
A Hybrid Interpreter

in a Software Development Environment

dans

Un interprStateur hybride

un environnement de programmation

Gregor Engels
FB 17, Unlvers i t£ t Mainz

Postfach 3980, D-6500 1V[ainz, West G e rman y

Andreas Schiirr*
Informat ik III, RWTH Aachen

Ahorns t r . 55, D-5100 Aachen, West G e rman y

A b s t r a c t

This paper describes the realization of an execution tool for Modula-2 modules which is

part of an integrated tool set in a software development environment termed IPSEN (Incre-

mental Programming Support Environment). In this environment, all software documents, e.g.

Modula-2 modules, are manipulated by syntax-directed editors and are represented internally

by attributed graphs. The execution of Modula-2 modules is done by two cooperating inter-

preters. The first one is a graph interpreter which traverses the internal graph from statement

to statement. These statements are translated into a low-level, more efficiently executable ob-

ject code and interpreted by a second interpreter. This concept of a hybrid interpreter allows

the realization of an execution tool which offers a lot of runtime support features to the user.

R6sum~

Ce papier expose l'id~e fondamentale d'interpr~tateur hybride, un outil pour ex~cuter des

Modula-2 modules. Cet interpr~tateur fait partie d'un ensemble d'outils int~gr~s, qul forme ~

l 'environnement de programmation IPSEN (Incremental Programming Support Environment).

Cet environnemen~ se base sur le concept d'~dition structur~e guid6e par la syntaxe du language,

par exemple Modula-2, auquel appartiennent les documents manipul6s. La representation in-

terne des tels documents est toujours un graphe d~cor6 d'attributs. L'interpr6tateur hybride

se compose de deux interpr~tateurs. L'un traverse en temps d'ex6cution le graphe repr6sentant

une module et tradult les instructions courantes au code objet bas de gamme, l ' introduction

pour l 'autre interpr6tateur. Cette construction facilite l'execution efficace des Modula-2 mod-

ules et permet d'offrir bien des aides de mise au point aux utitisateurs de Fenvironnement de

programmation IPSEN.

*The author is supported by Stlftung Volkswagenwerk

8J

Key words: software development environment, programming-in-the-small, integrated tooI set,

testing support, interpreter, incremental compiler, Moduta-2, attributed graph

Mots-cl6: t'environnement de programmation, programmation en d6tait, l'ensemble d'outils int6-

gr~s, aides des rnlse au point, t'interpr6tateur, compilateur incremental, Modula-2, graphe d~cor~

d'attributs

CONTENTS

1 Introduction

2 Incremental Syntax Analysis

3 Incremental Code Generation

4 Debugging with the Hybrid Interpreter

5 Conclusions

References

1 I n t r o d u c t i o n

The IPSEN-project (Incremental Programming Support Environment) is aimed at the design

and realization of an integrated software development environment (SDE) containing tools that

support nearly all activities during the software life cycle ([Na 80], INs 85]). This means that the

environment offers tools to support programming-in-the-smM1 with Modula-2, programming-in-the-

large, documentation control as well as project management. In all these task areas syntax-directed

editors, analyzers, instrumentation tools, and execution tools have been developed or are under

development. This paper reports on new results concerning the realization of an execuLion tool

for the programming-in-the-small task area. Other aspects of the IPSEN-project are described by

several other publications ([ES 85a], [ENS 87], [LN 85]).

The main characteristic of SDEs llke IPSEN is the in tegra t ion of all tools at the user interface

as well as in their internal realization. This means for the programming-in-the-small area that

frequent switehings from editing to executing and testing activities have to be supported at the

user interface, and have to be realized time-efficiently. Therefore, the traditional batch-oriented,

compitative approach is not adequate for the realization of an execution toot in a SDE. A more

suitable approach is a conversa t iona l or inc rementa l compiler , first proposed by Lock ([Lo 65])
in the 60's.

The idea behind incremental compilers is to avoid the recompilation of the whole source text

if the user has modified only a smM1 portion. A wide spectrum of different concepts for the

realization of such compilers can be found in the literature. All of them consist of two parts: the

syn tax analysis, producing a high intermediate data structure as an internal representation of

the source text, and the code genera t ion . Incremental syntax analysis is usually performed by

a syntax-directed editor which modifies the internal representation and guarantees the syntactical

correctness (cf. [DH 84]). Incremental code generation means that only a special portion of the

object code is replaced after a source text modification. The size of this portion ranges from the

82

level of whole modules or so-called compilation units ([DoD 80]) down to the level of procedures

([Ha 821, [SDB 84]) or even single statements ([EC 72], [Fr 84]).

