; we may want only some of the applied occur-

rences to refer to a more global variable of the same name in
which case some of the applied occurrences will need to be
changed to the new name. When using the system described
here, the user must specify precisely the semantic change he

© Heyden & Son Ltd, 1981

*10 begin
10-10 integer /,;;
10-20 boolean b;
10.10 if i = 20 then
10.10T
*20 begin
20.10 i:=10;
20.20 Jji=12
/20 end
else
10.10E fori:=1,i + 1 while b
do
10.10ED b:=1i<10;
10.20 j:=13
/10 end
Fig. 1 A simple ALGOL program used to illustrate statement
structures

wishes to make, and only if this change is sensible will it be
permitted. In addition, the system will always warn him when
changes in the scopes of variables have taken place, thus
eliminating the possibility of such changes occurring acci-
dentally as can easily happen in a text-editor/compiler environ-
ment. Full details of the editing system are given in Section 4.

Finally, the system implemented permits execution of a syn-
tactically complete program at any stage during its develop-
ment. The data structure form of the program includes blocks
of machine code for each syntactic unit and these blocks are
generated and incrementally modified at the same time as the
rest of the data structure.

Many conversational systems permit the execution of
incomplete programs. They also permit the execution of a
program to be interrupted (by user intervention or as a result of
an execution error), edits to be made to the stored program,
and execution to be resumed at the point where it left off. Such
a sequence of operations can cause a program to produce
results which could not have been produced by the original
program or by the edited program. In the system described
here, emphasis is on the development of a complete and correct
ALGOL program and the. system does not permit an incom-
plete program to be executed. Nor does it permit changes to be
made to a program during execution. As pointed out by
Atkinson and McGregor (1978), these restrictions do not
preclude the possibility of execution tests at every stage during
the gradual development of a program in accordance with the
philosophy of structured programming.

3. Data structure representation of a program

In order to fulfil the aims introduced in Section 2, an internal
program representation is required which permits reference to
be easily made to any part of the syntactic or semantic struc-
ture of the program. This representation must also permit
efficient implementation of specified changes to program
structure. In this section we present such a representation for a
program. The handling of machine code is deferred until
Section 5.

3.1 Syntax

The syntactic structure of the program is represented by a data
structure which corresponds to the syntax tree of the program.
Each syntactic unit which can be manipulated by the editor is
represented by a data cell which contains information about
that syntactic unit, including pointers to the data cells for
subsidiary syntactic units. This data structure is easily generated
as a side effect of the syntax analysis of the program text.

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 223

9T0Z ‘7z dunc uo 1s9nb Aq /B1o'sfeusnopioxo’ Jufwoo//:dny wouy pspeoumoq

http://comjnl.oxfordjournals.org/

compound

—= declaration structures

—= first statement
statement no.

| list cell for
next statement

assignment
—t= variable

—t= expression

if-statement

—= Boolean expression
—f= statement after then
—1+ statement after else (NIL if not present)

procedure call
—1* procedure call structure

for-statement
—t= for list
—}= statement

Fig. 2 Statement structures

3.1.1 Syntax of statements. The forms of data cell required to
represent the various types of statement which can appear in a
program are illustrated in Fig. 2. The type of any syntactic unit
is represented by a ‘syntax class indicator cell’, unique to units
of that type, which contains two procedures, one for reading
and checking a syntactic unit of that type and one for generating
a text listing of the syntactic unit from the information con-
tained in its data cell.

Fig. 3 illustrates the data structure representation of the
syntax of the program of Fig. 1 down to the statement level.
This data structure can be very easily adjusted to take account
of the insertion, deletion or removal of whole statements.

3.1.2 Syntax of declarations. In discussing declarations, we
distinguish the form of the declaration (simple, array or
procedure) and the base type of the declaration (integer or
Boolean). A declaration is represented by a data cell containing
a pointer to its syntax class indicator cell (which indicates the
form of the declaration and contains listing and checking
procedures for declarations of that form), its number, its base
type and a pointer to a data structure containing information
about the objects being declared.

