
A Highly Integrated Tog1 Set 
For Program Development Support 

Gregor Engels Thorsten Janning Wilhelm Schiifer 

Informatik, Abt. Datenbanken Lehrstuhl fir Informatik Ill STZ 

TU Braunschweig RWTH Aachen Software-Technologie-Zentrum 

Postfach 3329 Ahornstr. SS Helenenbergweg I9 

D - 3300 Braunschweig D - 5100 /-lachen D - 4600 Dortmund 50 

Abstract 

This paper describes the design of the integrated user 
interface of the software development environment 
IPSEN (Integrated Programming Support Environment). 
We explain the characteristic features of the IPSEN user 
interface, namely the structured layout of the screen, the 
command-driven tool activation, and especially the 
highly integrated use of the IPSEN tool set. We demon- 
strate those features by taking a sample set of tools of 
the IPSEN environment. That tool set supports all the 
programming-in-the-small activities within IPSEN. Fi- 
nally, we sketch the realization of two prototypes running 
on an IBM-AT and a net of SUN workstations. 

Key Words: software development environment, user 
interface, software tool,integration, programming-in- 
the-small 

1 Introduction 

This paper reports about results which have been 
achieved within the IPSEN - project (Integrated Pro- 
gramming Support Environment). The main objectives of 
the project which is mainly carried out at the University 
of Aachen are: (1) the development of new concepts for 
the design of an integrated Software Development Envi- 
ronment (SDE) and (2) the implementation of a proto- 
type to prove the feasibility of the developed concepts. 

fact, two prototypes of IPSEN have already been imple- 
mented on two different workstations (an IBM-AT and a 
net of SUN workstations). Those prototypes provide inte- 

grated tool sets to support all task areas of the software 
development process, namely Programming-in-the-small 
(PIS), Programming-in-the-large (PIL), Documentation 
(DOC), and Project-Organization (ORG). 

The aims of IPSEN are related to mat,? other projects 
in the SDE-field like e.g. /DK 84/, ?‘Ha $3. /MV S5/, /Kc 
S4/, /RT S4/. However, IPSEN differs from most of then; 
in the following points which are: (1) IPSEN pro\-id% s 
tools to cover the whole software development process 
instead of just PIS as in e.g. /Re 84/, /RT F-11, (2) it is rat 
directed towards a special program l,ln~uage like /hiV 
SY, and (3j a syntax-directed editor is not regarded ‘:o 
be the central tool of the whole environlnent with othr 
tools being appendices to this initial startIns point like m 
/DK 841 or /Ha 82/. All tools provided by IPSEN \jc:-e 
designed as a comprehensive tool set from the very bt- 
ginning which results in a uniform internal realization of 
a11 :ools as well as a very uniform user interface. 

I3 particular, the design of a very sophisticated user 
interface was regarded to be one of the central points, 
because high user acceptance of a SDE can only be 
,achieved by not only providing for appropriate tools but 
also by supporting a very easy and highly integrated use 
of them. Consecluently, the IPSEN user does not have to 
handle all the single different tools, but he regaps the 
whole environment as being just four very sophisticated 
powerful tools for the task areas PIS, PIL, DOC and 
ORG. 

The aim of this paper is to describe mainly .tl:c :izslgn 
of the integrated user interface of IPSEN. As the <‘\?mple 
we use the area PIS, because it might probahi) 1)~ the 
most well-known one. Therefore, it is not nccessu:‘y to 
introduce a lot of new concepts especially developi: to 
support PIL, DOC or ORG. Those concepts are t.Ic,lzribed 
in other papers more carefully (/LN 85/, /L,e 88/, /Ja 87/). 

1



In PlS, we chose Modula-2 as the language to be sup- 
ported by IPSEN. Therefore, the tools described in this 
paper support the development of a program module or 
an implementation module (which will be called module 
later on) in the Modula-2 sense. 

Although, the IPSEN user interface is the main topic 
of this paper, we also sketch the main ideas of the reali- 
zation of this interface to show how the high integration 
of tools within IPSEN is achieved by the implementation 
as well. 

