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ABSTRAC T

Cint is an interpretation system for the C program-
ming language . Like most interpretation systems, i t
provides "load and go" type execution as well as
enhanced debugging and performance analysis tools .
Cint consists of two phases—a translator and an inter-
preter . The translator compiles the source progra m
into code for a virtual machine . The interpreter then
loads and executes this code, While providing ser-
vices similar to traditional interpreters, Cint differ s
from them in two important ways . First, the virtua l
machine languages used by many interpreters ar e
quite large ; machines with 100 to 200 operations are
common . In contrast, Cint's virtual machine has onl y
63 operations . Second, to achieve acceptable execu-
tion speeds, interpreters are often implemented in th e
assembly language of the host machine . Cint, how -
ever, is written entirely in C and is therefore portable .
In fact, it has been transported to four machine s
without modification . Despite the compact size of th e
virtual machine language and the high-level languag e
implementation, Cint's execution speed is comparabl e
to that of other interpreters . This paper describes the
design of the virtual machine, the implementation of
the interpreter, and the performance of the system .
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1 . INTRODUCTIO N
Cint is an interpretation system for the C program-

ming language . Like many other high-level languag e
interpretation systems, it is implemented via the tech-
nique of abstract machine modelling [13] . In thi s
technique, the fundamental operators and data types
required by the high-level language are used to defin e
an instruction set for a virtual machine . The interpre-
tation system is realized by constructing a translator
and an interpreter . The translator compiles the sourc e
language programs into code for the virtual machine .
The interpreter then loads and executes the code pro-
duced by the translator . This technique has been used
to implement a number of successful systems [2, 5-7 ,
17] .

Cint, however, differs from traditional high-leve l
language interpreters in two important respects . First ,
the specification of Cint's virtual machine was driven
by the principles used to design reduced-instruction-
set computers (RISC) [15], As a result, Cint ' s virtua l
machine has only 63 operations . In contrast, the vir-
tual machines used by some interpreters are quit e
large with two to three times as many operations [2 ,
10, 16] . Second, Cint is implemented entirely in a
high-level programming language. In order to
achieve acceptable execution speeds, interpreters ar e
often implemented in the assembly language of th e
host machine . Consequently, they may require con-
siderable effort to be moved to a new machine . Cint ,
on the other hand, is easily portable and has bee n
moved to four machines without modification .

Despite the use of a RISC-like virtual machine
and its realization using a high-level language, Chi t
achieves execution speeds comparable to traditionall y
implemented interpreters . In this paper we provide an
overview of Cint that focuses on the design of the C
virtual machine, the implementation of the progra m
that realizes the virtual machine, and its performance .
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2 . MACHINE DESIGN

A computer system can be seen as being made u p
of several layers or levels, where each level defines a
different machine view . The lowest of these levels i s
defined by the individual devices that form th e
machine (e .g., transistors and resistors), while th e
higher levels are defined by the operating system and
the programming languages available on the machine.
It is natural to view these levels as a hierarchy o f
machines . Machines high in the hierarchy are ofte n
called virtual machines to distinguish them from th e
conventional architectural level . A machine at leve l
N is implemented by a program that runs on the
machine at level N-1 . For example, the conventional
machine level (i .e., assembly language level) is imple-
mented by a microprogram that runs on the machine
defined by the micro-architecture . Similarly, the vir-
tual machine used to implement a high-level language
interpreter is often implemented by a program that
runs at the conventional machine level .

One of the primary goals of a machine designer i s
the construction of machines that support the efficien t
execution of programs that will run on them . A
number of new principles have evolved for guidin g
the design of conventional level machines . The dis-
tinguishing characteristic of these machines is th e
reduced number of operations contained in th e
instruction set . Consequently, these machines have
been termed RISCs—reduced-instruction-set comput-
ers [14] .