A simple declaration list containing declarations of all three
forms appears in Fig. 4 and the syntax structure representation
for these declarations is illustrated in Fig. 5.

3.1.3 Syntax of expressions. An expression is represented by a
list of pointers to the data cells for the top level ‘expression
elements’. An expression element can be an operator, a
constant, a variable, an array reference, a procedure call or a
pointer to the data structure for a bracketed subexpression.
Although this does not fully represent the syntactic structure
of the expression as determined by the operator priorities, it
provides a compromise between a full syntax structure
representation and editing convenience.

3.2 Semantics

In order to achieve the aim of minimal recompilation, par-
ticularly with respect to changes in the semantic structure of a
program, the internal form includes extensive cross referencing
between declarations and the corresponding applied occur-
rences; it also includes information about the nested block
structure of the program and hence about the scope of iden-
tifiers in the program.

Associated with each block is a ‘block cell” which contains the
block number, a pointer to the block cell for the smallest
enclosing block and a pointer which is used to form a list of all
the block cells for a program in increasing numerical order of
block number. A declaration of a procedure with parameters
or a function is treated as a block in order to indicate that
parameters and the function designator are in scope only in the

if-statement

—t= Boolean expression

F’ —1 compound
NIL
— assignment
—f= variable
compound —t= expression
—t= declarations 10
— assignment
10 —{= variable
e —f= expression
20
- NIL
for-statement
—t= for-list
20 assignment
-1 NIL —* variable
assignment —= expression
—= variable
= t> expression

Fig. 3 Statement structure for the program of Fig. 1

224 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

© Heyden & Son Ltd, 1981

9T0Z ‘7z dunc uo 1s9nb Aq /B1o'sfeusnopioxo’ Jufwoo//:dny wouy pspeoumoq

http://comjnl.oxfordjournals.org/

-10 integer a, b;
-20 integer array ¢, d [1:2], e [1:2, 1:4];
=30 procedure 1 (g,h);
value g;
integer g, 4;
h:=g;
Fig. 4 A simple declaration list used to illustrate the data structure
representation of declaration syntax

simple t~-a

10 1
integer J‘

e —
NIL —t1=C

™ |
t—d
1 NIL
7 lower subscript
—— bound
array —— upper subscript
20 L NIL_| bound
integer
] R
-
2 _J—— NIL
NIL —+— lower bound
—— upper bound
— lower bound
procedure —— upper bound
30 NIL
no type
] Je r
L NIL L — procedure body (a statement)
integer
by value
—t- g
|
integer by
reference
i Py
NIL

Fig. 5 Data structure representation of the syntax of the declaration
list of Fig. 4

procedure declaration. Thus a block cell is associated with each
such procedure declaration. The block structure representation
of the simple program of Fig. 6 is illustrated in Fig. 7.

Each identifier used in a program is represented by an ‘identi-
fier cell’ which, in addition to the text of the identifier, contains
a pointer to a data structure containing information about the
scopes and applied occurrences of all objects in the program
which have been declared with that name.

The main structure associated with a given identifier in the
identifier cell is a list of cells, each of which contains infor-

© Heyden & Son Ltd, 1981

*10 begin

10-10 integer i;
10.10 read (i);
10.20
*20 begin
20-10 integer array a,b,c [1:i];
20-20 procedure sum (i);
value i;
integer i;
20-20P
*40 begin
40-10 integer j;
40.10 for j := 1 step 1 until i/ do
40.10D c[j] := a[j] + b[j]
/40 end;
20-30 integer j;
20.10 for j := 1 step | until i/ do
20.10D
*50 begin
50.10 read (a[j], b[j]);
50.20
*60 begin
60-10 integer i;
60.10 for i := 1 step 1 until j do
60.10D b[j] := b[j] + ali]
/60 end
/50 end;
20.20 sum (i)
/20 end
/10 end

Fig. 6 Program used to illustrate semantic structure

mation about the scope and semantics of a particular item
(simple variable, array or procedure) which has been declared
with that name. Each ‘scope cell’ in this list contains the form
and base type of the corresponding item, a pointer to the block
cell for the block in which the variable was declared and a
pointer to an applied occurrence tree. This tree is a hier-
archical representation of a list of all points in the program at
which there is an applied occurrence of the item to which the
tree refers. An illustration of the data structure associated with
the identifier i in the program of Fig. 6 appears in Fig. 8.