However, before the execution can be started the whole source text has to be translated into

object code if the compilative approach is used. This procedure eventually generates object code

parts that may be discarded due to subsequent editing activities and that, therefore, are never

needed (cf. [SDB 84]). Furthermore, the execution of incomplete source texts is not possible

and the integration with other tools of a SDE is difficult to realize (e.g. [AMN 81]). Therefore,

an in terpre t ive approach is pursued in some SDE projects (e.g. [Tit 81]). In this case, the

incremental syntax analysis part is combined with an interpreter which directly interprets the

internal representation of the source text. Thus the disadvantages of a compilative approach are

avoided, but time-efficiency is impaired.

In order to make use of the advantages of an interpretive approach without loosing time-

efficiency, we have realized the execution tool in IPSEN as a mixture, consisting of a statementwise

incremental compiler and an interpreter. The main characteristics of our approach in comparison

to others are:

g Internal representation of the source text by a graph-like intermediate data structure in-

stead of abstract syntax trees and additional symbol tables. This data structure allows an

incremental context-free and context-sensitive syntax analysis (cf. section 2).

* Realization of the execution tool by a hybrid interpreter combining two cooperating inter-

preters. The first one is a graph interpreter which directly interprets the graph-like internal

representation and activates at specific points a second one - the object code interpreter -

which interprets an incrementally generated object code (cf. section 3).

, Integration of the hybrid interpreter with other tools. This results in a sophisticated debug-

ging environment for the programming-in-the-small task area (cf. section 4).

2 Incremental Syntax Analysis

In IPSEN, incremental syntax analysis is realized by a syntax-directed, command-driven editor

(lENS 87]), [Sc 86]). This editor uses a graph-like data structure, termed module graph, as an

internal representation of a Modula-2 module. In order to avoid consistency problems, in IPSEN

this module graph is used as the common data structure for all tools in the programming-in-the-

small task area. This approach differs from others that use several data structures, e.g. abstract

syntax tree, symbol table, calling graph ([Fr 84], [Rei 84], [Sc 72], [TR 81]).

The skeleton of a module graph is an abs t rac t syn tax g r a p h (similar to an abstract syntax

tree (cf. [DH 84])) representing the context-free structure of a Modula-2 module.

This abstract syntax graph is enriched by further edges expressing context-sensitive relations

between syntactical increments in a Modula-2 module. These edges are required by the syntax-

directed ~ditor in order to report and prevent immediately not only context-free but also context-

sensitive errors. All these additional edges represent the context-sensitive information that is

usually stored in the so-called symbol table. There are, for instance, edges from the applied

occurrences of an object identifier to its declaration (cf. Figure 1).

83

, ,0eo,

ldent 1 ~YJ~'12"i~

LoGalSetOoourrence

VAR LlstSIze: CARDINAL;
, ° ,

LlstSIze : = ...

Figure !: cutout of a module graph

Furthermore, tool-specific information is also stored in the module graph. For instance, addi-

tional edges are used to express the control flow in statement parts (cf. Figure 2).

True t I Control ,
Con~'olFIow'L Sta~st Flow

False
Conl~olFIow

I Control IRow
I -

Figure 2: control flow edges in a while-statement

All the nodes and edges in the module graph expressing context-free and context-sensitive

relations or other tool-specific information are immed ia t e ly u p d a t e d after a modification of the

source text is made, This guarantees the context-free as well as context-sensitive correctness of

the module graph at any time,

3 I n c r e m e n t a l C o d e G e n e r a t i o n

:ib execute Modula-2 modules, internally represented by module graphs, we have developed a

hybrid interpreter([Sa 86]). This interpreter combines two cooperating interpreters with a code

generating component.

The dominant part of the hybrid editor is a modu le g r a p h in t e rp re t e r which traverses the

module graph along the control flow edges. This approach is similar to that used in PECAN

84

([Rei 84t). Whenever this interpreter enters a procedure for the first time, a dec lara t ion evatua-

for is activated. This component determines the mapping of the local data objects to the runtime

storage. And whenever this module graph interpreter reaches an execution increment for the first

time, a code gene ra to r produces the corresponding object code. Execution increments are, for

instance, assignment-statements or conditional expressions of while-statements. The generated

code, in turn, is interpreted by a second interpreter, called the objec t code in te rp re te r (el.

Figure 3).

hybrid Interpreter

module graph 1
1 Interpreter J

i°°' I ge"e'at°rJ [°ib{erpreter I

1 1
incl. code attributes

Figure 3: overall structure of the hybrid interpreter

Declaration evaluation and code generation can be done easily, since the context-sensitive edges

in the module graph directly represent the binding of identifiers to their declarations. As a conse-

quence, we do not have to build up a separate symbol table at runtime to generate object code or

to interprete this code ([AMN 811, [Sc 72], [TR 81]).

