
 i

Barbados: an Integrated Persistent
Programming Environment

Tim B. Cooper

“But to this day I thank my friends for
constantly reminding me of a very important
word called Persistence. Persistence is to
the quality of the character of man, what
carbon is to steel.” - Billy Ray Cyrus

A thesis submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy

October 1996

Basser Department of Computer Science
University of Sydney

 ii

Abstract

The aim of this thesis is to explain the concept of an Integrated
Persistent Programming Environment (IPPE), why it is useful, and to
describe the author’s experience in building one. The concept of an
IPPE is quite a new one, and the IPPE described in this thesis is quite
different from other existing IPPE’s.
 An integrated programming environment (or integrated
development environment (IDE)) is an application a programmer uses
to automate various aspects of programming. It typically consists of
an editor, compiler, debugger, build tool and other components.
 A persistent system is one in which there is no concept of a file -
just a huge memory shared by all applications in which objects and
data-structures exist in their structured format (i.e. objects linked with
pointers).
 An Integrated Persistent Programming Environment is an
integrated programming environment on top of a persistent system,
such that source-code, executable code, compilers and data all co-exist
inside a persistent store. An IPPE is both an application of persistence
as well as a programming interface to persistence.
 An IPPE is radically different from existing programming
environments. There are many benefits which arise from it, including
incremental compilation, interactive compilation, data-structure
browsers, the provision of persistence, a single language for shell-level
and high-level programming and others.
 The author has implemented an IPPE, called ‘Barbados’.

 iii

Acknowledgments

Many thanks to my supervisor, Dr Michael Wise for his support and encouragement,
Mick Hollins for many informative discussions and the anonymous reviewers of various
papers.

Thanks also to Jeff Kingston and the Basser Dept of Computer Science for helping me
out after my aborted attempt to emigrate to Finland.

Thanks also to Tom Jones and Franc Carter, and Renata, for many stimulating
conversations.

 1

1. Contents

1. CONTENTS 1

2. INTRODUCTION 4

2.1 PERSISTENCE 4
2.2 INTEGRATED DEVELOPMENT ENVIRONMENTS 4
2.3 INTEGRATED PERSISTENT PROGRAMMING ENVIRONMENTS 5
2.4 BARBADOS 6
2.5 CONTRIBUTIONS OF THIS THESIS 6

3. LITERATURE REVIEW: PROGRAMMING ENVIRONMENTS 8

3.1 NON-INTEGRATED PROGRAMMING ENVIRONMENTS 8
3.2 INTEGRATED INTERPRETATION ENVIRONMENTS 8
3.3 INTEGRATED COMPILATION ENVIRONMENTS 9
3.4 HYBRID ENVIRONMENTS 9
3.5 INCREMENTAL PROGRAMMING ENVIRONMENTS 9
3.6 SYNTAX-TREE BASED INCREMENTAL PROGRAMMING ENVIRONMENTS 10

4. LITERATURE REVIEW: PERSISTENT SYSTEMS 13

4.1 ISSUES IN PERSISTENT SYSTEMS 13
4.2 TEXAS 15
4.3 OBJECTSTORE 15
4.4 E AND EXODUS 16
4.5 SHORE 16
4.6 SOS AND LARCHANT 17
4.7 GRASSHOPPER 17

5. LITERATURE REVIEW: PERSISTENT PROGRAMMING ENVIRONMENTS 18

5.1 THE NAPIER SYSTEM 18
5.2 PERSISTENT SMALLTALK 20
5.3 PIPE 20

6. DESCRIPTION: THE BARBADOS PROGRAMMING ENVIRONMENT 22

6.1 SAMPLE SESSION 22
6.2 THE COMMAND-LINE 23
6.3 ERROR REPORTING 24
6.4 HISTORY 25
6.5 OUTPUT OF VALUES 25
6.6 INPUT OF VALUES 26

 2

6.7 THE META-LEVEL CLASSES: 26
6.8 THE CALLABLE COMPILER 29
6.9 SOURCE CODE 29
6.10 THE STANDARD LIBRARY EXTENSIONS 30

7. DESCRIPTION: THE BARBADOS/C++ LANGUAGE 32

7.1 C++ - WHY? 32
7.2 BARBADOS’S EXTENSIONS TO C++ 32
7.3 BARBADOS’S INTENTIONAL OMISSIONS FROM C++ 40
7.4 BARBADOS’ TEMPORARY OMISSIONS FROM C++ 41

8. FINE-GRAINED BUILDS 42

8.1 INTRODUCTION 42
8.2 THE PROBLEM STATEMENT 43
8.3 SOME SUBTLETIES 44
8.4 MY SOLUTION: GENERATING DEPENDENCIES 44
8.5 MY SOLUTION: MAKE() 46
8.6 DISCUSSION 54
8.7 THE CONSEQUENCES OF FINE-GRAINED BUILDS 57
8.8 RESULTS 58
8.9 LITERATURE 60
8.10 SUMMARY 62

9. DESCRIPTION: BARBADOS PROGRAMMING TOOLS 64

10. PERSISTENCE IN BARBADOS 66

10.1 INTRODUCTION 66
10.2 PERSISTENCE AS SEEN BY THE USER 67
10.3 THE BARBADOS TYPE SYSTEM 73
10.4 PERSISTENCE IMPLEMENTATION 75
10.5 COMPARISONS WITH OTHER SYSTEMS 78
10.6 DISCUSSION QUESTIONS 81
10.7 SUMMARY 85

11. INITIAL EXPERIENCES OF BARBADOS 87

11.1 THE ‘TT’ PROGRAM 87
11.2 THE ‘SPIN’ PROGRAM 88

12. A COMPARISON OF BARBADOS AND NAPIER 90

12.1 ORTHOGONAL PERSISTENCE 90
12.2 TYPE-SAFENESS 90
12.3 REFERENTIAL INTEGRITY AND GARBAGE COLLECTION 91

 3

12.4 GRAPHICAL VS TEXT PROGRAMMING ENVIRONMENTS 93
12.5 TEXT PROGRAMS VS HYPERPROGRAMS 93
12.6 OBJECT-ORIENTED / OBJECT-BASED VS NON-OO LANGUAGES 94
12.7 REFLECTIVE PROGRAMMING 95
12.8 THE META-LEVEL 95
12.9 BROWSERS 96
12.10 SUMMARY 96

13. COMPARISON OF BARBADOS WITH SMALLTALK 98

13.1 THE DESIGN PHILOSOPHY 98
13.2 THE PROGRAMMING EXPERIENCE 98
13.3 PROGRAMMING TOOLS 99
13.4 THE LANGUAGE 100
13.5 DIRECTORIES AND DICTIONARIES 100
13.6 DEBUGGING 100
13.7 SUMMARY 101

14. DIRECTIONS FOR FURTHER RESEARCH 102

14.1 PARALLEL PROGRAMMING 102
14.2 DATA-COMPRESSION WITH LGOS 102
14.3 NATIVE CODE GENERATION 102
14.4 CONFIGURATION MANAGEMENT 103

15. CONCLUSIONS 104

16. APPENDIX A: IMPLEMENTATION OF THE BARBADOS IPPE 106

16.1 PLATFORM 106
16.2 ARCHITECTURE 106
16.3 THE MEMORY MANAGER 107
16.4 THE COMPILER 108
16.5 THE EDITOR 108
16.6 THE NAME-SPACE MANAGER 108
16.7 TYPES USED INTERNALLY 108
16.8 STORING DEPENDENCIES 109
16.9 DETECTING COMPILEABLE ENTITIES: 109

18. APPENDIX C: THE META-LEVEL CLASSES’ INTERFACES 112

18. REFERENCES 114

 4

2. Introduction
 This thesis will explain the concept of an Integrated Persistent Programming
Environment (IPPE), why it is useful, and describe the author’s experiences in building
one.

2.1 Persistence

Definition “Data-Structure”: A network of objects linked by pointers.

Definition “Persistent System”: A persistent system is one in which
the life span of data is independent of the life span of the process which
created it. This means that the user perceives a single memory which
persists (i.e. exists intact) on disk after applications close and even after
the system is turned off. In this memory, data-structures do not require
any special attention from the programmer (e.g. subroutines to flatten
them to a file) in order to persist.

 A persistent system is essentially a giant virtual memory, spanning an entire file-
system, where issues of data clustering and data protection have been dealt with.
 The motivation for providing persistence is to (a) relieve the programmer from
the burden of writing code to convert data-structures from memory to disk and back
again, and (b) to encourage applications to share data in this structured format rather
than using files.

2.2 Integrated Development Environments
 An integrated development environment (IDE) is an application a programmer
uses to automate various aspects of programming. It typically consists of an editor,
compiler, debugger, build tool and other components.
 Without an IDE, the editor, compiler, build tool and debugger are all separate
applications which the programmer needs to invoke explicitly (e.g. from an operating
system shell). An example of a non-integrated programming environment is the UNIX
programming environment.
 The advantages of an IDE are that the computer can automate some of the sub-
tasks of programming. For example, dependencies between program modules can be
generated automatically and the debugger can link directly into the editor rather than
relating to source-code via line-numbers.

 5

2.3 Integrated Persistent Programming Environments

Definition “Integrated Persistent Programming Environment (IPPE)”: An
IPPE is an integrated programming environment on top of a persistent
system, such that source-code, executable code, compilers and data all
co-exist inside the persistent store.

 An IPPE is both an application of persistence as well as a programming interface
to the persistent system.
 Persistence has a lot to offer IDEs. The data-structures an IDE uses, for
example executable code fragments, source-code fragments and dependency graphs
would be difficult to manage without a persistent system. Persistence in fact makes it
easy to manipulate program components at a finer grain, e.g. on a function-by-function
basis, which assists in providing incremental compilation.
 Conversely, I would argue that the full power of a persistent system is not
realised without an IPPE. To program for a persistent system from outside that
persistent system introduces a barrier between programs and data. This barrier can
mean that extra checking of data types/formats is required in programs, non-source
program components (e.g. GUI resources) cannot be as easily integrated into a program,
debugging is more complicated, and so on.
 An IPPE is radically different from traditional programming environments. The
differences arise because an IPPE is capable of managing data at a finer grain than
traditional environments. The system understands individual fine-grained objects (e.g.
functions) and the relationships between them. Hence it can provide more services and
provide services more efficiently. Some of the more obvious benefits which arise from
an IPPE include incremental and interactive compilation, data-structure browsers, the
provision of persistence, and a single language for shell-level and high-level
programming. Other ways an IPPE can improve programming can only be understood
from within the IPPE paradigm. Chapter 15 gives a fuller list of the benefits of an IPPE.

UNIX

cc

UNIX

vi
make

gdb

File system Type system

A
Persistent
System

An IPPE
System

Comparing IPPE’s to Traditional Systems

File system

Persistent
System

An IPPE
System

UNIX

Traditional System An IPPE
An IPPE compatible with

traditional operating systems

 6

2.4 Barbados
 The author has constructed an IPPE, called the Barbados IPPE. Barbados will
be referred to often in this thesis. The Barbados IPPE has been implemented on top of a
custom-made persistent system (called the Barbados Persistent System). The whole
system has been implemented in C, on top of the Windows 95/NT operating system.

2.5 Contributions of this Thesis
 This thesis explores the concept of an IPPE. It describes what an IPPE is, what
advantages and opportunities arise from it and what issues arise in its construction. It
describes the Barbados system and how it differs from the only other IPPE known to the
author, namely Napier.

 7

Literature Review

 8

3. Literature Review: Programming
Environments
 This chapter summarises the existing research and commercial programming
environments apart from IPPE’s.

3.1 Non-integrated Programming Environments
 The UNIX programming environment is a good example of a popular, non-
integrated programming environment [Ker84]. UNIX has influenced the design of
Barbados in many ways: Barbados path-names are inspired by UNIX, the Barbados
philosophy of ‘many little tools’ was adopted from UNIX, and the fact that the
environment is based on a command-log is also inspired by UNIX. In UNIX, the
various ‘little tools’ communicate mostly via text, whereas in Barbados the tools
communicate directly using the type-system with structured data.

3.2 Integrated Interpretation Environments
 With interpreted languages, it is easy to provide an interactive environment and a
quick turnaround time. The most famous example of an integrated programming
environment for an interpreter is Smalltalk.
 The Smalltalk environment consists of a (mostly interpreted) object-oriented
language also called Smalltalk, and a set of tightly integrated tools. Smalltalk is touted
as having advantages over traditional systems because it supports interactive and
incremental programming. It is also a completely object-oriented environment, which
some would argue is a benefit. It is a mature and well-supported product, with a rich
class library. It is claimed that it is effective for programming-in-the-large, because of
its various features. Programs are supposedly developed by ‘extending’ the standard
class library.
 The Smalltalk environment is a Graphical User Interface (GUI) environment.
The programmer typically has one or more ‘browsers’ open on the workspace, where a
‘browser’ is a window allowing the user to view and edit definitions of classes and class
methods.
 Wherever possible, the Smalltalk environment is ‘modeless’: this means that the
programmer has all tools available at all times, as opposed to systems where the user
enters and exits ‘edit’ mode, ‘compile’ mode or ‘debugger’ mode. This paradigm
extends down to the language definition: the language is designed to support multi-
threaded applications. Objects ‘send messages’ to each other, rather than calling
member functions on each other. The difference is that the caller may or may not wait
for the message to be processed, and in fact often does not wait.
 The Smalltalk language is an extremely small language. Classes are objects, just
as class instances are. To create an object one sends a ‘new’ message to the class object
and receive a reply. Variables store either fundamental datums (integer, float etc) or act
as references to larger objects. A variable is said to be ‘bound’ to an object, rather than
‘storing’ a value.

 9

 Smalltalk is dynamically typed and type-safe. Smalltalk code is mostly
interpreted, meaning that there is a parsing stage which processes source-text into an
intermediate form, but the majority of translation (e.g. method dispatch) is done at run-
time. This means that it is slower than compiled environments and that more errors are
reported at run-time than compile-time.

3.3 Integrated Compilation Environments
 A large number of commercial ‘Integrated Development Environments’ (IDE’s)
exist for compiled languages. Modern examples include Microsoft Visual C++, Borland
C++, Delphi and Symantec C++. Use of such IDE’s is quite widespread.
 An IDE consists of a single user-interface which integrates an editor, compiler
and debugger. This integration brings various benefits, such as (a) automating program
consistency (makefiles) and (b) tightly linking the debugger with the editor so e.g. the
mapping between code position and source-code line is made visible to the user.
 IDE’s are also starting to provide more features, such as support for class-
browsing tools and tools to construct GUI interfaces.
 Barbados itself was constructed using IDE’s of this form.

3.4 Hybrid Environments
 One of the contributions of Barbados is to combine the best of both worlds of
compilers and interpreters. The advantages of Barbados over interpreted environments
are (a) compiled code is more efficient, and (b) many errors are detected before the
program executes. The advantages of Barbados over compiled environments are (a) a
quick edit-run-debug cycle and (b) being able to interactively execute commands which
interact with programs.
 Some hybrid environments exist, where there is both a compiler and an
interpreter. This is partly the case with Oberon [Wir92] for example, and traditional
environments where the debugger can execute commands in the language being
debugged. Such environments provide some of the benefits of Barbados, for example
testbedding of modules without compilation delays. However, they usually do not
provide all the features of the language (e.g. macros) or execution of arbitrary code. It
is also difficult to maintain both the compiler and interpreter and to keep them consistent
with each other.

3.5 Incremental Programming Environments

3.5.1 Visual C++
 The Microsoft Visual C++ ‘integrated development environment’ (IDE) is an
example of the state-of-the-art in integrated programming environments [Mic96].
 Barbados itself was developed mostly using the Borland C++ IDE and then using
Visual C++. These two commercial IDE’s are quite similar to each other: the user has

 10

one ‘project’ open at a time, and the environment integrates the editor, compiler and
debugger. Dependencies and makefiles are managed automatically.
 Visual C++ has 4 technologies for achieving incremental compilation: (a)
‘incremental compilation’, (b) ‘minimum rebuild’, (c) ‘precompiled headers’ and (d)
incremental linkage. Barbados provides the effect of all 4 mechanisms with one
mechanism. I have found Visual C++ to compare poorly with Barbados in terms of
incremental compilation efficiency. I also found a bug in the system when all 4 features
were turned on. These issues are discussed further in the chapter on ‘Fine-Grained
Builds’.
 Visual C++ is not an interactive environment. Only whole programs can be
executed, (i.e. beginning at ‘main()’). Code cannot be executed from the debugger.
Only a limited form of expression evaluation is available from within the debugger.

3.6 Syntax-Tree based Incremental Programming Environments
 All the research projects on incremental compilation/development environments
which I am aware of, are based on the idea of using syntax trees to represent programs.
 A syntax-tree is a data-structure which represents a parsed program as a tree,
with nodes corresponding to grammatical productions. If a text version of a program is
ever displayed, this is merely a ‘view’ on the syntax-tree representation. This view can
aid incremental compilation of some sort, because it means that as programs are edited,
it is not necessary to re-parse the unmodified parts of programs, and it is in some ways a
more ‘natural’ representation of programs.
 Examples of such systems include: IPE [Med81], Orm [Mag90] [Gus89],
Gandalf [Not85], The Synthesizer Generator [Rep85] [Tei81], PSG [Bah86], Centaur
[Bor88], Mentor [Don80], and Pathcal [Wil84].
 I chose not to structure my environment in the same way, because (a) I was able
to implement incremental compilation and other features quite easily without using
syntax trees, (b) storing source-code as text is in many ways simpler than syntax-trees,
and (c) using syntax trees can make it difficult to implement complex languages such as
C++: it can be difficult to efficiently store inside syntax trees the amount of contextual
information needed by such systems.

3.6.1 LOIPE (Gandalf)
 LOIPE was an early incremental programming environment (hence the acronym)
developed at Carnegie-Mellon university. It was associated with the Gandalf project
[Not85].
 LOIPE was an incremental program composition/compilation environment based
on the syntax-tree representation of programs. The editor directly manipulated syntax-
tree representations of programs. Program translation and code generation was
performed as parts of the program were modified. The language supported was a
variant of C.

3.6.2 PSG
 The PSG system was an incremental programming environment which could
work with many languages. Languages were described in a formal language definition,

 11

(similarly to attribute grammars) and then environments for these languages were
generated. The environment then consisted of a syntax-aware editor and a translator to
incrementally translate programs into a functional language (which was then
interpreted).
 The editors could operate either as structure editors, in which syntax-trees for
programs were directly manipulated, or as text editors in which syntax analysis was
performed simply in order to detect errors early. The syntax-tree mode had the effect of
preventing errors, while the text editor mode had the effect of immediately detecting
errors (without forcing the user to fix them).
 Incorrect or incomplete programs could still be executed. If execution ever
reached an error or an incomplete fragment, the user would be taken into the editor and
prompted to fix the error or fill in the missing pieces.

3.6.3 MultiView
 MultiView [Mar90] is a project at the Flinders university of South Australia to
develop an integrated software development environment. The focus is on unifying all
software development tools with a single representation of a program, namely a syntax
tree, and then providing various views on programs. Programmers can view and
manipulate programs in a textual view, a function-call view, a flow-chart view and a
generated code view, among other views. MultiView focuses on some higher-level
features of a programming environment, e.g. support for modelling data and algorithms.
 [Mcc96] describes a system for incremental code generation within MultiView.
This system is based on fine-grained incremental compilation, namely at the sub-
expression level. It uses a greedy algorithm, meaning that as programs are edited inside
the environment, the changes are immediately updated in the compiled code.

3.6.4 ‘A Programming System’
 [Buh86] describes a programming environment without a name but which has
many features similar to Barbados. This environment supports a language which has
features for manipulating files directly (which leads into persistence), it supports
interactive programming using compilation techniques, and it manages program
consistency transparently.

3.6.5 Orm
 Orm is a sub-project of the Mjolner project [Dah87]. The aim of the Mjolner
project is to ‘increase the efficiency of the software development process in general’
[Mag90]. The Orm project focuses on building an environment in which programs are
developed incrementally. Other Mjolner projects involve programming language
research (e.g. with the BETA language), software engineering methodologies and
specification languages.
 Orm is a graphical user interface (GUI) environment which supports incremental
program construction. Programs are stored solely as syntax trees. They are edited
directly in this structured form, using the GUI tools. For example, to write a loop, one
clicks on the relevant icon, which brings up a template for a ‘loop’ production. This
template includes several place-holders which the user fills in with other statements and
expressions.

 12

 A lot of effort in Orm has gone into supporting the development of language
grammars. Orm can be used either to develop programs in some programming
language, or to develop language grammars in a formal grammar-specification language.
The formal grammars include notations for specifying type and semantic information and
code generation information.
 Orm supports programming languages by interpreting the language grammars. It
contains language grammars for Simula, parts of the BETA language, and other
languages.

3.6.6 Centaur
 Centaur [Bor88] is a system developed at INRIA, France. It is a system which
generates programming environments from formal descriptions of languages. It uses the
‘natural semantics’ method of formally specifying languages. It has been released to
over 100 organisations, mostly educational & research organisations, for experimenting
with language design. Part of the focus of the project has been on providing support for
formal theorem-proving notations. A syntax-checker for the C language has been
implemented within Centaur and it is anticipated that a full Eiffel environment will be
generated from Centaur at some stage.
 As in the above systems, Centaur is based on a syntax-tree representation of
programs. The generated environments are based around the syntax-trees and ‘tools’.
A tool is an object which manipulates a syntax-tree, such as an editor or pretty-printer
or compiler.

 13

4. Literature Review: Persistent Systems
 This section gives a brief overview of persistence and persistent systems.

 An object is said to ‘persist’ if it can outlive the process which created it. In
traditional systems, objects created in RAM do not persist beyond the point where the
creating process terminates. This is because in traditional systems, the memory used by
a process is reclaimed when the process finishes. The only data which persists is data
stored in files.
 This means that if a program creates various data-structures in RAM, and it
needs to store the data for a long period of time or to share it with another process, the
programmer must have written code to store the data-structures in files. This process
typically involves ‘flattening’ the data-structure into a linear sequence of bytes. It can be
a tedious and error-prone task.
 The field of persistence explores how this barrier between RAM and disk can be
removed. A persistent system provides the user with a single memory, called a
‘persistent store’, in which data-structures can be created and manipulated and in which
all data automatically persists until destroyed.
 This concept may at first sound similar to virtual memory systems. However,
virtual memory systems are not designed to encompass an entire file-system, as
persistent systems are. If a virtual memory system was scaled up to encompass an entire
file-system, with data being manipulated inside as if the memory were RAM memory,
users would suffer problems of performance (because virtual memory requires locality of
reference in order not to ‘thrash’ i.e. spend all processing time performing i/o) and
problems of memory protection (because a single bugged program could potentially
corrupt all data in the entire system).
 So a persistent system is a single large, shared memory in which these problems
of clustering data and memory protection have been adequately solved.
 Persistent systems are usually closely integrated with compilers for high-level
languages. Because a persistent system deals with data-structures, and data-structures
are concepts related to types and high-level languages, persistence is a concept
inherently related to programming languages.

 When designing a persistent system, the designers must decide how fine-grained
objects are to be stored, how pointers are dereferenced, and at what points data is
brought from disk into RAM or migrated out to disk again. They must decide how to
protect data from bugged programs and how to protect users from malicious programs.

4.1 Issues in Persistent Systems

4.1.1 Reachability (Garbage collection)
 Because memory and disk space is never infinite, it is always necessary for a
persistent system to have some system for re-using previously allocated space. In other

 14

words, it must be possible to delete objects and reclaim the space they used for new
objects.
 The two main ways of doing this are (a) explicitly deleting objects, and (b)
‘reachability’: deleting objects once it is proved that they are not reachable via any
sequence of pointer dereferences from a special object called a ‘persistent root’ (in other
words they are not needed anymore).
 If objects are to be explicitly deleted, then there must be some function call or
program which implements the deletion/reclamation process. The C function ‘free()’
and the UNIX program ‘rm’ are examples of such functions. With this system, the
programmer has the burden of determining when objects are or are not needed anymore,
and if they make a mistake in this respect, the consequences can be bad: with hard-to-
fix ‘memory leak’ or ‘dangling pointer’ errors.
 If objects are to be deleted using the criteria of reachability, then the programmer
does not have this burden. However, it means that a costly ‘garbage collection’ process
must be run every so often, to detect unreachable objects. (There is no known efficient
incremental algorithm for detecting unreachable objects). Also, it places restrictions on
the languages and systems which are used, because it becomes necessary for the
computer to be able to determine automatically and exactly the types and locations of all
pointers.
 There are solutions and workarounds to the disadvantages of both systems. This
is discussed in chapter 13.

4.1.2 Hardware vs Operating System vs Library
 A persistent system can be implemented at different levels: as a new
hardware/software system, as an operating system, or as a library to be used in
traditional operating systems.

A simple programming library for persistence can be called a ‘persistent store’.
A database which stores persistent objects and references between them is called an
‘Object-Oriented Databases (OODB’s)’. A ‘Persistent System’ in the strictest sense of
the term is neither of these, but rather a programming environment integrated with an
operating system (or runtime system which has aspects of an operating system), such
that it provides the programmer with the abstraction of a single large RAM.

4.1.3 Orthogonality of persistence
 The abstraction of a single large RAM can be provided at different levels of
transparency. At one end of the spectrum, function calls to a database must be made.
At the other end of the spectrum, issues relating to the interface between physical RAM
and disk are dealt with inside individual pointer dereferences, and are completely
invisible to the user. Related to this issue is the issue of whether persistence properties
interact with the type system (e.g. do you have to inherit the property of ‘persistence’
from a special base class?) or if objects of any type are automatically able to persist.
Also, there is the issue of whether you have to specify at object-creation-time whether
the object is to be persistent or not.

 15

4.1.4 Pointer swizzling vs other methods
 One technique which is often used is ‘pointer swizzling’. Pointer swizzling
refers to the action of modifying pointer values as objects migrate between address
spaces. An alternative technique is to have a single very large address space, by having
pointers of 64 bits or more.

4.2 TEXAS
 TEXAS [Sin92] is a persistent store. It is implemented as a C++ library.
 It implements persistence using a technique called ‘pointer swizzling at page-
fault time’. This technique involves memory-resident pages containing pointers either to
other memory-resident pages, or to pages marked as ‘not accessible’. If a pointer of the
latter kind is dereferenced, the relevant page is read from disk into memory. When the
page is read into memory, the system finds all pointers inside the page and ‘swizzles’
them. To ‘swizzle’ a pointer involves converting from a persistent format (pointing to
the disk location of the other page) to a memory format. The memory format will either
contain pointers to pages that are already memory-resident, or to pages of virtual
memory which are marked as ‘not accessible’.
 TEXAS provides transactions using this mechanism. TEXAS can also
implement a ‘distributed shared memory’, that is a memory which spans more than one
computer.
 TEXAS can be programmed using traditional compilers, if they support run-time
type information. This run-time type information is necessary for identifying pointers
within pages.

