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SUMMARY 
A system for dynamic compilation under the Unix operating system is described. The basis of 
the system is an incremental assembler that can be used statically or during program execution 
to insert or replace a module in an executable image. All cross-module references are via offsets 
into a run-time symbol table. All generated code is independent of its location or the location 
of the symbol table. The symbol table and all modules reside in memory segments compatible 
with the memory allocator mallocO. The symbol table origin is maintained in a processor register. 
Library procedures allow the assembler (or C compiler) to be called to alter the currently 
executing program, or to place a stub function which acts as a trap, so that when the stub is 
invoked it causes a file to be dynamically compiled into the executing program to replace the 
stub with a bona fide procedure. This facilitates the construction of advanced interactive 
environments using native code. Some example applications, to Prolog and to incremental 
compilation, are considered. 
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INTRODUCTION 

This paper presents an approach to dynamic compilation and assembly which has been 
implemented under the Unix operating system and is proving useful in a variety of 
contexts. With this system, an executing program exists in memory as a set of indepen- 
dently loaded modules, communicating via a run-time symbol table. Code modules 
can be added or modified by the program itself. 

Intermodule references have an additional layer of indirection, and so are slightly 
slower than with the normal Unix system.'' The system described in this paper is 
intended for applications where the replacement of a program module is a common 
occurrence. Such apparently unconventional applications are becoming more common, 
especially in rapid prototyping and development environments, and generally in the 
artificial intelligence field. Some examples are included in this paper. 

The system has been implemented for the VAX under Unix, by modifying the C 
compiler and assembler. Some additional utilities have been supplied. The assembler 
performs all the functions normally associated with the loader (inserting binary files, 

* UNIX is a trademark of AT&T Bell Laboratories. 
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extracting needed routines from archives), in addition to supporting mixtures of 
assembler and binary files. No changes to the Unix kernel have been made, and the 
system uses its own version of the C library. 

DYNAMIC COMPILATION SYSTEMS 

The usual system view of a user process is that it consists of a read-only program, 
constructed once by a compiler, a readlwrite data and stack area and some information 
private to the operating system. Read-only programs can be shared among many users. 

Such a view is really only tenable for very simple application software. Many users 
require to be able to tailor their software for their own purposes, and for example 
many editors have a macro facility to enable such customization to be done on a per 
user basis. The command processors on many systems, including Unix, support per- 
user or per-process customization (shell variables, environment, search paths, aliases). 
The alteration of a macro or search path can make dramatic changes to the behaviour 
of the software, and is not far removed from the concept of dynamic compilation. The 
customization is achieved by tables which are interpreted by a common program. 

In interpretive systems of the more usual sort, such as BASIC or Prolog, dynamic 
behaviour is commonplace, but is not considered strange because it is possible to 
distinguish between the interpreter itself, which is unchanging, and its data (the user's 
contribution), which is dynamic. But for the user, it is much the same to him 
whether his BASIC is compiled into machine code, or some compact version suited to 
interpretation : the former would probably be preferable for speed. 

This is one area where dynamic compilation represents a natural progression from 
existing practice, and is of particular value in Prolog,' where the continued addition 
of rules to a system can make the system very slow, and compilation the more important. 
Some advanced language systems, such as ML,3 already use dynamic compilation, but 
the new machine code is directly constructed by the program (in 'data' space). ML 
goes to a lot of trouble to do this. By contrast, the software described in this paper 
makes it a simple matter for any program to be made dynamic. 

Other incremental compilation systems have been described,'" which require substi- 
tution of procedures or even smaller units within a program being debugged. In general 
the insertion of breakpoints, or the monitoring of variables, in a compiled system will 
require code modification. In Reference 7 an incremental system is described where 
substitution occurs during development of a large project. 