The output of the declaration evaluator and the code generator is stored in specific node

attributes of the module graph. The address attribute of variable identifiers or the code attribute

of execution increments are good examples.

We use common compiler construction techniques, well-known and efficient, to allocate storage

for runtime data on a stack and a heap. This runtime data storage is not embedded in the module

graph, but realized by a separate data structure.
The object code interpreter is a usual abstract stack machine with type-dependent instructions

for the standard Modula-2 types and arithmetic operations. This interpreter is a variant of the P-

Code interpreter ([PD 82]) enhanced by special control transfer instructions. By these instructions

the control from the object code interpreter is returned to the module graph interpreter, whenever

the interpretation has to proceed to a new execution increment in the graph. Generating abstract

object code instead of directly producing machine code has the advantage that the implementation

of the hybrid interpreter is independent of the target machine. On the other hand, generating

machine code, directly or by an additional compilation step, could also be provided (cf. [Ro 83],

[SDB 84]). This would result in a more time-efficient interpretation.

In section 2 we have explained that all context-sensitive edges are incrementally updated after

each editor action. Such an incremental approach could also be applied to all execution spa-

85

cific attributes. But this would cause the permanent (re-)computation of at tr ibute values which

might never be needed. This is only tolerable in a multi-tasking, sinle-user operating system (c£

[SDB 84]). Therefore, we decided to compute and store these at tr ibute values just at the moment

when ~he hybrid interpreter actually requires their values for the first time. This procedure raises

two questions for the module graph interpreter:

• Is a required at tr ibute value already stored?

• Is a stored attr ibute value invalid due to some editing of the module graph?

To solve these problems we introduced auxiliary boolean attributes in order to distinguish valid

execution specific attributes from invalid ones. Determination of the invalid attributes is done by

starting at the changed parts of the graph and following context-free as well as context-sensitive

edges through the module graph. Invalid attributes are (re-)computed, when the execution needs

them for the next time. This strategy is similar to a two-phase at tr ibute evaluation strategy

([Re 84]) with a delayed second phase. Long traversals up and down an abstract syntax tree are

avoided by using additional context-sensitive edges to establish new paths through the module

graph.

4 Debugging with the Hybrid Interpreter

To make possible i n t e g r a t e d testing and editing of Modula-2 modules the hybrid interpreter

has to cooperate with the following other software tools in the IPSEN environment. These are the

s y n t a x - d i r e c t e d ed i to r , a s t a t i c a n a l y z e r for informing the user about a lot of context-sensitive

relations in a module (e.g. set/use chains), and a t e s t i n g p r e p a r a t i o n too l for instrumenting a

module (e.g. loop counter, conditional breakpoints). ' Integrated' means that the user can easily

switch between these different tools in a modeless way and activate any command of any tool at

any time.

The use of incremental compilation techniques renders possible the efficient cooperation of the

hybrid interpreter with the syntax-dlrected editor and the testing preparation tool.

The mixture of two interpreters makes possible the realization of a user friendly debugging

interface with the following characteristics:

• The granularity of execution steps (statementwise, blockwise) can be changed interactivety.

• The current position of the execution is marked in the displayed source text.
\

• The current execution can be interrupted at an)" point by pressing a special key.

• Unfinished source texts can be executed, tf a gap in the source text (e.g. a missing expression

in a while-statement) is encountered during the execution, the user is allowed to fill the gap

with the syntax-directed editor. Afterwards, the execution proceeds automatically.

• Error messages (e.g. use of undefined data objects), single variable values or larger portions

of the runtime data can be displayed in terms of the source text.

86

* All additional instrumentation of the source text forms a testing environment that can in-

crementally be modifie(t, and switched on and off at runtime.

5 Conc lus ions

To sum up, editing and executing Modula-2 modules in IPSEN are realized by four interlacing

phases:

1. Incremental editing of an attributed module graph, representing a context-free and context-

sensitive correct Modula-2 module.

2. Traversing the module graph along the control flow edges.

3. Lazy evaluation of node attribute values representing the storage mapping function and the

object code.

4. Interpretation of the generated object code.

This concept enables us to implement a conversational and time-efficient execution tool as an

integral part of a SDE. Up to now, a prototype implementation of all tools of the programming-

in-the-small task area has been realized. All tools are implemented in Modula-2, and they run on

an IBM AT 02 under the operating system MS-DOS. The whole implementation has a total of

50.000 lines of code. The realization of the hybrid interpreter consists of 5.000 lines of code. Up

to now, only a subset of Modula-2 is supported by the tools of the programming-in-the-small area.

Extending this subset and the hybrid interpreter to an execution toot of the programming-in-the-

large task area is one aspect of the current work in the IPSEN-project.