4.3 ObjectStore
 ObjectStore [Lam91] is a commercial object-oriented database. It is
programmed either in ordinary C++, using library functions, or using ObjectStore’s own
compiler which implements an extended version of C++.
 ObjectStore implements persistence using techniques very similar to virtual
memory. One or more databases can be mapped into a process’s address space, and
accessed as ordinary data in virtual memory. ObjectStore uses the underlying system’s
virtual memory hardware to provide its services. However it implements new virtual
memory features:
• Concurrent access to database pages are managed, even across different machines.
• Transactions are supported using virtual memory.

In addition,
• ObjectStore provides various database features, such as managing bulk data types

and relational database queries.

 16

4.4 E and Exodus
 E [Ric89] is a language which is a persistent version of C++. It was developed
at the University of Wisconsin. E was designed as a database programming language.
 E was built on top of a system called ‘Exodus’, which is a low-level object store.
Exodus implements fine-grained access to objects. Specifically, there are function calls
to Exodus to retrieve and store fine-grained objects in a persistent store. The E compiler
then translates pointer dereferences in the source-code to calls to Exodus.
 The E language has two parallel type-systems: one for transient data, and the
other for persistent data. The persistent type system works like the ordinary C++ type-
system, but with ‘db’ inserted onto the front of fundamental types and words such as
‘struct’. The two type systems are provided so that ordinary transient data can be
accessed with the full efficiency of C++ but persistent data can also be implemented.
 The compiler then implements various optimisations to minimise calls to Exodus.
 Barbados is similar to the E system in that they both have persistent languages
based on C++. However, Barbados implements ‘type-orthogonal persistence’, meaning
that objects of any type can persist. By contrast, in E, only objects created in the
parallel ‘db’ type-system can persist. Also, Barbados implements persistence by using
ordinary machine-code instructions for the majority of pointer dereferences, and having
explicit syntax for those pointer dereferences which may involve disk i/o.

4.5 Shore
 Shore [Car94] is a project which grew out of E and Exodus. Shore includes a
persistent object repository which is similar to Exodus except that it understands the
type system of the objects being stored.
 One of the types in the type-system is the ‘directory’. A Shore persistent store
contains a directory hierarchy, similar to the UNIX directory hierarchy except with fine-
grained typed objects inside the directories instead of files. The system maintains a strict
hierarchy of directories, however it does support ‘links’ to directories and objects similar
to UNIX ‘symbolic links’. In these respects, it is similar to Barbados.
 The unit of storage in Shore is an entity called a ‘registered object’. A registered
object consists of a contiguous sequence of bytes, which is organised into two parts: the
‘object core’ and the ‘object heap’. The object core contains a single typed object, and
the heap consists of additional typed objects which are reachable from the ‘object core’
but not from outside. The idea is that these additional objects are associated with the
object core, and should be clustered with the object core to provide better performance.
‘Registered objects’ are given a system-wide ‘persistent identifier’, whereas the
‘additional objects’ cannot be referenced from outside the registered object.
 The Shore system consists of a single type system, which can be accessed by
multiple languages. If it is used from C++, then two types of pointers can be used:
Ordinary C++ pointers which are used to denote additional objects, and ‘refs’ which are
used to denote registered objects. ‘Refs’ are implemented using the C++ template
mechanism.

 17

4.6 SOS and Larchant
 SOS [Sha89a][Sha89b] and its successor Larchant are ‘Object-Oriented
Operating Systems’. SOS supports a single type-system, but multiple languages can be
used to access this type-system. The operating system manages objects instead of files,
where objects are associated with a type and member functions. Objects, unlike files,
can contain direct references to other objects.
 SOS supports persistence, transactions and distribution.

4.7 Grasshopper
 Grasshopper is an operating system being developed at the University of Sydney
[Dea94]. It provides persistence by treating all data similarly to memory-mapped files.
The basic persistent entity is the ‘container’. A container is an address space which can
be mapped into other address spaces. Data-structures can be built up inside a container,
and then shared with other applications by being mapped into their address spaces.
 There is no operating-system level concept of a ‘type’. It is the applications
which interpret the data in the containers. Each application can manage the data within
a container in whatever way it sees fit: it can provide garbage collection, heap
functions, database functions or other functions.

 18

5. Literature Review: Persistent Programming
Environments

 There are a great number of persistent systems, of which some were described in
the previous chapter. The majority of these are programmed with relatively standard
programming environments, e.g. UNIX. Neither the source-code nor executable code is
stored in the persistent store of these systems. Source-code is stored as ordinary files in
the host operating system, and compiled usually with custom-made compiler. Such
programming environments are of little relevance to this thesis, which deals with issues
such as how persistence can aid program construction, incremental compilation and
meta-level classes.

 The first paper describing the concept of an IPPE was [Atk86], which was about
the design of the Napier system focussing on language issues. However, [Mor94] is a
more significant paper in terms of programming environments. Napier is the only other
IPPE the authors are aware of, with the possible exception of Persistent Smalltalk
(depending on the exact definition of an IPPE) and the PIPE project.

5.1 The Napier System
 The ‘Napier’ system consists of a persistent system, programming language and
programming environment.

5.1.1 The Napier Language
 [Nap88] describes the Napier programming language. The PS-Algol language
[Atk83] was to some extent the predecessor of the Napier language.
 The Napier language was designed to be as simple as possible and orthogonal as
possible. The idea was that every language mechanism should be able to be applied in
every situation.

Definition “Type-Safe Language”: A type-safe language is one which
prevents the programmer from committing memory errors by providing
strict typing rules. Memory errors include overwriting array bounds,
corrupting the heap, and writing outside allocated areas of memory.

Definition “Orthogonally Persistent System”: A persistent system in which
all data is accessed in a uniform manner, regardless of its creator,
longevity or type ([Atk83]).

 The Napier language is type-safe. Type-safeness is used as the sole method of
memory protection in the Napier persistent store.
 The Napier language is also orthogonally persistent. This means that there is
only one type of pointer, and only one granularity of object. This property considerably
simplifies the language.

 19

 The type-system for the Napier language includes types for procedures and for
entities called ‘environments’ which roughly correspond to Barbados directories. A
Napier ‘environment’ is a collection of (name, type, value) bindings, but unlike
directories as they are used in most systems, environments can be linked to form
arbitrary graph structures, and there is no concept of a ‘hierarchy’ of environments or an
‘ownership tree’ as in Barbados.
 Napier is not an object-based or an object-oriented language, since Napier
‘types’ do not include member functions. However, a user wishing to use object-based
techniques can create types which include (as members) pointers to functions, and then
initialise these pointers as each instance of the type is created.
 A Napier identifier can be used within a code fragment to identify any object
which is ‘in scope’. The objects which are ‘in scope’ at any time consist of local objects
and objects brought into scope using the ‘use’ clause. The ‘use’ clause is a clause which
brings named objects from specified ‘environments’ into scope for the following clause.
 Napier contains many other features which are interesting from a language
design point of view, however are not relevant to this thesis.

5.1.2 The Napier Hyperprogramming Environment
 [Far92] and [Kir92] describe the Napier hyperprogramming programming
environment.
 This environment consists of a graphical user interface (GUI) ‘browser’ and
‘hyperprogramming facility’. The browser is a program which allows the programmer
to interactively explore the persistent store, follow references between objects, examine
values and execute code. The ‘hyperprogramming facility’ is a feature which allows the
user to construct hyper-programs.
 A hyper-program is a hyper-text document specifying a program. That is, it
consists of a network of objects, where each object is a sequence of source-text
containing embedded ‘links’ to other objects. These links are implemented with
ordinary Napier references, but are displayed as hyper-text links. The links replace
identifiers in the program, that is, they can be inserted anywhere where an identifier
would be legal.
 When a hyperprogram document is compiled, a ‘procedure’ is created which
contains embedded links to the objects specified by the hypertext links and the
identifiers.
 The benefits of hyperprogramming include:

• Objects can sometimes be located more quickly using the mouse and the browser

than by typing the access path to the object as text.
• It reduces the verbosity of Napier programs. In textual Napier, all objects used by a

function must be explicitly brought into scope using a clause called a ‘USE’ clause.
These clauses can be replaced by hyperprogram links.

• It leads to greater flexibility in program construction through a greater range of
linking times; objects can be linked with a procedure during program execution,
program linking, program compilation or even program composition.

• The sooner objects can be linked into a program, the sooner type-checks can be
performed and errors detected.

 20

5.1.3 The Original Napier Programming Environment
 The Napier hyperprogramming environment is still in prototype form. The
majority of Napier programming has been done in a more traditional way, outside the
persistent store. Programs are written in UNIX as text files and then compiled and
imported into the persistent store.

5.1.4 The Napier Persistent Store
 [Bro92] describes the persistent store used by Napier.
 The persistent store is implemented as a huge file on the host operating system.
Data is read from disk in fixed-length pages. As pages are read in, pointers are swizzled
from an ‘on-disk’ format to an ‘in-memory’ format.

5.2 Persistent Smalltalk
 [Hos90a] and [Hos90b] describe the Persistent Smalltalk project at the
University of Massachusetts. In this project, the Smalltalk run-time system was
modified to support orthogonal persistence. Objects are clustered into units called
‘physical segments’ which are stored in the persistent store. The Smalltalk compiler was
not modified. Programming environment issues were not explored in this project.

5.3 PIPE
 PIPE (Persistent Integrated Programming Environments) was a short-lived
project commenced at Adelaide University. It was closely related to the Napier project.
It has evolved into a new project called ‘Advanced Software Engineering Environments’
under Dr Fred Brown and Dr Michael Oudshoorn. The focus of this new project is on
the generation of programming environments from formal language specifications. The
difference from other similar projects (Orm, Centaur etc) is that it uses persistence to
support the system.

 21

Description of Barbados

 22

6. Description: The Barbados Programming
Environment
 In a nutshell, a Barbados system consists of a directory hierarchy
containing (instead of files) ordinary C++ objects, e.g. ints and structs and classes and
functions and so on. Their names follow the usual C++ naming rules for identifiers.
Data-structures can hang off these objects, and they are stored on disk automatically
when the user leaves the system, regardless of their type or structure.
 There are no files, no “#include” header files, no modules, and no
“makefiles”.
 The programming environment consists of a command-line, at which the
user types C++ statements and declarations. To write a program, one simply writes a
set of C++ classes or functions at this command-line (which doubles as a full-screen
editor). To run a program, the user simply calls a top-level function.

6.1 Sample Session
 This section describes the user’s view of Barbados by providing a sample session
with the Barbados system.
 The interface to the Barbados IPPE is a text-based interface - essentially a
command-line interface. Text in white represents the user’s input; and text in grey
represents the response of the system to the user’s commands.

Simple expressions can be evaluated, as long as they are valid C++ expressions complete
with the terminating ‘;’. If the expression returns a non-void value, this value is printed
on the console:

3+4;
 = 7; // Output is in grey

In fact, any valid C++ statement can be entered. It is not compiled or executed until it is
syntactically complete:

for (int j=0; j < 5; j++)
 cout << j;
01234

Declarations can be ‘executed’ as well. The following example shows a function
definition being entered. A function or variable declaration/definition causes the
specified object to be inserted into the current directory (Barbados has a concept of a
‘current directory’).

int f(int n)
{
 return n*5;
}
 f : function returning int (int);

 23

User-defined output methods can be invoked when values are automatically displayed.
In the following example, we declare a complex number and then multiply it by itself.
The appropriate ‘operator*()’ method is invoked, which returns a complex number. A
print method has been written for the class ‘complex’, (either an
‘ostream::operator<<()’ method or a ‘complex::Print()’ method), and so this is invoked
rather than the default method for printing structured values:

complex W(1,2);
 W : complex;

W*W;
 = -3+4i;

 This feature is important because of the large impact that feedback has on
software development. I believe that being able to clearly visualise complicated values
has a large impact on the speed of the debugging process and on the speed of general
interaction between human and computer. I also believe that it is a large benefit to see
the output of a command displayed on the screen directly below the command, rather
than in a separate ‘output window’ (where possible).
 Barbados also allows bitmap output as well as text. These bitmaps are output to
the scroll buffer, and scroll up along with text. For example:

6.2 The Command-Line
 The command-line was designed so that users could use it both to enter
short commands and also to enter long functions. The rationale for this was that for
Barbados to be used in a highly interactive way, it would be cumbersome to have to
swap between an editor and a command-line very frequently. Furthermore, a lot of
functionality is shared between an editor and a fairly sophisticated command-line. For
example, code for entering a single line and code to support entering multi-line
commands is used by both.
 An important part of supporting this kind of usage is the fact that the
editor is capable of detecting when a syntactically complete, i.e. compileable entity has
been entered. It does this using a superficial form of lexical analysis which is performed
each time the user moves to a new line.
 For example, the following code-fragments is a compileable entity:

A.Normalise();

 24

 as is:

int f(int n)
{
 return n * n;
}

 Whereas the following is not:

for (int i=0; i < 10; i++)

 When a compileable entity is entered, it sends the text comprising the entity to
the compile/execute module. However, until this happens, the user is free to move up or
down over the command or function-definition being entered and modify it.
 Alternative ways of providing an interface to an interactive programming
environment are:

(a) Implement a graphical user interface (GUI). This is the approach taken in the Napier

and Self systems.
(b) Restrict all commands to one line. Many interpreters do this, (e.g. BASIC, FORTH),

but obviously this is too restrictive for modern languages.
(c) Have the user specify when a command is complete. This could be accomplished

with a special 'Compile Now' key, e.g. <keypad-ENTER>. This alternative would be
appropriate if most commands were multi-line commands.

(d)Have the user specify when a command is not complete, for example adding a '\' to
the end of each line if it is to be continued to the next line. This is the approach
taken in many UNIX shells. It would be appropriate if most commands were single-
line commands.

(e) Have a fully syntactically-aware editor.

 Barbados detects when a compileable entity is complete by counting
braces and searching for semi-colons. It is aware of the lexical structure of C++, e.g. it
is not fooled by a brace inside a comment. It only examines each line as it is entered.
 This feature can be fooled in some situations, e.g. by a macro including
unbalanced braces. However, on the whole it has proven a very effective feature.
Further details are provided in Appendix A.
 Note that while C++ is amenable to this technique, other languages may
not be.

6.3 Error Reporting
 This kind of interface makes error-reporting easier for the compiler and
easier for the user. As soon as an entity is completed, it is compiled, and as soon as it is
compiled, any errors or warning are printed immediately to the console.
 In fact, the first time the compiler detects an error, it communicates the
position of the error to the editor. An error message is displayed just below the
offending line, and the cursor is placed back on the source code in the precise position
where the error occurred (or as close as the compiler can ascertain).

 25

 Suppose for example that an identifier is misspelled in a function
definition. The user will be presented with an error message and the cursor will be put
on the first character of the offending identifier. Small compilation errors (i.e. syntax
and type errors) can be picked up very quickly and modified very quickly and with very
few keystrokes.
 A disadvantage of this is that the user cannot deliberately enter
syntactically incorrect functions - they remain ‘stuck’ on the one piece of incorrect
source code until it can be compiled. (At present, there is no way of bypassing a piece
of incorrect source-code.)

6.4 History
 A history of the most recent commands is kept. If the user moves the
cursor past the top of the current compileable entity, the ‘history’ mode is entered. In
this mode, previous compileable entities are displayed to the user as they use the ‘up’
and ‘down’ arrows. Any attempt to edit the entity will cause it to be inserted into the
current position in the scroll-buffer.

6.5 Output of Values
 Non-void expressions always produce output. Whenever an expression is
entered and evaluated at the Barbados prompt, the system attempts to display it by
calling a ‘expr.Print()’ method or an ‘ostream << expr’ method. If neither of these exist,
it displays the value using a generic output function. It attempts to print values as far as
possible in a format compatible with the language itself. For example, ‘char’s are
displayed with single quotes and with escape sequences in accordance with C++ rules,
as in the following:

(char)10;
 = ‘\n’;

 The “ostream<<()“ operator is capable of automatically using ‘Print()’
methods, using a special rule implemented by the compiler. Therefore, in many cases
the following two code fragments yield the same behaviour:

<expr>;

(void)(cout << <expr>);1

 Ordinary output from commands such as ‘printf’ are output to the same
output stream.
 The output of commands are displayed in a different colour to input
(source text). It would be confusing if input and output were not visually discriminated.
 Output lines also exist in the line buffer as ordinary text lines. The user
can use the ‘up’ arrow to enter those lines. They are read-only lines, but it is possible to

1 The ‘(void)’ removes the expression’s return value. Without it, the return value of the ‘cout’
expression would be displayed as well.

 26

copy text out of them and paste into the source lines. This feature can be useful,
especially since values are output in a similar format to the way they are denoted in the
language.
 Bitmaps can also be output, either by an explicit “cout <<“ command or
by the automatic value display mechanism. They scroll up in the scroll-buffer, along
with lines of text. If the user writes a class for which the output would be too large to
effectively fit in the scroll-buffer, they can construct a ‘Print()’ method to output a
bitmap to a new window (as a side-effect) rather than displaying anything in the scroll-
buffer.
 There is a Barbados class called ‘Bitmap’ which can be used to
manipulate bitmaps.

6.6 Input of Values
 A common way for small Barbados programs to receive input is by
function calls, rather than by functions such as ‘scanf()’. This is because Barbados is an
interactive environment and it is easier to receive input this way. For example, the user
can look up a symbol table using the following call:

FindCustomer(“Renata Kasasova”);

 This feature is especially convenient when code is being tested, because it
minimises the framework necessary for testing.
 The converse of a ‘Print()’ method would be a constructor method
attached to a class which maps textual input to a value of that class. In fact, this can be
provided from within the C++ language simply by writing a constructor which takes a
single string (i.e. char*) as an argument.
 For example, if the user wants to use the string “-3 + 4i” to represent a
complex number, they can type the following:

 W = complex(“-3+4i”);

 In fact, the string: complex(“-3+4i”) can be inserted anywhere in
a program where a complex value is required.

6.7 The Meta-Level Classes:
 Four classes are defined to allow users to interact with objects in the
Barbados system. These classes are designed to replace the C++ file-management
functions, since in a persistent system typed objects are supposed to replace files.
 These classes are also useful for extending the programming environment
with new tools. The Barbados browser (described in Chapter 9) is an example of a
program written within the Barbados environment based on the meta-level classes.
 They are all ordinary classes, in the sense of being first-class objects
within the language, however they were implemented at the system level because they
require special privileges. They are:

 27

type
This represents the type of an object. A
new keyword has been implemented,
‘typeof()’, which works similarly to
‘sizeof()’ to retrieve the run-time type of a
language type-expression or instance.
type’s can come from the typeof()
operator, from the expansion of other
types, or from other meta-level classes.

any
This represents a (type, value) pair. It
effectively means that the object is
dynamically typed.

named_obj
This represents a (name, type, value)
tuple, or equivalently, a (name, any) pair.
There are other fields contained inside a
named_obj, for example ‘storage class’
and the ‘make-info object’, however these
are mainly used internally.

directory
This represents a directory. A directory is
a collection of named_obj’s. These
named_obj’s can themselves represent
directories.

 The operator ‘typeof’ represents the link between the static world of
C++ declarations / type expressions, and the dynamic world of ‘type’ instances. As
with the C++ ‘sizeof()’ operator, both type expressions and values can be inserted
into ‘typeof’. For example:

typeof(int);
 = int;
int i;
 i : int;
typeof(i);
 = int;
typeof(i + 8.0);
 = float;

 An object of type ‘any’ represents an l-value to some object. (‘l-value’ is
a C++ term denoting a reference to a modifiable object, such as can appear on the left-
hand side of an assignment statement, as opposed to an ‘r-value’ which can only appear
on the right-hand side of an assignment statement, for example integer constants and
function return values).
 In other words, if a value is assigned to an ‘any’, it must be an l-value. In
this case, the ‘any’ takes on the type and contents of the value being assigned. (The
class ‘any’ is implemented with just two data members: a pointer to the type and a
pointer to the value).
 This means that r-values, for example integer constants and return values
of functions cannot be assigned to ‘any’s. This is a disadvantage, and it arises from the
model of persistence used by Barbados: memory must be allocated and freed explicitly2.
Therefore, to simplify the semantics of ‘any’ objects, it was decided to implement them
as l-values.

2 There is a form of garbage collection, described in Appendix B (‘Persistence in Barbados’), but it is
not a prominent part of the system.

 28

 Napier does not suffer this disadvantage. In Napier, an arbitrary r-value
can be stored in an ‘any’ by creating a new object to store it. Barbados could use the
same technique, however with Barbados’s limited support for garbage collection, this
technique could cause the system to run out of memory if used too frequently.
Nevertheless, this alternative might still be considered in the future.
 If an ‘any’ value is assigned to an ‘any’, it becomes a simple assignment
of equivalent types (as opposed to an ‘any’ storing a value of type ‘any’).
 The following fragment shows an example of the meta-level classes in
action:

int num=9;
 num : int;
typeof(num);
 = int;
sizeof(num);
 = 4;
any A=num;
 A : any;
A;
 = { int, 9 };
A.Type() == typeof(int);
 = true;
if (A.Type() == typeof(int))
 num = A;
 = 9;
if (A.Type() == typeof(int))
 num = (int)A + 1;
 = 10;

 A type can be expanded in the following way:

TypeExpander tyex;
 tyex : TypeExpander;
A.Type().Expand(tyex);
 = ‘i’;
tyex;
 = { ‘i’, NULL, 0, NULL, NULL };

 The ‘TypeExpander’ is a class containing various fields for describing a
type. A type can be expanded into a ‘TypeExpander’ object. A ‘TypeExpander’
expands a type expression one level. For example, a pointer type is separated into two
parts: (a) an enumerated value denoting ‘pointer’ and (b) a ‘Type’ object representing
the type being pointed to. In the above example, the type is a fundamental type namely
‘int’, which is denoted by the value ‘i’. In the case of a struct or union or class, the
‘TypeExpander’ has another field which can be used to iterate over the members of the
type. Each field of the type-definition is described with an instance of the class
‘named_obj’.
 The presence of these meta-level classes makes it easy to extend the
programming environment with tools which manipulate program entities and typed data.
 Examples are given in Chapter 9. However, one notable example of such a
program is the ‘Browse()’ program. This program displays an arbitrary data-

 29

structure as a graph in 2 dimensions, for use by programmers primarily during
debugging.
 ‘Browse()’ was written using the meta-level classes, and a 2-D graph
visualisation class, but without any special privileges. The entire program consists of
122 lines of code. In this code, type information is queried to separate each object into
pointers and non-pointers. This information is then passed to the graph visualisation
code.
 Appendix C (“Meta-Level Classes’ Interfaces”) gives a full list of the
interfaces to the classes.

6.8 The Callable Compiler
 The Barbados compiler can be called from within the environment. It
maps a string to a void function pointer. The return value can be executed, immediately
or later, with the ‘()’ C++ notation. However, for declarations and function definitions,
the action of compiling the string is enough to cause the relevant object to be created.
 For example:

compile(“int f(int n) { return n*2; }”);
 = 0x84f3f0;
compile(“cout << f(9);”)();
18

 In the first example, the string is compiled, and since it is only a
declaration, it does not need to be executed. The mere act of compiling causes the
function ‘f’ to be inserted into the current directory.
 In the second example, the extra pair of brackets is needed to actually
execute the code after compiling.
 A significant amount of research has been performed on exploiting
callable compilers within the Napier project [Kir92b][Kir93]. The technique of
constructing source-code representations of programs within a program, and then
passing this text to the compiler, is called ‘linguistic reflection’.
 Applications of callable compilers / linguistic reflection include (a)
implementing ‘mini-languages’ (application-specific languages), and (b) achieving a form
of code re-use similar to but more powerful than ad-hoc polymorphism. Judging from
the Napier experience, it seems that writing programs which utilise linguistic reflection
can be quite a complex task.
 The Napier Browser was originally implemented using a callable
compiler, and later with meta-level classes.

6.9 Source Code
 Source-code in Barbados is captured each time the user enters a
compileable entity. If the compileable entity represents a declaration, the source-code is
stored attached to the declared entity (or entities). If the compileable entity represents a
statement, then the source-code is discarded.

 30

 Source-code for one declaration is stored as a single string in the
Barbados persistent store. It is stored as a named object, of type ‘char*’ in a
subdirectory called ‘SRC’ which hangs off whatever directory the declared object exists
in. It has the same name as the corresponding declared object.
 For example:

int f(int n)
{
 return n * n;
}
 f : function returning int (int);
dir();
/demo:
f() SRC/
f(9);
 = 81;
SRC/f;
 = “int f(int n)\n{\n\treturn n * n;\n}\n”;
cout << SRC/f;
int f(int n)
{
 return n * n;
}
 = cout;

 In this example, a function ‘f()’ is defined. The act of compilation causes
both the function f() to be inserted into the current directory and the string ‘f’ to be
inserted into the ‘SRC’ subdirectory. The ‘SRC’ subdirectory is created in a particular
directory the first time the system needs to store source-code for the directory.

6.10 The Standard Library Extensions
 The following functions and objects constitute some of Barbados’s
extensions to the standard library:

string A ‘char*’ typedef
boolean An enum { false, true } typedef
edit(string s) Retrieves the source for the named object back into

the command-line
compile(string s) Compiles the given string. All

declarations/definitions are inserted into the current
directory, and executable code is placed in a new
memory block and returned. The return type is a
function returning void and taking no parameters.

cd(?) An overloaded function which is used to change the
current directory. Can take a directory, directory, a
string or other types.

Help() Displays the operations available to the given
object. It is a macro which uses ‘typeof’, so

 31

therefore it can be passed both a type or a value.
Help2() Like ‘Help()’, but it also delves into source-code to

retrieve the synopsis of the function in the form of
comments.

class Bitmap A class to help the user manipulate bitmaps.
dir(?) An overloaded function used to display directory

listings. Can take no parameters, (in which case it
displays the current directory), or it can take a
directory or directory LGO as a parameter.

each_dir_entry
(directory)

A macro iterator (to be inserted into a ‘for’ loop)
for iterating over members of a directory

each_member(type) A macro iterator to iterate over members of a type-
definition.

sync() Saves all unsaved information to disk, i.e. commits
all changes.