Patterson [15] lists some of the RISC design prin-
ciples :

1. Functions should be kept simple unles s
there is a very good reason to do otherwise .

2. Microinstructions should not be faster tha n
simple instructions .

3. Moving software into microcode does no t
make it better.

These principles lead to a very simple definition of a
RISC machine : a RISC machine completes the execu-
tion of an instruction every cycle . Indeed, the charac-
teristics shared by existing RISC machines (e .g . ,
register-to-register architecture, a reduced number o f
operations and addressing modes, simple instructio n
formats, and a pipelined execution unit), are simpl y
techniques for realizing the above definition . Prelim-
inary results from both experimental and commercia l
machines show that the RISC concepts do lead t o
machines that provide for the fast execution of high -
level language programs .

It seems logical that if a set of design principle s
works well when applied to the lower end of the
machine hierarchy, these same principles may als o
produce good results when used to design virtua l
machines . Based on this premise, the design of the C
virtual machine (CVM) for Cint was guided, to a
large extent, by the principles and arguments used t o
design RISCs. The following section describes th e
CVM and some of the motivation for its design .

2 .1 The C Virtual Machin e

There are a number of arguments for designing a
small, instruction set . One argument is that a small ,
simple instruction set is easier, less error prone, an d
faster to implement than a large, complex instruction
set . Abstract machine designers have long recognize d
this problem. In 1972, Newey, Poole, and Waite [13 ]
observed that

"problems . . . suggest a number of spe-
cialized operations which could possibl y
be implemented quite efficiently on cer-
tain hardware. The designer must bal-
ance the convenience and utility of these
operations against the increased difficult y
of implementing an abstract machin e
with a rich and varied instruction set . "

A second argument in favor of RISCs is that their
compilers are simpler than compilers for complex -
instruction set computers (CISCs) . While it is debat-
able whether this argument is applicable to rea l
machines, our experience is that it does apply to
abstract machines used to produce retargetable com-
pilers [3] . If the virtual machine does not contain spe-
cial operations, the case-analysis code typically
necessary to determine whether special operators can
be emitted is not required . Section 3 describes i n
more detail the effect the use of a RISC-like virtua l
machine had on Cint ' s translator.

Based on these observations, one of our primar y
design goals was to keep the CVM as small as possi-
ble, yet still obtain satisfactory execution performanc e
from the interpreter. Consequently, the CVM has 4 9
executable instructions and 14 pseudo-operations .
The full instruction set is described in Appendix A .

The CVM's design was also influenced by th e
decision to use a high-level language as the imple-
mentation machine rather than the conventiona l
machine level. While our previous definition of a
RISC machine (i .e ., single cycle execution of instruc-
tions) does not directly apply to virtual machines, its
intent can be applied . Consequently, each CV M
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instruction performs a relatively simple operation tha t
has a rather obvious and simple realization on th e
implementation machine .

Unlike most real RISC machines, the CVM is a
stack architecture as opposed to a register architec-
ture . The CVM is stack-oriented for several reasons .
Most high-level programming languages do not give
the programmer explicit control of a machine's regis-
terst . Consequently, our choice of a high-level pro-
gramming language as an implementation machine
precluded making the CVM a register architecture . A
second reason for favoring a stack-oriented virtua l
machine was the goal of using the translator as th e
front-end in a retargetable C compiler . While it i s
relatively straightforward to map a stack-oriented vir-
tual machine onto a register machine (simply treat th e
registers like a stack), it is more difficult to map a
register-oriented virtual machine onto a stack
machine .

The CVM provides instructions for manipulatin g
two distinct stacks . Most instructions manipulat e
values found on the evaluation stack or E-stack . A
second stack, called the C-stack, is used to support th e
C calling sequence . Only five instructions (PUSHA ,
PUSHV, STARG, CALL, and RET) access thi s
stack . Again, the decision to differentiate between the
evaluation stack and the call/return stack wa s
motivated by the desire to also use the CVM as an
abstract machine for producing retargetable C com-
pilers . Typically, a code generator maps the E-stac k
onto the target machine 's allocable registers, whil e
the C-stack is mapped onto the target machine 's run -
time stack. The difference between the E-stack and
C-stack is a logical distinction that can be ignored . In
fact, Cint's interpreter maps the C-stack onto the E -
stack .