The organization of the paper is as follows: In the 
next section, we describe the design of the “how-part” of 
the IPSEN user interface, i.e. the structured screen layout 
and the possibilities of command input by the user. This 
part is common to all tools and all task areas, because it 
does not assume a certain functionality of a given tool 
set. However, it is illustrated by using examples from the 
PIS area. To demonstrate how this design is applied to 
the tool set of a certain task area, the functionality of the 
IPSEN tool set for PIS is described more carefully in sec- 
tion 3, i.e. the “what-part” of PIS. In Section 4, the inter- 
nal realization of IPSEN is sketched. Section 5 gives an 
overview of the current state of implementation of the 
two prototypes and describes future research directions 
uithin IPSEN. 

2 The 1Jser Interface 

Fig. 2.1 gives a snapshot of program development 
with IPSEN. The user has just developed a Modula-2 
module to compute the minimum and maximum of a car- 
dinal array by using the syntax-directed Modula-2 editor 
of IPSEN. The module is currently executed by using the 
Modula-2 interpreter of IPSEN. During execution the 
user had stopped the execution of module MiniMax 
within the body of the FOR-statement and he had re- 
quested to display the current values of the used vari- 
ables by using the IPSEN runtime analyser. By continuing 
the execution the IFSEN interpreter executes the IF- 
statement again, recognizes a runtime error and gives an 
appropriate error message (cf. Fig. 2.1 (a)). In Fig. 
2.1 (b) the user starts to correct the array definition and, 
therefore, types in the according command. 

Each of the tools provided by IPSEN corresponds to 
one or more special views which are represented by cor- 
responding windows on the screen. Such views are cut- 
outs of external representations of one internal high- 
level representation of a software document (cf. Sec- 
tion 4). They are generated by the corresponding tools, 
e.g. an editor view, an execution view, and a runtime 

WOULC xinitfax: 
CONSP A '5 5; 

H = 10; 
VAR i,HinIndex,MaxIndex : CARDInN.; 

Xaximm,Hininum : CARoIAAL; 
'JAR A : ARRAY [l..A] Or CARDINAL; 

UXX 
MaxIndex := 1; 
HinIndQg := 1: 
Maximm := nri]; 
Hinimm := 3kril: _ . 
PORi:=2TOX:Do 

I? A[i] e Minirum Z-LEA 
HinIndex := i; 
Minimm := A[i]; 

Fig. 2.1 (a) 
2



M = 16; extend 
"AR i,MinIndex,MaxIndex : CARDINAL; delete (Ed1 

Maximum,Minlmum : CARDINAL; 
"AR A : ARRAY ll..~] OF CARDINAL; ANALYSE 

BEGIN n 
MaxIndex :- 1; 
MlnIndex :- 1; PI 
Maximum := Ail]; 
Minlmurn :- AIll; 
FORi:=2TOMDO 

IF A[i] < Minimum THEN 
MinIndex := 1; 
Minimum :- Ali]; 

VAR i,Mlr Index,MaxIndex : CARDINAL; 
Marirm,Minimum : CARDINAL; 

VAR A : QRAY [l..N] OF CARDINAL; 

Maximum := ALI]; 1 p 

Fig. 2.1 (b: 

analysis view of module MiniMax. A further editor view 
could be a graphical representation, e.g. a Nassi- 
Schneiderman diagram, a further runfime analysis view 
could be the more detailed display of a complex struc- 
tured variable, e.g. variable A in Fig. 2.1 (a). 

A view, according to its corresponding tool, either al- ’ 
lows the IBSEN user to change the underlying internal 
data structure or just enables browsing through its exter- 
nal representation without any possibility of changing it. 
Therefore, we call the first kind of view an active view 
(e.g. an editor view), the second kind of view a passive 
view (e.g. the execution view). As usual in nowadays 
SDEs a structured cursor (instead of a traditional charac- 
ter-oriented one) is used to highlight the currently inter- 
esting syntactic structure in each view. That structure is 
called the current increment. To distinguish between an 
active and a passive view, the current increment within 
an active view is marked by boldface letters, whereas it is 
marked by an inverse representation within a passive 
view (cf. Fig. 2.1). 

The kind of view also determines who selects a new 
current increment. In principal, it can either be selected 
by a tool or by a user. Within an active view, a user 
usually selects a new current increment. However, in 
some cases, the corresponding tool has to do that auto- 

.?arically. For example, when deleting the current incre- 
,::ent within the editor view, the editor selects the follow- 
,lg program structure to be the new current increment. 