Each applied occurrence of an identifier is represented by an
‘applied occurrence cell’ which contains a pointer to the
identifier cell (and hence to information about other objects
declared with the same name) and a pointer to the scope cell
for the instance of that identifier to which the applied occur-
rence refers.

4. The structure editor

The only situation in which a conventional text edit can be
performed occurs when a line containing new ALGOL pro-
gram text has been typed and an error is detected during analysis
of this line. The unaccepted portion of the input buffer can be
changed by using simple text edit commands. All other
edits must be made by using the structure editor which requires
program changes to be specified in terms of changes to the
structure of the stored program.

The system is initially in input mode and, until a syntactic or
semantic error is detected, the user can continue input of his
program. As soon as an error is detected, further input is not
permitted until the program so far has been corrected. This can
be done by text edits on the unaccepted section of the last input
buffer or by edits on the stored partial program. At any stage,
the user can interrupt input of new text to make changes to the
structure of the accepted partial program. Once the final end

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 225

9T0Z ‘7z dunc uo 1s9nb Aq /B1o'sfeusnopioxo’ Jufwoo//:dny wouy pspeoumoq

http://comjnl.oxfordjournals.org/

30 40
—]. procedure —1. procedure
body body
10 -20P —20P
—= program statement structure —I
| |
20 | T]
— _|. statement
10.20
.20
]
50 60
—- st;(t)elrggn —}+ statement 50.20
.10D ’ 20
—I NIL
|

—"1 }

Fig. 7 Block cell structure for the program of Fig. 6

integer
—= block 10
i
— ot —=block 10
—= | i~ statement 10
— NIL
t= block 20
— NIL —f= declaration 10
_—I___ t~ statement 10
integer — —t= statement 20
—t= block 30 _L— NIL
— —= block 40
NIL —t= statement 10
NIL
integer
—t= block 60
L NIL - block 60
NIL statement 10

t- statement 10D

- L]

NIL

Fig. 8 Semantic structure associated with the identifier i in the program of Fig. 6

has been typed, the complete stored program can be manipula-
ted only by the structure editor. This does not preclude input
of extensive new sections of program text, but this can be done
only when the user has identified the point in the existing
structure at which the insertion is to be made.

Certain types of edit at one point in the structure may give
rise to errors elsewhere in the structure which will subsequently
have to be corrected. The editor is organised in such a way that
alterations to the program can be made only at points before
any outstanding uncorrected errors. Since we are dealing with a
one-pass subset of ALGOL 60, the cause of a syntax or
semantic error must be at a point in the program at or before
that at which the error is reported. It should therefore always
be possible to correct the earliest error in a program even with
the above restriction. Whenever any edit operation is completed

226 THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981

by the system, a message describing the earliest uncorrected
error in the program is output.

A complete list of all the edit commands available appears in
Appendix 2. The use of these commands is discussed in the
remainder of this section. Each command can be abbreviated to
the initial letters of the command words and a command is
distinguished from ALGOL program text by being preceded by
the command symbol ‘?°. All edits involving the specification of
new program structures require the text for the new structure
to be typed starting on the line following the edit command.

In order to specify parts of the existing program structure for
the purpose of editing that structure we require the ability to
identify groups of declarations or statements in the program.
This enables edit commands to manipulate the program
structure at the statement or declaration level and also serves as

© Heyden & Son Ltd, 1981

9T0Z ‘7z dunc uo 1s9nb Aq /B1o'sfeusnopioxo’ Jufwoo//:dny wouy pspeoumoq

http://comjnl.oxfordjournals.org/

a starting point for identifying syntactic units at a level lower
than a complete statement or a complete declaration.