In all of these systems, the modifications being interactively made to programs are 
rigidly controlled by the environment, which ensures that the change is consistent with 
what has gone before. The system described in Reference 4 is closest in approach to 
the work described here, where it is envisaged that the dynamic compilation facilities 
will in practice also be subject to the control of a high-level software environment, 
such as a Prolog front-end or a structure editor. 

The dynamic compiler described in this paper also acts well as an incremental 
compiler, as it allows the replacement or insertion of a module in an existing executable 
image file, without changing the existing code. This is not the same as dynamic 
compilation, as changes are made statically to an existing executable file, rather than 
dynamically to an executing program. 
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Overlay programs are another type of self-modifying program. The ETH Modula- 
2 compiler for the PDPl l8 provided a loader module as standard, which allowed groups 
of modules to share the same memory. In such systems, changes are made dynamically 
to an executing program, but the changes are specified in an overlay structure that is 
specified when the executable file is being created, rather than during execution of the 
program. Thus this type of modification is much more restrictive than that considered 
in this paper. 

The Berkeley Unix loader Id' supports dynamic loading in the sense that a flag can 
be specified which causes the loader to use the symbol table of another program for 
the load. The new code and data are relocated and written out to a file which can then 
be read into the appropriate place in memory when required. This loader can of course 
be called from an executing program, and so can be seen as a general tool for dynamic 
compilation. 

However, there are two main difficulties. First, there must be a base executable file 
for the dynamic load operation. This must contain code for calling the dynamic module, 
and must define any symbols it requires. Typically, the program will have been loaded 
in stages, with one or more base files being constructed during the load. 

Secondly, position in memory of the new module must be specified to Id. If the new 
position immediately follows the old program, this is simple enough. However, nearly 
all programs under Unix use the memory allocator malloc() (it is used behind the scenes 
by the standard i/o library), so that the length of the original program is no guide. 
Instead, malloc must be asked for a piece of memory the right size for the new code, 
and then the loader must relocate it to that position. Thus the sequence of operations 
required for this system is as follows. 

Berkeley loader used for dynamic compilation 
1. Invoke the assembler behind the scenes to make a loadable version of the new 

module (in Unix this will have a file name of the form new.0). 
2. Examine the header of new.0 to determine its size, and malloc enough space for 

it. Suppose the space begins at location pos. 
3. If the base file was called base, invoke the loader using the command Id -A base 

-T pos new.0 to create a loadable version of new.0 in the default output file a.out. 
4. Copy a.out into memory starting at position pos. 
5 .  Use the symbol table information in a.out to set up pointers to enable the new 

No assistance with the last step is given by the Berkeley system. The software described 
in this paper makes this process much easier. 

In relation to the use of the memory allocator, it is interesting to note that the DICE 
incremental compiler' constrains all variables to live in the stack, so that global dynamic 
data are disallowed. 

code to be called. 

DESIGNING FOR DYNAMIC COMPILATION 

From the above discussion, it would seem that a desirable system would allow the 
addition of a module (in some sense) to an executable file, or into an executing program, 
with much less fuss than under Berkeley Unix. 
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From the application point of view, the system described in this paper is very 
straightforward, as all that is required is to call a standard function assem(), with a file 
name as parameter. This incorporates the file contents (C or assembly code) into the 
running program and updates the symbol table automatically. The  steps being taken 
on the application’s behalf are as follows. 

Steps for dynamic compilation 
1. For a given a.out, and an assembler source file things, perform as -A things. This 

creates a file containing an updated symbol table and a module to be added to 
memory. 

2. Examine the file header to determine the symbol table and code size, allocate 
space (using mallocO) for the symbol table and new code, and read them into 
memory. 

3 .  Execute C initializations in the new module. Merge the symbol table with the 
one in the executing program. 

4. Use the new symbol table. Discard (free()) the old symbol table and old code if 
any. 

It can be seen that a considerable saving has taken place. Only one external program 
(as) need be used, although it is usually convenient to allow insertion of C code, which 
involves calling the C compiler instead. 