\ .f that structure does not exist, it takes the surrounding 
s iucture.) Within a passive view, the tool always selects 
tl .’ new current increment. For example, the interpreter 
‘sf iccts the new current increment to be the next state- 
ment .vhich is to be executed. Nevertheless, the user can 
select ill: ii1 \*i’i.:in<‘:lt \\iithiil I\ passive view. That selection, 
however. does not effect thy passive view but determines 
that increment to be the ne\ current increment within the 
corresponding :&vi. ,-,ew. :Tecause, in IPSEN, a passive 
view is always depend& 01: a:~ active view, its so-called 
main 4 e9: Pn? lli,lii: i&3 IS, for example, an eclitot 

vieIs:, 01:c of its cl “3 * ,c,,CnJent :ie\vs is the execution view. 
Let ux cxi)lai:l the reason for !hdt by the foIlowing esam- 
ple. Execution stops within the executi<ln \.icfw because of 
a runtime error. Now, the user wt,;“..- ::: change hi5 m<~i- 
ule at that location where the en !. .;.~iurred. 1 I~~.:wcI", 

the editor shows only the first part I ,t ?he module, wh::r:: 
the execution was started. By selecm,.: !!K new LLI:~::; 

increment of the editor view within the j !: ynJent execu- 
tion view, the cutout shown in the e&t-. I view is auto- 
matically scrolled and shows the same cut:!: :: (or a simi 
lar one depending on the size of the windows) as in th:. 
execution view and still keeps the strict corresl., hfl,%,,i‘e’ 
between a view and a tool. 

3



TO avoid confusion beiween different current incre- 

ments, there is always only one current increment at the 

time on the screen. That means the finall) selected incrc- 

ment is always regarded to be the current increment. The 

corresponding view is called the current view. That view 

is always represented in a window which is not over- 

lapped by any other view. 

Selection of a new current increment is carried out by 

using a mouse-like device. In contrast to other projects 
(e.g. /TR 81/, /Ma 87/), IPSEN only supports cursor 

movements controlled by the mouse. So, we avoid any 

difficulties a user usuaily faces when controlling syntax- 
oriented cursor movements by the cursor function keys of 
the keyboard. 

After having described the representation of a module 
by different views, we, now, describe how the user can 
manipulate such a module, i.e. how commands are put 
in. PSEN provides a command-driven user interface. In 
any situation it provides only those commands to the user 
the execution of which is possible and useful in that situ- 
ation. The list of so-called valid commands is always 
determined by the current increment. For example, if the 
current increment is a statement within the editor view, 
the input of a declaration would be hn invalid command 
(, given that the syntax of the supported programming 

language is defined accordingly.) 

In some cases, the former man-machine dialogue ad- 
ditionaly influences the list of valid commands. For ex- 
ample, the command “continue” (which means “continue 

execution after having stopped”) is only displayed when 
the interpreter has been invoked before by a correspond- 
ing “start-command”. As this “dialogue history” is also 
taken into consideration by IPSEN when fixing the list of 
valid commands, \ve can say that our valid commands 
are highly context dependent (cf. also /MV 854. 

The list of valid commands is displayed within a menu 
window on the screen. Of course, the contents of that 
window is always updated, when a new current increment 

is selected. However, in some cases even if only consid- 

ering context dependent commands, the resulting list of 

valid commands can become quite complex. In order not 
to confuse the user by that, i.e. to keep the menus still 

easy to grasp, our commands are structured within so- 

called command groups. These command groups again 

correspond to the defined tools. One command group in- 

cludes all currently valid commands of one tool. A com- 

mand group name is always displayed by using capital 

letters, whereas a single command name is written in 

small letters (cf. Fig. 2.1 Ch)). A selection of a command 

group causes the expansion of chat group and the f’(Jr- 
merly expanded group is shrinked. The initially cxpantlctl 

command group (when the menu is displayed for the first 

time after selection of a new current increment) is always 
that one which corresponds to the current view, i.e. to the 
according tool. 

As command input by menu selection becomes quite 
awkward for the more experienced user, IPSEN also pro- 
vides the possibility to type in commands via the key- 
board. In addition to the name given in the menus, any 
command has a unique short command name which is 
used when typing in the command. When the user starts 
typing in a string instead of selecting a command within 
the menu window by the m&se, a so-called input win- 
dow is automatically displayed within which the typed 
characters are echoed and correction of them is possible. 
That window is always displayed context dependent, i.e. 

close to the current increment. This makes it easy for the 
user to identify such small windows on the screen, and 
keeps a structured screen-Iayout (cf. Fig. 2.1 (b)). 