GraphOfCalls(s) Displays a 2-D graph rendering of the direct and
indirect function calls this function makes

GraphOfDepends(s) Displays a 2-D graph rendering of the objects this
object depends upon (directly or indirectly). It
includes types, macros, global variables as well as
functions.

GraphOfLGOs() The following chapter describes large-grained
objects (LGO’s). This function displays a 2-D
graph of all open large-grained objects, including
their relationships to each other and whether each
is a read or write copy.

GraphOfCalls(s) Displays a 2-D graph rendering of the direct and
indirect function calls this function makes.

grepo(string s) Search for this string in the names of any object in
the current directory or any child directories.

greps(string s) Search for this string in the names or source-code
of objects in the current directory or any child
directories.

grepdepends(s) Search for any object which depends on the given
object.

 32

7. Description: The Barbados/C++ Language

 Although the Barbados persistent system was designed to support
multiple languages, the Barbados IPPE is specific to C++. This chapter describes the
Barbados C++ language and where it differs from standard C++.

7.1 C++ - why?
 There are mixed feelings about C++ within the computer science world
[Joy92]. Two of the more common complaints are:

• C++ is not type-safe. For instance, it has the notorious ‘cast’ operator. Array

bounds are not checked. Memory bugs can lead to problems where the symptoms
are far removed from the cause.

• C++ compromises object-orientedness in its attempt to straddle both structured
programming (C) and object-orientedness.

 The first complaint can be an advantage as well as a weakness. Being
type-unsafe makes it very efficient: there are no run-time type checks or array index
checking. It also makes it flexible, for example the user can write applications such as
compilers and compression utilities which manipulate pointers in a type-unsafe way.
Of course, in a persistent system, memory protection becomes very important: there is
no longer the form of memory protection afforded by files. However, the Barbados
persistent system has a concept of a ‘large-grained object’ which provides memory
protection in a similar way to files. There are also other features which provide
memory protection. These are discussed in Appendix B.
 The second complaint may be partly true, however, it is arguably an
advantage for a language to support both object-oriented and procedural
programming.

 I chose to implement C++ because (a) it is a popular language in its
own right as well as being essentially a superset of the ubiquitous C language, and (b)
it is a rich, object-oriented language. The Barbados project involves some language
design, but the goal was not to design a new language.
 If I had chosen not to implement C++, Java would be a good second
alternative. Java was not chosen mainly because it was not available at the time.

7.2 Barbados’s Extensions to C++
 Barbados C++ has the following extensions to C++:

1. Support for Persistence, via three new operators and a new type-modifier keyword.
2. The type-system has been extended further by the addition of dynamic arrays (which

grow during run-time).

 33

3. Path names, which can be used everywhere an ordinary identifier can be used except
in goto labels.

4. The Meta-level classes, e.g. type, any, named_obj, directory. (See the
previous chapter).

5. New standard library functions/objects. (See the previous chapter).

7.2.1 The Barbados Type System
 The Barbados type system has been extended in the following ways:

• In addition to ordinary pointers, there are LGO pointers. LGO pointers are

involved in providing support for Persistence. They are described in section 8.2.2.
To declare an LGO pointer to a type X, one types:

 X lgo* var;

• Arrays are no longer equivalent to constant pointer values. For example, the

following can invoke different methods:

 int A[10]; int *A;
 cout << A; cout << A;

• Dynamic arrays are supported. That is, the programmer can declare an array whose
size is unknown at compile-time. They do this by writing a ‘?’ instead of the array
size. These arrays automatically re-size as read or write accesses are made to
successively higher index values. (Dynamic arrays are implemented using the
‘realloc()’ function). For example:

 int A[?];

There are no restrictions on combining dynamic arrays with other types. For
example, one can type:

 int A[3][?][100];

The motivation for providing dynamic arrays was to avoid having users implement
dynamic arrays themselves with malloc() and realloc(). The problem with users
doing this is that the persistence mechanisms would not know the type of these
‘malloc()’ blocks and therefore be unable to swizzle pointers. In short, dynamic
arrays make C++ more type-safe.

7.2.2 Persistence Extensions:
 Central to the model of persistence provided by Barbados is the concept
of a large-grained object.

Definition “Fine-grained object”: A ‘fine-grained object’ is a small,
typed object such as an integer, class instance or function.

Definition “Large-Grained Object (LGO)”: A ‘Large-Grained Object’ is
a collection of fine-grained objects. The fine-grained objects must

 34

each be reachable from a special fine-grained object called the ‘root
object’ of the LGO. Large-grained objects can be thought of as
having a type defined by the type of the root object.

 This concept was introduced in order to (a) provide access control to
data, e.g. permissions, locking and transactions; and (b) to provide an intermediate-
level grouping of data for use by various applications and system tools. Large-grained
objects replace ‘files’ in many ways.
 The fact that Barbados has ‘large-grained objects’, and the semantics of
‘large-grained objects’ mean that Barbados does not provide orthogonal persistence.
Some researchers would argue that this is a disadvantage. Discussion of this issue is
given in Appendix B (‘Persistence in Barbados’), and also in [Coo95] [Coo96c].

 Along with the two granularities of objects, (fine-grained objects and
large-grained objects), Barbados C++ has two types of pointers: ordinary pointers and
LGO pointers. In this, it may appear that Barbados C++ is similar to the E
programming language [Ric93]. However, there is a major difference between the
approach each language takes toward persistence. In Barbados, the LGO pointers
point to large-grained objects which contain data-structures linked with fine-grained
pointers. In E, ‘ordinary pointers’ are only to be used between transient objects, and
the ‘persistent pointer’ must be used between all persistent (fine-grained) objects.
Therefore, Barbados provides type-orthogonal persistence, whereas E does not.

 In Barbados, ordinary pointers are declared with a ‘*’ in the
declaration; and LGO pointers are declared with the word ‘lgo*’ in place of the ‘*’.
Ordinary pointers are dereferenced in the normal way, e.g. with the ‘*’ operator or ‘->‘
operator or ‘[]’ operator. LGO pointers are dereferenced with the ‘OpenLGO()’
operator, which needs a corresponding ‘CloseLGO()’ operator.
 For example:

int *ip;
int lgo* is;

...

cout << *ip;

cout << OpenLGO(is,no);
CloseLGO(is);

 The first “cout<<“ line shows a normal pointer being dereferenced. The
second “cout<<“ shows a LGO pointer being dereferenced. The first parameter to
OpenLGO() is the LGO pointer, the second is a boolean value denoting whether write
access is required to the LGO. (NB :- Normally LGO’s consist of a lot more data
than a single integer, so this example is a little contrived).

 It should be noted that it is not necessary to use OpenLGO() and
CloseLGO() calls in order to use persistence in Barbados. A very effective way of
avoiding them is to partition data into directories and use the ‘cd()’ command and
path-names to move between directories. The ‘cd()’ command and the path-name

 35

resolution commands contain calls to OpenLGO() and CloseLGO(), and they provide
simpler semantics for simple tasks.

 OpenLGO() can not be implemented as a simple function because of the
way it manipulates types: the type of the return value is derived from the type of the
first parameter. For example, in the above case the parameter is an LGO pointer to an
‘int’, and so the return value has type ‘integer’. Therefore, OpenLGO() was
implemented as an operator. The same applies to the operator ‘CreateLGO()’.
 If C++ templates had been implemented in Barbados, they would have
provided an alternative implementation of OpenLGO() and CreateLGO().
 When OpenLGO() is invoked, the LGO remains in memory until the
corresponding call to ‘CloseLGO()’. It is important to call ‘CloseLGO()’ when one
has finished accessing an LGO because CloseLGO() performs the following tasks:

• It causes the LGO to be written to disk if write access was requested,
• The memory the LGO occupied is freed,
• The exclusive writer lock or shared reader lock on the LGO is revoked.

 In this sense, OpenLGO() and CloseLGO() act as brackets around a
transaction on a LGO. It is also the reason why pointer semantics are different for
LGO pointers than for ordinary pointers. (Consideration was given to whether the ‘*’
unary operator for dereferencing ordinary pointers could be overloaded to apply to
LGOs pointers as well. However it was decided that it was necessary to have
operators with ‘open’ and ‘close’ semantics).
 CloseLGO() calls must match with OpenLGO() calls. For instance:

cout << OpenLGO(is,no);
cout << OpenLGO(is,no);
CloseLGO(is); /* it is not yet closed */
CloseLGO(is); /* Now it is closed. */

 If the user attempts to dereference a pointer into a LGO after the LGO
has been removed from memory, it is classified as a memory bug. Usually the invalid
access will be trapped, (either by the virtual memory hardware or by the other forms of
memory protection), and a run-time error will occur.

 The operator ‘CreateLGO()’ is used to create new LGOs. Since all
LGO’s must be associated with a single root object, CreateLGO() creates both a fine-
grained object and a large-grained object. The pointer to the fine-grained object is
returned formally, and the pointer to the LGO is returned via a reference parameter.
This parameter is also used to inform CreateLGO() of the type required.
 The CreateLGO() operator is used in place of the ‘new’ operator.
CreateLGO() requires two parameters: the LGO pointer which will receive the return
value, and another LGO pointer corresponding to LGO which will be the parent of this
LGO. Each LGO has a parent LGO, and these ‘parent/child’ links form a strict
hierarchy.
 The following code fragment shows CreateLGO() being used:

int *ip;

 36

int lgo* IP;

...

ip = CreateLGO(/, IP); // The root LGO (/) is to be the parent.
CloseLGO(IP);

 The LGO remains in memory until a call to ‘CloseLGO()’. In this
sense, it works similarly to ‘OpenLGO()’.
 Each open LGO corresponds to a heap. When the programmer
allocates memory, e.g. with a call to ‘malloc()’ or ‘new’, the memory must be allocated
in a specific heap/LGO. The programmer can choose to either specify the LGO in the
call to malloc() et al., or leave it unspecified in which case the memory is created in the
‘default heap’.

x = malloc(IP, sizeof(int)); // Creates it in ‘IP’s heap.
x = malloc(sizeof(int)); // Uses the ‘default heap’.

The default heap is a pointer to a heap corresponding to some open LGO. The default
heap is set by one of the following functions:

OpenLGO()
CreateLGO()
SetDefaultHeap();

In Barbados, it is recommended that programmers use the default heap and the
traditional syntax of ‘malloc()’, rather than the 2-parameter version of ‘malloc()’. The
reason is that (a) programs which simultaneously manipulate just a few LGO’s will
often be smaller this way, and (b) this syntax involves less modification to existing
code.
 For example:

class tree {
public:
 tree *right, *left;
};
 tree : tree;
tree *root, lgo* ROOT;
 root : pointer to tree;
 ROOT : lgo* of tree;
root = CreateLGO(/, ROOT);
 = 0x84f580;
ROOT;
 = B271; /* An LGO pointer value */
root;
 = 0x84f528; /* A normal pointer value */
root->left = new tree;
 = 0x84f60c; /* Allocated in the new LGO */
root->right = malloc(sizeof(tree));
 = 0x84f62c; /* Also allocated in the new LGO */
CloseLGO(root); /* The default LGO now reverts */

 37

 /* to the LGO containing the */
 /* current directory. */

 More details on the semantics of the persistence operators, for example
how they work with sharing and transactions, are given in Appendix B (‘Persistence in
Barbados’).

7.2.3 Scoping and Naming
 The normal C++ rules for variables’ scope, visibility and lifetime apply with
local variables. (Local variables are any objects declared inside a function or compound
statement).
 In addition, any object in the current directory can be accessed with a simple
identifier. These objects correspond to ‘file scope’ variables in standard C++. Note
that the ‘current directory’ here refers to what was the current directory at the time the
object was declared, which can also be thought of as the object’s ‘home’ directory.
 However, a simple identifier can be used to identify not just an object in the
current directory, but also any object inside the immediate child directories of the
current directory.

Definition”name-space”: The name-space means the set of named
objects which can be identified with a single identifier. (Not to be
confused with the ‘namespace’ keyword in the draft C++ standard.)

The reasons for this naming scheme are:

To encourage layering of software:
 Each function in each directory should ideally be constructed from general-
purpose classes/functions, which are accessed using their full path names, plus more
specific classes and functions which are implemented in subdirectories of the object’s
directory. The inclusion of child directory objects in the name-space encourages the
use of objects in subdirectories, while the fact that this only applies to immediate
children discourages users from ‘jumping’ a layer and directly accessing objects two
levels away.

For importing modules:
 In Barbados, a ‘directory’ corresponds to a module. If one directory needs
objects provided by another directory, then the user can either denote them with path-
names, or merely set up a reference from the first directory to the second (using a C++
‘directory&’ object, e.g.: directory &x = /...). The latter alternative will
make the second directory look like a child subdirectory, and so according to the
above rule about immediate child directories, all the objects inside will immediately
become part of the current name-space, i.e. to be used without qualification. This
technique makes Barbados directories act like Ada ‘packages’.

To avoid name-clashes:
 The new ‘namespace’ construct in the draft C++ standard was designed to
avoid name clashes, either compilation name clashes or loader name clashes. As
programs and libraries become larger, name clashes become more common.

 38

 Barbados directories provide the same features as C++ ‘namespace’s, but I
would argue it provides them more elegantly because it does not require modification
to the language.

 If there are multiple equivalent identifiers in the current name-space, then the
identifier in the current directory always takes precedence over identifiers in child
directories. If there are multiple objects with the same identifier in child directories,
and this identifier is accessed without being qualified by a directory name, then an
‘ambiguous identifier error’ occurs.
 In addition, the contents of the special directory ‘/BIN’ are always in scope.

7.2.4 Path-names
 Since Barbados is an integrated persistent system, and programs are
constructed from fine-grained components that exist in a directory hierarchy, it was
necessary to support path-names at a very low level. In fact, it should be possible to
use a path-name wherever a normal C++ identifier is legal. A path-name should
resolve to a named object, complete with type, storage class and location.
 In Barbados, path-names operate in a very similar way to UNIX. The
root directory in Barbados is ‘/’ as it is in UNIX. Path-names can be either absolute, in
which case they start at the root, or relative in which case they start with some object
that happens to be a directory and happens to be in the current directory (or indeed,
any object which can be denoted by a simple identifier).
 A path-name consists of a series of directory names, separated by ‘/’
symbols. A path is resolved by starting at the first directory, taking the next name,
looking that name up in the directory, and continuing. All the identifiers in a path-
name, except the last one, must be directories of some kind: either a normal Barbados
directory, a reference to a directory, or an LGO pointer to a directory.
 Relative path-names can also incorporate the ‘..’ symbol, meaning the
parent of the current (or denoted) directory. The ‘..’ on its own can also be used to
denote the parent of the current directory, and a ‘.’ on its own can be used to denote
the current directory (although it is always redundant in a path name).
 For instance:

/cl/Vector V;
output/xl;
../barrel;
..;
.;
/; // The root directory

All the above are valid Barbados statements, since they resolve to named objects and
therefore valid expressions. The values of those objects are printed on the console in
each case.
 The ‘Print()’ method for directories displays a directory listing.
Therefore, the following two code fragments are equivalent:

dir();
.;

 39

 A directory listing displays the directory name, and generally about 4
columns of named-objects. A limited amount of type information is displayed for each
named object, for example:

f() // A function
SRC/ // A directory
n // A variable
#max // A macro
complex // A type

 When a path-name occurs in source-text, outside strings and comments
and so on, it is resolved at compile-time. If no such object exists, an ‘undeclared
identifier’ error will result. For example, the following will yield an error:

int f()
{
 D.Create(“foo”, typeof(int)); // Create: D/foo
 D/foo = 4;
}

 Therefore, path-names cannot be used in this way to denote objects
which are created at run-time. Run-time evaluation of path-names is provided by the
‘Find()’ and ‘FindAny()’ member functions of the class ‘directory’. For example, the
following is legal:

int f()
{
 D.Create(“foo”, typeof(int)); // Create: D/foo
 (int)D.FindAny(“foo”) = 4; // Assign to it.
 // Or: (int)(.).FindAny(“D/foo”) = 4;
}

 If Barbados is being used as a shell language, e.g. for file management,
the compile-time path-names are sufficient. This is because commands are being
executed at the same time as they are compiled, and so the compile-time context is the
same as the run-time context. For example, the user can type:

delete D/foo;

 Path-names can resolve to any named object, including type-definition
objects:

/cl/f(5,4); /* A function object */
/cl/bar += 1; /* A variable object */
/cl/Vector V; /* A class object */

 The lexical analyser removes any confusion between the ‘.’ token and
‘.’ as used in float constants. The parser then distinguishes between ‘.’ when used to
denote the current directory and when used for member access or ellipsis dots.

 40

 Note also that the '/' token is now overloaded. It is used both as the
path-name separator and as the division operator. How are ambiguities like the
following resolved?

a = /cl/b / 2;
a = b / c;

 The compiler relies on type information to remove confusion. If an
identifier is followed by a ‘/’, and it is a directory, then it is interpreted as a path-name.
Otherwise it is interpreted as an operator/(). Therefore it would be foolish to write an
operator/() which operated on directories, because it would not be possible to use it
except by enclosing the operands in brackets.
 Path-names are implemented at a level in-between lexical analysis and
parsing. Therefore the same mechanisms allow path-names to be used to denote types
in declarations as well as objects in expressions. However, when an object is being
created, it is not legal to use a path name. For example, the following is illegal:

int cl/f(int n)
{
 return n + 2;
}

..as is:

#define cl/min(a,b) (a<b)?a:b

 The reason for this restriction is that Barbados assumes that each object
is compiled in the same directory it exists in. This directory is called the object’s
‘home directory’, and is defined as the directory in which the object was first declared.
It is important to use the same context (i.e. name-space) when recompiling objects.
(Note that only named objects are compiled, and that each named object is guaranteed
to belong to a particular directory. Dynamic objects of course are neither compiled
nor belong to any particular directory).
 Use of the ‘\’ backslash character was considered instead of the forward
slash for use in path-names. One advantage would be that it removes the ambiguity
with the division operator. ‘/’ was chosen instead because it is more prominent on most
keyboards, it is the character used in UNIX which inspired these path-names, and
backslash causes complications when path-names are represented as strings (as they
will often have to be in Barbados), because of C++’s special interpretation of ‘\’ in
strings. However, there are advantages either way.

7.3 Barbados’s intentional omissions from C++
 Barbados C++ is not a strict superset of C++. Some features of C++
have been disabled, (though they will still be parsed), because they correspond to
concepts which are no longer meaningful. Other features were not implemented simply
because of lack of time.
 The following features are omitted because they are no longer
meaningful:

 41

• ‘extern’ and ‘static’ keywords (except when ‘static’ is used within a function or

class).
• #include
• namespaces

 In the Barbados paradigm, directories are used rather than ‘modules’.
If objects in one directory wish to access objects in another directory, then path-names
or naming rules are used to retrieve the object.
 As a result, there is no need for header files or ‘extern’ or ‘static’
storage classes (except when ‘static’ is used within a function or class). If one wishes
to use a certain set of functions or objects, it suffices to create a link from the current
directory to the directory where those objects reside. This link will pull them into the
current name-space. This feature is very similar to the concept of ‘importing’ modules,
e.g. in Ada. It saves the programmer from having to keep function definitions
consistent with their prototypes.
 There is no ‘persistent’ keyword or storage-type as in the E language.
In Barbados, every object automatically persists until explicitly deleted (although note
that deletion can occur both at the fine-grained level and at the LGO level). Note also
that there is a special heap, called the ‘temporary heap’, where objects are understood
to be transient.

7.4 Barbados’ temporary omissions from C++
 There are other omissions Barbados C++ has made from standard C++.
The following features are not supported yet, due to limited resources:

• Virtual functions
• Virtual inheritance
• Proper constructor/destructor semantics
• Templates
• Bit-fields
• in-line functions
• miscellaneous features, such as doubles, const/volatile, signed/unsigned.

 42

8. Fine-grained Builds
 (This chapter is to be published in Software: Practice and Experience

as “Incremental Compilation through Fine-Grained Builds”)

8.1 Introduction
 Suppose a programmer writes a class definition, then writes a function
which uses that class, and then modifies the class definition. The following code
fragment provides an example of such a situation.

typedef struct {
 float x,y;
} vector;

float length(vector v)
{
 return sqrt(v.x*v.x + v.y*v.y);
}

typedef struct {
 boolean rel_or_abs;
 float x,y;
} vector;

vector v = { true,3,4 };

length(v);

 Unless the function ‘length()’ is recompiled following the modification
to ‘vector’, the function will be out of date when called and work erroneously.

Definition “A depends on B”: We say that object A depends on object B if
a modification to B will cause A to need recompilation.

 Fortunately, Barbados transparently tracks all dependencies between
program components and schedules necessary recompilations, so that whenever the
user calls a function, it is guaranteed to be up-to-date with all other objects and with its
source-code.
 The fine-grained build feature applies to the above example in the
following way:

typedef struct {
 float x,y;
} vector; // ‘vector’ is compiled now.

float length(vector v)
{
 return sqrt(v.x*v.x + v.y*v.y);

 43

} // ‘length’ is compiled now.

typedef struct {
 boolean rel_or_abs;
 float x,y; // The old definition of ‘vector’ is
} vector; // replaced with this one.

vector v = { true,3,4 }; // This statement is compiled and
 // executed.

 // At this point, ‘length()’ is out-of-date.

length(v); // Barbados automatically detects
 = 5.0; // that ‘length()’ is out-of-date,
 // so it recompiles it and executes the
 // new version.

 In traditional programming environments, the unit of compilation is the
‘file’ or ‘module’. The dependencies between modules are stored in a file, typically
called a ‘makefile’, and a program called a ‘build tool’ processes the dependencies and
schedules necessary compilations to bring a program up-to-date.
 However, in an IPPE, the program components are much finer-grained.
This difference in granularity leads to very different requirements of a build-tool. For
example, the user cannot be expected to invoke a ‘make’ tool on every command, nor
can the user be expected to manually maintain dependency-lists (e.g. as UNIX
programmers commonly do).
 Therefore, an IPPE must either use an interpreter instead of compiler, or
it must have a fine-grained build tool (it would be unusable otherwise). This chapter is
about how Barbados provides this feature, and how this feature is used to achieve
incremental compilation.

8.2 The Problem Statement
 I propose that any fine-grained build tool should satisfy the following
requirements:

(a) Generate dependencies automatically.
(b) Bring or keep all program components up-to-date transparently.
(c) Ensure that there are never multiple versions of a compiled object (i.e.

products of the same source code), in the program development area.
(d) Ensure that no out-of-date code is ever executed.

 44

8.3 Some Subtleties
 Reasons why the implementation of a fine-grained build tool can be
complicated, (and why algorithms used in traditional make tools e.g. UNIX ‘make’
cannot be applied) include:

(a) Dependencies must be generated automatically (they are too numerous for
the programmer to generate them).

(b) Functions, type/class-definitions, variables and preprocessor macros are all
involved in the process.

(c) An entity can change size after a recompilation, and so depending on the
implementation, it might change address.

(d) The tool must deal with recursive types and recursive functions.
(e) The tool must deal with thousands of entities (or more) rather than tens of

entities.
(f) Objects can be modified at any time, so whereas traditional compilers can

rely on the static source code to order the compilation of objects such as
structures3, a fine-grained compiler cannot.

(g) When objects are deleted, this could potentially cause dangling pointers in
dependency lists.

(h) Objects may even become out-of-date during the recompilation process,
e.g. by a function parameter value changing, which has implications for the
ordering of recompilations.

(i) Dependencies can change during a compilation.

8.4 My Solution: Generating Dependencies
 The Barbados solution to the fine-grained build problem is presented in
two halves: how Barbados generate dependencies, and how it processes them. The
following section deals with dependency generation.

8.4.1 The entities that the build tool must deal with
 In the C++ language, there are the following types of entities which the
build tool must deal with. (Other statically typed, compiled languages will have similar
entities).

typedef struct {
 int x,y;
} Point;

/* A type or class */

Often depends on other types, because of pointer fields and nested objects.
Function prototypes can depend on types/classes.

Point P; /* A static variable */

3 e.g. to generate apropriate sizeof()’s and field offsets,

 45

Only depends on the type; although other objects can depend on it. If you change
its type, this can affect everything that depends on it.

Point Point::Reflect()
{
 x = -x;
}

/* A function */

Consists of a prototype and a body. If the prototype changes, e.g. you modify a
parameter type or return type, this can cause substantial changes in other functions
which use it. If the body changes, at most this can change the address (which can
be dealt with in various ways).

#define min(a,b) \
 ((a < b) ? a : b)

/* A preprocessor macro */

Does not depend on anything. On the other hand, any object which uses a macro
is said to depend directly both on it and the objects generated in its expansion -
which can only be determined during the compilation of that other object.

 In the remainder of this chapter, all of these entities will be referred to
collectively as ‘make-objects’ or simply as ‘objects’.
 In my system, the member functions of classes are considered to be
make-objects in their own right. This means that dependencies can be expressed
specifically to the member functions rather than to the class definition. The alternative
was to lump them together with the class, for dependency purposes, but this was
considered too large-grained to be desirable - it would generate too many
recompilations.
 In C++, the above entities are precisely those entities which have
source-code and can be separately compiled. Therefore, they are the entities used by
the build tool. Local variables, even local static variables and ‘goto’ labels do not
participate in the build tool. In my system, immutable system functions such as
‘strcpy()’ also do not participate in the build tool. The above taxonomy would also
apply to most other modern compiled languages.

8.4.2 Dependencies
 Object ‘A’ is said to depends directly on object ‘B’ if a change to object
‘A’ would cause object ‘B’ to become out-of-date. ‘Out-of-date’ means that ‘B’ will
change (or might change) if it were recompiled.
 Therefore, an object depends on any other object or type-definition that
is directly used by the object. This includes every function called, every static variable
accessed, every type mentioned. In an object-oriented language, it also means the
methods used - for example:

X * Y; /* might use: */ operator*(complex, complex)

 46

 The phrase ‘dependency list’ will refer to the set of objects which a
given object directly depends upon. The dependency list for an object can be generated
quite easily during its compilation.