Of course, in either system it may be that the new code contains calls to library 
functions not used before. In both systems it is possible to include archives in dynamic 
compilation. 

Further possibilities should arise from the availability of the symbol table at run 
time. A program can consult its symbol table to advise on available functions. Some 
functions can be provided as stubs, so that the first time they are called, the code is 
dynamically loaded. This provides a simple way of attaining the sort of incremental 
environment that is standard with many interpretive debuggers. 

MODULES 

In this system, a module consists of the new code produced by an invocation of the 
assembler as, as a result of assembling source or binary code into a new or existing 
executable file. The module is set up in such a way that it looks as if it is in a space 
allocated by the Unix memory allocator mallocO. This means that a module can be 
replaced at run-time. 

The process of adding a module to an executable file does not involve rewriting the 
file. At most the symbol table is rewritten to the file, in addition to the code for the 
new module. Thus the normal assembly process allows a given executable file to be 
augmented by a new module. This executable file is the file specified for the output 
of the assembler: if it does not exist, it will be created by the assembler, and will then 
contain a new symbol table and just one module. (The C compiler first deletes the 
output file unless explicitly told to use it as a base file.) 

If an executable file is used as the input to as, it combines the modules contained 
in it, and adds the resulting single module to the given base file if any. 
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For dynamic compilation, the output of as can be restricted to the new symbol table 
and the code for the new module, by providing a flag to the assembler. In this case 
the symbol table shows which module is defined by the assembly. The new module 
can then be incorporated into an executing program, possibly replacing an existing 
module with the same name. This is done by copying the new code into a new piece 
of memory, using the standard Unix memory allocator routines malloc0 and free(). 

A module may contain text and data (whether initialized or not). It is possible to 
have the uninitialized data stored separately, as in the usual Unix loaders; but it would 
be unacceptable for the uninitialized data area to be extended (and therefore, probably 
moved) every time a dynamic compilation took place, because all pointers to it would 
require to be updated. Ordinary incremental loading follows the same philosophy as 
dynamic loading in the system. 

References within modules can be by ordinary displacement. If modules generate 
dynamic data (using mallocO), pointers remain valid during dynamic compilation. 
References between modules should be by references through the symbol table and, 
in this system, compilers obey this convention. If a module is recompiled, all its 
variables are reinitialized. Initialized pointer variables cannot be allowed in assembly 
code, so that compilers must ensure that initializations are performed explicitly. These 
compiler modifications have been made for C and for Ada, as described below. 

T H E  SYMBOL TABLE 

This occupies a single malloc’d region. Once a symbol is allocated a position in this 
region, it retains the same relative position. This ensures that all modules can be sure 
that references via the symbol table continue to work after a dynamic compilation 
action. The symbol table itself may move, and a register is reserved to point to it. 
This means that ordinary base register addressing can be used indirectly for intermodule 
references. 

These simple-looking requirements lead to a very complex structure for the symbol 
table. It becomes convenient that symbol names are stored along with other symbol 
table information, as used to be the case in old versions of Unix. A variable length 
format makes the use of links to the next symbol attractive, particularly if symbols for 
the same module are chained together. Note that a symbol can start life as an undefined 
symbol, and then be defined by a particular module, so that such chains of symbols 
can wander arbitrarily through the symbol table. 

The beginning of this chain of symbols (which starts with undefined symbols for 
convenience) is provided in a header for the symbol table, along with the symbol table 
size. Provision could be made for deleting symbols from the symbol table: this is 
problematic, however, since there is usually no good way of ensuring that a symbol is 
no longer referred to. The exception is on the rare occasions when a local symbol 
acquires a permanent symbol table position because of the explicit construction of a 
symbol table reference which uses it: such a symbol can be safely deleted when the 
module is deleted or recompiled. If symbol deletion were to be supported, a list of 
free space in the symbol table could also be provided by giving the start of the first 
such space in the symbol table header. 