Furthermore, that short command name is also dis- 
played within the menus as a bracketed string behind the 
command name (cf. Fig. 2.1 (b)). This supports an unex- 
perienced user in learning the short command name 
when using the menu selection for command input. After 
a certain time of experience with IPSEN he is able to 
remember the short names and can renounce a menu 
selection. 

The idea of “learning the system by using it” is also 

applied when choosing moment and duration of menu 
displays. Menus are only displayed as long as the user 

does not use short command names. After having typed 
in the first correct short command name, the menu win- 
dow automatically disappears. So, it does not uselessly 
spend space on the screen and worse than that, it possi- 
bly partially overlaps other windows which contain much 
more important information. The menu window, how- 
ever, is immediately automatically displayed again, when 

the user does a typing error or types in an invalid com- 

mand. Additionally, he can also request to see the menu 
again by typing in a “?“. 

As one could see from the so far given dcscriplion. 111~ 
IPSEN user interface provides for all the bencfils coming 
from a command-driven user interface. I Io\vL’\.c’t.. in 

some cases it is more convenient for the usc’r 1101 being 

forced to type in or sclcct a command csplicilcl~. ‘I‘\Yo 

different types of implicit command acti\nlion :It-c ~JIX~- 
vitlcd by IT’SEN. 

IGrstly, the syntax-directed editor allows ~cstunl inpu( 
of arbitrary large program fragments which is cloiw ag;lin 
(ising an input window. The IPSEN cclitor is, thcrcforc. 

c;~llctl a hybrid editor. A more clclailctl cxplanalion ot 

that ctlitor will follow in the next scclion. 4



The second type of implicit command activation is 
given when the list of valid commands only contains just 
one’ command. When the use.r selects a new current in- 
crement and IPSEN recognizes that the list contains only 
one command, that command is automatically executed. 
For example, selecting the placeholder for the right side 
of an assignment statement (an expression) as the new 
current increment within the editor view would result in 
the automatic activation of a change command, i.e. an 
input window is opened to enable the user to type in an 
expression. (Expressions are always typed in as strings 
(cf. section 3)). 

Summarizing the structured screen layout, IPSEN di- 
vides the whole screen into windows which all have a 
certain logical type. Those window types are: (1) graphic 
which means that the window corresponds to a view and 
shows a graphical representation of an internal represen- 
tation, (2) text which means that analogously a textual 
representation is displayed, (3) menu which means that a 
list of currently valid commands is displayed and the 
user is able to select one of them by a mouse-like device, 
(4) message which means that an error or system mes- 
sage is displayed and the user has to acknowledge that 
message by a mouse-click, and (5) input which means 
that input via the keyboard is echoed in such a window, 
and a simple text editor is provided which allows the user 
to correct his typed input. The size and location of all 
those windows on the screen can be changed by the user. 

bur structured screen layout, especially the correspon- 
dence between tools and views is similar to that pro- 
posed in /Re 85/. In older approaches the division of the 
screen is just static (e.g. /TR 81/, /DL 84/), i.e. dynamic 
opening, closing and moving of windows on the screen 
does not exist. However, our approach also differs from 
newer projects in some details. Firstly, the strict corre- 
spondence between tools and views and the smooth tran- 
sition between the use of different tools (which will be 
pointed out more carefully in the next section) is not al- 
ways existing in other projects. This sometimes results in 
a very complex screen layout, i.e. the screen is com- 
pletely overloaded and unstructured by a lot of windows, 
whereas IPSEN uses as few windows as possible. 
Secondly, the possibility of menu as well as keyboard 
command input and the smooth transition between them 
is unique to IPSEN. 

3 The Tool Set 

As mentioned before, the IPSEN tool set for program- 
ming-in-the-small consists of tools to develop and test a 
Modula-2 module. These tools are an editor, a static 
analysis tool, an execution tool, and a runtime analysis 
tool. Similar tools can be found in the tool set of other 
software development environments (cf. /He 84/, /He 
87/). It is the topic of this section to explain the IBSEN 
specific features of these tools. In particular, we want to 
show that the tool set was designed as a set of equivalent 
tools from the very beginning. This is in contrast to a lot 
of other projects, where the whole SDE has been build 
around a syntax-aided editor (e.g. /DK 84/, /Ha 82/). The 
resulting highly integrated mode of working within the 
IPSEN tool set will be demonstrated by some examples. 