8.4.3 The ‘Interface’ optimisation
 In UNIX, an object’s time-stamp is updated whenever it is recompiled.
This property is tantamount to asserting that the object changes each time it is
recompiled.
 An effective optimisation is to separate an object’s interface from its
body. The interface would be defined as that part of the object capable of affecting
other objects, (in the static world of compile-time). In practice, this usually means a
function’s prototype. Depending on how functions are implemented and how recursion
is dealt with, the address of a function might also belong in the interface, since this is
part of the view that the outside world sees.
 An object would only be said to change if its interface changes.
Interfaces change relatively infrequently. Therefore, making this distinction
dramatically reduces the frequency of objects being out-of-date and needing
recompilation. (In this framework, it is desirable for interface-change-stamps to be as
old as possible and compile-stamps to be as new as possible).
 Depending on which build algorithm is used, this distinction can be a
necessity rather than an optimisation because of recursive types and functions.

8.4.4 Being up-to-date
 Each object is given a time-stamp which marks the last time its interface
changed, as well as a time-stamp marking the last time it was compiled.
 An object is out-of-date, i.e. requiring recompilation, if it depends on an
object whose interface has changed since this object was compiled.

8.4.5 Generating dependencies
 The process of generating dependencies comes down to the compiler
marking all the functions, static variables, types and macros that it comes across during
the compilation of an object. A dependency of the form ‘A depends on B’ can either be
stored in a list associated with ‘A’ or a list associated with ‘B’. Because of the top-
down nature of my algorithm, it was preferable to store dependencies with the object
that depends, rather than with the object that is depended upon.

8.5 My Solution: Make()
 In the remainder of this chapter, the Barbados build tool will be referred
to as ‘Make()’. The application programmer will be referred to as the ‘user’, since they
are the user of Make().

 47

8.5.1 When is Make() called?
 Make() is a completely transparent feature. This means that the user is
never required to explicitly invoke it and the user is not informed that it is even
operating.
 Make() provides the abstraction of every object being always up-to-date
and guarantees that no out-of-date code is ever executed. This means that the compiler
resembles an interpreter. However, unlike interpreters, errors are reported early,
namely whenever the user executes code whose transitive closure includes an object
with an error.
 Whenever the user enters a compileable entity at the command-line, that
entity is compiled. Sometimes that entity also needs to be executed, e.g. expressions
and other statements.
 Make() operates lazily. This means that objects are only recompiled
when they are needed. When Make() is called, it is called recursively over all the
objects accessed in the transitive closure of the code the user wants to execute. This
means that the user can make multiple modifications to various objects, and
compilation is only scheduled when the user calls some affected code.
 The dependency list for an object is updated each time it is compiled.
 Make() is never called at run-time - it is purely a ‘compile-time’ or
‘development-time’ function. Admittedly, the run-time/compile-time distinction is quite
blurred in an interactive system such as this one: what this distinction means is that
once user-code begins execution, Make() is never invoked again until control returns to
the Barbados command-line.
 For example:

typedef struct { // A type-definition. The compiler is
 int x,y; // called, but Make() is not, since no
} Point; // code is generated.

Point P; // A variable declaration. The compiler
 // is called, but Make() is not.

Point Point::Reflect() // A function definition. The compiler
{ // is called, but Make() is not, since no
 x = -x; // code is generated for immediate
} // execution.

P.Reflect(); // An expression. The compiler is called,
 // then Make(), and then the code itself
 // is executed.
Point P=Q+C; // A declaration that includes an
 // expression. Calls the compiler,
 // Make() and then the code itself.
Point A,B,C; // A multiple declaration. Only the
 // compiler is called.

 48

8.5.2 The ‘root’ object
 The purpose of one invocation of Make() is to bring a given ‘root’
object up-to-date. This root object could be a single function, e.g. a function called
‘main()’, or it could be a statement issued at the command-line in interactive mode,
for example:

A() + B() + C();

 In this case, this command is wrapped up in a function object called
‘_top_level’ which has dependencies to all three functions. To bring
‘_top_level’ up-to-date is to bring every object needed for the current command
up-to-date.
 Sometimes, an object will need to be recompiled twice: once to
regenerate dependencies, and then again if Make() causes types (and hence methods) to
change. This situation can also happen to ‘_top_level’, which is why Barbados
needs to capture source-code not just for declarations but also for statements.

8.5.3 My Algorithm:
 A first approximation to a build algorithm could be: “recompile
everything that is out-of-date”.
 This algorithm is not sufficient, because objects can become out-of-date
during the recompilation of another object, even if they have been compiled once
already during this call to the build tool. For example, suppose the type complex and
the object complex F(complex); are both out-of-date. If the function is
compiled first, the subsequent compilation of the type could cause the function to be
out-of-date again.
 This illustrates the fact that the order of compilations can be important.
As a second approximation, therefore, suppose we take the root object and follow the
transitive closure of its dependencies. When we reach an object with no dependencies,
we rise up the dependency graph, recompiling every out-of-date object as we go.
 This algorithm has the benefit of compiling an object’s antecedents
before compiling the object itself. However, this algorithm is insufficient for two
reasons:

(a) The first reason is that it doesn’t deal with circularities in dependency graphs

(circularities arise through recursive functions or types). Complicated recursive
types might mean that some objects actually need to be compiled twice or even more
times4, so it is not possible simply to ignore dependencies to objects already reached.

(b) The other reason is that a compilation of an object can actually cause that object’s
dependency list to change. For example in C++, a change in a macro or in a type
can cause that function to depend directly on different objects. These objects
newly-inserted into the dependency list will not have been checked.

4 Actually - this is implementation-dependent: if all objects are referenced by pointer-pointers and
pointers to classes are distinguished in the dependency lists from nested structs, this situation can be
prevented.

 49

 Therefore, my algorithm detects circularities (by marking objects
reached) and doesn’t descend into objects already examined during the current run of
Make(). It also repeats the whole process as many times as it takes before there are no
more compilations. This algorithm solves both problems.
 This algorithm may appear at first to be inefficient, and to cause
unnecessarily many recompilations because recursive objects will be compiled more
than once. The usual way of dealing with recursive functions and functions used before
they are defined is to have a separate back-patching or a linking phase [Aho86],
whereas here, successivecompilations of an object effectively insert the recursive
references. However, this extra amount of recompilation will seldom amount to a
significant delay in response, and changes do not propagate around a cycle of recursive
references. Only recursive code requires more than one compilation during one run of
Make(), and only very complex recursive code requires more than two compilations
during one run of Make().
 The typical scenario is thus: The transitive closure is performed for the
first time, during which the majority of out-of-date objects are recompiled. During the
second pass, there may be a few more recompilations necessary because a recursive
type or function changed its interface during the last pass or because dependency lists
changed and new objects were introduced. In the third pass, no recompilations will be
needed or performed, and so there will be no fourth pass.
 It is my experience that the time spent doing this graph traversal, even
multiple times, is insignificant compared to the time spent on recompilations.

8.5.4 The ‘Check-stamp’ Optimisation
 According to the above algorithm, each execution of a program would
require a traversal of its transitive closure - every component object it uses. Although
this can be quite quick even for very large programs, I have implemented one
optimisation to avoid this traversal. Each object is stamped with a third time-stamp
called the ‘check-stamp’. This stamp indicates the last time it was examined by
Make(). This stamp is mainly used to avoid cycles when Barbados looks at the
transitive closure of an object.
 Barbados also logs the last time there was any change to an object’s
interface in the whole system. If an object’s check-stamp is more recent than this
global ‘interface-change’ stamp, then it is impossible for that object to be out-of-date.
Therefore Barbados can skip even the transitive-closure checking stage. This
optimisation is handy for long streams of little commands being entered interactively.

8.5.5 Example
 To provide an example of my algorithm in action, and also to discuss
recursion, consider the following code:

struct VALUE {
 int a,b;
 struct TREE *parent;
};

struct TREE {
 struct TREE *left, *right;

 50

 struct VALUE val;
};

VALUE f(TREE t)
{
 if (t->left)
 return g(t->left);
 else return t->val;
}

VALUE g(TREE t)
{
 if (t->right)
 return f(t->right);
 else return t->val;
}

TREE t;
...
f(t); /* The build tool is first activated here. */

 The dependency graph looks like this:

TREE

VALUE

f() g()

 The algorithm performs as follows:

1. The build tool starts at ‘f()’.
2. Suppose it descends to ‘TREE’ first and then from ‘TREE’ into ‘VALUE’.
3. ‘VALUE’ will have dependencies back to ‘TREE’, however these are not followed

since ‘TREE’ has already been reached on this pass.
4. Therefore the recursion bottoms out. ‘VALUE’s time-stamps are examined, and

since ‘TREE’ was changed after ‘VALUE’ was last compiled, ‘VALUE’ is deemed
out-of-date and it is recompiled. Since the size of the type-definition has not
changed, it returns to the same location as before.

5. Returning up a level, ‘TREE’ is then examined. It is likewise out-of-date, and it is
recompiled.

6. Similarly for ‘g()’ and finally for ‘f()’.
7. Since there were some compilations (which could have affected interfaces or

dependency lists), the entire pass is repeated.
8. This time only ‘TREE’ is recompiled. This is because all the other objects are up-

to-date, and yet ‘TREE’ depends on ‘VALUE’ and ‘VALUE’ had a recent

 51

interface-change when the reference to the ‘TREE’ stub was replaced with the new
‘TREE’ object.

An alternative solution is described below, with reasons why I chose to adopt the above
algorithm.

8.5.6 An alternative algorithm
 Suppose we separate function bodies and function prototypes. Callers
would point to a function header rather than a function body, and the body would be
free to change size or implementation without affecting the prototype. A similar
approach would then be used for types, for example a structure definition which
includes a pointer to another struct would point to a ‘prototype’ for that struct which
specifies the size of the function and a pointer to the actual structure definition.
Dependencies would then be expressed between these objects (mostly from a body to a
prototype). Furthermore, instead of a ‘compile stamp’ and an ‘interface-change
stamp’, there is a single stamp on the ‘body’ object and a stamp on the ‘interface’
object.
 Incidentally, this kind of approach has a similar effect as having multiple
types of dependencies, e.g. Eiffel discriminates between client/supplier dependencies
and inheritance dependencies.
 For example, the above example would be rearranged as follows:

VALUE

TREE

VALUE f(TREE);

body of f()

VALUE g(TREE);

body of g()

 This structure has the advantage that any valid program would be
represented by an acyclic directed graph (at least after the initial compilations during
which dependencies are generated).
 Furthermore, a build algorithm can be written which discovers
dependencies on the fly and yet is guaranteed to terminate:

a) Recursively descend the program graph.
b) Upon ascent from a recurse, compile an object if it is out-of-date.
c) Compare dependency lists before and after a recompilation. Whenever they change,

recurse again down the new dependencies and return to part (b).

 This algorithm works because given an existing program graph, a
change in dependencies can only affect objects higher in the dependency graph.
 Each function call will then require a run-time indirection from the
function-object pointer to the code itself, or a linking phase to make these conversions.
The linking phase would be applied after all recompilations have been made, and it
would be applied to all objects which were recompiled since the last linking phase.

 52

Dangling ‘function call’ pointers from old functions to invalid addresses will never be
invoked because the build tool would prevent it.

8.5.7 The choice of algorithm
 Of these two algorithms, I chose to implement the first algorithm in my
system because

(a) It is a little awkward to separately compile a function body and its prototype.

(Similarly for structs, if a body/interface distinction is made).
(b) It was desired that CALL instructions would contain pointers to the physical

location of a function’s body; whereas the above algorithm would require the use of
pointer-pointers to function bodies (so that when an object increases in size and
needs to be moved elsewhere, existing references remain valid).

 Note that it was important to implement a ‘lazy’ algorithm rather than a
‘greedy’ algorithm. A ‘lazy’ algorithm is one in which objects are compiled on a need-
to-use basis. A greedy algorithm is one in which objects are recompiled as soon as they
become out-of-date. A greedy algorithm would perform a lot of unnecessary
compilation, because often an object becomes out-of-date yet does not need to be used.

8.5.8 Deletion of Objects
 What happens if an object is deleted? Does it cause dangling references
in the dependency lists? Here is a typical scenario:

int X; /* X is created */

int f() /* Function f() is created. */
{ /* It depends on ‘X’. */
 return X;
}

delete X; /* X is deleted. */

f(); /* Make() runs on ‘f’. It checks the dependencies.*/
 /* If ‘X’ has been freed, this will cause all kinds */
 /* of errors. We really just want an error */
 /* gracefully reported. */

The problem was solved in the following way. Dependency-lists and other information
relating to the build tool are stored separately from the object itself. They are stored in
a system object called a ‘make-node’ which is linked to the actual object. A
dependency list actually consists of a list of pointers to make-nodes. When we delete an
object, we free the object itself but its make-node is recycled. Whenever the system
examines a dependency from one object to another, the time-stamps provide the system

 53

with enough information to distinguish between a true dependency and a dependency to
an object which has been recycled.
 Therefore the above code will correctly generate an error, as follows:

f();
 <Error: Undefined identifier: ‘X’>

 Furthermore, an object which has not been successfully compiled is
marked as out-of-date, regardless of its dependencies. Therefore, we can create an
object ‘X’ and call ‘f()’ and it will successfully recompile ‘f()’ with a reference to the
new ‘X’:

int X=10; /* An object called ‘X’ will be recreated with a */
 /* new make-node. */

f(); /* ‘f()’ is now recompiled successfully. */
 = 10;

 If an object is renamed, it is deemed to have modified its interface but
otherwise it retains the same make-node. Updating its interface-change time-stamp will
cause all the objects that depend on it to be considered out-of-date, so they will be
recompiled before being used (although probably generating an error unless a new
object with the old name is created).

8.5.9 Make() and Classes
 If a class (or struct or union) is redefined, i.e. a new definition
overwrites an old definition, the two must be checked for equality. Two structs are
considered equal if and only if they have the same members with the same names, types
and offsets (or the same name and type in the case of member functions). If the class
has changed, then the ‘interface-change stamp’ of that class is updated and everything
dependant on it will immediately be considered out-of-date.

8.5.10 The Preprocessor
 The C/C++ preprocessor is integrated into Barbados. Macros can alter
how a function is compiled in many ways - by inserting braces, by pasting tokens,
inserting keywords and so on. However, this does not affect Make(), since very few
assumptions are made about the relationship between two successive versions of an
object. (The only problem arises if a macro changes the name of a compiled object. In
this case, the system will just generate an error “Source-code lost for object X”).
 If a macro is written to replace some other identifier, e.g. a typedef
name, then the macro will overwrite that identifier. This will cause the old typedef’s
interface-change stamp to be updated. Therefore, all objects which depend on that
identifier will be marked out-of-date and will be compiled before being used again.
 Conditional compilation, if limited to the inside of a function, is
supported with no extra effort by the build tool. ‘#include’ files are not supported in
Barbados because they are unnecessary.

 54

8.6 Discussion

8.6.1 Discussion - What is the time-complexity of this algorithm?
 There are two elements to this algorithm: traversing the graph of
dependencies, and actually doing the recompilations. According to empirical evidence
described later, and according to discussion in section 8.6.2, the graph traversal
occupies an insignificant amount of processing time compared with the time spent on
recompilations. So the time complexity of Make() as a whole can be determined by
considering how many recompilations will be invoked.
 Let us consider the set of objects (functions, types etc.) whose source-
code has been modified. Some of these will have ‘interface changes’, whereas others
will not. In other words, objects will have been compiled directly after being edited, and
in the case of functions whose interface doesn’t change, there will be no further
compilation required. However, if the interface of a function or the contents of a class
or struct definition changes, or a function increases in size so much that it needs to be
reallocated, then we will require compilations of every object that calls/uses the object.
There is no upper bound on this set. Therefore, the time complexity of this algorithm
can best be described by:

Make() is in O(a + b), where

a = number of objects without interface changes
b = the sum of all objects which use objects which have had interface changes.

8.6.2 Discussion - Does Make() scale to very large programs?
 The algorithm used by Make() involves a traversal of the transitive
closure (through dependencies) of the program being executed, where this traversal is
performed each time code is executed following some modification to the program. It
might seem that this graph traversal would be infeasibly slow for large projects which
consist of thousands of functions, especially since the aim of an incremental compilation
system is to allow the user to make frequent small changes to a program.
 For a worst case, consider a menu program which allows the user to
select from a menu of large applications - each time the user interactively modifies
something, the following call to the menu program will involve a traversal of the
dependency graphs for every application.
 However, this is not considered a problem for two reasons. Firstly, a
program can actually be very large before this becomes a serious problem - a simple
graph traversal with infrequent recompilations can be quite quick even for quite large
projects. Secondly, Barbados uses large-grained objects (LGOs) to factor out
dependencies and dependency checks.
 Indeed, the motivation for incremental compilation comes partly from
the problem of developing very large applications.

8.6.3 Discussion - Does Make() reach a unique stable configuration?
 Let me define a stable configuration as a set of program objects which
do not change through recompilations of the same source-code.

 55

 There is nothing in the Make() algorithm to guarantee that a stable
configuration is unique. However, in Barbados with C++, it almost always is. For a
counter-example, consider the following case:

typedef long A;
typedef A B;
typedef B C;
typedef C A;

 In this cycle of declarations, the last line overwrites the source for the
first line. This cycle will stabilise with all A,B and C all being ‘longs’, and yet if ‘A’
had initially been set up as a different type, we would have the same set of source code
but with a different configuration.
 I do not know of any static set of source-code which through luck or
ordering can yield alternative stable configurations.

8.6.4 Discussion - Should Make() be an application or an intrinsic feature?
 With a fine-grained build tool, the dependencies are too numerous to
have the user specify them, and the invocations of the build tool are too frequent to
have the user make them. Therefore it was considered necessary for Make() to be a
transparent feature, implemented at the programming environment level.

8.6.5 Discussion - Could the UNIX ‘make’ be used in the way outlined here?
 ‘make’ is the ubiquitous UNIX build tool. Related to it is the
‘makedepend’ program, which automatically constructs makefiles (or at least makefile
dependency lists) given C source files and some knowledge of the C language. One can
consider whether the combination of ‘make’ and ‘makedepend’ and a C compiler
optimised for compiling small sections of code, could give the benefits outlined in this
chapter.
 However, in practice ‘make’ cannot be used as a fine-grained build tool.
It inherently deals with transformations from one ‘file’ to another (for example, time-
stamps are based on files’ UNIX time-stamps).; whereas the objects which a fine-
grained build tool deals with are too small for it to be efficient to treat them as files.
Furthermore, ‘make’ has no concept of the distinction between an object’s interface
versus its implementation, and therefore does not cope with circular dependencies.
Also, to properly maintain fine-grained dependency-lists really requires a very close
degree of integration between the compiler and the build tool. (Dependencies are very
numerous and therefore need to be maintained transparently, they are very dependent
on the language definition, and they change very frequently).

8.6.6 Discussion - What Other Languages/Systems would this Apply to?
 While this system has only been implemented for C++, there is nothing
to prevent it being quite a general solution to the fine-grained build problem. It could
be applied to any statically typed compiled languages, object-oriented or otherwise.

 56

 To apply this build tool to another language would involve modifying
that language’s compiler to (a) be efficient at compiling single objects at a time, (b)
generate dependency information, and (c) interact with the Barbados persistent store.

8.6.7 Discussion - How does this granularity of compilation compare with the
alternatives?
 The Barbados compiler and build tool operate at the granularity of
individual objects (e.g. classes, functions, variables and macros). That is, dependencies
are tracked between these objects and these objects are the units of recompilation. This
level is called ‘procedure-level incremental compilation’.
 There are incremental compilation systems which work at an even finer
grain than procedures, for example statements or sub-expressions [Ear72] [Mcc96].
 These finer levels of granularity can speed up the recompilation process.
However, they have disadvantages: the quality of the generated code can suffer, due to
various code optimisations being inapplicable (e.g. code motion, register allocation), and
they are probably harder to program. (Although note that procedure-level compilation
also comes with a cost, namely that global optimisations cannot be applied. An example
of a global optimisation is passing function arguments in registers).
 Judging from experience with Barbados, it is not necessary to implement
finer levels of granularity. The user seldom notices the pause while recompilations are
being performed, even within large projects.

8.6.8 Discussion - How does this solution fit in with configuration management?
 Configuration management is the broad problem which includes version
control, building applications and supporting different platforms.
 The system described in this chapter is not as general as a program such
as ‘make’. In order to provide the flexibility a user-defined ‘makefile’ has, a
commercial version of Barbados would be able to construct complex software systems
by making calls to the normally transparent Make() function. An individual program
(‘executable’) could be developed and debugged with all the benefits described in this
chapter, and the application (‘set of executables’) could be constructed for each
configuration more under the user’s control.
 To support such usage, Barbados would create objects called ‘compiler
context objects’. These objects would store information such as what compiler was
used, what options were used, and what processor was targeted. Each time these
options are modified, the relevant code would become out-of-date.
 At some stage, users would also like to be able to take copies of
programs or applications, e.g. to release the software or have stable backup versions of
the application. A utility is planned for Barbados which will use dependency
information to wrap up functions and their transitive closures into a single object which
can then be regarded as an executable or object file. This action will effectively unlink
the object code from the source-code.

 57

8.7 The Consequences of Fine-grained Builds
 When a system provides an interactive programming interface such as
Barbados, and a fine-grained build tool, the consequence is that incremental compilation
and interactive compilation are provided.

Definition “Incremental Compilation”: Incremental compilation refers to
programming environments where a small modification in source-code
will generally lead to a correspondingly small amount of recompilation
in order to bring a program up-to-date.

Definition “Interactive Compilation”: Interactive compilation refers to
programming environments with a very short edit-compile-debug cycle.

 Incremental compilation is not a well-used technology. One possible
explanation for this is that until now, the fine-grained build problem has not been
recognised or solved. Existing approaches to incremental compilation are described in
the following two sections.
 Interactive compilation provides the user with the best of both worlds of
compilers and interpreters, namely:

• Fast execution of code (a property of compilers)
• A quick edit-compile-debug cycle (a property of interpreters)
• Early error detection (a property of compilers)

 A consequence of providing interactive compilation within an IPPE is
‘monolingualism’.

Definition “Monolingual System”: A Monolingual system is one in which
the high-level programming language, and the shell-level programming
language are combined into the one language.

 In almost all existing programming systems, there is one language for
high-level programming tasks and another language for invoking applications and
interacting directly with the directory hierarchy and operating system. However, in an
IPPE there is no distinction between the directory hierarchy and a process address-
space, nor is there a distinction between functions and applications. Therefore, with the
provision of interactive compilation the system becomes simultaneously a high-level
programming environment as well as a shell-level operating environment.
 Advantages of a monolingual system include:

• Users need only become expert in one language
• In a monolingual system, the barrier between shell-level objects and high-level

programming language objects is broken down, making communication between the
levels easier.

 There have been attempts to provide monolingualism before,
[Hee85][Fra83]. However, monolingualism has not yet become popular. This is

 58

perhaps because a monolingual system needs to solve the persistence problem first, and
this has not been done before outside the context of IPPE’s.

8.8 Results
 My system was compared against two other development environments.
The experiments were based on comparing how many lines of code each compiler had
to compile in order to bring a program up-to-date. A single large application was used:

Test Application ‘tt’ : A program for generating high-school timetables using AI

search techniques
Size and
statistics

38 modules, all written in C; 38 header files.
20159 lines of code in *.c files
1161 lines of code in *.h files

 This application was not originally written for Barbados, and it was not
modified in any substantial way for Barbados. It was chosen as the test application on
account of these facts and its size. There is a high degree of interaction between the
modules, i.e. it has a relatively dense dependency graph. There is a central header file
of about 500 lines which contains a number of mutually recursive type definitions and
which is included by almost every module.
 The environments compared are described below:

 Barbados gcc v2.7 Visual C++ v4.0
Description The system

described here
The gnu C
compiler, common
on UNIX systems,
together with the
UNIX ‘make’
command

The Microsoft
C/C++ integrated
development
environment;
supposedly a state-
of-the-art
incremental
compilation system

Method of
counting
of lines compiled

A special function
was added to
count lines of
source code as
they’re compiled

The ‘makefile’ was
extended to pass
input files through
the preprocessor
and then through a
line-counter.

Analysis of the
‘build window’
messages and a bit
of guesswork
based on the
descriptions of
compilation
techniques given in
the documentation.

 In Barbados, the preprocessor is integrated into the lexical analyser. The
‘gcc’ preprocessor has the property that it outputs the same number of lines as are
input through include files and source files, which means that the number of lines that
pass through it can be compared with the number of lines passed to the Barbados
compiler.

 59

 In Visual C++, the system informs the user of which source files are
being analysed or compiled. This information, along with the compiler
documentation’s description of the incremental compilation techniques, was used to
calculate how many lines of code were probably compiled.
 Various scenarios, consisting of small changes to an application’s
source-code were tried out in each environment. The number of lines of code each
compiler needed to compile are listed below.
 (The lines-of-code metric was chosen for the comparison in order to
compare the effectiveness of the build tool rather than the speed of the relevant
compilers. Multiple numbers are given where multiple examples were tried).

Lines of code Barbados gcc Visual C++
To rebuild all
modules

20159 150231 21320

Adding a comment
to the central
header file

4 139736 34926

Adding a comment
to a type-definition
in the central
header file

30,37 139736 1107 lines of
analysis (?)

Adding a member
to a struct in the
central header file

6371, 5448, 6173 139736 815, 2329, 815 if
added to the end
of struct; 26533,
27822, 26533 if
added to start of
struct

Adding a function
prototype

4 139736 with the
central header file;
21333, 11402,
25919 with
peripheral header
files

34926 with the
central header file;
9681, 3229, 7594
with peripheral
header files

Adding a
parameter to a
function

539, 380, 326 12699, 13823,
53272

3662, 5076, 18139

Changing the
implementation of a
function

9, 89, 48, 31 for
small changes;
310, 336, 51, 34
for large changes.

3446, 2952, 3651,
3329

9, 89, 48, 31 with
padded object
files

 These figures show the (often) vast differences between Barbados and
the other environments.
 The traditional environment, represented by ‘gcc+make’ suffers because
(a) each module must separately compile large amounts of header files and (b) because
large units of code must be recompiled when each change is made. The standard C
header files comprised about three quarters of the above figures. Of the remainder,

 60

about half consists of source files (*.c) and half consists of header files specific to that
project.
 The Visual C++ environment has the following features available to
speed recompilation: (a) precompiled headers, (b) incremental compilation of function
bodies, (c) ‘minimal rebuild’ (described below) and (d) incremental linking. All
features were turned on for the experiments, except for precompiled headers of
application header files. These features are detailed in [Mic96]. Interestingly, features
(a) and (b) are turned off by default. The reason given was that the cost of maintaining
the necessary information is generally greater than the cost savings for small and
medium-sized applications. The same is not true for Barbados: in Barbados, the cost of
compiling and building a program increases approximately linearly with the size of the
program.
 The ‘minimal rebuild’ feature is the closest feature to the techniques
described in this chapter. It consists of maintaining a database which relates each
source file to the class interfaces given in each header file. If something changes inside
a class interface, it is these ‘class’ dependencies which are checked with each source
file rather than the normal dependencies linking source files with header files. (The
application had to be compiled as C++ source for this feature to be turned on).
However, changes made to header files outside class/struct definitions are not dealt
with by this optimisation and they often cause large amounts of recompilation. Such
changes can include adding comments, declaring new functions or objects, or adding
new classes. (Admittedly, good C++ header files should consist entirely of class
definitions, but nevertheless this technique would be a lot more useful if it were more
robust).
 Visual C++ has an incremental linker and a full linker. The environment
supposedly uses the incremental linker in most situations but occasionally needs to
resort to a full link. Barbados does not require a separate linking phase; this is
performed as a by-product of compilation.
 Even very large functions can be recompiled in Barbados without a
noticeable delay, e.g. 300ms for a 500-line function. This result vindicates the decision
not to explore finer grains of incremental compilation.