The basic format of a CVM executable instructio n
is

opcode

	

type (operands ]

where type indicates the data type (i .e ., short, long ,
float, etc .) . Many virtual machines encode the type a s
part of the operation to remove a level of decoding i n
the interpreter. This approach is feasible for a
language that supports a few basic types (e .g ., Pasca l
with four basic types) . However, for a language like
C with a large set of basic types, such an approach i s
unwieldy .

file register declaration in C is merely a hint to the compile r
that the variable will be heavily used .

The CVM instruction set, like those of real RIS C
machines, could be reduced further . For example, the
assignment operators (e .g ., +=, -=, etc .) could be
synthesized from other CVM instructions . Experi-
mentation showed that further reductions of the CV M
would be counter-productive because it resulted in th e
output of more verbose code from the translator tha t
ran substantially slower.

3. CINT

Cint consists of a translator which compiles C
source programs into code for the CVM, and an inter-
preter that loads and links CVM object modules and
executes them . A schematic of Cint is shown in Fig-
ure 1 . The following sections describe the translato r
and the operation of the interpreter .

Source Program

Program Outpu t

Figure 1 . Schematic of Cint .
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3 .1 Translatio n
Lint's tr anslator [19] supports the full C program-

ming language as defined by Kernighan and Ritchi e
[11] including recently added features such as bi t
fields and enumeration types. The translator is written
in C and is 7032 lines of code . It is retargeted by sup-
plying two types of information about the target
machine . The sizes of the basic data types on the hos t
machine and the evaluation order of arguments mus t
be specified . The latter is necessary for two reasons .
One is that this allows interpreted code to call pro-
cedures that have been compiled and linked with th e
interpreter . A second reason is that some C program s
(usually nonportable ones) are written assuming a
particular evaluation order. One of the design goal s
of Cint was that the execution behavior of a progra m
on the host machine should be indistinguishable
whether it is interpreted or compiled and executed .

As noted in Section 2, one of the benefits of a
RISC-like virtual machine is that it simplifies the
implementation of the translator . Because the CV M
provides exactly one obvious implementation for eac h
source language construct, the task of code generation
is made trivial . For example, typical virtual machine s
include a number of instructions for loading value s
directly from memory as well as a general indirec t
load instruction for when addresses must be compute d
(e .g ., an array reference) . Through case analysis, th e
code generator determines the best code sequence t o
emit . Such case analysis is often one of the more
tedious and error prone parts of a compiler .

The CVM, on the other hand, has only on e
general-purpose operator for loading a value fro m
memory . The dereference instruction (@) takes a n
address on the E-stack and replaces it with the con -
tents of that memory location. Because this is the
only way to load a value from memory, the code gen-
erator does not require any case analysis to determin e
the best code sequence to emit . Eliminating th e
necessity for case-analysis code markedly simplifies
the implementation of the translator's code generator .

The code generator is about 1000 lines of C code .
This includes the routines that emit the CVM code i n
a variety of styles and formats . Code is generated b y
performing a simple postorder walk of the trees pro-
duced by the semantic analyzer .

3.2 Interpretatio n

One of the secondary goals of this project was t o
investigate whether interpreters could be built tha t
would be both portable yet provide satisfactory exe -

cution speeds . Most interpreters are implemented vi a
the conventional machine level of the host architec-
ture (i .e ., assembly language) . They sacrifice porta-
bility for execution speed . To make Cint's interpreter
portable, we chose an implementation machine higher
in the machine hierarchy—the virtual machine
defined by the C programming language and realized
by a C compiler and runtime system . Thus, Cint i s
portable to any environment that supports the C pro-
gramming language . As C has a rich set of operator s
that provide access to most of the operators provide d
by the underlying hardware, the "semantic gap "
between C and the hardware is small . Our hypothesi s
was that by carefully designing the virtual machine s o
that it could be implemented efficiently using C, th e
resulting interpreter would run as fast as interpreters
implemented using the assembly language of the hos t
machine . Section 5 discusses the execution perfor-
mance of the interpreter .