The program numbering system was described in Section 1
and this numbering system is used in the edit commands for
the identification of single declarations or statements as well as
groups of declarations or statements. Specification of such a
group takes one of the following three forms where bno is the
number of the smallest enclosing block.

(1) bno—(dnol, dno2) for a sequence of declarations where dnol
and dno?2 are the numbers of the first and last declarations
respectively.

(2) bno.(snol, sno2) for a sequence of statements where snol and
sno2 are the numbers of the first and last statements
respectively.

(3) bno—(dnol, .sno2) for a group of declarations followed by a
group of statements in the same block.

Initially, the editor has the whole program at its disposal for
editing. However, for convenience when editing a deeply nested
part of the program, it is possible to restrict the editor’s range
or ‘window’ to a substructure of the complete program. This
simplifies subsequent identification of program elements within
the window.

The window specification command In Statement followed by
the identification of a statement within the current window
makes the statement specified into the current window, thus
restricting subsequent editing to substructures of the specified
statement. The In Declaration command has a similar effect.
The In Term and In Variable commands described later are used
to reduce the window to a syntactic structure at a level lower
than a statement or a declaration. The command symbol ‘7
appearing on a line by itself undoes the effect of the most
recent window specification command.

The List command can be used to print out the current editing
window together with the corresponding statement numbering.

4.1 Statement edits

As in the earlier systems, commands are provided for inserting,
deleting or replacing any group of one or more statements.
Three additional commands are available for manipulating a
program at the statement level: Statement Qualify, Statement
Extend and Statement Unqualify. Statement Qualify enables
a group of existing statements in the program to be ‘qualified’
by (i.e. preceded by) if . . . then, if . . . then . . . else, or for . . . do.
Statement Extend permits the addition of an else-part to an
if-then statement. Statement Unqualify permits the removal
of all but the then-branch of an if-then statement, all but the
else-branch of an if-then—else statement, or all but the state-
ment following the do in a for-statement.

Each of the above alterations is easily implemented by
creating new data structures for any new input and by adjusting
one or two pointers in the existing data structure.

Since it is the program structure being edited, many points of
ALGOL syntax needed to make a textual program unam-
biguous are taken care of automatically by the editor. For
example, if Statement Qualify is applied to a group of two or
more statements, they will be automatically grouped into a
compound statement; if an if-statement is qualified with a
further if . . . then, the data structure representation of the
program makes the nested if-statement unambiguous, and its
structure will subsequently be indicated in a program listing by
appropriate begin . . . end brackets.

The side effects which can be produced as a result of statement
edits, in the sense that edits to other parts of the program are
made necessary, are very limited. Edits elsewhere can become
necessary only as a side effect of inserting new constructions
which refer to undeclared variables.

© Heyden & Son Ltd, 1981

4.2 Edits within statements

Variable edit commands are predominantly for use within
declarations. However, the Variable Replace command can be
applied if the current edit window consists of an assignment
statement or a for-statement. The variable replaced is that on
the left of the assignment or the control variable of the for-
statement. The text of the new variable (simple or subscripted)
has to be typed on the line following the command. If the
variable in the current statement is a subscripted one, then the
edit window can be reduced to consist of that variable (in-
cluding its list of subscripts) by using the command In

Variable. The subscript expressions can then be edited by using
the term edit commands described below.

A number of ‘term edits’ are available for editing syntactic
elements smaller than complete statements or declaration. The
word ‘term’ is used to describe any complete syntactic element
(apart from a statement) at a level one lower than the current
edit window. A term could be an expression, a top-level
expression element (see Section 3.1.3), a for-list-element, a
procedure parameter, a subscript (or even a subscript bound
pair if we are editing within a declaration—see later). The
particular form a term takes depends on the context. Edits to
the structure at a level lower than one below the current edit
window require further restriction of the edit window by use
of one of the window specification commands.