8.9 Literature
 The closest work to this system is probably the LOIPE system [Med81].
LOIPE was an integrated programming environment for a language called GC,
designed for LOIPE, which was a type-safe version of C. This system was quite
advanced for its time. It consisted of a number of tools, all of which interacted via a
syntax-tree representation of programs (including the editor). LOIPE was part of the
Gandalf project [Not85]. While this system is probably quite efficient at reducing
compilation (although empirical comparisons do not seem to be available), the paper
did not describe how the system deals with the various subtleties described in section
9.3. Perhaps the language implemented was a very limited subset of the C language
(the language was defined in a technical report).
 Incremental compilation occurs naturally within an integrated
development environment. A number of incremental compilation environments exist,
for example Orm [Mag90] [Gus89], Gandalf [Not85], The Synthesizer Generator
[Rep85] [Tei81], PSG [Bah86], Mentor [Don80].

 61

 Most of these systems are based on formal language definitions of one
kind or another. For example, the Synthesizer Generator uses attribute grammars,
Mentor uses ‘METAL’: a ‘meta-language’ for specifying languages, Orm uses ‘Door
Attribute Grammars’ (an extension to attribute grammars) and PSG involves a custom-
designed ‘formal language definition language’. My system is different from these
because it is based on very standard compilation technology. That is, it achieves
incremental compilation using new ‘build’ technology rather than using new
compilation technology. As a consequence, Barbados does not suffer any of the
limitations of having to express a language formally: formal language definitions can
suffer limitations such as: (a) not being able to express all classes of grammars, (b)
having trouble with complex naming schemes and cross-module links, (c) not being
able to handcraft the compiler for better performance or intelligent error-reporting.
 All of the above systems perform incremental compilation by
manipulating syntax-tree representations of programs. In fact, text versions of program
source are not even stored, since the editors, compilers and debuggers in these systems
all use the syntax-trees. This property makes it possible to implement very fine grain
incremental compilation, however it also reduces the scope for optimising the
generated code. None of the papers reviewed discuss (explicitly) issues such as
propagating changes in type definition throughout programs. The Synthesizer
Generator and its precursor, the Cornell Program Synthesizer either make it a non-issue
by virtue of the fact that they interpret the syntax trees directly, or they propagate such
changes greedily. PSG has a ‘lazy compilation’ algorithm, whereby the modifications
to a syntax tree’s attributes are made when execution reaches that point. By
comparison, Barbados manipulates ordinary text representations of programs, rather
than syntax-tree representations. This property is an advantage for users who prefer to
use standard text editors to create programs, (although the PSG editor does have a
‘textual mode’). Linear text is also a much more compact representation. Barbados
performs procedure-level incremental compilation, which means that traditional code
optimisation techniques can be used. Also, compilation (and therefore error-reporting)
occurs just prior to execution of a program. I would argue that this is preferable to
propagating all changes as soon as modifications are made to a source object, because
such a ‘greedy’ algorithm would perform much unnecessary processing of code. It is
also preferable to compile objects/statements before a program runs, rather than as
execution reaches them, because the user generally wants to deal with errors before
run-time.
 Of the above systems, Orm, the Synthesizer Generator, PSG and
Mentor are based on statement-level or expression-level incremental compilation. The
disadvantage of these systems is that the opportunities for the compiler to allocate
registers and optimise code is considerably reduced. The advantage is that more
incremental compilation can be achieved.
 As a result of the fine-grained build approach, it has been possible to
implement a reasonably rich subset of the C++ language in Barbados. The current
implementation supports the preprocessor, inheritance, overloading (and some
persistence extensions which would tax any language definition language).
Furthermore, a side-by-side comparison of my system with other program development
environments has been performed, with a large and real software project, to
demonstrate the relative amount of code sent through the compiler; with good results.
 There are several books and papers on the UNIX ‘make’ program and
its variants, including the original paper by Feldman [Fel79], plus [Ora91] and [Dub93].

 62

However, as discussed above, the UNIX ‘make’ does not address the problems of fine-
grained builds.
 A relevant paper is “Smart Recompilation”, [Tic86], which discusses a
method for minimising compilations of modules by processing source files to separate
interfaces from implementations. This work is also in the context of traditional systems
and compiling at the ‘modules’ level. Another paper of some relevance is “Lazy and
Incremental Compilation” ([Hee94]) which discusses programs that compile fragments
as execution reaches an uncompiled fragment. This concept of ‘lazy compilation’ is an
attempt to reduce compilation times by a very different method to ours. While it is a
worthwhile avenue to investigate, it could be a very difficult problem in general.
 Various programming systems and integrated development
environments have their own built-in build tool, e.g. all Ada and Eiffel systems. The
‘Eiffel’ tool shares some similarities with the build tool as described here5, although the
basic algorithm does not generalise to a language such as C++. Unfortunately, there do
not seem to be any published sources describing the details of Eiffel’s build except
[Mey88].

8.9.1 Related Problems
 Related problems include the problems of version control, configuration
management and data evolution.
 A version control system is a mechanism for storing and retrieving
different versions of source-code (or other program components). One example is
RCS [Tic85].
 Configuration Management is discussed in 9.6.7.
 Data evolution is the problem of dealing with existing data as type-
definitions (and also the semantic interpretation of fields) change. For example, if a
field is added to a ‘struct’, there might be a lot of existing instances of the old version
of that type - and the user might need them to be updated. The solution to such a
problem could benefit from ideas presented in this chapter, however I have not
attempted to solve this problem. It is a remarkably difficult problem to solve generally,
since it can involve the human problem of managing data at remote sites, and leads into
problems of semantic changes to data-structure representations and invariants.
Practitioners work around the problem using techniques such as ‘self-defining
messages’ or objects with fields tagged by their definitions.

8.10 Summary
 Barbados implements ‘fine-grained builds’. It is necessary to provide
this feature before an IPPE can be an effective programming environment.
 As a consequence, Barbados solves the problem of incremental and
interactive compilation. Fine-grained builds constitute a novel solution to this problem.

5 With Eiffel, there are two kinds of dependencies - interface dependencies and implementation
dependencies. A client of a class depends on that class’s interface, whereas a child of a class depends
on that class’s implementation. In Barbados, entities depend separately on member functions; and
private and public members are lumped together for the purposes of dependencies; so such a distinction
is not necessary.

 63

The fine-grained builds solution is simpler, more general and more efficient than
competing incremental compilation technologies.

 64

9. Description: Barbados Programming Tools
 Intrinsic to the Barbados programming environment are the editor, compiler and
make tool. In addition, there are a number of ‘tools’ which are invoked as ordinary
Barbados functions (objects).
 For example, there are commands to rename and delete named objects plus their
source-code, and to retrieve the source-code of specified objects.
 There is a ‘grepdepend’ command, which searches for objects which depend on
a specified object.
 The Barbados ‘Help’ command takes a specified class or instance, and lists all
the available operations on it, for example:

Help(Bitmap)
class Bitmap {
 Bitmap(int w, int h, int ncol);
 Clear();
 Clear(int col);
 SetPixel(int x, int y, int col);
 Line(Place A, Place B, int col);
 ...etc...
};

 The ‘Help2’ command also examines source-code for the specified class and
brings up comments associated with each member function. The command extracts the
‘synopsis’ for the specified object, where the ‘synopsis’ is defined as a contiguous block
of comments between the function prototype and the definition. For example:

Help2(Matrix)
class Bitmap {
 Matrix(int n, int m);
 /* Creates a blank matrix */
 Matrix Transpose();
 /* Returns the row-column flip Matrix */
 Matrix Identity();
 /* Sets it to I. Must be square. */
 operator*(Matrix M);
 ...etc...
};

 The ‘Browse()’ command displays a 2-D rendering of a data-structure,
(something rarely seen except on whiteboards). For example:

 65

This display shows a real-life data-structure as used by a program called ‘tt’. ‘tt’ is
discussed in Chapter 11. This data-structure is a linked list with associated objects, and
can be seen extending from left to right across the above diagram.
 This raises the issue of whether the type information should be used to display
data-structures with their high-level structure more obvious. For example, perhaps the
above linked list should be displayed in a line with the associated objects extending
above and below it.
 Incidentally, this picture also demonstrates the persistence feature of Barbados.
This data-structure resides on disk in this format, and the above commands show the
user entering the appropriate directory for the first time during this session and finding
the data-structure there without needing to execute any code.

 66

10. Persistence in Barbados

10.1 Introduction
 The Barbados persistent store is a two-level persistent store: this means that
there are two granularities of objects.

Definition “Fine-grained object”: A ‘fine-grained object’ is a small, typed
object such as an integer, class instance or function.

Definition “Large-Grained Object (LGO)”: A ‘Large-Grained Object’ is
a collection of fine-grained objects. The fine-grained objects must each
be reachable from a special fine-grained object called the ‘root object’
of the LGO. Large-grained objects can be thought of as having a type
defined by the type of the root object.

 Any persistent system will need to deal with fine-grained objects. Barbados was
designed to deal with large-grained objects as well, because LGO’s provide access
control (permissions checking, memory protection, locking and sharing) which cannot
be provided effectively at the fine-grained level, and because LGO’s give programmers
and applications a convenient intermediate structure to work with.
 An LGO can be thought of as a data-structure. Typical LGO’s could include a
program module, a word-processor document, or a CAD/CAM subassembly.
 Higher-level data-structures can be constructed by having LGO’s point to each
other. For example:

CAD-CAM object

Hyper-document

Program module
Other LGO’s

Persistent Store

 LGO’s are migrated in and out of memory in a single transaction and are stored
in a single location. Pointers inside these objects are swizzled as the large-grained object
moves in and out of memory.
 A consequence of this system is that these large-grained objects become
‘portable data-structures’, i.e. they can be ported between address spaces. This

 67

property may be useful in implementing concurrency across distributed architectures
(e.g. with transputers).
 The advantages of this form of persistence are (a) having access control over
convenient-sized groupings of data, (b) having a standardised, enforced intermediate
grouping of data suitable for applications and system tools, (c) being able to easily copy
/ move / compare structured data between large-grained objects, (d) having processing
performed about as efficiently as in traditional systems.
 The Barbados persistent store was designed to support intensive computation on
data-structures, i.e. optimised for the schema: read-in-data-structure, process-it, write-
it-out. It was not designed to act as an effective object-oriented database, and more
work would be required before Barbados could claim to be an OODB.

10.2 Persistence as seen by the User

10.2.1 Load-Process-Save
 Computation occurs by reading one or more Large-Grained Objects (LGO’s)
into memory, operating on them, and then writing them out again. This mapping stores
the LGO on disk in a compact form and in memory in a structured format, i.e. as a data-
structure with ordinary main-memory pointers.
 These two mappings have to be explicitly invoked, through an ‘OpenLGO()’ and
‘CloseLGO()’ call (or through functions which in turn call ‘OpenLGO()’ and
‘CloseLGO()’6). However, once invoked, they handle the mapping from disk format to
memory format automatically using type information. This is illustrated by the
following diagram.

The LGO on disk
Data-structure
in memory

Loader Saver

The LGO on disk

OpenLGO() CloseLGO()

 In this sense, the persistence is not orthogonal. It is argued that these calls will
be made relatively infrequently, and that they will occur at logical points in the program
e.g. when the user opens a new document, and also that semantic benefits accrue from
making this call explicit (see the section on the argument for LGOs).

6 The ‘chdir()’ function to change the current directory is a good example. It closes the LGO of the old
directory and opens the LGO of the new directory.

 68

10.2.2 Creation of LGOs
 In the Barbados type system, (which applies across all languages), there are two
types of pointers: ordinary main memory pointers and LGO pointers. The ordinary
pointers apply to the current process’s address space, and the LGO pointers are
persistent identifiers which are used to identify LGO’s on disk.
 LGO’s are created with the CreateLGO() function. The CreateLGO function
simultaneously creates a fine-grained object and an LGO. Pointers to both entities are
returned: the pointer to the fine-grained object is returned as the formal return value,
and the pointer to the LGO is passed back when an LGO pointer is passed by reference
to the function call. The fine-grained object is the root of the LGO. (The CreateLGO()
function replaces the ‘new’ operator when the programmer wants to create a new LGO
root object.)
 The LGO is created as an ‘open’ LGO, meaning that (a) it must later be closed,
with the ‘CloseLGO()’ function, and (b) it is associated with its own ‘heap’. The
programmer must use this heap to store the fine-grained objects which they wish to
belong in this LGO.
 At any point there can be multiple open LGO’s. Therefore there are multiple
heaps simultaneously existing. The user must specify which heap an object is to be
placed in whenever they dynamically create a fine-grained object (i.e. using ‘new’ or
‘malloc’ or other functions). The user does this by either: (a) putting the LGO pointer
as an extra parameter to ‘malloc’ and ‘new’ function calls, or (b) calling the usual
functions without an extra parameter, which will cause the system instead to use the
‘default heap’.
 The default heap can be set at any time by calling the ‘SetDefaultHeap()’
function. It takes one parameter, namely the LGO pointer of the desired heap.
However, it is also set on each call to OpenLGO() or CreateLGO(), to the LGO being
accessed or created. This means that often the ordinary forms of ‘malloc’ and ‘new’ can
be used, which is beneficial particularly because it means that existing source-code can
be ported easily. This technique is especially useful when used in conjunction with the
‘cd()’ command. The ‘cd()’ command, when used to change to a new directory in a
different LGO, contains an implicit call to OpenLGO() and therefore
‘SetDefaultHeap()’.
 The CreateLGO() is actually an operator defined as a language primitive,
because of the way it manipulates types. CreateLGO() requires an LGO pointer as a
parameter. The type of this pointer is extracted and used to determine what type the
LGO is to be. This information is needed to determine the size of the fine-grained
object which is created. The formal return value of the CreateLGO() function is the
address of the fine-grained object, and its type is constructed by converting the type of
the parameter from an LGO pointer to an ordinary pointer. If Barbados implemented
the C++ ‘template’ mechanism, these functions could instead be provided using
templates.
 To manipulate a large data-structure, which cannot fit effectively into one LGO,
the user ‘breaks up’ their data-structure by inserting LGO pointers rather than ordinary
pointers into their type-definitions. I believe that information can generally be organised
into relatively autonomous ‘sub-systems’ which can act as LGOs, i.e. that there are
generally very natural places to break up a data-structure into LGOs. Often one LGO is
sufficient for a data-structure.

 69

root

Each object
is of type:
binary_tree

LGO:
 L396

LGO:
 L117

Creation of an LGO: This
data-structure, at least the grey
portion, can be saved as an
LGO using the following code:

binary_tree lgo TreeSeg;

. . . // Creation of tree

TreeSeg = CreateLGO(root);

10.2.3 Address Spaces
 A process in Barbados always owns (exclusively) an address space. The reason
for this systemis to provide memory protection.
 An LGO on disk is effectively contained within its own address space. (All
pointers are represented as offsets from the beginning of the LGO). When LGOs are
opened, they are read into memory and they have their pointers swizzled so that they
belong in the address space of the relevant process. Hence an LGO can be thought of as
a portable data-structure, in the sense that it can be ported automatically between
different address spaces.
 In order to merge or compare data from multiple LGOs, the user opens the
various LGOs simultaneously and then accesses them as local data-structures.
 Most other persistent systems do not have this ability to move data around
between address spaces. This ability makes it easy in Barbados to transport data
between different processors or to remote systems.

10.2.4 Information Hiding vs Referential Transparency
 An LGO acts as an information-hiding object - each LGO has a persistent
identifier, but the small objects inside do not (except for ‘interface objects’ - see ‘LGO-
Name Swizzling’).

 70

root

Other interface
objects

An LGO, showing internal
and external references

 The reasons for this are twofold. On one hand, it makes the implementation easy
and efficient. On the other hand, it was considered desirable to provide this form of
information hiding/protection.
 For example, use of this kind of information hiding means that the system has
complete control over the organisation of data within a LGO. Disk space is not wasted
on freed memory - LGOs are completely compact on disk. When the user requests a
certain piece of information off disk or across the network or even from another
processor, that information is provided in the most compact possible form. There is also
the potential for transparent system-level data-compression of LGOs, essentially because
of the fact that random access is not needed within an LGO while on disk.

10.2.5 Memory Protection
 The Barbados Persistent Store has been designed to support type-unsafe
languages, such as C++. Therefore, an alternative form of memory protection to type-
safeness is required.
 With the current system, the user can only modify the store in the following way:

1. Provide a valid LGO identifier. LGO id’s come from a sparse name-space,
i.e. a random value is unlikely to be a valid identifier.

2. Open that LGO in write mode. The user must have write permissions on that
LGO, and furthermore that LGOs type must match the type the user is
expecting.

3. Follow the pointers within that LGO to reach the desired small object(s).
4. Close the LGO.

 This protocol ensures that bugged programs do not corrupt the entire persistent
store. A bug will generally only propagate to those LGOs which the process currently
has open in write mode, and it can never propagate to regions where the user does not
have the required permissions.
 In this sense, memory protection in Barbados is similar to that of traditional (e.g.
UNIX) systems.
 It should also be noted that orthogonally persistent systems cannot provide this
particular form of memory protection. Without explicit large-grained objects, there is
no concept of the programmer informing the system of which regions of the persistent

 71

store are going to be modified. Therefore, even type-safe operations could make
unintended modifications to the persistent store. Also, in order to delete information, the
user must explicitly delete an LGO - not just ‘drop’ or overwrite a reference.

10.2.6 LGO-Name Swizzling
 A directory hierarchy is provided in Barbados by adding a new fundamental type,
namely ‘directory’, to the Barbados type-system. A directory is a collection of ‘named
objects’, where a named object is a tuple consisting of: (name, type, storage-class,
value).
 According to the information provided so far, function objects in different LGOs
would not be able to reference i.e. call each other - except by opening up the LGO,
finding the directory containing the called function and looking up the name in the
directory.
 Because this would be a very inefficient way of linking code together, an
optimisation called LGO-Name swizzling (L-N swizzling) has been provided.

 L-N swizzling deals with directory LGOs, i.e. LGOs with directories at the root.
In effect, it allows objects inside LGOs to reference objects inside other LGOs by
providing the name and LGO id.
 It works as follows:

How L-N handles are represented:
• Any object inside the directory at the root of an LGO is automatically designated an

‘interface object’, (unless it is declared as ‘private’).
• That object can be identified persistently by a (LGO id, name7) pair.
• When a LGO is stored on disk, there is room for an ‘L-N table’ at the end of the

data. This table consists of a sequence of (LGO id, name) pairs. Any pointer inside
the LGO which points into this table is taken to mean a reference to that named
object in that LGO. (This can be called a ‘foreign object’).

How the Loader deals with L-N handles:
• When that LGO is read into memory, each pointer is swizzled. If a pointer is an L-N

table pointer, the system links in the specified LGO and then further swizzles that
pointer until it points directly to the denoted object.

How the Saver deals with L-N handles:
• When an LGO is being saved onto disk, pointers to foreign objects must be

detected.
• Each LGO belongs in a separate heap in memory, and therefore it is possible to map

an arbitrary pointer to an open LGO. In this way, it is possible to know whether a
given pointer points into the same LGO or into the main process heap (in which case
it is dealt with normally), or if it points into another LGO.

• If a pointer points into another LGO, the system determines whether that object is an
interface object or not. If not, then that pointer value is set to NULL and an error

7 L-N swizzling extends to member functions of an interface class. They are given names such as:
‘class1::fn1’. Also, overloaded objects have unique names constructed for them by appending version
numbers to the name, e.g. Print’4.

 72

should be reported. Otherwise, the (LGO id, name) pair is constructed and added to
the end of the LGO.

 As a consequence, all function-to-function references (i.e. function calls) are
swizzled at load-time, so that during run-time they impose no overhead whatsoever.
 In addition, type objects and data objects can be referenced via L-N swizzling.
This situation is in fact quite common. Suppose for instance that the user writes a
complex number class in the “/cl/complex” directory, which resides in its own LGO.
The type-definition for a complex number would then come from this LGO. Since the
‘complex’ class object is at the root of this LGO, any pointer to it from an external LGO
will be L-N swizzled. The actual type information will therefore not be stored in any of
the client LGOs but only in the ‘complex’ LGO. This property would not be much of a
saving until one considers that a ‘type definition’ includes all the code for the member
functions, and that we would not want this information copied into each LGO.
 One small detail which has been touched upon is the concept of ‘linking LGOs’.
If one LGO references another via L-N swizzling, then it will require that other LGO to
be loaded into memory whenever it is in memory itself. The ‘open-LGO manager’
subsystem of Barbados therefore allows LGOs to be loaded either from an
‘OpenLGO()’ call or by a ‘LinkLGO()’ call. If one LGO ‘links’ in another, i.e. it
‘depends’ on another LGO, then the open-LGO manager will always ensure that the
latter is loaded if the former is loaded. It will also close the ‘needed’ LGO as soon as it
is no longer needed (e.g. the requesting LGO has been closed).

L-N swizzling:
If the root of B is a

directory, and there are specified
‘interface’ objects func1, func2,
func3 in it, then these can be
referenced directly using ‘L-N
swizzling’.

LGO A

LGO B

func1
func2

func3

B, “func2”B, “func1”(flattened LGO A)

 S-N swizzling provides a limited form of inter-LGO references. I believe that
arbitrary inter-LGO references (i.e. one fine-grained object referencing another in
another LGO) should not be allowed, on the grounds of information hiding.

 73

 Under the present scheme, only named objects in the directory at the root of an
LGO are eligible for L-N swizzling. This raises the issue of whether Barbados should
generalise the concept of what is eligible to be an interface object.
 On one hand, it might seem more flexible for arbitrary objects to be capable of
‘interface’ status. On the other hand, it could be argued that if an object is important
enough to be an interface object, it should be important enough to deserve a symbolic
name and listed somewhere (e.g. the directory at the root of the LGO). Putting an
object in the LGO root-directory, (under a meaningful name or even a computer-
generated identifier) could be seen as a method of ‘registering’ an object as an interface
object, in which case the current scheme can be seen as a general scheme.

10.2.7 Deep Copy and Duplicating Objects
 A consequence of this form of persistence is that it becomes easy to perform
deep copies of data-structures, because the LGO boundaries provide meaningful limits
to the copying operation.
 For example, if the user takes a copy of an LGO which contains pointers to
things such as the persistent root (the root directory) or the compiler or font tables, they
will receive copies of all fine-grained objects inside that LGO but not the root directory
or directory or fonts etc.

10.2.8 Sharing and Locking
 There is a multiple reader/single writer protocol with LGOs. In other words, a
given LGO is either (a) available to be read by any process, or (b) available to be written
by a single process.

10.3 The Barbados type system
 One feature of the C/C++ type system which some other persistent languages do
not share is that the fields of a structure can be either other structures or pointers to
structures. (Member objects can be either values or references). That is, it is possible to
directly ‘nest’ or ‘embed’ structures inside structures, for example:

class vector {
 float x,y,z;
};

class Camera {
 vector Position, Direction;
 matrix M;
};

 This feature is useful. Where it is used, it is more efficient than the alternative of
creating separate heap objects per sub-struct. It can also involve less work on the part
of the programmer.
 The developers of Eiffel have seen fit to introduce this feature as ‘embedded
objects’ into the Eiffel language. However, many other languages (e.g. Java, Napier) do
not support it.

 74

 For instance, suppose one creates a C++ type which consists of an array of 100
elements of type ‘vector’ as defined above. To create an instance of this type, it is
sufficient to declare it. In other languages where objects cannot be nested in this way,
the programmer must write a loop to create the 100 instances of type ‘vector’.
Furthermore, the system must make 100 calls to the heap routines to create these
objects.

10.3.1 Garbage Collection and Deletion
 Large Grained Objects (LGOs) are essentially groups of small objects. LGOs are
deleted explicitly, which means that dangling references are possible, but LGO
identifiers are not often reused - so accesses to dangling references will almost always be
trapped.
 Small objects are deleted either in the normal C++ way, (using ‘free()’ or
‘delete’) or by being left behind when a LGO is closed and the Saver is called. In the
case of the latter, the algorithm is essentially garbage collection by reachability. The
Saver only saves those objects reachable from the LGO root, and since the LGO’s pages
are re-used following the call to the Saver, any other object will disappear from the
system.
 It was considered that with small objects, the user is unlikely to want to bother
with explicitly deleting each object that needs to be deleted. However, with the LGO - a
large package of related information, it was considered that the data should not be lost
without explicit directions from the user. This form of object persistence/garbage
collection is the same as used in the MONADS system [Ros85].
 The fact that garbage-collection is provided in this very limited form was partly
designed as an optimisation (disk & memory space can be saved by performing garbage
collection), and partly arose as an accidental consequence of the ‘Saver’ algorithm. The
‘Saver’ algorithm swizzles pointers to their on-disk format by performing a top-down
transversal of everything reachable from the root of the LGO, and garbage is never
reached by this algorithm.

10.3.2 Persistence vs Deletion of Large-Grained Objects
 Large-grained objects must be explicitly created and deleted. The ‘CreateLGO()’
function creates an LGO of a given type, and the ‘DeleteLGO()’ function deletes an
LGO (if possible).
 LGO’s are organised into a strict hierarchy. Each LGO has one and only one
parent LGO, except the root LGO. The parent LGO is specified as a parameter to the
CreateLGO() operator. The functions which create, delete and move LGO’s maintain
this strict hierarchy. For example, it is possible to move an LGO to another part of the
hierarchy, i.e. change its parent, however it is not possible to move an LGO to be a child
LGO of one of its descendants.
 The DeleteLGO() operation will fail if the specified LGO has child LGO’s. The
child LGO’s must be deleted first. However, there is nothing to stop the user from
writing a function on top of DeleteLGO() which recursively deletes LGO’s.
 Any LGO can reference any other LGO, since this merely requires that the first
LGO contain a value of type ‘LGO pointer to type X’. In fact, these values can be
copied and passed around indiscriminately. They can even be put through a data-
compression program and reconstructed. However, these references are separate from

 75

the references which form the LGO hierarchy. (Let us call these LGO ownership links).
The LGO ownership links are not so easily manipulated.