The interpreter is 4811 lines of C code . Abou t
half of the code, 2046 lines, implements the opera-
tions of the CVM. The interpreter is divided into tw o
phases: loading/linking and execution . The followin g
sections describes some interesting aspects of th e
implementation of these phases .

3 .2 .1 Loading and Linking

During the first phase of the loading process, Cin t
reads the CVM modules produced by the translato r
and places instructions and data in one of three
memory segments : a program segment, a standard
data segment, and a string segment . The progra m
segment is loaded with CVM instructions and thei r
operands . The string data segment holds string con-
stants, while the standard data segment holds all other
data.

The data structure used for the program segmen t
is treated as an array of type int . CVM opcodes are
naturally expressed as integers . All operands ,
whether constants or variable references, are con-
verted to integer offsets from the base of the appropri-
ate segment . The data structure for the standard dat a
segment is treated as an array of type char . This
allows data of all types to be stored in a single data
structure. This data is accessed by casting a characte r
pointer into the array to a pointer of the appropriate
type . Furthermore, storing all data in a character
array permits the correct calculation of the relativ e
distance between elements of an array . This is neces-
sary for address arithmetic of interpreted programs t o
be performed properly .
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atof atoi atol calloc exit _ filbuf

_ flsbuf fclose fflush fgetc fgets fopen

fprintf fputc fputs f read free f reopen

fscanf fseek ftell fwrite getenv malloc
printf puts realloc rewind scanf setbuf

sprintf sscanf strcat strcmp strcpy strlen

strncat strncmp strncpy system times ungetc

Figure 2 . Library routines supported by Cint .

One of the powerful concepts supported by C is
separate compilation . Cint also supports separat e
compilation . After all the object modules have bee n
read, the linker resolves external references among
modules . All unsatisfied references are resolved fro m
a set of standard I/O and utility library routines .
Much of C's utility is due to a set of standard librarie s
that provide for input and output, operations on char-
acters and strings, and storage allocation . Cunt pro-
vides an interface to commonly used library routines .
The routines currently supported are listed in Figur e
2. Cunt is designed so that additional external routines
can be added easily . A number of these routines have
different definitions depending on whether the sup -
porting environment is BSD based or System V
based. The interpreter can be configured to suppor t
either operating system view .

3 .2.2 Execution

After loading, the CVM code is interpretativel y
executed . Klint [12] discusses and classifies three
basic interpretation techniques. The three
classifications are :

1. Classical interpretation with opcode table ,
2. Direct threaded code, an d
3. Indirect threaded code .

One of the major differences in these techniques i s
how the operation code (opcode) is encoded . In the
classical technique, each operation is assigned a
unique code . Some method of table lookup (usuall y
indexing based on the opcode) is required to locat e
the routine that implements the operation . In the
direct threaded code technique [1], the opcode is th e
address of the routine that implements the operation .
To obtain more compact code and allow more flexi-
bility in handling types, the indirect threaded cod e
technique [4] adds a second level of indirection . The
opcode is the address which points to a word that con-
tains the address of the routine that implements th e
operation .

Klint measured the instruction fetch performance
of these interpretation techniques on two machines .
From these measurements, several interesting obser-
vations were made . First, the importance of th e
instruction fetch overhead is related to the complexit y
of the virtual 's machine's instruction set . As the tim e
to execute a virtual instruction increases, the impac t
of the time required to do an instruction fetc h
decreases . For a RISC virtual machine, reducing th e
instruction fetch overhead is critical . Klint's meas-
urements showed that the instruction fetch overhea d
could be reduced substantially by keeping the virtua l
machine's program counter in a machine register . On
the PDP-11, the instruction fetch time was two t o
three times faster when the program counter was hel d
in a register as opposed to a memory location . For-
tunately, by declaring the variable that holds the vir-
tual machine's program counter to be a register vari-
able, we were able to place the program counter in a
register for all machines to which Cint was ported .