In IBSEN the editing of the source code is supported 
by a syntax-oriented editor for Modula-2 (cf. /EN 87/). 
The user selects the current increment in the editor view 
and types in a command to trigger an editing activity. 
Possible commands are insert commands to extend the 
source code at the current increment, or delete com- 
mands to delete the current increment. Here, the IPSEN 
editor differs from most other editors, as, in addition to 
the contextfree correctness, the contextsensitive correct- 
ness (i.e. static semantics) of the source code is checked 
and preserved as well. For instance, a variable identifier 
can only be inserted within the statement part, if it has 
already been declared. Analogously, declarations can 
only be deleted, if there are no used occurrences in a 
statement part any more, or such an occurrence matches 
another declaration in a surrounding block. 

For reasons of user friendliness, syntax-oriented edit- 
ing can not be applied on the level of expressions or even 
on the level of lexical units like identifiers. In those 
cases, the usual text-oriented editing is provided by all 
syntax-oriented editors. In IPSEN, however, this usual 
text-oriented editing style can be chosen by a user on all 
syntactical levels, ranging from a single identifier up to 
the whole module. This switch to the text-oriented edit- 
ing mode is done by invoking the change command (cf. 
Fig. 2.1 (b)). This feature of the IPSEN syntax-oriented 
editor first of all eases the modification of larger incre- 
ments and avoids a huge set of different change com- 
mands. For example, it is very easy to change a WHILE- 
statement into a FOR-statement by using this text-ori- 
ented editing style. Furthermore, the user can choose and 
alter his personaliy favoured style of editing at any time, 
i.e. he is not forced to a pure syntax-oriented editing 
style. Of course, the modified text has to be checked by a 
parser f/S1 8G/), whether it contains contextfree or con- 
textsensitive errors, after the modification has been 5



finished. Because of this mixture of syntax- and text-ori- 
ented editing styles, the syntax-oriented editor in IBSEN 
is called a hybrid editor. 

Furthermore, the IBSEN editor has some enhanced 
features to provide support for testing a module or even a 
single procedure. For example, breakpoints, assertions or 
counters for statistical investigations (e.g. loop counters) 
can be inserted or deleted in the source code like usual 
Modula-2 increments. This means that all testing prepa- 
ration activities are handled like usual text editing activi- 
ties, which yields a uniform user interface for those two 
kinds of activities. 1 

The use of the syntax-oriented editor guarantees the 
contextfree as well as contextsensitive correctness of the 
currently handled Modula-2 module. Besides the con- 
textsensitive rules of Modula-2, additional contextsensi- 
tive rules should be observed by a certain Modula-2 
module to ensure that it is a software product of high 
quality. Such contextsensitive rules concern, 
- the consistency between the declaration and statement 

part, i.e. that each declared identifier is really used 
within the statement part 

- minimality, i.e. that there are no statements which can 
never be reached during execution of the module 

- runtime security, i.e. that each variable is initialized 
before its first use. 

In contrast to the contextsensitive rules of the pro- 
gramming language, these rules are not checked auto- 
matically during editing. It is up to the user to decide 
when these rules should be checked and whether such a 
rule should be observed within the current module. All 
checks can be invoked by corresponding commands 
which enable the static analysis of a module. 

The command set of the tool static analysis includes 
- a test whether a declared variable identifier is used 

within the statement part 
- an analysis which indicates all applied occurrences of 

a declared variable identifier 
- an analysis which indicates all global variables which 

may be used when a procedure is invoked (side effects 
of a procedure call) 

- an analysis which investigates the data flow within a 
module and indicates all used occurrences after the 
setting occurrence of a variable identifier (set / use 
chains). 

The above mentioned tools syntax-oriented editor and 
static analysis support the incremental input of a 
Modula-2 source code, thereby guaranteeing that the 
source code is always syntactically correct and of high 
quality. Executing and testing activities within the soft- 
ware development process are supported by the tools 
execution and runtime analysis which will be explained 
now. 