There is usually a very small number of top-level terms within
the current edit window and it is convenient to refer to these by
number: ferm 1, term 2 etc. For example, at the statement level,
an assignment contains only one term (the expression on the
right hand side), an if-statement contains one term (the
Boolean expression) and a for-statement contains one or more
terms (the for-list elements). At a lower level, a step-until-
element contains three terms, a while-element contains two
terms, an array reference contains one or more terms (the
subscript expressions), a procedure call contains zero or more
terms (the parameters) and an expression involving one or more
operators contains at least two terms (the top level operands).
A term in fact corresponds to the top level pointers in the data
structure representation of the current edit window.

Clearly, the applicability of a particular edit depends on the
context: Term Swop for example cannot be applied when the
current edit window contains only one top-level term as does
an assignment statement or a procedure call with only one
parameter; nor can it be used to swop two terms of different
types; Term After cannot be used when the current edit
window is an expression—inclusion of additional top level
operands in an expression involves the insertion of additional
operators and requires the use of ‘fragment edits’ described
below.

An additional edit command, Name Replace, is available for
changing the array name used in an array reference, or the
procedure name used in a procedure call.

Edits within expressions at the top level, other than those
involving replacing or interchanging the top-level operands
(terms), require the use of fragment edits. These permit the
manipulation of any sequence of complete top-level elements of
the expression. Edits within one of the top-level operands of an
expression require the restriction of the edit window to that
operand by use of the In Term command followed by further
term or fragment edits.

4.3 Declaration edits

Edit commands are available for inserting deleting and
replacing whole declarations in a straightforward way. These
commands differ from their statement editing counterparts in
that extensive side effects may be created as a result of such
edits. Deletion of a declaration may make illegal any statement
which previously referred to an identifier which was contained

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 227

9T0Z ‘g aunr uo 1s9nb Aq /610°sfeuino[pioxo’ jufwody/:diy woJy papeoumoq

http://comjnl.oxfordjournals.org/

in the declaration. On the other hand, the deletion of a declara-
tion may result in an extension to the scope of a variable with
the same name which is declared in an outer block of the
program. If this outer variable has the same type as the
variable whose declaration was deleted, the program will still
be legal although its meaning will have changed; if it has a
different type, statements referring to it may now be incorrect.

Any errors which arise as a result of a declaration edit will be
reported and added to the current list of outstanding errors.
Any changes in meaning will be brought to the attention of the
user in the form of warning messages. Such action on the part
of the editor is made possible by the extensive cross referencing,
contained in the data structure representation of the program,
between declarations and applied occurrences.

4.4 Edits within declarations

Edits can be made within a declaration only when that declara-
tion has been selected as the current edit window (by the
window specification command In Declaration).

All the remarks made earlier about the side effects which can
be produced as a result of edits to entire declarations apply
equally well when the individual components of a declaration
are being manipulated. Such side effects, whether or not
resulting in an illegal program, are always reported.

Of the Variable edit commands listed in Appendix 2, those for
inserting, deleting or replacing variables can be used in a
straightforward fashion on a simple declaration. The Variable
Mode command can be used to change the mode of a variable
in a simple declaration.

The above variable edit commands can all be used on the
array identifiers in an array declaration. In addition, term and
fragment edits can be used to make changes to the array bounds.
When the edit window consists of the entire declaration, each
subscript bound pair is treated as a term and the pairs are
numbered in the order in which they appear in the declaration.
One such pair can be selected as the edit window by the In Term
command and the two subscript bounds then become terms 1
and 2. These bound expressions can then be manipulated in
their entirety by using term edits, or, following a further In
Term command, they can be edited as described earlier for
expressions.

If it is required to change the subscript bound pair for an array
identifier which previously shared its subscript bound pair with
other variables, the In Variable specification command can be
used to indicate that subsequent edits to the subscript bounds
apply to that array alone.

The edit commands used for manipulating simple declarations
can be used for performing similar operations on the formal
parameter list of a procedure declaration. The text of any new
parameter input must be preceded by its specification and
possibly by the word value. In addition the Variable Swop
command can be used to interchange two parameters. Deleting
or swopping two parameters (or subscript bound pairs) will
cause the system to make the corresponding alteration to actual
parameters (or subscripts) in all applied occurrences of the
procedure (or array), and inserting a new parameter (or
subscript bound pair) results in a request for a new actual
parameter (or subscript) for each applied occurrence.