Klint's measurements also showed that the direc t
threaded code method resulted in the least instructio n
fetch overhead . Unfortunately, efficient implementa-
tion of the threaded code techniques requires acces s
to the conventional machine level (i .e., assembly
language implementation) . For example, threade d
code techniques can be implemented using C via
pointers to functions, but the use of the C calling
sequence and the resulting call/return overhea d
negates any advantage . Consequently, Cint uses th e
classical technique with instruction decoding bein g
performed via the C switch statement . Because mos t
architectures provide hardware support for switch o r
case statements, acceptable performance is achieved .

The heart of the interpreter is the runtime stack .
The CVM supports two stacks : an evaluation stac k
and an activation record stack . As noted in Section
2.1, two stacks facilitated the development of portable
compilers . Since interpretation only requires on e
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stack, Cint maps the C-stack onto the E-stack. All
operations are performed on the top of the E-stack .
The high-level implementation of the E-stack creates
a number of difficulties . Interpreters implemented a t
the conventional machine level can directly acces s
and manipulate values on the runtime stack . Further-
more, many machines provide for stack overflow
checking and the automatic extension of the stack . To
overcome the difficulty of manipulating values of dif-
ferent types on Cint's runtime stack, the E-stack i s
implemented as an array of structures shown below :

typedef struct stktype {
union {

char c ;
int i ;
short s ;
long 1 ;
unsigned char uc ;
unsigned short us ;
unsigned int ui ;
unsigned long ul ;
float f ;
double d ;
char *p ;

} val ;
unsigned int type ;

} ;

The field type, as the name suggests, contains the
type of the item. This permits runtime checking of
type compatibility . The field val contains the valu e
of the stack item, and is therefore a union of the basi c
types supported by C . Since the basic stack elemen t
contains the union of all possible C basic types, th e
basic operations of the interpreter can be realize d
using the corresponding C operator applied to the
correct field of the union . This ensures that inter-
preted programs exhibit the same behavior as com-
piled programs .

When pushing a pointer of any type onto the run -
time stack, it is cast with the (char *) operator ,
and then cast back to the appropriate type when
dereferenced . The assumption is that a pointer of type
"pointer to character" should be capable of holdin g
the equivalent of a pointer to any other type withou t
loss of information . All C implementations that w e
know of satisfy this assumption .

Because the E-stack is an internal data structure, i t
is Cint ' s responsibility to check for possible stack
overflow . An early implementation of Cint performed
a stack overflow check each time a value was pushed
on the runtime stack . Execution profiles of the Cint ' s

operation showed that these checks were substantiall y
increasing the cost of executing some instructions . To
reduce this overhead, the responsibility for checkin g
for stack overflow was moved to the function prolo-
gue code . During the loading process, the maximu m
amount of stack space a function could use is com-
puted. This number is one of the operands of th e
CVM FUNC instruction . Part of the semantics of the
this operation is to ensure that enough stack space i s
available to execute the function .

While realizing the E-stack as an array of struc-
tures solves the problem of pushing values of dif-
ferent types on the same stack, it creates a new prob-
lem. The translator generates code to perform pointer
arithmetic and array indexing based on the assump-
tion that array elements are stored contiguously i n
memory . For example, array indexing is performed
by multiplying the array index by the size of an arra y
element and adding the result to the base address o f
the array . Consequently, the E-stack cannot be use d
to hold local variables . The problem is overcom e
using the following scheme . On function entry, a
block of contiguous memory is allocated and a pointer
to this memory is held in a variable that serves as th e
local variable pointer. A pointer to a local variabl e
may then be obtained (as in the NAME opcode) b y
simply adding that variable's offset to the value of th e
the local variable pointer . The local variable pointer
is saved on a function call . When a function returns ,
the memory pointed to by its local variable pointer i s
freed and the caller ' s local variable pointer i s
restored .