, VAH ~,MlnIndex,MaxIndex : CARDINAL; 
Maximum,Mlnlmum : CARDINAL; 

VAR A : AWAY [l..NJ OF CARDLNAL; 
BEGIN 

MaxIndex :- 1; 
MinIndex :- 1; 
Maximum :- All]; 
Minimum :- Afll; 
FM L :n 2 TO M DO 

H0DUr.E HintWpX; 
CONST II = 5; 

Y = 10; 
VAR i,MinInda%,WxIndPx : CARDIUAL; 

Mmm,Xinimum : CARDINAL; 
VAR A : ARRAY [l..Ul 01 CARDINAL; 

BEGIN 
MaxIndex :I 1; 
YinIndex := 1; 
Mnun, := Ajl]; 
minimla := AIll; 
roEI i := 7. To n Do 

I? Ali] * ninimm Trn 
Hinlndax := I; 
Mininum := ALlI; 

. __. - . - . - 
IF A[i] < Minimum THEN 

MlnIndex :- 1; 
Mlnlmum :- All]; 

END; 
IF B THEN 

MaxIndex :- 1; 
Maximum :- All]; 

Fig. 3.1 
6



Testing c>t‘ th? currentlv handled module may he 

Stxttd b\ th? user at <very rr~=. In particLllar, the e‘sccu- 
titan may i::: st;:rtrd evrn \vhen there are still gaps in the 
source co& (e.g. missin 3 espression in an IF-statement 
!cf. Fig. ?. 1)). Executable increments are a \vhole 
hlodula-3 program module or a single procedure. At the 
beginnin_c of an execution, IPSEN provides for com- 
mands to set the values of imported or global variables, 
or input parameters. After this initialization, the user can 
control the execution by setting different kinds of inter- 
rupts. 

First of all, the esecution is stopped automatically, if a 
runtime error is recognized (e.g. di\*ision by zero, array 
index out of bounds). In this case, the source code has to 
be modified by the user and the execution has to be 
started again. A second case of such an implicit interrup- 
tion occurs, if a gap in the source code has to be exe- 
cuted (cf. Fig. 3.1). In this case, a message is displayed 
and the user can fill the gap by directly invoking a com- 
mand of the editor. After that, the execution is continued 
automatically. The filling of a gap is the only case, where 
a continuation of the execution is possible and allowed, 
after the source code has been modified. In any other 
case, the execution is stopped and has to be started again 
from the beginning by the user. This restrictive procedure 
has been chosen in IPSEN in order not to support an 
experimental style of programming. 

Similar to steplvise execution by a usual debugger, thy 
II’SEN user can explicitely determine at \vhich points the 
c<cscrliiort si~ould be stopped. .+u all activities in IPSf<N 
are increment-oriented, determination of interruption 
points is increment-oriented, too. According to the un- 
derlying contextfree syntax tree of a module, the user 
can determine by corresponding commands that incre- 
ment where execution should stop the next time. Possi- 
bilities for that increment are the first statement in the 
body of the current increment (son), the next stetement 
on the same level (brother), or the next statemer’ on the 
next higher level (uncle). Those different interru, ;)oints 
enable a user to slow down the execution speed i!? critical 
regions of the source code and to speed it up il>, already 
checked parts of the source code. 

Finally, the execution is stopped when a brew ;nt is 

reached, which has been inserted into the sourc,. ‘,y b) 
a test preparation command before the exec.:! j “!as 
been started. 

Those different possibilities to stop the execi - 
able to provide for additional commands to obs Y 
control and data flow of the executed source co P- 
propriate support for these observations is offered Jy the 
runtime analysis tool. The commands of that tool can be 
invoked by the user whenever the execution is inter- 

H= 10; 
VAR i,HinIndax,lQxIndpn : CARDINAL; 

Llaxirmm.Yininum : CNWIAAL: 
VAR A : ARRAY [l..W] or CADDINAL; 

LGIU 
I4axXndex := 1; 
!(inIndex := 1; 
Maximm := A(1); 
Mininwm := A[l]; 
roRi:=ZTOYW 

Ir A[i] e IiininNm !RICA 
HinIndax := 1; 
(* inspec : A[il *) 
(* break ") 
WiniParm :I Ati]; 

Maximum : 22 
Minimum : 11 
A : <.l&p.Ay> 

YAK l,MinIndex,MaxIndex : CARDINAL; 
Maximum,Mlnlmum : CARDINAL; 