Acknowledgements

The authors are indebted to all members of the IPSEN team: Chr. Beer, Th.

Lewerentz, M. Nagl, A. Sandbrink, W. Schiller, U. Schleef, and B. Westfechtel.

Janning, C.

R e f e r e n c e s

[AMN 81] Atkinson, L.V./McGregor, J . J . /Nor th , S.D.: Context sensitive editing as an approach
to incremental compilation, The Computer Journal, Vol. 24, No. 3, 222-229

[DH 84] Donzeau-Gouge, V./Huet, G./Kahn, G./Lang, B.: Programming Environments Based on

Structured Editors: The Mentor Experience, in: Barstow, D.R. et al. (eds.): Interactive

Programming Environments, McGraw-HiU

[DoD 80] DoD: Reference Manual for the Ada Programming Language, LNCS 106, Berlin:

Springer

[EC 72] Earley, P./Caizergues, A.: A Method for Incrementally Compiling Languages with Nested

Statement Structure, CACM, Vol. 15, No. 12

lEa 86]

lENS 871

[ES 85a]

[ES 85b1

[Fr 84]

[Ha 82]

[LN 85]

[Lo 65]

[Na 80]

[Na 85]

[PD 82]

[Rei 84]

[Re 84]

[Ro 831

[Sa 86]

[Se 86]

87

Engels, G.: Graphs as Central Data Structures in a Software Development Environment,
Ph.D. thesis, (in german), Dfisseldorf: VDI-Verlag

Engels, G./Nagl, M./Sch£fer, W.: On the Structure of Structure-Oriented Editors for
Different Applications, in Pro¢. of the Second Symposium on Practical Software Envi-
ronments, Palo Alto, ACM SIGPLAN Notices, Vol.22, No. 1,190-198

Engels, G./Sch~fer, W.: Graph Grammar Engineering: A Method Used for the Devel-
opment of an Integrated Programming Support Environment, in LNCS 186, 179-193,
Berlin: Springer

Engels, G./SchKfer, W.: The Design of an Adaptive and Portable Programming Sup-
port Environment, in Valle, G./Bueei, G. (eds.): Proc. of the International Computing
Symposium 1985, Florence, Italy, 297-308, Amsterdam: North-Holland

Fritzson, P.: Preliminary Experience from the DICE System, A Distributed Incremental
Compiling Environment, in ACM SIGPLAN Notices, Vol. 19, No. 5, 113-123

Habermann, N. et al.: The Second Compendium of Gandalf Documentation, technical
report, Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh

Lewerentz, C./Nagl, M.: Incremental Programming in the Large: Syntax-aided Specifi-
cation Editing, Integration and Maintenance, in Proc. of the 18th Hawaii International
Conference on System Sciences, Vol. 2, 638-649

Lock, K.: Structuring Programs for Multiprogram Time-Sharing On-Line Applications~
in: Proc. AFIPS, FJCC 27, 457-472

Nagl, M.: An Incremental Compiler as Part of a System for Software Development, in
IFB, Vol. 25, 29-44, Berlin: Springer

Nagl, M.: An Incremental Programming Support Environment, in Computer Physics
Communications 38, 245-276, Amsterdam: North-Holland

Pemberton, St./Daniels, M.: Pascal Implementation: The P4 Compiler, Chichester: Ellis
Horwood Ltd.

Reiss, St.P.: An Approach to Incremental Compilation, Proc. of the ACM SIGPLAN '84
Syrup. on Compiler Construction, SIGPLAN Notices, Vol. 19, No. 6, 144-151

Reps, Th.: Generating Language Based Environments, MIT-Press

Robson, D.J.: An evaluation of throw-away compiling, Software - Practice and Experi-
ence, Vol. 13, No. 3,241-149

Sandbrink, A.: Design and Implementation of a Testing and Runtime Support Regarding
Interpreter, Master's thesis, (in german), University of Osnabrueek

Sch~fer, W.: An Integrated Software Development Environment: Concepts, Design, and
Implementation, Ph.D. thesis, (in german), Diisseldorf: VDI-Verlag

88

[Sc 72] Schmidt, H.A.: A User Oriented and Efficient Incremental Compiler, in Proc. Int. Comp.
Syrup., Venice, 259-269

[SDB 84] Schwartz, M.D./ Ddiste, N.M./ Begwani, V.S.: Incremental Compilation in Magpie,
Proc. of the ACM SIGPLAN '84 Syrup. on Compiler Construction, SIGPLAN Notices,
Voh 19, No. 6, 122-131

[TR 81] Teitdbaum, T./Reps, Th.: The Cornell Program Synthesizer: A Syntax-Directed Pro-
gramming Environment, in: CACM, Vol. 24, No. 9, 563-573