Ordinary Reference

Ownership Link

Root LGO

 The above diagram shows the two types of references: ‘ordinary references’, i.e.
an LGO pointer, as an ordinary value in Barbados’s type system, and ‘ownership links’.
 The ownership links are kept in a database maintained by the system. They can
only be accessed using special system calls. The tools which Barbados provides to the
user, e.g. the “mkdir()” function, attempt to maintain a correspondence between
ordinary references and the ownership links, so that the ownership links are a subset of
the ordinary references. However, if the user chooses to delete ordinary references to
child LGO’s, this ‘subset’ relationship will be lost; one LGO will have an ownership link
to a child LGO and yet lack an ordinary reference to it.
 The user should avoid such a situation, since the environment is geared toward
using ordinary references to do everything, and it is cumbersome to use the system
functions to access ownership links. (The ownership links are only there as a form of
security, to guarantee that the LGO’s form a strict hierarchy). If this situation does
occur, the user can either (a) use the system calls to restore ordinary references within
the user’s data-structure, or (b) in the case of directory LGOs, the ‘RepairLGO()’
function will create named objects in the directory at the root of a LGO, which provide
ordinary references to ‘lost’ child LGO’s.

10.4 Persistence Implementation

10.4.1 Pages
 One of the least important aspects of the Barbados system is the concept of
‘pages’. Pages are very useful at organising memory and disk. Barbados in fact has two
independent page systems: there are disk pages used for organising the persistent store,

 76

and there are memory pages used for organising address spaces and heaps. The two
page sizes may even be different.
 Pages are considered an unimportant aspect of Barbados because they are
concepts local to the disk-access subsystem and to the heap-management subsystem
which have not had much effect on the design of the rest of the system. The interfaces
to these subsystems just deal with variable-size sequences of bytes.

10.4.2 Algorithms used in disk-memory mappings
 The function which copies a data-structure to disk is called the ‘Saver’. The
function to copy it back into memory is called the ‘Loader’. ‘CloseLGO()’ calls the
saver, and ‘OpenLGO()’ calls the loader.

The LGO on disk
Data-structure
in memory

Data-structure
in memory

Saver Loader Saver

The LGO on disk

CreateLGO() OpenLGO() CloseLGO()

 The saver operates in two passes. In the first pass, it identifies all small objects
reachable from the LGO root (via memory pointers). It also determines what offsets
each object will have in the on-disk LGO. (An object’s position in memory is
completely independent of its position on disk). In the second pass, the saver writes
each object to disk in the order it reached the object, after establishing what offset to
swizzle each pointer to.
 Usually there is a correspondence between C++ objects and heap blocks (a heap
block is a block of memory as created by ‘malloc()’ or ‘new’). If there is any
discrepancy, e.g. the block size does not match the object size, the saver deals only with
heap blocks. For example, the result of the C++ call: ‘strdup(“Hello”)’ (which allocates
6 bytes and copies the given string into it) is a valid memory block and will be saved as
it is.
 The loader has just one pass. It reads the LGO into memory verbatim and then
traverses it, swizzling each pointer from an ‘offset’ to a pointer relative to the current
address space. The information on disk is deliberately formatted into a form compatible
with the Barbados heap. That is, each small object is preceded with the appropriate
header for heap blocks. This system simplifies the loader - it does not need to move any
data around inside memory, it just adjusts pointers.

 For the Saver to work, the data structures must match their type-definitions. If a
pointer field of one type points to an object of a different type, the Saver will usually
fail. The user is allowed all the (dubious) liberties that C++ allows, temporarily, but at
the time of a Saver() operation all type information must be consistent.
 Incidentally, this means that if an LGO is ‘closed’, then it is type-consistent, i.e.
can be used directly by a type-safe language without violating type security.

 77

 ‘void*’ pointers are dealt with. Whenever a ‘void*’ pointer is reached, the given
block is set aside to be saved, however it is not recursed down until proper type
information is available from some other pointer.

 An optimisation is provided in the Saver so that linked-lists are flattened to disk
by a loop rather than by recursion. This was done so that the stack does not overflow
with long linked-lists. The optimisation involves looking for small objects containing
just a single pointer, or objects with just one pointer to an object of the same type.
 This optimisation can be fooled, e.g. with the following data-structure:

 This is not considered a severe problem in Barbados, partly because such
structures are actually quite rare, partly because there is a lot of stack space compared
to the amount each recursion uses, and partly because it would be easy to write a more
advanced algorithm in future versions which caters efficiently for all cases.

10.4.3 Type information
 Type information is not stored with each dynamically allocated object. Instead,
the saver discovers the type of each object by induction from the type of the root.

 Each LGO stores sufficient type information to restructure the information
contained in memory. This restructuring is accomplished as follows.
 The root object consists of a value and a type. (It can be thought of as two
pointers - one to the type and one to the value). The type information can be regarded
as a complex data-structure in its own right: a class or structure often contains pointers
to other classes/structs. The saver works by recursing down the tree/graph of type
information first and then the actual data. In this way, all the type information needed
for the data-structure is contained within the LGO along with the data itself.

Type info

Data

Type information in LGOs

 I now believe it would have been preferable to store a pointer to type
information inside each heap block. A cleaner design would have resulted.

 78

 For instance, not having these type pointers complicates the persistence
mechanism where inheritance is involved. Using inheritance, it is possible to have two
pointers to the same object, where the pointers have different types (one type is a sub-
type of the other). One attempt to get around this problem would involve always
assuming an object is an instance of the largest class X where a pointer to X exists to the
object. We might have a situation where all pointers to an object are sub-type pointers.
However, this only matters where virtual functions exist, and this problem can be solved
by checking the v-table8 pointer inside the object.
 To summarise, the problems of using induction to determine an object’s type can
be solved in this situation. However, this is an example of the problems that arise
through separating dynamic objects from their types.

 One disadvantage of having type pointers is that the user is then forced to use
the ‘new’ operator rather than ‘malloc()’. This is an issue for maintaining compatibility
with existing C programs (and some C++ programs). However, there may be ways
around this problem.
 Another disadvantage of type pointers is that they consume 4 or 8 bytes in each
heap block. However, many C++ objects require a pointer to a v-table anyway, and
since a v-table pointer can be combined with a type pointer, there is no real saving from
not having them.
 More and more C++ compilers are beginning to support run-time type
information anyway, because they see various advantages coming from it.
 Finally, if the Barbados type-system is to be applied to languages other than
C++, it would be advisable to store type information with heap objects. For example,
the type systems of Java, Eiffel, and Python all require this information. Without this
feature, the type systems would be incompatible. For this reason, future versions of
Barbados will implement the storing of type-pointers in heap blocks.

10.5 Comparisons with other Systems
 The SHORE system [Car94] implements large-grained objects which consist of a
‘core value’ (small object) and an associated ‘heap’ of other small objects. This concept
is quite similar to Barbados LGOs. However, objects are accessed using calls to the
database manager, and therefore this implementation would not suit Barbados’ goal of
providing for intensive computation on data-structures. Also, the C++ -based language
implemented in SHORE has different persistence controls to Barbados. In Barbados,
data-structures are explicitly moved into memory and back to disk, with two calls,
whereas in SHORE an object is modified via ‘transactions’ that require each
modification to be invoked by suffixing an object with the ‘->update()’ member
function.
 SOS [Sha89a] had a similar object-model: there are ‘objects’ consisting of a
‘primary segment’ and arbitrary structures of ‘indirect segments’. In SOS, these small
objects are brought into memory upon demand, which is done transparently using virtual
memory hardware. They are then written back to disk as main memory becomes scarce.
In Barbados, ‘LGO’ I/O is user-level, i.e. the OpenLGO() and CloseLGO() calls are
explicitly invoked, which I would argue has benefits for memory protection, locking etc.

8 A v-table is a table of pointers to virtual functions pertaining to a particular class.

 79

Also, persistence in SOS was implemented in C++ as a base class rather than
orthogonally to type.
 The IK system [Sou94] implements a clever form of orthogonal persistence
based on ‘clusters’. A cluster is a group of related small objects such that only one
object (the ‘head’) is referenced from outside the cluster. References can be taken to
any of the internal objects, although this will then cause the cluster to break up and that
internal object will become the head of its own cluster. This system achieves the
efficiency benefits of large-grained objects (intermediate structure) although it misses
out on the semantic benefits.
 Napier [Mor89] [Atk86] is a complete self-contained persistent programming
environment. At the broadest level, it is similar to Barbados. However, it is different in
the fact that memory protection is provided via type-safeness, and therefore type-unsafe
languages such as C++ cannot be supported. Also, the type system is different - it is not
possible to nest structs inside structs. This means that there will be more calls to the
object creation routines. Furthermore, there is no concept of a large-grained object or
intermediate-structure - something they would argue is desirable but which I have
argued is not.
 Grasshopper [Dea92] [Lin95] has a concept of a ‘container’ which acts like a
large-grained object. While it claims to be an ‘orthogonally persistent operating
system’, it has no support for fine-grained objects. Issues such as how to store data-
structures and how to share them without having clashes in the address space have not
yet been tackled. Instead, Grasshopper provides the infrastructure for persistent systems
(such as Barbados) to be mapped onto it.
 MONADS [Ros85] has coarse and fine-grained objects. In fact, [Hen93]
specifically discusses these two levels of granularity. This system relies on specialised
hardware and has fine-grained memory protection based on capabilities, which had its
advantages but would be inappropriate for the data-structure intensive applications
which Barbados was designed for.
 ObjectStore [Lam91] is a commercial persistent object database system. Object
accesses are managed through virtual memory techniques. However, it was designed
with database applications in mind and does not have the necessary clustering ability to
efficiently process complex data-structures.
 The E++ system [Ric93] implemented a persistent version of C++, but this was
designed more as a database programming language than a language for supporting
intensive computation on data-structures.

10.5.1 Advantages of this form of Persistence
 The following table summarises the advantages of the Barbados form of
persistence.

Semantics:
a) Persistence is orthogonal to type.
b) All objects are automatically persistent until deleted.
c) The full C++ type-system is provided, including nested objects.
d) Memory protection is provided mainly by LGOs.

Efficiency:

 80

e) Pointer dereferences are by straight machine-level dereferences.
f) LGOs are stored and transmitted in a compact form.
g) With a native-code compiler, it should be no slower than traditional UNIX/C

systems. (?)

Flexibility with Data:
h) LGOs can go anywhere in an address space (“portable data-structures”)
i) It is easy to examine multiple LGOs simultaneously.
j) Type-safe data can be mixed safely with type-unsafe data.

Intermediate Structure:
k) A standardised, enforced grouping for applications and system tools.
l) File-level operations.
m) The unit of i/o = unit of locking: Distribution is easy.

 Some of these points require explanation. For example, benchmarks do not exist
yet to support point (g). The assertion is made on the basis of an argument that a
running Barbados application is similar enough to the corresponding UNIX/C
application that the run-time should be about the same. Code that runs in-between LGO
opens and closes should be virtually identical, and LGO opens and closes should occur
with about the same frequency as file opens and closes since they are objects of about
the same granularity and both contain natural ‘packets’ of logically related data. The
author acknowledges that this is not quite satisfactory, and further development /
benchmarking of realistic applications will be the next stage in the development of the
Barbados Persistent System. A more serious qualification is the fact that the current
version of Barbados runs inside a virtual machine (rather than in native code), which
naturally carries a large cost.
 Point (h) refers to the way the Saver and Loader move data-structures in-
between address spaces. Under this system, it becomes easy to both reap the benefits of
having convenient-sized ‘packages’ of data without suffering the consequence that it’s
hard to merge/cross-correlate information in different packages.
 Point (j) is a consequence of the form of memory protection provided by LGOs.
An LGO on disk is guaranteed to be type-consistent. Therefore, if a C program writes
out a LGO, therefore, it can be then accessed by a type-safe language without losing
type-security. Type errors can only occur when executing a program created by a type-
unsafe language.

10.5.2 Disadvantages of this form of Persistence
 The major criticism of this form of persistence is that it may make it harder to
arrange data. In general, references cannot be expressed between fine-grained objects in
different LGO’s.
 In addition, as programs evolve, it may happen that previous decisions regarding
the arrangement of data within LGO’s were not optimal. In this case, various
modifications to code will be required and previous data will need to be converted.

 81

10.6 Discussion Questions

10.6.1 Why doesn’t the system support orthogonal persistence?
 Barbados was specifically designed not to support orthogonal persistence. A
fundamental premise of the system was that persistent stores should be organised around
some kind of intermediate structure, i.e. small objects should be grouped into containers
of some kind. The alternative is orthogonal persistence, where the persistent store is
essentially a huge pool of small objects.
 There is some confusion about the definition of orthogonal persistence and
related concepts. Let us use the term ‘type-orthogonal persistence’ to denote a style of
persistence where objects of any type can persist. The alternatives to type-orthogonal
persistence include systems where objects must belong in a parallel type-system in order
to persist, e.g. the E language [Ric93], and systems where persistent objects must inherit
from some ‘persistence’ base-class, e.g. Eiffel [Mey88].
 ‘Orthogonal Persistence’ will then be defined here to mean the stronger form of
persistence, where the system implements type-orthogonal persistence but in addition
provides the feature that any object can reference any other object in the system, and
there is only one type of pointer. This arrangement is equivalent to having a ‘single-
level persistent store’.
 Barbados does not provide orthogonal persistence, because it implements ‘Large
Grained Objects’ with associated restrictions. This means both that there are two kinds
of pointers, (namely ordinary memory pointers and LGO pointers), and that there is the
restriction that fine-grained objects within one LGO cannot reference fine-grained
objects within another LGO.

 Proponents of orthogonal persistence, most notably researchers from the Napier
project, argue that orthogonal persistence is desirable because it makes modelling data
easier and removes the inevitable barrier that arises between large-grained objects. It
simplifies the programming language and removes from the programmer the need to
partition data into large-grained objects. Orthogonal persistence might also improve
performance because the persistent system may be in a better position to partition and
cluster data into physical locations than the programmer.
 I believe that orthogonal persistence has associated costs, which outweigh the
benefits. Orthogonal persistence does not scale well to large systems, for the following
reasons.
 Orthogonal persistence means that there are no longer any convenient
‘packages’ of data which the operating system and applications can use for transferring
data, setting and checking permissions, specifying deletion, and for using in other
higher-level operations such as version control and recompilation. The pattern of
references between objects can become quite complex and begin to resemble ‘spaghetti’,
so that the programmer no longer has a good high-level view of the data.
 Orthogonal persistence makes it difficult to specify permissions and check
permissions: either permissions work orthogonally to types, which makes it tedious to
specify them and means that an object access can fail at any point in the program; or
special ‘permissions’ objects are inserted as ‘gateways’ into objects, which means that
measures must be taken to ensure that users cannot ‘sneak’ into data-structures from
other paths. This latter alternative, in which permission checks are aligned with types by

 82

being inserted into data-structures at special places, begins to resemble large-grained
objects anyway, along with the associated restrictions and costs.
 In a traditional programming language, files can only be modified by being
opened with write-permissions, written into, and closed again. The same protocol
applies to Barbados LGO’s. However, in an orthogonally persistent system, there is no
concept of a file or LGO. This means that it is possible for a bugged program to corrupt
the entire persistent store, albeit in a type-safe way. For instance, a program could go
into a directory near the root of persistence and remove a reference to a large body of
data. If this means that the data is no longer reachable from the root of persistence, it
means that the data is lost forever.

 The benefits of an intermediate structure are discussed in [Coo95]. To briefly
summarise this chapter, the idea is that organising small objects into containers allows
certain operations to be ‘factored out’, i.e. done once for the group rather that once per
small object. If these containers are system-level objects, then this allows the system to
factor out system-level operations and hence be more efficient than otherwise. If these
containers are user-level objects, then various user-level operations can be likewise
factored out.
 For example, when the user wants to transfer some structured data across a
network, they inform the system which LGO or LGOs they wish transferred. The
alternative is to select small objects individually or implement some ‘transitive closure’
rule (which makes it problematic to reference large objects e.g. compilers within user
data.)

 The paper [Coo96c] discusses the debate between orthogonal persistence and
large-grained objects more directly.

 To summarise my position, I believe that large-grained objects, whether they are
‘files’ or Barbados-style ‘LGOs’, are a natural part of computing. It is a useful
discipline to force the programmer to arrange data-structures into higher-level objects,
because this higher-level structure can be used by the persistent system or by
programming tools or by the programmer themselves for various important purposes.

10.6.2 Isn’t the Barbados concept of an LGO overloaded (i.e. it tries to do too
much)?
 In Barbados, the LGO performs many functions. Permissions are specified at the
LGO level. LGO’s can be moved, copied and deleted. LGO’s are the units of migration
between disk and RAM. LGO’s are the units of sharing. LGO’s can be used by
applications for such things as version control and configuration management. Barbados
already uses LGO’s to factor out dependency information for program components.
 Some would argue that each of these features is an independent function, and
deserves an independent concept of ‘large-grained object’. That is, the system should
have many overlapping, orthogonal types of object groupings, for example ‘protection
domains’ for permissions, ‘packages’ for transferring data and so on. Any object could
belong in some of these groupings, but not others.
 However, I believe that these groupings should always be aligned, e.g. with
Barbados LGO’s. There is enough overlap between the groupings that multiple
orthogonal groupings would become confusing. For instance, when accessing a data-

 83

structure, it is useful to have just one point at which permissions are checked, and at
which the program can detect success or failure of the access. If the user has permission
to access the data-structure, then the rest of the program can proceed. If memory
protection (permissions) can be specified on arbitrary fine-grained objects, then the
programmer will need to insert checks at many places in the program in order to check
that the access succeeded.

10.6.3 Isn’t Persistence supposed to remove the burden from the programmer of
dealing with things like OpenLGO / CloseLGO calls?
 Barbados programs which make full use of the Barbados persistence features
will contain various calls to the OpenLGO() / CloseLGO() / CreateLGO() operators.
The programmer will have to insert these calls at the appropriate points, and they will
have to be aware (in some sense) of which objects reside in which LGO’s. This is a
disadvantage of a system such as Barbados when compared to a system providing
orthogonal persistence. With orthogonal persistence, the user is not concerned with
such issues.
 I believe that the calls to OpenLGO() / CloseLGO() will not be very frequent in
the source-code of any program. This is because LGO’s are (by definition) large-
grained objects. This means that a single call to OpenLGO() will make a large amount
of data accessible. Many significant data-structures will be able to reside in a single
LGO.
 Similarly, it will not be too difficult to maintain an awareness of which fine-
grained objects reside in which LGO’s. As I anticipate Barbados being used, there will
usually be relatively few LGO’s open at any one time. In particular, there will be even
fewer LGO’s open for write-access, which is the situation where it is most important to
know the precise location of objects.

10.6.4 How big should LGO’s be?
 In order for LGO’s to work effectively, both in terms of system performance and
in terms of programming, they must not be too large or too small. For example, if
LGO’s were frequently below 100 bytes in length, system performance would degrade
through overly frequent disk accesses, and programs would have excessively many calls
to the OpenLGO(), CloseLGO() and CreateLGO() functions. If LGO’s were frequently
above 1Mb in length, performance would degrade because too much information would
be dragged in from disk and there would be pressure from users for programs to be re-
written to provide finer-grained protection and to allow finer-grained sharing.

10.6.5 How do you know where to put the LGO’s?
 In Barbados, the user must organise data into LGO’s. Many types of
applications use medium-sized data-structures, such that each data-structure fits
effectively into a single LGO. In this case, there is very little to decide when organising
the data. However, larger data-structures need to be broken up into smaller pieces, each
piece corresponding to an LGO.
 Large data-structures are ‘broken up’ by replacing pointers in type-definitions
with LGO pointers. Then, the dereferences of these pointers must be replaced by
OpenLGO() / CloseLGO() calls.

 84

 Proponents of orthogonal persistence may argue that this makes it difficult to
translate real-world concepts into large and fine-grained objects. For instance, the
programmer may not be in a position to know when writing a program what the best
way is of dividing data into LGO’s. Or worse, the pattern of usage of a program might
change over time, so that the decisions made at the start about where the borders
between LGO’s should go, will become suboptimal.
 I believe that most data structures do naturally fall into ‘clusters’ of objects. The
programmer can easily pick some logical level at which objects are grouped in easy-to-
handle sizes. For example, in a word-processor, the ‘document’ or ‘chapter’ would be
chosen as the unit corresponding to an LGO. In a CAD-CAM system, some component
sub-assembly would be an LGO.
 If the programmer picks some partitioning which is suboptimal, e.g. they write a
program such that an LGO corresponds to a ‘section’ instead of a ‘chapter’, it will often
not matter much. LGO’s can still cope efficiently with a large range of sizes. If the
programmer’s partitioning really is inappropriate, and the program needs to be rewritten
e.g. to support finer-grained sharing of data between users, I believe the changes to the
program are significant but not so large to threaten the paradigm. The old program and
the new program still use the same types, and have the same function calls. The changes
which need to be made are to change LGO pointers to ordinary pointers or vice versa,
and to change OpenLGO() calls to pointer derefences or vice versa. The most difficult
aspect of a reorganisation of this kind is inserting OpenLGO() / CloseLGO() pairs of
functions into the appropriate parts of a program.

10.6.6 Can’t containers or large-grained objects be built on top of an
orthogonally persistent system?
 Obviously, an orthogonally persistent system can be programmed in such a way
that entities corresponding to ‘large-grained objects’ are provided, by building them on
top of the fine-grained objects. However, such a solution will contain all the
disadvantages of large-grained objects (e.g. restrictions on what objects can reference
what objects), and it will furthermore have the performance disadvantage of not
implementing large-grained objects as system primitives.

 In order to attain all the benefits of large-grained objects, there should be
standardised and enforced rules governing the organisation of fine-grained objects in
large-grained objects.

Enforcing large-grained objects:
 For example, there should be mechanisms preventing programmers from
violating large-grained object borders (having fine-grained references which cross a
large-grained object border), so that various applications can assume that such borders
are intact. An example of such an application is the Barbados ‘Make’ program. This
system-level program uses large-grained objects to cut down on dependency information
and dependency checks, and it would not work effectively if it could not assume that
large-grained objects are self-contained in terms of fine-grained references.

Standardising on large-grained objects:
 A disk-usage utility is an example of a utility which can benefit from having a
concept of a large-grained object. It can report on which objects are consuming the

 85

most disk space. Such a function would not work at a fine-grain, because the fine-
grained objects would be too numerous to provide sensible information. And in order to
work with arbitrary data, the disk-usage utility must be aware of where the large-grained
object borders exist inside arbitrary data-structures.

10.7 Summary
 Barbados was always intended to be more ‘pragmatic’ than ‘ideologically
sound’. Hence orthogonal persistence and type-safeness were passed over in favour of
LGOs and more traditional forms of memory protection.
 The resulting implementation of persistence is efficient, type-orthogonal,
requires little change to languages or existing programs, and supports distribution.

 86

Discussion of Barbados

 87

11. Initial Experiences of Barbados

 The Barbados persistent store is steadily growing in size. It currently includes a
small program to display and rotate wire-frame pictures of 3D solids, a small class
library, and a large application called ‘tt’.
 With the exception of ‘tt’, all the code was developed within the Barbados
environment, using the Barbados editor and Barbados compiler and the Barbados
persistence facilities. The only copy of the source-code for the programs (apart from
backup ‘logs’) resides in the Barbados store.

 The Barbados compiler compiles to a stack-based pseudo-code. The interpreter
for this pseudo-code generally seems to 25 times slower than equivalent code produced
by a native compiler, although there are opportunities for considerably optimising this
(since it is a very low-level pseudo-code).

11.1 The ‘tt’ Program
 ‘tt’ is a high-school timetable construction system. It consists of 21000 lines of
code, in 38 modules (directories), originally written in C under UNIX. It was ported to
Barbados with almost no modification to the code.
 The use of persistence in the ‘tt’ program is revealing. ‘tt’ consists of highly
complex data-structures. The artificial intelligence techniques used inside it include
network flow, bipartite matching, graph colouring etc. There are 500 lines of type-
definitions alone. Since it is a C program, this means 500 lines of structure definitions
and enum definitions.

11.1.1 ‘tt’ version 1
 In order to get ‘tt’ working in Barbados in the same way it worked in UNIX,
very few modifications were required. It was necessary to arrange it into Barbados
directories, and to write a couple of stub functions which are provided by the ANSI
standard C library but not yet by Barbados. To port a C module in tt into a Barbados
directory required replacing the “#include”s with directory references (i.e. executing
declarations of the form “directory &X=../X”) and compiling the whole source-code file.

11.1.2 ‘tt’ version 2
 However, this basic version of ‘tt’ did not store the data-structures persistently.
The issue was dynamic arrays. In the code, extensive use was made of pointer vectors.
These were malloc’d blocks consisting of lists of pointers. It was the primary method
used to store collections of objects. However, this clashed with the persistence
mechanism of Barbados, which requires the use of Barbados ‘dynamic arrays’ (i.e.
objects declared with the ‘[?]’ syntax) for such purposes. The persistent system was not
aware of the type of these malloc’d blocks. It could infer that the first element in the
block was a pointer of a certain type, but the remaining pointers in the block were not
examined and hence were not swizzled.

 88

 To fix this, the type-definitions were modified so that the variables and data
members became dynamic arrays instead of pointers. Furthermore, the code to allocate
space and increase space for these blocks was commented out. No code was needed in
its place, since the Barbados dynamic arrays automatically re-size as higher and higher
elements are accessed. The result was a version of ‘tt’ which did operate on persistent
data.