VAR A : ARRAY [l..M) OF CARDINAL; 
BEGIN 

MaxIndex :- 1; 
MinIndex := 1; 
Maximum := A[l]; 
Minimum :- A[l]; 
FOR 1 :a 2 TO M DO 

IF All] < Minimum THEN 
MlnIndex :- 1; 
(* 1nz.e~ : All1 *) 
(* break *) 

END; 
IF All] > Maximum THEN 

MaxIndex :- i; 

IPSEN Prototype, Vcrslon Z.6, June 1987, RWTli Aachen 

Fig. 3.2 

7



rupted. Two important commands of this tool enable the 
output of a dump related to the source code, i.e. a list of 
all variable names together with their values, and the out- 
put of the value of one certain variable selected by the 
user. Figure 3.2 gives a snapshot of an IPSEN session 
illustrating the integrated manner of working with these 
different tools: The editor view shows a cutout of the 
currently handled module. The execution has been 
stopped at a breakpoint. The statement after the break- . 
point is marked as the current increment in the execution 
view. The user has invoked the dump command at an 
earlier interrupt point. The corresponding runtime analy- 
sis view which contains variable names together with 
their current values is still on the screen. Additionally, 
the values of the variable A[i] are shown in a further 
runtime analysis view. 

Besides those runtime analysis activities, test prepara- 
tion commands or static analysis commands can be in- 
voked at any interrupt point. It is a usual procedure dur- 
ing the test phase to invoke the same analysis commands 
at a certain interrupt point whenever the execution 
reaches this point. Therefore, these commands are saved 
on demand by the user and are implicitely invoked the 
next time, the execution reaches this point. Figure 3.2 
gives an example, where the command to inspect the 
variable A[i] has been inserted into the source code. The 
user now has the possibility to build up interactively an 
appropriate test environment. All such implicitely in- 
voked commands are represented as Modula-2 exten- 
sions in the source code and can be edited by the syntax- 
oriented editor. At any point in time, the whole test envi- 
ronment can be switched on or off. 

Summarizing our example, we illustrated that the tools 
syntax-oriented editor, static analysis, execution and run- 
time analysis form a highly integrated tool set. This 
means that all tools have the same common user inter- 
face. This concerns the structured screen layout by using 
views as well as the kind of invocation of commands (cf. 
section 2). Furthermore, there are no tool-dependent 
modes. This means that the user can activate any com- 
mand of any tool with the only restriction that it must be 
a valid command for the current increment. Further- 
more, the execution of a command may be stopped and a 
command of another tool may be invoked and executed 
before the execution of the first command is finished, 
e.g. it is possible to invoke analysis commands whenever 
the execution of a module is interrupted. This strategy is 
not applied, when the dialogue becomes too confusing or 
even encourages an experimental style of programming, 
e.g. it is not possible to invoke arbitrary editing com- 
mands when the execution of a module is interrupted. 

4 Sketch of the realization 

The tool set described in this paper is part of the 
IPSEN-prototype which has been implemented success- 
fully on an IBM-AT and is just being ported on a net of 
SUN-workstations. Integration as the main guideline for 
the user interface design has also heavily influenced the 
realization of the prototype. 

In particular, we use one internal high-level data 
structure containing all the knowledge for all the differ- 
ent tools (cf. /EN 86/). That includes the contextfree 
structure of a module as well as the contextsensitive 
structure, the information for the test environment (e.g. 
breakpoints), and the information for the hybrid inter- 
preter (e.g. P-code fragments) which is the realization of 
the execution tool (cf. /ES 87/j. Hence, there are several 
advantages of IPSEN compared to some other SDE-pro- 
jects where different data structures are used (cf. /Re 
84/). Firstly, using one uniform model for different kinds 
of knowledge representation makes it much easier to 
model all operations carried out on that representation. 
Secondly, problems in preserving consistency between 
different representations do not exist. 

Contrary to most other SDE-projects (cf. /Ha 821 01 

/DK 84/) we do not use attributed trees as the model fat 
our internal data structures but attributed graphs. 0111) 
such a universal model enables to model the different 
information needed b’y the different tools very efficiently. 
Implementing the necessary graph operations is directly 
supported by a special data base system, called graph 
storage. It allows to store and retrieve arbitrary large 
graphs. The basic strategies applied to obtain very fast 
retrievals and updates are dynamic hashing and semantic 
paging (cf. /LS 87/). 