A major advantage of a reduced instruction se t
virtual machine is that less effort is required to imple-
ment the program that realizes the virtual machine' s
operations . Reductions in the number of lines of code
necessary to implement the interpreter stem from tw o
characteristics of RISC machines . First, the reduced
number of operations means fewer operations to
implement . The CVM, for example, requires th e
implementation of only 49 executable operations .
Second, the simplicity of the operations means tha t
the code to implement them is shorter and easier t o
write . In Cint, with a few exceptions (e .g ., CALL ,
RET, FUNC, etc .), each operator is naturally realized
by one or two lines of simple C code. On the other
hand, virtual machines with complex instruction s
require the implementation of a larger instruction se t
that has complex instructions that are more difficult to
realize .
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PCC Cin t

Program Compile Time Run Time Compile Time Run Time
Total Tota l

User Sys User Sys User Sys User Sy s

banner 5 .7 3 .7 0 .1 0 .3 9 .8 3 .7 1 .1 0 .9 0 .7 6 . 4

cal 5 .4 2 .6 0 .3 0 .4 8 .7 1 .8 1 .0 2 .4 0 .9 6 . 1

cb 12 .7 3 .1 0 .2 0 .3 16 .3 4 .9 1 .6 2 .1 1 .0 9 . 6

cmp 4 .6 2 .6 0 .1 0 .3 7 .6 1 .6 0 .9 0 .6 0 .6 3 . 7

echo 1 .9 2 .3 0 .1 0 .2 4 .5 0 .6 1 .0 0 .2 0 .5 2 . 3
grep 12 .3 3 .2 0 .4 0 .4 16 .3 4 .7 1 .1 23 .6 3 .7 33 . 1

tr 5 .1 2 .6 0 .6 0 .4 8 .7 2 .0 0 .8 25 .2 3 .2 31 . 2

we 3 .2 2 .3 0 .4 0 .4 6 .3 1 .2 1 .0 16 .8 2 .2 21 .2

Table I . Comparisons of PCC and Cint on a VAX-11/780 .

4. DEBUGGING FACILITIES

Cint provides the typical runtime checks and
debugging facilities . It allows the user to set and
clear breakpoints, trace the execution of the program
at both the statement and function level, examine and
dump the runtime stack, and examine and modify th e
value of variables . In addition, it includes a facility
for producing a detailed (statement level) profile of a
program's execution . On the Sun, Cint provides an
interface to the window system that allows the user t o
watch the the flow of control through the program .

5. PERFORMANC E

Despite the use of a RISC virtual machine and its
realization via a high-level language program, Cin t
provides performance comparable to interpreters
using more complex machines and assembly languag e
implementations . Two sets of benchmark data are
presented . Table I compares Cint ' s "load and go"
execution performance to that of the portable C com-
piler (PCC) [8] on a number of standard Unix utili-
ties, The benchmarks were performed on a VAX -
11/780 with a floating-point accelerator . All optimi-
zations were turned off for the PCC timings, Thi s
gave the fastest compile times, but slower execution
speeds . Since compile time dominated for thes e
benchmarks, this was more advantageous for FCC.

The times reported are in seconds and are an average
of five runs .

For the banner, cal, cb, cmp, and echo programs ,
the total time required by the interpreter is actually
less than that required by PCC . Cint, however, was

significantly slower on the grep, tr, and we programs
which were tested on reasonably large input file s
(more than 500 lines) . When tested on smaller inpu t
files, the time required by the interpreter compare s
more favorably to that required by FCC. Cint's abil-
ity to quickly compile and load programs makes i t
ideal for use in an instructional environment wher e
compilation time typically dominates execution time.

We also compared Cint's execution performance
to the BSD Pascal px interpreter on both a VAX -
11/780 and a Sun-3/75 . This interpreter uses a com-
plex virtual machine (over 100 opcodes) and is par-
tially implemented using assembly language [10] .
We tested both interpreters on a number of well -
known benchmark programs [18, 20] . Tables II an d
III contain the results of the benchmark runs .