11.1.3 ‘tt’ version 3
 However, version 2 of ‘tt’ did still not qualify as a genuine persistent program.
This is because the data-structures it operated on were hard-wired into the program,
which means for instance that it would be difficult to manipulate data-structures for
different instances.
 ‘tt’ is a program to generate high-school timetables. It operates on only one
school at a time. However, associated with one school are several data-structures, each
one reachable from some ‘root’ global variable in the program. These global variables
are components of the program. They reside in the directory corresponding to the global
‘typedefs’ header file. Let us call this directory “/tt/tt”, and let us assume that it
corresponds to an LGO. Therefore, the model of persistence in ‘tt’ version 2 was to
have all the data-structures resident in the ‘/tt/tt’ directory. Also, for the ‘malloc()’ calls
to work properly, it was necessary to either start the program from inside the “/tt/tt”
directory or set the default heap to the “/tt/tt” directory. Furthermore, to apply the
program to a different school would involve losing all the persistent data from the
current school.
 The appropriate organisation of data in this application would be to define a new
class, called a ‘Timetable’, which contains all the roots of the various data-structures.
Then, an object of this type could be manipulated by the program. Multiple LGOs could
then exist, each of type ‘Timetable’.
 Such a structure would be natural in an object-oriented language such as C++.
Each of these data-structures could be processed simply by invoking member functions
on them. However, because the program was written in C, and because it was written
without persistence in mind, there was no encouragement to organise the data in this
way.
 Version 3 of ‘tt’, which has not yet been written, would involve creating a class
‘Timetable’. The simplest method of getting the program to work with this class would
be to write member functions to ‘link’ and ‘unlink’ instances of ‘Timetable’ from these
global variables. The vast majority of ‘tt’ would then not need rewriting.

11.2 The ‘Spin’ Program
 This ‘Spin’ program was a program developed completely within the Barbados
paradigm. The program displays wire-frame solids rotating in 3 dimensional space.
 ‘Spin’ was developed from the bottom up. Various base classes were
developed, starting with the simplest classes (3-D vectors, 2-D vectors, bitmaps) and
building up to the more complex classes (a ‘camera’ class, a ‘solid’ class, and a ‘scene’
class which corresponds to a (camera, solid) pair).
 Each class was tested before the later classes were built on top of them. The
vector classes were tested by checking that the output of the various operators (dot

 89

product, cross product etc) corresponded to paper calculations. Then 3-D lines were
displayed inside bitmaps. Then solids were displayed in 3 dimensions. The final step, to
make the solids spin, was very easy.
 There was a large jump in going from a newly-written ‘camera’ class which can
only display single lines in the bitmap, to a ‘scene’ class and a ‘solid’ class which allow
full 3-D wire-frame polyhedra to be displayed. There did not seem to be any easy
intermediate way of testing that the ‘solid’ class was functioning correctly. Fortunately,
the code did not require much debugging.
 This program was written before debugging was implemented in Barbados, and
even now debugging is not fully implemented. However, being able to interactively
execute functions and query data was almost as good as having a full debugger.
 The program was developed without using existing code. The classes did need
to be modified many times between the first compiled versions and the final program,
but at no stage did this result in a noticeable pause for recompilation.

 90

12. A Comparison of Barbados and Napier
 The system most similar to Barbados is Napier. Napier is a type-safe,
orthogonally persistent language and system developed primarily at the University of St
Andrews and the University of Glasgow. Napier is quite a stable product with a long
history and a large amount of literature associated with it. The first major release of
Napier was in 1988.
 Napier was designed with an uncompromising attitude that complete orthogonal
persistence should be provided along with strict type-safeness. By contrast, Barbados
was designed with a more pragmatic attitude, so that useability issues and performance
issues would be considered, even when at the expense of a pure user-model.

12.1 Orthogonal Persistence
 Orthogonal Persistence means that data is accessed in a uniform manner,
regardless of its creator, longevity or type ([Atk83]).
 Napier provides orthogonal persistence. Barbados does not, because of the
restrictions introduced by large-grained objects: a fine-grained object in one large-
grained object is not allowed to contain a reference to a fine-grained object in another
large-grained object (with a couple of exceptions - see Appendix B: Persistence).
However, Barbados does implement ‘type-orthogonal persistence’, meaning that objects
of any type can persist.
 I do not consider it desirable to implement full orthogonal persistence in the
Napier sense. This position is argued in [Coo95], [Coo96c], [Buh89], Appendix B and
see also [Hen93]. I believe that the concept of a large-grained objects is something
intrinsic to programming. The issue is discussed at length in Appendix B.

12.2 Type-Safeness
 Type-safeness means that by providing strict typing rules, the programmer is
prevented from committing memory errors. Memory errors include overwriting array
bounds, corrupting the heap, and writing outside allocated areas of memory.
 The most insidious and time-consuming bugs that occur in C programs (and
programs in other languages) are to do with memory errors. Memory errors are caused
by (a) overwriting the end of an array, (b) using the type-cast operator to create
pointers out of non-pointer values/pointer values of a different type, or (c) using ‘union’
types to create invalid pointer values.
 They are especially insidious because the effects can often be hard to relate to
the causes, and they can interact with the debugging mechanisms, making it difficult to
pin-point the problem.
 In a persistent system, it is especially important to have adequate memory
protection, because in a persistent system ‘memory’ can refer to a computer’s entire file-
system.

 I chose not to implement type-safeness because I saw it as an important goal to
be able to support a wide range of programming languages, many of which may not be

 91

type-safe, and I wished to support C++ in particular because of its popularity. (By
supporting a popular language, source-code for real applications was readily available.)

 Barbados relies on memory protection methods other than type-safeness. The
primary method of memory protection is provided by LGO’s. Because Napier wishes to
support orthogonal persistence, they do not have this form of memory protection
available, and hence they rely solely on type-safeness. (Actually, Napier has something
similar to protected LGO’s in the form of ‘hyperworlds’. However, these ‘hyperworlds’
are still so large that finer-grained memory protection is required.)
 One of the additional advantages of not supporting type-safeness is that
programmers are able to implement efficient low-level applications such as compilers
and data-compression utilities. In Napier, if the programmer wishes to write a compiler
for a language other than Napier, they must either transform the source-code into
Napier source-code and pass it through the Napier compiler, or they must produce their
own virtual machine-code to be interpreted by a Napier program. To implement data-
compression utilities can be difficult because type-safeness prevents pointers being
‘compressed’ and ‘reconstructed’. However, at the same time it is acknowledged that
(a) the majority of programmers do not write such low-level tools, and (b) provisions
can be made to allow programmers to ‘break’ the type-system in exceptional cases.
 Because I imagine memory bugs still being a thorn in the side of C/C++
programmers, I envisage Barbados having extensive support for debugging memory
bugs. At present, in fact, Barbados checks the validity of pointers that are passed into
‘free()’ and ‘realloc()’ calls. It also has a ‘debug mode’ whereby each individual word
of memory is tagged as being ‘accessible’ or ‘not accessible’, and each memory write in
the virtual machine is checked against these tags. This system uses fractal techniques.
These techniques are discussed in Appendix B: Persistence.

 Nevertheless, there are advantages and disadvantages of type-safeness, and only
extensive experience with IPPE’s of both varieties will provide a conclusive answer to
the question of whether an IPPE should be type-safe or not. I feel more strongly about
orthogonal persistence than about type-safeness, and a type-safe version of Barbados is
certainly conceivable. A Java-based version of Barbados would be such a system.

 Appendix B (“Persistence”) describes how it might be possible in Barbados to
safely mix data from type-safe languages with data from non type-safe languages.

12.3 Referential Integrity and Garbage Collection
 This section is more about persistence issues than programming environment
issues, although the persistence model does impact the programming environment to
some extent.
 Referential Integrity means that “once a reference to an object in the persistent
environment has been established, the object will remain accessible via that reference for
as long as the reference exists”, and furthermore that objects have one and only one
(unique) identifier [Atk95].
 Again, the Napier system has this property, whereas Barbados does not.
 Garbage Collection is a process whereby the system detects objects not
reachable from some ‘root’ reference or references, in order to reclaim the space used

 92

by them. It is used as an alternative to explicit deletion. In a tree-structured network of
objects, the effect of garbage collection can be achieved by reference-counting: when an
object’s reference count reaches zero, it can be removed. This is the system used in
UNIX, which has a strict hierarchical structure of files. However, in a graph-structured
network of objects, such as the Napier persistent store, it is possible to have cycles of
objects which reference each other but which are not reachable from any root reference.
Therefore it is necessary to perform full garbage-collection.
 Referential Integrity is essentially about garbage collection. In order to provide
referential integrity, it must not be possible to explicitly delete objects: only references
can be deleted. An object must be deleted by the garbage-collector only after the last
remaining reference to it is gone.
 Barbados does not have garbage collection, or at least it only has it in a very
restricted sense. Fine-grained objects are deleted using ‘free()’ or ‘delete’, and large-
grained objects are deleted using the ‘DeleteLGO()’ function. The limited form of
garbage-collection which exists is explained in Appendix B, however very briefly it just
means that when a LGO is ‘closed’, garbage collection is performed on the contents
before writing the LGO to disk.
 The reasons for the decision not to provide garbage collection were:
(a) A philosophical belief that users should be allowed to delete data when they want to,

either for privacy reasons or because the data consumes a lot of memory, (NB: this
applies mainly to LGO’s, not fine-grained objects)

(b) There are costs associated with garbage collection, namely that garbage fills up RAM
which could otherwise be used to cache data, and that garbage collection which is
run automatically introduces an awkward pause in running programs, and that often
in systems with garbage collection, data is not clustered on disk for efficient access
until the global garbage-collector has run.

(c) There was also the desire to support the C++ language. The C++ language does not
have garbage collection, and efficient programs can be written as a result: if hundreds
of objects are being created during the running of the program, and the programmer
can inform the system of which ones are no longer needed, then the system can
immediately re-use the memory occupied by them and hence use memory more
efficiently and save on the cost of garbage collection.

(d) There did not seem to be great advantages arising from the concept of referential
integrity, at least within the Barbados paradigm.

 However, a lot of research has gone into improving garbage-collection
algorithms, so that they can run in the background and so that they can run across a
distributed system [Sha92] [Pla92]. Depending on the effectiveness of these algorithms,
points (b) and (c) may not be valid.
 Regarding (d), in [Mor93] Morrison et al argue that referential integrity can be
used to build better programming environments. However, these arguments are more to
do with pointers being used instead of symbolic names to manage the various
associations between procedures, source-code, version information etc.; a feature which
Barbados does support.

 93

12.4 Graphical vs Text Programming Environments
 Research on integrated programming environments in Napier has focussed on
the construction of a ‘hyper-programming system’ [Kir92] [Mor95]. In this system, a
graphical browser is used extensively to identify objects and execute code.
 By comparison, Barbados is a command-line based programming environment.
The mouse is rarely used, and little use is made of windows.
 I believe that a text-centred interface of this kind, where the user seldom needs
to use the mouse, and where output is interleaved with commands, is the appropriate
programming interface for the majority of programming tasks and the majority of
programmers. I believe that such an interface provides more throughput between
human and computer. This opinion is based mainly on my own experiences of GUI
systems but also on comments made by others. A mouse can be a slow way of issuing
commands and identifying objects.
 However, it is conceivable that a Napier-style GUI be implemented in Barbados.
The Barbados graphical browser is a step along this direction. Similarly, a Barbados-
style command-line could be implemented within Napier.

12.5 Text programs vs Hyperprograms
 In a hyperprogramming system, source-code actually contains direct links
(similar to hyper-text links) to other program components. These links are inserted by a
graphical browser as the user writes the code.
 Barbados does not support this representation of source-code. Compiled code
objects contain links to other objects but source-code objects are plain text.
 This means that Barbados does not have the advantages of hyperprogram links,
for example the wide range of linking times and being able to represent source-code
independently of the context (i.e. name-space, or directory) in which the function
resides.
 Supporting hyperprogramming features was not a high priority, partly because I
don’t believe the advantages are great, and partly because I believe that programming
should be primarily a text-and-keyboard activity. I believe that many naming/binding
issues should be solved at the configuration management level, dealing with large pieces
of programs, rather than at the fine-grained programming level.
 However, the decision not to support hyper-programming may just reflect
personal biases. It is conceivable that hyper-programs be implemented in Barbados.
The Barbados compiler already has an internal pseudo-token which is used to symbolise
a resolved path-name, and this mechanism is very similar to the mechanism which would
be required to compile hyper-program links.
 It should be noted that a flat representation of programs makes configuration
management issues (e.g. version control) straightforward, whereas a hyperprogram
program representation may cause difficulties for a version control system. However,
both Barbados programs and Napier hyper-programs suffer problems of this sort: a
version control system for any IPPE would have to be able to cope with the structure of
IPPE programs, where programs are organised as structures of many small components.

 94

12.6 Object-oriented / object-based vs non-OO languages
 An object-oriented language is defined by [Weg89] as a language with the
following properties:

1. The ability to define an object as a set of operations and a state that remembers,
2. The objects can be categorised by class (type),
3. There is an inheritance mechanism for defining superclasses and subclasses.

 A persistent system inherently focuses on the concept of a ‘typed object’, and it
would seem natural for the system to have the advantages of object-orientation as well
as persistence.
 Barbados implements a language very similar to C++. Classes, member-
functions and multiple inheritance have all been implemented, and hence Barbados can
be called an object-oriented system. (Virtual functions are the next remaining feature to
implement).
 Napier is not an object-based language. Napier objects can have member-objects
which refer to functions, however these pointers are not automatically initialised.
 While object-orientation is not central to the design of Barbados, object-
orientation and object-basedness can yield many advantages to an IPPE:

• Object-orientation is recognised as providing many advantages to general

programming and software engineering,
• Object-basedness simplifies naming/binding issues: once an object has been declared

as having a certain type, the majority of the functions which apply to that object can
be found directly as member functions. This means that

• You can list the available operations on an object with a command such as
‘Help()’ in Barbados,

• You do not need to specify path-names to the methods, they are automatically
type-checked and linked with your code.

• It is (arguably) easier to remember how to use the Barbados meta-level classes than
to remember a how to use a set of meta-level functions. For example, to convert a
‘named_obj’ to an ‘any’ requires a simple cast.

• With object-basedness, values can be displayed automatically on the log by having a
‘Print()’ member function invoked on them. In a functional system, some naming
convention would probably be required instead. Also, inheritance can save the user
from implementing a ‘Print’ method in every class.

 What Napier has instead is the concept of an ‘abstract type’. An instance of an
abstract type is a record containing data fields and other fields which store function
references. The instance is initialised by passing the various function pointers as
arguments to an initialisation operator. If this construction process were wrapped up in
a function, one would have something approaching an object-oriented language.
Similarly, in order to achieve inheritance, the programmer is required to do some work
for each sub-class.
 In Napier, the functions which pertain to a particular class have references inside
each instance of the class. In C++, these function references are factored out into an
object called a ‘v-table’ (virtual function table). Use of ‘v-tables’ yields a more efficient

 95

implementation of object orientedness and encourages programmers to write large
numbers of member functions per class.
 Another relevant issue is: “what happens to existing instances as the class
methods evolve around them?” In Napier, each existing instance will remain bound to
the old versions of the functions (static scoping). In Barbados, the existing instances
will be automatically bound to the new versions (dynamic scoping). There are situations
where either system is preferable. Experiences of Barbados are not sufficient for a
definitive statement to be made as to which is better; however it should be noted that
with programs under development, existing class instances do not play an important role
(hence it is not an important issue). Note also that as software becomes more stable and
‘releases’ are made, existing class instances become more important, however
supporting them becomes an issue of configuration management: something which is
discussed briefly in chapter 14 but essentially not dealt with in this thesis.

12.7 Reflective Programming
 Reflective programming refers to the practice of having one program create or
modify another program, or even itself. A typical way of doing this is to construct a
body of source-code which is then passed through a compiler.
 An IPPE provides much better facilities for reflective programming than
traditional systems, because the compiler can be called from within the store, and it can
be invoked on relatively small amounts of source-code, and the resultant procedures can
be executed from within a running program.
 In particular, Barbados provides support for reflective program by (a) the
provision of a compiler that can be called from within the system, namely the
“compile()” function, and (b) the meta-level classes, which among other things allow the
user to execute a procedure which has been created or identified at run-time. (The
‘FunctionCall()’ member function of the class ‘any’ allows this).
 Reflective programming has not yet been experimented with in Barbados.
 A large amount of research on reflective programming has been done in the
Napier project [Kir92b] [Kir93].

12.8 The Meta-level
 The Barbados meta-level classes provide the user with the means to manipulate
types, directories and dynamically-typed objects. They do so mostly from within the
C++ language.
 By contrast, in Napier the language has been designed to provide these facilities.
For example, special syntax exists which allows programs to create new directory
entries (environment entries), remove entries from the directories, to create values of
type ‘any’ and to project values of type ‘any’ onto specific types.
 The Barbados approach leads to more verbose syntax, but more flexibility. For
example, consider the following examples:

Task Barbados Napier

Creating a new
object ‘foo’ in
directory D:

D.Create(“foo”,
typeof(int));
 = foo;

in D let foo = 3

 96

directory D:

Non-interactively
creating and
initialising ‘foo’:

named_obj foo=D.Create(
“foo”, typeof(int));
(int)foo.Any() = 3;
 = 3

in D let foo = 3

Deleting an object: D.Delete(“foo”); drop foo from D

Deleting a user-
specified object:

cin >> objname;
D.Delete(objname);

! Compile & execute the string
! “drop “++objname++” from D”

12.9 Browsers
 A ‘Browser’ in the context of persistence refers to a program which allows a
user to interactively examine and explore a persistent store, and interact with the data
inside.
 For example, they could begin at the root of persistence. Then, using a mouse,
they can click on successive references. Each reference would then open up the object
referenced, revealing more links to other objects. Functions can be called in this way,
and values can be modified.
 A sophisticated browser has been developed for the Napier system with these
features.
 Barbados contains a program called ‘Browse’ which is an embryonic form of a
browser for a persistent system. This program can take an arbitrary object, and display
it and its transitive closure (i.e. other objects reached directly or indirectly from it) as a
graph in 2 dimensions in a reasonably optimal layout. However, it lacks a great many
other features a persistent browser should have.
 While the Napier browser does not have the graph visualisation feature, it has a
great many more features. These include being able to interact with objects to select
certain objects to be opened up, to modify their fields, and to call functions which are
found from the browser.

12.10 Summary
 Napier is a language explicitly designed to support persistent programming,
especially research into persistent programming. It is a small language, designed for
maximum orthogonality of features.
 In the design of Barbados, more importance was given to useability and
efficiency issues.
 Napier is a type-safe language, which carries obvious benefits but which places
restrictions on lower-level forms of programming and makes the system incompatible
with non type-safe languages such as C++ and Pascal. Barbados is not type-safe, which
can lead to more bugs but gives greater freedom to programmers and makes the system
compatible with a greater range of languages.
 Napier is a garbage-collected system, which means that programmers are not
concerned with storage issues. Barbados is not a garbage-collected system, which
means programmers must think about storage issues.

 97

 Barbados has the concept of a ‘large-grained object’, which leads to a more
complex model of persistence but which yields various advantages.

 98

13. Comparison of Barbados with Smalltalk
 After Napier, the system which is most similar to Barbados is Smalltalk.

13.1 The Design Philosophy
 Smalltalk [Lal90] was designed to be a pure object-oriented language, and to
support large-scale software engineering, especially large business applications. It also
supports Graphical User Interface (GUI) programming quite well, with a large class
library for graphics and windows. Even the design of the language was influenced by
the desire to support GUI programming: there is a message-passing rather than
function-call protocol.
 Everything that can be manipulated in Smalltalk is theoretically an object, in fact
even classes are objects. Class instantiation is provided by sending a ‘new’ message to a
class object and waiting for a reply. The language is dynamically typed. Programs go
through a parsing stage and the resultant syntax trees are interpreted.
 Both Smalltalk and Barbados claim to be better than traditional compiled
environments because they support incremental and interactive programming. Barbados
has the additional advantage that it generates compiled code (or at least is designed to
generate native code) and hence produces faster programs.
 The Smalltalk language is probably easier for beginners to learn, whereas C++ is
ultimately more powerful. In this sense, they each cater for slightly different users:
average programmers will usually prefer Smalltalk, and advanced programmers will
usually prefer C++.
 Both systems aim to assist programmers by providing a complete, integrated
programming environment.

13.2 The Programming Experience
 Smalltalk claims that programmers program by ‘extending the class library’.
Smalltalk programmers begin at a ‘class browser’. A ‘class browser’ is a window which
allows users to browse through the class library and through the methods for each class,
and view and modify the code that implements each method. A workspace can hold
multiple class-browsers.
 The following is an example of a Smalltalk class browser:

System Browser
Graphics-Prim
Graphics-Disp
Graphics-Path
Graphics-View

Pen
Point
Instanc|Class

accessing
coloring
moving
geometric des

hilberts:
mandala:diame
spiral:angle:

spiral:n angle:a
 “Draw a double spiral directly on the display.”

 “Display white.
 Pen new spiral: 200 angle: 89; home; spiral: 200 angle: -89.”

 1 to: n do: [:|self go:|; turn: a]

 99

 In Barbados, classes can occur anywhere in the directory hierarchy. In
Smalltalk, classes are stored in a centralised set in a two-level hierarchy. This two-level
hierarchy consists of ‘class categories’ and ‘classes’.
 Class browsers come in two halves, with the top half being split into 4 panes.
The first pane in the top row is the ‘class category’ menu. The second pane is the class.
The user finds existing classes by selecting items from these two windows. Class
methods are likewise organised into a two-level hierarchy of ‘message categories’ and
‘messages’. Panes 3 and 4 allow the user to select individual messages, i.e. methods.
 Once a class has been selected, it can be viewed or modified in the lower
window. Alternatively, a ‘message’ can be selected and likewise viewed or modified.
 The user can execute or evaluate program fragments by highlighting source text
with the mouse and selecting a menu option to ‘do it’ or ‘print it’. The source-text can
be any text inside an existing ‘message’ or temporary text the user types in the bottom
half of the browser. When objects are printed, they are printed using the ‘printOut’
message of that object.

 Compared with Barbados, the Smalltalk environment is more dependent on the
mouse (or pointing device). However, it could also be said to provide a more user-
friendly interface to the user. Barbados is probably more suitable for experienced users.

13.3 Programming Tools
 Smalltalk and Barbados are both similar in that they are both highly integrated
environments yet at the same time quite ‘open’ systems. They are ‘open’ in the sense
that many of the programming tools are implemented by ordinary objects which exist in
the user’s ‘space’, and which have the same status as the user’s own objects. The
alternative is an environment which provides functionality through built-in tools,
accessed through pull-down menus and so on, and which can not be replaced or re-
implemented or built upon.
 An example is the functionality to search for objects which reference a given
object. In Barbados, this is accomplished through the ‘grepdepend()’ function which is
implemented using the meta-level classes, (including the function: named_obj
::Dependency() which is implemented at system-level). In Smalltalk, this is
accomplished through various objects and messages such as the following:

Smalltalk browseAllCallsOn: (Smalltalk associationAt:
#Display)

The ‘browseAllCallsOn’ message creates a browser. The set of objects that will appear
in the browser is given by the subsequent expression, which in this case is a sub-
expression which searches for references to the symbol ‘Display’ from the system
library.
 Smalltalk provides support for debugging, via various windows which allow the
user to inspect object values, set breakpoints and so on. Because Smalltalk is more
interpreted than Barbados, it is easier in Smalltalk to modify a running program. In
Barbados, (at present) one has to return to the command-line before executing a
modified program. However, because Barbados performs more checking at compile-

 100

time, being able to modify running programs is not as important in Barbados as it is in
Smalltalk.

13.4 The Language
 Both Smalltalk and C++ are object-oriented languages, however C++ also
supports function-based programming.
 They both support multiple inheritance. However, while Smalltalk supports
multiple inheritance, it does not occur in the standard library.
 Both languages support information hiding. In C++, this is provided by the
‘public’ and ‘private’ keyword in class definitions. In Smalltalk, the public interface to
an object is defined as the set of messages defined for the class.
 Both languages support polymorphism: in C++, it is possible to have multiple
functions with the same name, but taking parameters of different types. In Smalltalk, all
objects are dynamically typed and hence methods are not chosen until run-time, so
polymorphism is something intrinsic to the paradigm. Interestingly, this feature is used
to implement boolean values in a unusual way: ‘true’ and ‘false’ are objects of different
types, which both inherit from a superclass called ‘boolean’. The various boolean
operations are implemented as messages on the classes ‘true’ and ‘false’; such that the
messaging code for ‘true’ is different to that of ‘false’.

13.5 Directories and Dictionaries
 The Barbados notion of a ‘directory’ corresponds to the Smalltalk notion of a
‘dictionary’. Both are collections of named, typed objects, and both can be nested. In
practice, Smalltalk dictionaries are generally large and are not nested deeply. They are
used more as ‘workspaces’ or ‘contexts’ than as a way of giving data structure. Path-
names are not integrated into the language. Instead, the user needs to make a series of
dictionary lookup operations, albeit with quite a concise syntax, however this leads to
run-time resolution of paths rather than compile-time resolution.

13.6 Debugging
 Both systems are designed to have extensive support for debugging. (Although
in Barbados, only a very primitive version of the debugger exists to date).
 Smalltalk supports debugging using windows which allow the user to inspect and
modify values. Breakpoints are set by inserting a call to the debugger (‘self halt’)
at the appropriate point in the code, and compiling the message. Barbados uses a
different technique for implementing source-level breakpoints, (special virtual-machine
instructions), but it can (and probably will eventually) use this technique. This technique
of compiling debugger calls into code is only available to incremental programming
environments, because of the cost of recompilation. Compared with the alternatives,
this implementation might make it easier to integrate the debugger with local variables.

 101

13.7 Summary
 Both systems support incremental and interactive programming. They are both
highly integrated, and yet ‘open’ systems. Barbados supports the C++ language, which
is a rich and concise and efficient language. The Smalltalk environment supports the
Smalltalk language, which is a small, concise and less efficient language. Barbados is a
highly text and keyboard-based environment, designed for efficient use by expert
programmers, whereas Smalltalk makes more use of windows and mouses and is
designed for user-friendly use by less expert programmers.

 102

14. Directions for Further Research

14.1 Parallel Programming
 The concept of a LGO is something which could be useful in the domain
of parallel processing. It allows data to be wrapped up into a single (flat) object and
then communicated between different address spaces. These objects consist of logically
related items, which display good locality of reference, and they come with a locking
protocol, which is appropriate because they are logical entities (they consist of logically
related items).
 This system encourages large-grained concurrency. A LGO containing a
program can be sent off, along with LGOs containing the parameters to that function, to
another processor for processing. Global data would consist of the set of LGOs in the
system - LGOs would be passed around by processors following a multiple-
reader/single-writer protocol. LGO identifiers would be the persistent identifiers in the
global memory.
 A parallel program could consist of a number of parallel processes, each
farming off sub-processes. To spawn a sub-process, the parent process would construct
a ‘function call’, meaning a function reference and a set of parameters. The parameters
would need to be meaningful outside the parent process’s address space, and therefore
should only contain non-pointer values and LGO pointer values.