The command Name Replace has a special effect when applied
to a declaration. It can be used to change the name of a simple
variable, an array or a procedure in its declaration and through-
out its scope. In the absence of other objects declared in outer
blocks and sharing the new identifier used, this edit does not
affect the meaning of the program. If any other items have
been declared with this new identifier, changes in the meaning
of the program or even errors could be created. Such side
effects are, of course, reported.

228 THE COMPUTER JOURNAL, VOL. 24, NO. 3. 1981

4.5 Copy and move commands

The commands Copy Statement, Move Statement, Copy
Declaration, Move Declaration can all be used for inserting a
textual representation of an existing program structure (state-
ment or declaration) into the current input buffer at the point at
which the command is used. Copy commands leave the existing
structure unaltered while the Move commands will delete the
existing structure.

The command Copy can be used in a similar way for copying
smaller syntactic elements. This command is followed by
information which identifies the ‘element to be copied—a
statement or declaration number followed by a combination of
In Term or In Variable commands.

The above commands cannot be used to copy or move the data
structure representation of part of a program as this could, for
example, result in an applied occurrence of a variable being
moved outside the variable’s scope. Instead, the program text is
regenerated and reanalysed in its new context.

5. Machine code representation of a program

Several alternative approaches are available for organising the
execution of a program represented by the sort of data structure
we have described. The simplest approach would be to write an
interpreter which operates by scanning the data structure and
interpreting the structures encountered. Although slow in
execution, this approach has the advantage that once any
changes to the data structure have been made in response to
edit commands, nothing further need be done to enable
execution to take place.

Another possible approach involves storing machine code for
some of the lower level syntactic units of the program, and
writing an interpreter which scans the upper levels of the data
structure and selects which of these blocks of code need to be
executed and in what order.

In our system, we have extended the second approach so that
every syntactic unit represented in the program data structure
has associated with it a block of machine code. The machine
code for each unit contains, at appropriate points, subroutine
jumps to the code for each subsidiary syntactic unit. Each code
block will terminate with a jump instruction transferring
control to the code which is to be executed next. Two examples
should suffice to make the principle clear.

The block of code corresponding to an if-then—else statement
will start with a subroutine jump to the code for evaluating the
Boolean expression. The code for the Boolean expression will
place the value of an expression on a run-time stack and then
perform a return jump to the code for the parent if-statement.
The if-statement code will then execute a subroutine call to the
code for either the then-statement or the else-statement,
depending on the Boolean value which has been placed on the
stack. The code for each of these subsidiary statements will
terminate with a return to the calling code of the parent if-
statement.

The machine code for an ALGOL block consists simply of a
subroutine call to the code for the first declaration. The code
for each declaration or statement (except the last) in the block
terminates with a jump to the code for the next declaration or
statement in order. The code for the last statement terminates
with a return to the code for the parent block.

The subroutine jump instructions to subsidiary syntactic units
and the jump instructions at the end of each unit can be treated
as pointers which represent the syntactic structure of the
program in just the same way as do the pointers in the program
data structure described in Section 3. These jump instructions
are updated by the editor at the same time as the corresponding
data structure pointers.

Simple variable references are all handled indirectly through a
storage location associated with the variable’s name. Thus the

© Heyden & Son Ltd, 1981

9T0Z ‘7z dunc uo 1s9nb Aq /B1o'sfeusnopioxo’ Jufwoo//:dny wouy pspeoumoq

http://comjnl.oxfordjournals.org/

machine code for a variable reference does not have to be
changed if changes in the program structure result in a new
variable of that name being in scope at that point. At run-time,
the appropriate reference is inserted in the variable’s identifier
cell by the machine code of the variable’s declaration. Any
previous reference associated with the identifier is restored on
exit from the block in which the variable was declared.

The approach to code generation and execution outlined in
this section provides a mode of execution which is an efficient
alternative to either of the two interpretive approaches
mentioned. Execution of the program, once started, proceeds
exclusively by means of machine code execution with no time-
consuming intervention of an interpreter. By treating the
branch instructions in the machine code in the same way as the
pointers in the data structure, the control structure of the
machine code program can be maintained during editing with
little extra effort beyond that involved in generating machine
code for any new ALGOL text which is typed in.