The execution times are reported in seconds wit h
the exception of the dhrystone benchmark which i s
reported in number of dhrystones per second . The c c
and pc timings were produced with all optimization s
turned off . In addition, those timings were obtained
by running larger problem instances and scaling th e
times appropriately, All timings were obtained b y
running the benchmarks five times on lightly-loaded
machines . The times reported are the average of the
five runs . As the tables show, the interpretation time s
for Cint and px compare favorably on both machines ,

To remove any bias introduced by comparing the
interpretation times of benchmarks written in differen t
programming languages, we also computed th e
interpretation efficiency of Cint and px, The interpre-
tation efficiency is the ratio of the execution time of a
compiled program and the execution time of the pro -
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VAX-11/78 0
Program

cc Cint pc/p xpc px Cint/cc

ackerman 4 .70 58 .70 6 .06 72 .11 12 .4 11 . 9
bubblesort 8,20 328.58 12 .40 286 .95 40 .0 23 .0
matrixmult 4,18 96 .06 5 .95 89 .90 22 .9 15 . 1
puzzle 10 .73 294 .65 10 .28 225 .06 27 .4 21 . 8
quicksort 0 .13 4 .96 0 .21 4 .08 37 .3 18 .9
shellsort 0 .30 12 .78 0 .60 14,01 42 .6 23 . 3
sieve 2 .66 78 .58 3 .05 75 .01 29 .4 24 . 5
dhrystone1' 1283 .00 75 .00 958 .00 38 .00 17 .1 25 . 2

Average - - - - 28 .6 20 .4

Program
SUN-3/7 5

cc Cint pc px Cint/cc pc/p x

ackerman 1 .06 38 .48 1,20 53 .95 36 .1 44 . 9
bubblesort 4 .58 224 .50 2 .96 231 .30 48 .9 77 . 9
matrixmult 2 .26 64 .96 1 .71 59 .81 28 .6 34 . 8
puzzle 5 .16 197 .81 4 .25 192 .21 38 .2 45 . 2
quicksort 0 .08 3 .21 0 .05 3 .86 38 .7 77 . 3
shellsort 0 .20 8 .50 0 .23 11 .30 42 .5 48 . 2
sieve 1,61 52 .70 0 .91 73 .26 32 .6 79 . 9
dhrystonej 2659 .00 127 .00 2222 .00 60 .00 20 .9 37 . 0
Average - - - - 35 .8 55 . 6

Tables II and III . Comparison of the Interpretation Efficiency of Cint and px .

gram when interpreted. These results are contained i n
the last two columns of Tables II and III . On the
VAX-11/780, the interpretation efficiency of Cint and
px averaged over the eight benchmark programs wa s
28 .6 and 20.4 respectively . The average interpreta-
tion efficiency on the SUN-3/75 was 35 .8 for Cint an d
55 .6 for px .

The difference between the interpretation
efficiency of px on the VAX and the SUN is some -
what surprising . We conjecture that px ' s implementa-
tion and its evolution is responsible for the large
differences between its interpretation efficiency on
the VAX and the SUN . The original px was written
mostly in assembly language and ran on the PDP-1 1
computer family [9] . Version 2 .0 was rewritten to ru n
on the VAX-11 computer family [10] . The curren t
version, 3 .0, while maintaining the structure of th e
original versions, was rewritten in C . To obtain a

file entries for dhrystone are dhrystones/second not seconds .