Additional information is stored in the symbol table for a symbol that is the name 
of a module: the actual size in bytes of the module (the malloc information at the start 
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of the module itself may well be rounded, say to the next power of Z), and the position 
in the symbol table of the next symbol. 

Many of the incremental systems in the literature, such as those described in 
References 4-6, envisage extracting procedures from a database when required. Since 
a procedure should be extracted only once, a symbol table or equivalent records 
information about extracted units, and so these systems are seen to be similar to the 
one described here. 

SUPPORT FOR LIBRARIES 

As mentioned above, the use of standard libraries makes it desirable to allow load-as- 
needed archives and binary files. In this system, a binary file contains a symbol table 
that is used at run time: and once a symbol is given a position in the symbol table it 
keeps it. This ensures that code referencing the symbol need not be altered if the 
symbol itself is moved. 

In this system, the natural sort of archive is one containing assembler source files 
together with a table of contents. The table of contents can be examined to see if any 
library elements should be added to the current program: if so, they are included. 
Since a module is defined as the code inserted by an invocation of the assembler, the 
result of processing the archive is to include any needed code in the current module. 

However, to improve the speed of including library code, binary files are supported, 
both for individual files and library elements. These are typically quite short files, 
containing one or two functions, Since they are constructed by the assembler, they 
have the form of a module or group of modules. When one or more binary files are 
inserted into an executable image by a later pass of the assembler (usually when 
processing an archive), all such modules are combined to form part of the module 
being assembled. That is, they are compacted into a contiguous piece of memory 
allocated by the memory allocator. 

This code compaction process involves updating the symbol table entries. The way 
that the symbols are chained together in the symbol table, and the information provided 
there about module size, is precisely what is needed so that a single pass of the inserted 
symbol table deals with the symbols one module at a time, enabling the adjusted values 
to be added to the current symbol table. At the same time, the value in the inserted 
symbol table can be replaced with a reference to the new symbol, for reasons which 
are now explained. 

The real problem about inserting a binary file is that it was constructed without any 
knowledge of its future environment, i.e. that the inserted file has its symbols in symbol 
table positions that are different from the file into which it is being inserted. While 
rewriting the code, all references via the symbol table must be converted for the new 
symbol table positions, and this requires a simple relocation table. I t  also requires that 
all such intermodule references use a four-byte address within the symbol table. The 
new -r flag in the assembler ensures both these things. 

The relocation table for incremental files is rather simpler than in the usual Unix 
system. All that is required is a list of addresses in the code where a 4-byte pointer 
into the symbol table occurs. During pass 2 of dealing with the inserted binary file, 
the code for each inserted module is copied to its new position, and each symbol table 
reference noted in the relocation table is replaced with the value found in the old 
symbol table. This is a very fast operation, as no symbol table look-up is required. 
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INITIALIZATION 

The C !anguage allows external and static data to be initialized to any constant 
expression including addresses of other objects. In this system, however, addresses of 
objects cannot be determined by the loader, so that initializations that require addresses 
must be performed explicitly when the program starts executing. 

The C compiler has been modified for this system, and generates such initialization 
blocks, which are strung together by the dynamic assembler. If a module is deleted or 
replaced, the corresponding initialization section is bypassed. 

If a module is dynamically replaced during execution of a program, its initialization 
section is performed when it is linked into place. 

NEW SOFTWARE 

As a result of all the above changes, the following standard Unix utilities required 
modification, and are effectively replaced in this system :’ 

(a) There is no equivalent of the Unix loader Id. 
(b) The assembler a s  now handles symbol table references: @xyz denotes the position 

of symbol table entry for xyz relative to the start of the symbol table. a s  also 
accepts libraries and binary files as input. Relocation tables are different from 
the standard Unix format, and the result of assembly is the updating of a named 
executable file if it exists, or creating it if it does not exist. 

(c) The C compiler cc generates relocation-free code for internal symbols, and 
references via the symbol table for external symbols. Register 6 always points to 
the symbol table origin in the present implementation. 