Once a program has been completely developed to the user’s
satisfaction, the separate machine code blocks could be very
easily consolidated into a conventional machine code program.

6. Conclusions

The system described provides an effective means for the
advanced programmer to develop a program without repeatedly
going through the compile, execute, text-edit cycle. Use of a
‘machine code data structure’ in which control transfer
instructions mirror the role played by pointers in the more
conventional data structure representation of a program
ensures reasonable run-time efficiency. Transformation of this
code structure into a block of contiguous code would be a
simple matter.

Programs are represented by complex data structures which
impose large storage overheads but, as hardware costs decrease
and paging becomes standard practice, this becomes less of a
drawback. By way of compensation, the explicit representation
of the program syntax tree and its accompanying semantic
structure provide an ideal environment for global flow analysis
and subsequent program optimisation.

As implemented, the system demonstrates the feasibility of a
truly incremental compiler for a block-structured language
with minimal reprocessing being performed in response to
edits made to a program.

Acknowledgement
This work was supported in part by the Science Research
Council.

References

Appendix1 ALGOL 60 features omitted from the
experimental system

the type real

strings

comments in procedure headings
code-bodied procedures

multiple assignments

own variables

empty statements

monadic plus

switches

goto statements

labels

call by name (replaced by call by reference)
forward references

Appendix 2 Summary of edit commands
All edit command words can be abbreviated to their initial
letter.

(1) General edit commands.

Each of these commands can, in a suitable context and by use of
a suitable prefix, be applied to a statement, declaration,
variable, term or fragment.

After
Before
Delete
Replace

We can use, for example, Statement Delete, Declaration Delete,
Variable Delete, Term Delete and Fragment Delete.

(2) Commands applicable only to statements.
Statement Extend
Statement Qualify
Statement Unqualify

(3) Window specification commands.
In Statement
In Declaration
In Term
In Variable

(4) Commands applicable only to variables within a
declaration.

Variable Mode

Variable Swop

Name Replace
(5) Command applicable only to terms.

Term Swop

ATKINSON, L. V. and MCGREGOR, J. J. (1978). CONA—A conversational Algol system, Software—Practice and Experience, Vol. 8 No. 6,

pp. 699-708.

AYRES, R. B. and DERRENBACHER, R. L. (1971). Partial recompilation, Proceedings AFIPS 1971 SJCC, pp. 497-502.
BERTHAUD, M. and GRIFFITHS, M. (1973). Incremental compilation and conversational interpretation, Annual Review in Automatic Pro-

gramming, Vol. 7 Part 2, pp. 95-114.

BoLLIET, L., AUROUX, A. and BELLINO, J. (1967). DIAMAG: A multi-access system for on-line Algol programming, Proceedings AFIPS

1967 SJCC, pp. 547-552.

BREITBARD, G. Y. and WIEDERHOLD, G. (1968). The ACME compiler, Proceedings IFIP Congress 1968, pp. 358-365.
EARLEY, J. and CAIZERGUES, P. (1972). A method for incrementally compiling languages with nested statement structure, Communications

of the ACM, Vol. 15 No. 12, pp. 1040-1044.

Lock, K. (1965). Structuring programs for multiprogram time-sharing on-line applications, Proceedings AFIPS 1965 FJCC, pp. 457-472.
RyaN, J. L., CRANDALL, R. L. and MeDWEDEFF, M. C. (1966). A conversational system for incremental compilation and execution in a time-

sharing environment, Proceedings AFIPS 1966 FJCC, pp. 1-21.

© Heyden & Son Ltd, 1981

THE COMPUTER JOURNAL, VOL. 24, NO. 3, 1981 229

9T0Z ‘7z dunc uo 1s9nb Aq /B1o'sfeusnopioxo’ Jufwoo//:dny wouy pspeoumoq

http://comjnl.oxfordjournals.org/