14.2 Data-compression with LGOs
 An ‘LGO’ is (Large-Grained Object) is a Barbados concept used in the
implementation of persistence. Large-grained objects replace ‘files’ in many ways. they
are described in appendix B.
 Since the only operations on LGOs are to open and close them, and
random-access is not supported, there is the possibility of providing data-compression at
the operating-system (i.e. persistent system) level.
 This optimisation would have the advantage (a) saving on disk space,
which is a minor benefit, and possibly (b) saving time by doing fewer disk reads or
reducing the volume of network traffic.
 Whether it actually improves performance depends on many factors, such
as the granularity of objects accessed, the compressibility of the data and the speed of
the compression algorithm. It seems that fairly crude compression must be used if the
goal is to improve performance.

14.3 Native Code Generation
 At present, Barbados generates and then interprets pseudo-code. In
order to get a proper idea of performance as it will be in the final system, it will need to
generate native code.

 103

 Consideration will be given as to whether “Java Virtual Machine” to
“native code” converters can be used instead of traditional code generation techniques.

14.4 Configuration Management
 Configuration management is the broad problem which includes version
control, building applications and supporting different platforms.
 While configuration management is outside the scope of this thesis,
some thought has been given to it.
 A prominent part of the plans for configuration management support is a
utility called ‘Release()’. Release() will take a specified large-grained object or objects,
and wrap it up along with other large-grained objects it has code dependencies on, into
a single (new) large-grained object called a ‘release object’. The links with source-
code will be severed at this point, meaning that the program can evolve independently
from the release object.

 104

15. Conclusions
 The aim of this thesis was to explain the concept of an Integrated Persistent
Programming Environment (IPPE), why it is useful, and to describe the author’s
experience in building one.
 An IPPE is a programming environment built on top of a persistent system. This
means that source-code, executable code and data all co-exist in the persistent store. An
IPPE is both an application of persistence as well as an interface to persistent
programming. It can be used either as a programming environment on top of an
otherwise normal operating system, or as a programming environment giving access at a
low level to a persistent system.
 The benefits of an IPPE in general, and Barbados in particular, include:

• Incremental compilation: this means that if a small change is made to a program,

only a small amount of code needs regeneration.
• An interactive environment: this means that the user can run code-fragments and

execute commands defined by their program (e.g. testbed routines), interactively.
• A monolingual environment: the same language is used as both a shell language and

as a high-level language.
• There are no more makefiles: the environment automatically and transparently tracks

dependencies and keeps programs consistent (both internally consistent and
consistent with source-code).

• Visual feedback: the user can query data-structures, using print methods defined by
their programs, with a minimum of typing. Results are printed underneath the
corresponding command, which also aids feedback and programmer concentration.
The results can be displayed in text or with bitmaps.

• A data-structure browser: for debugging or for other purposes, the user can use a
graphical tool to inspect various objects and their relationships to each other.

• A number of tools exist which understand the user’s programs to a fair amount of
detail and hence can provide more intelligent services. An example is the
‘grepdepend()’ dependency searcher.

• Meta-level classes allow the user to define their own programming tools. These tools
can be either general tools or project-specific tools.

• The environment encourages the user to write and use a large set of small tools, e.g.
as in UNIX.

• Data exists alongside program components in the persistent store. Therefore the
distinction between the two can be blurred for more flexibility. For example, GUI
resources can be constructed using graphical tools, and then the resulting objects
(e.g. icons) can be referenced directly by the program with an identifier.

• Debugging can occur in the same language, with the same compiler and in the same
context (e.g. with C++ macros) as the code being debugged.

• The environment works with a very standard version of C++, and with quite standard
compilation techniques (so e.g. code can be generated with the usual optimisations).

• The environment provides persistence, which reduces program size and complexity
and provides opportunities for more advanced features and promotes sharing of data
between applications.

 105

 The author has completely implemented an IPPE, called ‘Barbados’. Barbados
is significantly different from the only other IPPE the author is aware of, namely Napier.
 The issues that arose in its construction included: what model of persistence is
appropriate for an IPPE, what an effective user-interface is for an IPPE, how fine-
grained program components can be kept up-to-date with each other, how a
programming language needs to be modified for an IPPE, what new programming tools
arise in the context of an IPPE, and how meta-level classes should be designed to allow
the programmer to interact with types, named-objects and directories.
 In conclusion, sufficient research into IPPE’s now exists that an IPPE can be
commercially developed.

 106

16. Appendix A: Implementation of the
Barbados IPPE
 This chapter describes the implementation of the programming environment
aspects of Barbados. As the following figure illustrates, the Barbados programming
environment is supported by the Barbados Persistent System.

Barbados Persistent System

Barbados
Programming
Environment

Windows 95/NT

16.1 Platform
 Barbados has been implemented in the Windows 95 platform. This means that it
should port to the Windows NT platform with no modification to the code. It was
written entirely in C, originally in the Borland C++ compiler and then in Microsoft
Visual C++ v4.0.

16.2 Architecture
 At present, the persistent system and programming environment are all contained
together in the one executable program (with the exception of the ‘LGO id server’
described below) outside the Barbados persistent store. This organisation is not
ultimately a satisfactory state of affairs, because the programming environment should
be contained within the persistent store, rather than mixed in with the code that
implements the persistent store. However, this was the easiest way to implement the
functionality.
 The main components of the programming environment are the following:

 107

Run-time System

Compiler Command-
line editor

Name-space
manager

Make Memory
manager

 The command-line editor controls the system interface, that is the command-line
editor, the scroll-buffer and the superficial lexical analysis used to identify compileable
entities. The compiler compiles arbitrary strings. The name-space manager manages the
name-space, i.e. does the actual work involved when a declaration is compiled, manages
the ‘current directory’ and associated name-space, and deletes named objects too.
‘Make’ implements program consistency. The memory manager provides heap
functions by building on top of Windows memory primitives. The run-time system
includes the virtual machine-code interpreter and code for initialising system objects and
providing system functions.
 Control is most often in the command-line editor. Each time the user enters a
compileable string, the string passes through the following components:

1. It is sent to the compiler.
2. The result is sent to the ‘Make’ system to be brought up-to-date prior to

execution.
3. The run-time system is invoked, to interpret the generated virtual machine-

code.

16.3 The Memory Manager
 The memory manager must provide heap functions, i.e. malloc(), free(), realloc()
and so on.
 These functions had to be implemented anew because Barbados requires more
control over memory than would be afforded with the standard library functions.
 Specifically, the Barbados persistence model requires that each large-grained
object which is currently open (i.e. in memory) belong in a heap of its own. It must be
possible free an entire LGO in one go, efficiently, and to read in an LGO from disk and
set it up in memory, efficiently. Also, Barbados needs to be able to map arbitrary
pointers to the LGO which it corresponds to, and to annotate heap objects with extra
information during the ‘Saver’ phase. Also, by implementing heaps myself, it was
possible to perform extra checks e.g. that valid pointers are passed into the ‘free()’ and
‘realloc()’ functions.

 108

16.4 The Compiler
 The compiler was implemented in a quite standard way. Source-text passes
through the following levels:

1. Lexical analysis (including preprocessor transformations)
2. Parsing (recursive descent), producing syntax trees.
3. Decoration of the syntax trees, to add type information and instruction

information from the bottom up.
4. Optimisations of expressions (an optional piece of work which was

implemented as an exercise).
5. Emission of instructions by traversing the syntax trees.

 After compilation, the generated code is returned and declarations will have been
processed. All other information, e.g. the program syntax trees, are thrown away. This
differs to the approach taken by many incremental compilation researchers, who keep
the syntax trees in order to make incremental modifications to them.

16.5 The Editor
 The editor works in a standard way. It maintains a doubly-linked list of text
lines, with a pointer to the current line. Each time the screen needs to be refreshed
following a modification, a view of this data-structure is taken. An intermediate layer
exists between the command-line editor and the Windows text-drawing functions; this
layer optimises the changes to the window by identifying which lines have changed.
 When a bitmap is output to the editor, it is (a) stored in a database of bitmaps
the editor keeps, and (b) converted to a text string incorporating a special control
character and an index into the database. This implementation enables the window-
drawing code to display bitmaps.

16.6 The Name-Space Manager
 The most important function implemented by the name-space manager is the
‘DeclareObject()’ function. This function takes (name, type, storage class) as
parameters and declares the appropriate object.
 This function is used to declare types, functions, variables and even preprocessor
macros. It is used for global variables/objects, local variables/objects, class members,
classes and enumerator-type elements.
 It also implements functions to change the current directory. There are functions
to add and subtract directories of objects to the current name-space.

16.7 Types used internally
 The following types are used to represent program and data components in the
system:

 109

named_obj: A named object. Contains fields for type, value, storage class, make
information, visibility (in the case of class members), and version (in the
case of overloaded objects).

make_node: A node used by the ‘make’ algorithm. Contains fields for dependency
lists and time-stamps. It always corresponds to one and only one
named_obj.

directory_type: A linked list of named_obj’s.
hash_type: A node corresponding to a particular (string) identifier. Can refer to

multiple named_obj’s, e.g. through overloading or through being
declared multiple times in different (nested) scopes, or through existing
multiple times in directories which are mapped into the name space.

type_type: A representation of a type. For example, “a pointer to array of 30
instances of class X’.

structure_type: An object corresponding to a struct or class definition. Contains a
linked list of fields and an overall ‘sizeof’ figure.

16.8 Storing Dependencies
 At present, dependency information is not stored persistently. This is because
the information can be regenerated reliably simply by recompiling the relevant objects,
and it was my hypothesis that better performance would result if this information was
not stored but rather regenerated when needed.
 The theory is that if a user wishes to use a stable program or library, they do not
want to be slowed down by loading dependency information for the code. On the other
hand, if they are developing a particular program or set of functions, the dependency
information will remain in the Barbados cache for the majority of the development
session.
 Either alternative (to store dependencies in the store or not) is probably about as
good as the other. In particular, once Barbados has a ‘Release()’ tool to bundle stable
code into a single object and separate it from source-code, this will mean that
dependencies need only be stored persistently for unstable code.

16.9 Detecting Compileable Entities:
 A compileable entity, as far as the editor is concerned, is either:
• a piece of text which includes a '{' token that is matched further down, or:
• a piece of text without any braces but which has a semi-colon token, and the semi-

colon does not occur inside '(' and ')' brackets9, or
• a piece of text beginning with the ‘#’ symbol and finishing with a line that does not

end in the ‘\’ character.

 The editor knows about the lexical structure of C++, and hence is not
fooled by semi-colons and braces inside comments or strings or preprocessor directives.

For example:

9 semi-colons occur inside the ‘(‘ and ‘)’ brackets in ‘for’ loops.

 110

void f(int n)
{
 while (n--) {
 cout << n;
 }
}

Braces match. The final '}' completes it.

cout << "Hello."; No braces but a semi-colon.
while (n--)
 cout << n;

No braces but a semi-colon.

4+3; 4+3+2; Actually, two compileable entities.

By comparison, these examples are not complete:
for (int i=0; i < 5; i++) The semi-colons are inside brackets, so

don't count.
cout << "Hello;" There is no semi-colon token. (The

semi-colon in the string doesn't count).
int f(int n)
/* { } */

The braces are in a comment.

While this algorithm is highly effective, it can be fooled:

#define close_brace }

void f(int n)
{
 return 5;
close_brace

This unusual macro confuses the half-
parser and it doesn't recognise that the
entity is complete.
 Some non-syntactic uses of macros
can cause trouble.

4+3; cout
 << "Hello.";

The semi-colon means that something is
complete, but the compiler will be called
before the user can enter the next line.

if (true)
 cout << "yes";
else cout << "no";

while (--n)
 if (n % 2 == 0)
 cout << n;
 else cout << n+1;

The compiler is called after the "yes",
because up to there it is syntactically
correct, and it never even sees the 'else'.
The first example is an unusual thing to
do in an interpreter, (the user can just
evaluate the condition themselves and
save themselves some typing); the
second example is a more valid
example. In this case, the user has to
put braces in somewhere.

 111

int A[5] = {
 2,3,2,3,2 }
;

class C {
 int x;
 ...
}
a,b,c;

Declarations that use braces, i.e. array
initialisation and class definitions, must
have the closing semicolon on the same
line as the closing brace, or the half-
parser will be confused.

 However, it is easy to find ways of coping with these problems. In most
cases, the user can work around the problem simply by putting braces around a
command.
 The editor maintains all relevant information incrementally, as the user
moves up and down over text.

 112

17. Appendix C: The Meta-Level Classes’
Interfaces
 The meta-level classes’ interfaces as described in chapter 6 are given below:

class any { // A (type, value) pair
 ...
public:
 type Type(); // type
 void* Address(); // value
 any ArrayLookup(int); // Accessing
 int ArrayLength();
 any FieldLookup(string s);
 any FieldLookup(named_obj obj);
 any FunctionCall(any *Params);
 any Dereference();
 ostream& Print(ostream&); // Display
};

struct type_expansion { // Used for expanding types.
 char primary; // ptr,array,fundamental etc
 type remainder; // ptr etc. to what?
 int n; // Array size or fn arity
 type params; // Types of parameters
 named_obj obj, typedef_obj; // Root of list of members
};

class type { // A run-time type
 ...
public:
 char Expand(type_expansion*); // Expand to ‘type_expansion’
 type NextParam(); // Cycle thru fn params
 type operator=(string s); // Assign
 any New(); // Create a new instance
 ostream& Print(ostream&); // Display it
};

class named_obj { // A directory entry or class
member
 ...
public:
 named_obj(string s); // Find in current name-space
 named_obj Next(); // Iterate thru directory or
class
 string Name(); // The name
 any Any(); // The (type, value)
 type Type(); // The type
 boolean Exists(); // Test for being null
 named_obj Dependency(int n); // Lists dependencies
 ostream& Print(ostream&); // Display
};

class directory { // A set of named_obj’s
 ...
public:
 any FindAny(string); // Find this as an any

 113

 named_obj Find(string); // Find this as named_obj
 named_obj Create(string, type); // Create a new named_obj
 void Delete(string); // Delete this named_obj
 ostream& Print(ostream&); // Directory listing
};

 114

18. References

[Aho86]: Aho A.V., Sethi R. & Ullman J.D., “Compilers, Principles, Techniques and Tools”, Addison-
Wesley, Reading, Massachusetts, 1986.

[Atk83]: Atkinson M.P., Bailey P.J., Chisholm K.J., Cockshott P.W., Morrison R. "An Approach to
Persistent Programming", The Computer Journal, Vol 26, 1983, pp 360-365

[Atk86]: Atkinson, M.P., Morrison R., “Integrated Persistent Programming Systems”, Proceedings of
the 19th International Conference on System Sciences, Hawaii, pp 842-854, 1986.

[Atk95]: Atkinson M.P. & Morrison R., “Orthogonally Persistent Object Systems”, VLDB Journal 4, 3
1995, pp 319-401.

[Bah86]: Bahlke R. & Snelting G., “The PSG System: From formal language definitions to interactive
programming environments”, ACM TOPLAS, 8 (4): pp 547-76, 1986.

[Bor88]: Borras P. et al, “Centaur: the System”, Proceedings of SIGSOFT’88, 3rd Annual Symposium
on Software Development Environments (SDE3), Boston, USA, 1988.

[Bro92]: Brown A.L. & Morrison R., “A Generic Persistent Object Store”, Software Engineering
Journal 7, 2 (1992) pp 161-168.

[Buh86]: Buhr P., “A Programming System”, PhD Thesis, University of Waterloo, 1986.

[Buh89]: Buhr P., Ditchfeild G. & Zarnke C.R., “Basic Abstractions for a Database Programming
Language”, 2nd International Workshop on Database Programming Languages, June 1989, pp 422-
437.

[Car94]: Carey, M.J. et al, “Shoring Up Persistent Applications”, Proc. 1994 ACM-SIGMOD
Conference on the Management of Data, 1994.

[Coo95]: Cooper T. & Wise M., “The Case for Segments”, Proceedings of IWOOOS ‘95

[Coo96a]: Cooper, T. & Wise, M., “Barbados: An Integrated Persistent Programming System”,
unpublished, http://www.cs.su.oz.au/~timc/Barbados, 1995.

[Coo96c]: Cooper, T. & Wise, M., “Critique of Orthogonal Persistence”, to be published in
Proceedings of IWOOOS ‘96, also available from: http://www.cs.su.oz.au/~timc/Barbados, 1996.

[Dah87]: Dahle H.P., Lofgren M., Madsen O.L. & Magnusson B., “The Mjolner Project”, Proceedings
of the Conference held at Software Tools, Online Publications, London, 1987.

[Dea94]: Dearle A., di Bona R., Farrow J., Henskens F., Lindström A., Rosenberg J. & Vaughan F.,
"Grasshopper: An Orthogonally Persistent Operating System", Computer Systems, Vol 7, 3, pp. 289-
312, 1994.

[Don80]: Donzeau-Gouge V., Huet G., Kahn G. & Lang B., “Programming Environments based on
Structured Editors: the Mentor experience”, Rapports de Recherche 26, INRIA, Domaine de Voluceau,
Rocquencourt, France, 1980

[Dub93]: DuBois, Paul, “Software Portability with imake”, O’Reilly and Associates, 1993.

[Ear72]: Earley J. & Caizergues P., “A method for incrementally compiling languages with nested
statement structure”, Communications of the ACM, 15 (12) pp 1040-1044. Dec 1972.

 115

[Fel79]: Feldman S.I., “Make - A Program for maintaining Computer Programs”, Software - Practice
and Experience 9(3) pp255-265, 1979.

[Far92]: Farkas A.M., Dearle A., Kirby G.N.C., Cutts Q.I., Morrison R. & Connor R.C.H., “Persistent
Program Construction through Browsing and User Gesture with some Typing”, Proc. 5th International
Workshop on Persistent Object Systems, San Miniato Italy (1992) pp 375-394.

[Fra83]: Fraser C. & Hanson D., "A High-Level Programming and Command Language", ACM
Transactions on Programming Languages and Systems, Vol 5, 1983

[Hee85]: Heering J & Klint P., "Towards Monolingual Programming Environments", ACM
Transactions on Programming Languages and Systems, Vol 7, No 2, April 1985

[Hee94]: Heering J., Klint P. and Rekers J., “Lazy and Incremental Program Generation”, ACM
TOPLAS 16(3), pp 1010-1023, 1994.

[Hen93]: Henskens F.A., Brossler P., Keedy J.L. & Rosenberg J., “Coarse and Fine Grain Objects in a
Distributed Persistent Store”, Proceedings of IWOOOS ‘93, pp 116-123

[Hos90a]: Hosking A.L., Moss J.E.B., "Towards Compile-time Optimisations for Persistence",
Implementing Persistent Object Bases (4th Workshop on Persistent Object Systems), 1990

[Hos90b]: Hosking A.L., Moss J.E.B. & Bliss C., "Design of an Object-Faulting Persistent Smalltalk”,
Computer Science Technical Report 90-45, University of Massachusetts, Amherst, 1990

[Gus89]: Gustavsson A., “Viewing the Evolution of Software Objects in an Integrated Environment”,
Proc. 2nd ACM SIGSOFT Workshop on Configuration Management, Nov 1989.

[Joy92]: Ian Joyner, "C++?? A Critique of C++, 2nd Edition", Unpublished, available upon request to
ian@syacus.acus.oz.au

[Ker84]: Kernighan B.W. & Pike R., “The UNIX Programming Environment” Prentice Hall Inc.,
1984.

[Kir92]: Kirby G.N.C., Connor R.C.H., Cutts Q.I., Dearle A., Farkas A.M. & Morrison R., “Persistent
Hyper-Programs”, Proc. 5th International Workshop on Persistent Object Systems, San Miniato Italy
(1992) pp 73-95.

[Kir92b]: Kirby G.N.C., “Persistent Programming with Strongly Typed Linguistic Reflection”, Proc.
25th International Conference on System Sciences, Hawaii (1992) pp 820-831.

[Kir93]: Kirby Graham N. C., "Reflection and Hyper-Programming in Persistent Programming
Systems", (PhD Thesis - University of St Andrews), 1993

[Lam91]: Lamb C.W., Landis G., Orenstein J.A. & Weinreb D.L., “Next Generation Database
Systems”, CACM 43,10 (Oct 1991),pp 51-63.

[Lal90]: LaLonde W.R. & Pugh J.R., “Inside Smalltalk”, Prentice-Hall, 1990.

[Lie93]: Liedtke J., “A Persistent System in Real Use - Experiences of the First 13 Years”, IWOOOS
‘93, pp 2-11, 1993.

[Lin95]: Lindstrom A., Rosenberg J. & Dearle A., “The Grand Unified Theory of Address Spaces”,
Proceedings of 5th workshop on Hot Topics in Operating Systems, 1995.

[Mag90]: Magnusson B., Bengtsson M., Dahlin L., Fries G., Gustavsson A., Hedin G., Minor S.,
Oscarsson D. & Taube M., “An Overview of the Mjolner Orm Development Environment: Incremental

 116

Language and Software Development”, Proceedings of 2nd International Conference TOOLS
(Technology of Object-Oriented Languages and Systems), 1990.

[Mar90]: Marlin C., “A Distributed Implementation of a Multiple View Integrated Software
Development Environment”, Proceedings of 5th Conference on Knowledge-Based Software Assistants,
pp 388-402, New York, 1990.

[Mcc96]: McCarthy M. J., “Incremental Code Generation in a Distributed Integrated Programming
Environment”, PhD Thesis, Flinders University, South Australia, 1996

[Mey88]: Meyer Bertrand, “Object-oriented Software Construction”, Prentice Hall, 1988.

[Med81]: Medina-Mora R. & Feiler P.H., “An incremental programming environment”, IEEE
Transactions on Software Engineering, 7(5), pp472-482, Sep 1981.

[Mic96]: Henshaw J., “Inside Visual C++’s Incremental Build Technologies”,
http://www.microsoft.com/VISUALC/V4/V4tech/incrbld.htm

[Mor88]: Morrison R., Brown A.L., Conner R.C.H. & Dearle A., "Napier88 Reference Manual",
Universities of Glasgow and St Andrews, Persistent Programming Research Report PPRR-77-89, 1989

[Mor89]: Morrison R., Brown A.L., Conner R.C.H. & Dearle A., “Napier88 Reference Manual”,
Universities of Glasgow and St Andrews, Persistent Programming Research Report PPRR-77-89, 1989

[Mor93]: Morrison R., Baker C., Connor R.C.H., Cutts Q.I. & Kirby, G.N.C. “Approaching Integration
in Software Environments”, University of St Andrews Technical Report CS/93/10 (1993)

[Mor94]: Morrison R., Baker C., Connor R.C.H., Cutts Q.I., Kirby Q.N.C. & Munro D., “Delivering
the Benefits of Persistence to System Construction and Execution”, Proc. 17th Australasian Computer
Science Conference, Christchurch NZ (1994) pp 711-719

[Mor95]: Morrison R., Connor R.C.H., Cutts Q.I., Dunstan V.S. & Kirby G.N.C., “Exploiting
Persistent Linkage in Software Engineering Environments”, accepted by Computer Journal, 1995.

[Nap88]: Morrison R., Brown A.L., Conner R.C.H. & Dearle A., "Napier88 Reference Manual",
Universities of Glasgow and St Andrews, Persistent Programming Research Report PPRR-77-89, 1989

[Not85]: Notkin D., “The Gandalf Project”, Journal of Systems and Software, (5) pp 91-106, May 1985.

[Ora91]: Oram A. & Talbot S., “Managing Projects with Make”, O’Reilly and Associates, 1991.

[Pla92]: Plainfosse D. & Shapiro M., “A Distributed GC in an Object-support Operating System”, The
1992 Int. Workshop on Object-Orientation and Operating Systems (France), pp221-229, Oct 1992.

[Rep85]: Reps T. & Teitelbaum T., “The Synthesizer Generator”, ACM SIGPLAN Notices 19 (5), pp
42-48, May 1984.

[Ric89]: Richardson, J.E. and Carey M.J., "Implementing Persistence in E", Proceedings of the Third
International Workshop on Persistent Object Systems, Newcastle, Springer-Verlag, pp 175-199, 1989.

[Ric93]: Richardson J.E., Carey M.J. & Schuh D.T., “The design of the E programming language”,
ACM Transactions on Programming Languages and Systems, 15(3) July 1993.

[Ros85]: Rosenberg J. & Abramson D.A., “MONADS-PC: A Capability Based Workstation to support
Software Engineering”, Proceedings of 18th Hawaii International Conference on System Sciences, pp.
515-522, 1985.

 117

[Sha89a]: Shapiro Marc, "Persistence and Migration for C++ Objects", The European Conference on
Object Oriented Programming (ECOOP), 1989, pp 191-204.

[Sha89b]: Shapiro M. et al, “SOS: An Object-Oriented Operating System - Assessment and
Perspectives”, Computing Systems 2(4) pp 287-337, 1989.

[Sha92]: Shapiro M., Dickman P. & Plainfosse D., “Robust, distributed references and acyclic garbage
collection”, Symposium on Principles of Distributed Computing (Canada), 1992.

[Sin92]: Singhal V., Kakkad S. & Wilson P., "TEXAS: An Efficient, Portable, Persistent Store",
Proceedings of the 5th International Workshop on Persistent Object Systems, 1992, pp 13-28

[Sou94]: Sousa P. & Marques J.A., “Object Clustering in Persistent and Distributed Systems”,
Proceedings of the Workshop on Persistent Object Systems 1994, France.

[Tei81]: Teitelbaum T. & Reps T., “The Cornell Program Synthesizer: A syntax-directed
Programming Environment”, Communications of the ACM, 24 (9) Sep 1981, pp 563-573.

[Tic85]: Walter F. Tichy, “RCS - A System for Version Control”, Software Practice and Experience
15, 7, (July 1985), pp 637 - 654.

[Tic86]: Tichy, W.F., “Smart Recompilation”, ACM TOPLAS 8(3), 1986.

[Weg89]: Wegner P., “Dimensions of object-based language design”, OOPSLA 87, 1987.

[Wil84]: Wilander J., “An Interactive Programming System for Pascal”, Interactive Programming
Environments, McGraw-Hill, pp 117-127, 1984.

[Wir92]: Reiser M. & Wirth N., “Programming in Oberon: Steps Beyond Pascal and Modula”, ACM
Press Books, 1992.