(d) Some utilities, such as the symbol table analyser and the random archive utility, 
have been rewritten for the new system. 

(e) The C library required a small number of modifications where pointers had been 
initialized or reserved registers used in assembly language routines. Also, the 
memory allocator is now initialized from the file header. 

(f)  Additional utilities were added to the C library to support dynamic compilation. 
The last category includes a function which calls the assembler on its file parameter, 
so that the resulting code is loaded into the current program, as described above. It 
also includes a function which is given a symbol name and a file name. This defines a 
new module containing a function with the given name. The function is a stub which, 
the next time it is invoked, calls the assembler on the given file to replace itself with 
the result of assembling the file. 

An example of a very simple self-modifying program (where the user can type in 
code in C for incorporation into the program) is shown in an appendix. 

I t  is perhaps worth noting that a linked list involving static data in several modules 
will become invalid if one of the modules is recompiled. This problem affects C 
programs almost exclusively, as most high level languages, including Pascal and Ada, 
only allow addresses of objects on the heap. (In Modula-2 the SYSTEM function ADRO 
allows this restriction to be overcome.) It is considered, however, that similar problems 
can arise in C for linked lists of local variables, and that programmers who set up such 
structures in a dynamic program should take care when using such data structures. 
Implementations that tried to detect and fix such structures would be very slow. 
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RELATION T O  PROLOG IMPLEMENTATION 

In Reference 2 a way of translating a static Prolog program into a high level language 
such as Pascal is described. It uses the concept of parametric procedure calls, in which 
an actual parameter is a procedure call which is delayed until the corresponding formal 
parameter is called : 

procedure unify(a,b:list; procedure call cont); 
begin 

. . .  
cont; 
. . .  

end; 

Thus the translation of a static Prolog program can be translated into C in a fairly 
well-understood way. All that is needed are some low level functions to implement 
parametric procedure calls and the cut. Prolog rules for the same predicate can be 
gathered together to form a function in C, and backtracking consists of trying each 
alternative in turn. This approach is interesting in that it reverses the usual trend of 
treating procedures as data: here instead all facts and rules are coded into procedures. 

However, the usual Prolog environment allows new rules and facts to be supplied 
interactively by the user, and here dynamic compilation facilities are of vital importance. 
With the system described in this paper, implementing such a Prolog environment is 
quite straightforward. The  resulting Prolog compiler is currently under construction 
as a student project at Paisley College (David Gibson). 

Some Prolog programs make extensive use of the retract and assert primitives to 
modify the rule base. Such programs are made more efficient if the predicates for 
which these facilities are used are handled in a slightly different way, with a version 
of the Prolog source stored together with the code in a linked list structure. 

INCREMENTAL COMPILATION 

Incremental compilers have been described and implemented now for a number of 
years. However, it is rare for incremental compilers for real programming languages 
to generate native code incrementally, for precisely the reasons highlighted in this 
paper. 

In Keference 7, an approach to incremental compilation is described, which is now 
being combined with the techniques described in this paper to produce true incremental 
Ada to VAX machine code compilation. The  Ada compiler used is the recently validated 
York University compiler"' modified to support incremental compilation. 

This work, like most incremental compilers, concentrated on the front end, with its 
interaction with the user, featuring editing operations interacting with the passes of 
the compiler. The  user is given syntax and semantics assistance during editing, and 
the compiler ensures that its output is patched each time a partial edit occurs on the 
source code. This is done by synchronizing the compiler so that compilation can be 
restarted on the smallest possible code fragment surrounding the change made, and 
semantic checking and code generation take place on the smallest possible fragment 
surrounding that. The  new code generated replaces the code previously generated for 
that fragment. 
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The output from the York compiler, as with most high-level language compilers on 
Unix, is assembler source code, which makes code replacement a simple matter of text 
editing. However, it means that following the carefully incremental alteration to the 
Ada source and compiler output, the Unix assembler needs to be called for the whole 
of the current module, and then the loader must reload all modules in the program. 
This is rather disappointing, and true incremental compilation, where a small alteration 
to the executable image results from a small change to the source program, would be 
much better. 