working version of the interpreter and satisfactor y
performance, the assembly language produced b y
compiling the module that implements the virtua l
machine must be edited . For example, usin g
knowledge of how the compiler generates code, th e
assembly language file is modified so that the inter-
preter can directly access the hardware-supported run -
time stack . While such an implementation is mor e
portable than one written entirely in assembl y
language, its performance is contingent on the abilit y
to transform the assembly language produced by the
C compiler to more efficient code . Our conjecture i s
that this technique works well for the VAX architec-
ture and C compiler, but does not work as well for th e
Motorola 68020 architecture and C compiler on
which a SUN-3/75 is based .
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6. SUMMAR Y
RISC architectures offer several advantages over

more complex architectures . They are easier t o
implement, they simplify code selection, and the y
support high-level languages at least as well . Cin t
shows that RISC design principles can be applied to
the design of virtual machines for use in interpreters
with similar benefits . The small size of the CVM' s
instruction set substantially reduced the effor t
required to construct a program to realize the CVM .
Code generation was trivial because of the simple
instruction set . Finally, our implementation compare d
favorably in performance to less portable implementa-
tions . While we did not find it necessary to imple-
ment the CVM using assembly language, a RISC vir-
tual machine is attractive for conventional implemen-
tations also . The reduced number of instruction s
reduces the number of lines of assembly code that
must be written .
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8. APPENDIX A

C Virtual Machine Instruction Set
Arithmetic Operator s
++,- -

«_, >>=, &_, "_, 1 =
+, -, `, /, %
<<, >>, &, ., I

Descriptio n
addr(--pop; w-pop ; push(m[addr]) ; m[addr] op= v ;
addr<--pop ; \A-pop ; push(m[addr] op= v) ;
addr<-pop ; v<---pop ; push(m[addr] op= v) ;
v1<-pop ; v2<-pop; push(v1 opv2) ;
v1<-pop ; v2<-pop; push(v1 opv2) i

Unary Operator s

FLD n
IFLD n

Description
w-pop ; push(opv) ;
v<-pop ; push(extract_field(v, n)) ;
w--pop; push(insert field(v, n)) ;

Conversion Operator s
PCONV ot nt
VCONV ot nt

Description
Convert pointer of type ot to pointer of type nt .
Convert value of type of to type nt .

Data Movement
CON con
NAME id class
@
=
STASG n

Description
push(con) ;
push(addr(id)) ;
addr-pop ; push(m[addr]) ;
addr<-pop ; v<-pop; m[addr]<-v
dst(-pop ; src<-pop ; strncpy(dst, src, n) ;

Logical Test and Se t
-_, >=, >, <=, <, !=

Descriptio n
vi-pop ; v2<-pop; pushwl op v2 ? 1 : 0) ;

Program Control and Jump
CALL nargs argsize
SWITCH s r
GOTO n
JT n
JF n
BRK n
FUNC name n
RET

Descriptio n
addrE-pop ; push(environ) ; push(retaddr) ; pc<-addr ;
Switch stmt with starting value s and rconsecutive values .
Jump to label n .
vl<-pop; pc<vl != 0 ? n : pc ;
v1 <-pop ; pc<-v1 == 0 ? n : pc ;
Breakpoint .
Define start of function . It requires n bytes of stack space .
v<-pop; addr<-pop ; pop(environ) ; push(v) ; pc<-addr ;

Argument Transmissio n
PUSH A
PUSH V
STARG n

Descriptio n
addr<-pop ; pass(addr) ;
w-pop; pass(v )
addr<-pop ; strncpy(v,addr,n) ; pass(v) ;

Pseudo Operation s
BGNBLK level
BGNSTMT n
FILE name

EFUNC n
ENDBLK level

EPDE F
GBL id class n
DC value
LCL id class n
LLABEL n
PARM id class n
SLABEL n
SEG n

Description
Begin block level .
Begin code for statement n .
Code was generated from source file name.
End function that required n bytes for locals .
End block level .
End of prologue code for a procedure .
Define global variable id.

	

It requires n bytes .
Initialize a memory location with value .
Define local variable id

	

It requires n bytes .
Generate local label n .
Define parameter id

	

It requires n bytes .
Generate label for string .
Signal start of segment n .

Notes :
1. Each executable opcode is followed by a type indicator .
2. Class denotes the scope of the variable (i .e ., local, global, etc .) .

~QS

198