To  generate true native code in the usual Unix format, a great deal of additional 
relocation and symbol information would need to be stored with the executable file. 
This would then be processed after the binary patch had been inserted in the object 
code, so that all enclosing branch instructions had their displacements adjusted, all 
data references were modified, and so on. 

With the facilities described in this paper, however, only the current module needs 
to be reassembled, and the code can be inserted into the executable image by a simple 
editing process (carried out by the assembler itself). This is possible since all data 
declared by the module are internal to the module, and all cross-module references are 
handled via the symbol table. A special version of the code generation phase of the 
York Ada compiler has been constructed with a view to using the techniques of this 
paper in the incremental Ada compiler. 

This flexibility is of course paid for by the cost of these symbol table references, 
and by a slightly larger image file. Thus while a program is under incremental 
development, it will run about ten per cent slower. This is considered accepihble 
during testing: most programs under test have additional instrumenting code inserted 
for monitoring purposes in any case. 

CONCLUSIONS 

An approach to dynamic compilation has been described and implemented. It is useful 
in environments where recompilation of parts of the system is a frequent occurrence, 
or where an interactive environment could use native code rather than interpretive 
techniques. The system is available free of charge for educational or research purposes 
to any educational Unix licensee, though it will only be useful to sites running Berkeley 
Unix on a VAX. 
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APPENDIX I: THE MODIFIED a.0ut.h HEADER FILE 

/*  INCREMENTAL ASSEMBLER/U)ADER by Malcolm Crowe, August 1986 

This file defines the data structures used by the system. 

All code should be movable, and live in malloc'd regions. 
Movability means that modules can be realloc'd or copied, 
provided the symbol table entries are updated. The symbol table 
itself is also movable: register 6 points to it during 
execution. Displacement addressing can be used only within 
modules: otherwise everything is via the symbol table. 

Once an object is assigned a position in the symbol table, it 
retains that position, which can be referred to in assembler as 
@object. Thus the current address of the object is in 
@object(r6). 

The system includes a new C compiler and C library, and 
assembler/loader and namelist utility. Additional library 
routines for dynamic compilation can be found in libc/cap. The C 
library 1ib.a is only included when explicitly mentioned by -1c. 

The assembler/loader uses the output file as a base file if it 
exists. 

Additional flags: 
cap -b file things ... 
as/as -A things.. code from base file is not copied. 

-m name things.. defines name for the module 
-M things. . 
-1: things.. put relocation info in a.out file 

use file as a base file. 

requests a primitive load map 

as/nm -m [file ..] module information only 
*/ 
/* 

struct i-exec ( 
long i magic; /* magic number 0407 */ 

unsigned long iIsize; /* size of program */ 
long i-zero0 : /* must be zero */ 

unsigned long i-bss: /* size of uninitialised data */ 
long i-zero1 ; 

unsigned long i-entry; /* entry point */ 
long i-releiz; /* incremental relocation table */ 

* Header prepended to incremental a.out file. 
*/ 

unsigned long 
int 
union 

): 

extern struct 
#define IHDR 

#define IMAGIC 
#define IMODUL 

/ *  

long i -zero2 : 

long i zero3: /* abort */ 
struct iIsymtab *i-sympos; /* position of symbol table */ 

i-symsiz ; /* size of symbol table */ 

/ *  stuff %om here on is visible as IHDR->i-sympos etc */ 

ilminbrk ; /* copy of i-size */ 
overhead *i_nextf[28]: /* see malloc() */ 

i-exec *i-hdr ( ) ; 
i-hdr ( ) 

0407 /* impure format */ 
0477 /* single module: nonexecutable */ 

* Macro to check the file has the right magic number and format 
*/ 
#define IBADFMT(x) ( (  (x) .i magic!=IMAGIC && \ 

(x) . izmagic!=IMODUL) I I \ 
(x).i-zeroO!=O 1 1  (x).i-zerol!=O 1 1  \ 
(x).i-zero2!=0 I I (x).i_zero3!=0) 
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/*  Structure of symbol table header */ 
struct i symtab ( 

Tnt i-syml; 
int i-modl; 
int i-symfree; /*  chain of deleted symbols */ 

/* offset to first symbol */ 
/* offset to first module */ 

1 :  

/*  

struct i nlist ( 
unsigned iong n-value: /* value of this symbol */ 
unsigned char n-type; /* type flag, see below */ 

* Format of a symbol table entry 
*/ 

short n-desc ; /* defining module */ 
char n-other ; /* unused */ 
int n-next ; /* see below */ 
union ( 

n-un; 

char *n name; /* in assembler */ 
unsigned cgar name[l]; / *  on disk: [l]=length */ 

): 

#ifndef N-UNDF 
/*  * Simple values for 
*/ 

#define N-UNDF Ox0 
#define N ABS Ox2 
#define N-TEXT 0x4 
#define N-DATA 0x6 
#define N-BSS ox0 
#define N-COMM 0x12 
#define NIFN Oxlf 
#define N EXT 01 
#define NITYPE Oxle 

n-type, 

/ *  undefined */ 
/* absolute */ 
/* text */ 
/* data */ 
/* bss */ 
/* common */ 
/* file name symbol */ 
/* external bit, orled in */ 
/ *  mask for all the type bits */ 

#endif 

/*  n-next fields are used as follows. All symbols in the table 
are chained together using this field. i-syml points to the 
first symbol in the chain. The order of symbols in the chain is 
as follows: 

Undefined symbols (9nodule O H )  
Symbols defined in module 1 

6 G o l s  defined in module n 
The first symbol defined in any module has n type N-FN. 
Immediately following it in the symbol table-is a 4 byte pointer 
(relative to sympos) to the next symbol of type N-FN, i.e the 
first symbol defined in the next module. */ 
/*  Information about modules precedes type N-FN symbols: */ 
struct i-modinfo ( 

unsigned int m-size; /* size of module */ 
int m next; /*  next module info */ 
struct i-6list m-name; /* symbol of type N-FN */ 

): 

/ *  Relocation info is located at position 32+i size in the file, 
and consists of i-relsiz/4 integers. Each is tiie position (less 
32) of a symbol table reference (e.g. gthing(r6) ) .  If the -r 
flag is specified all such addresses are guaranteed to be 4 
bytes. */ 
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APPENDIX 11: A SIMPLE SELF-MODIFYING PROGRAM 

/ *  Initially func(), defined in the separate file r8f.c8g, is just 
the empty function. The user can supply new code for this 
file, or another file, to be recompiled. In this simple 
program the C library is not reexamined. */ 

#include <stdio.h> 
#include @*a. out. h” 

char fname[256]: 

main ( )  
( 

int r; 

for (::) ( /* until user types * C  to stop */ 
/ *  find out what user wants to do */ 
getname ( ) ; 
getfile(); 

/* now fname has the name of a file to load in */ 
r=assem(fname) ; 
if (r!=O) ( 

1 

/ *  that worked, so go call func */ 

printf (“Return code $d\nIv,r) ; 
exit (-1) ; 

) 
1 

getname ( ) 
I 

func ( )  ; 

int c; char *p=fname: 

printf (What file do you want to (re)compile?\n’l) ; 
while ((c=getchar())l==l\nl) 

*p=o : 
*p++ = c; 

) 
getfile() 
( 

FILE *f = fopen(fname,lowql) ; 
int c; 

printf (“Give contents of $8 : \n”, fname) ; 
while ( (c=getchar ( ) ) >=O)  

clearerr (stdin) ; 
fclose(f) ; 

putc(c,f): 

1 
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