The IPSEN-prototype has been designed in a way that 
guarantees a maximum of adaptability and portability 
(cf. /ES 85/). Adaptability means that new requirements 
can bc satisfied without enforcing a lot of changes. It is 
not difficult to add new tools for PIS or even tools for 
another task area. This has been shown by applying the 
same approach to build systems for PIL, DOC and ORG 
(cf. /Be 87/, /Ja 87/, /Le 88/). Portability means that the 
system can easily be adapted to different hardware facili- 
tics and operating systems by only adapting the machine 
dependent modules of the system components gt~p/t 
.storogc and window system. Portability has been provccl by 
pcjrting thcsc two components from the IBM-AT to a ncl 
of SUN-workstations. 

8



5 Concluding Remarks 

We described the main characteristics of an integrated 
software development environment. On one hand, we de- 
veloped an integrated user interface for the whole envi- 
ronment. On the other hand, we designed a complete set 
of tools working in a highly integrated way. The underly- 
ing architecture enables an easy adaption to new task ar- 
eas and an easy portation to new hardware facilities. 

The current status of the implementation is as fol- 
lows: Tools for the task areas PIL, PIS, ORG and DOC 
have been implemented on the IBM-AT. The prototype 
consists of about 70.000 lot Modula-2 source code and is 
running under MS/DOS. Response time for editor opera- 
tions does not exceed 2 seconds which fulfills all require- 
ments for a first prototype. The portation of the tools 
described in this paper to a net of SUN-workstations run- 
ning UNIX has been finished successfully. 

After porting and integrating the tools for the task 
areas PIL, PIS, DOC and ORG our future work will be to 
extend the prototype to get a multi-user environment. 
Furthermore new working areas (e.g. requirements engi- 
neering) will be investigated. 

Acknowledgements 

The authors are indepted to all members of the IPSEN 
team working hard for the progress of the project. 

/Be 871 

/DK 841 

/En 861 

/EN 871 

References 

E. Berens : Support of Technical Documen- 
tation in Software Development Environ- 
ments (in German), Master’s Thesis, Uni- 
versity of Osnabriick 

V. Donzeau-Gouge / G. Kahn / B. Lang / 
B. Melese: Document Structure and Modu- 
larity in MENTOR, in /He 84/, 141-148 

G. Engels: Graphs as Central Data Struc- 
tures in Software Development Environ- 
ments (in German), Ph.D. Thesis, Univer- 
sity of Osnabriick 

G.Engels / M.Nagl / W. Schgfer: On the 
Structure of Structured Editors for Differ- 
ent Applications, in /He 87/, 190-198 

/ES 851 

/ES 871 

/GM 841 

/Ha 82f 

/He 841 

/He 871 

/Ja 871 

/Le 88t 

ILN 851 

/LS 871 

IMP 871 

IMV 851 

G. Engels / W. Schtifer: The Design of an 
Adaptive and Portable Programming Sup- 
po: t Entironrnent, Proc. of the 8th Interna- 
tional Computing Symposium 1985, 
Florence, Italy, 297-308 

G. Engels / A. Schiirr : A Hybrid Inter- 
preter in a Software Development Environ- 
ment, in Proc. of the 1st European Soft- 
ware Engineering Conf., Strasbourg, Sept. 
1987, to app. in LNCS, Springer 

D.B. Garlan / P.L. Miller : GNOME : An 
Introductory Programming Environment 
Based on a Family of Structure Editors, in 
/He 841, 65-72 

N. Habermann et al.: The Second Compen- 
dium of Gandalf Documentation, Tech. Re- 
port, Carnegie-Mellon University 

P. Henderson(Ed.): Proc. of the ACM SIG- 
SOFT / SIGPLAN Software Engineering 
Symposium on Practical Software Develop- 
ment Environments, SIGPLAN Notices 19,5 

P. Henderson(Ed.): Proc. of the Second 
ACM SIGSOFT / SIGPLAN Software Engi- 
neering Symposium on Practical Software 
Development Environments, SIGPLAN No- 
tices 22,l 

Th. Janning: Access And Responsibility 
Control in a Software Development Envi- 
ronment (in German), Master’s Thesis, 
University of Osnabriick 

C. Lewerentz: Incremental Programming- 
in-the-Large, Ph.D. Thesis (in German), 
RWTH Aachen, forthcoming 

C. Lewerentz / M. Nagl: Incremental Pro- 
gramming in the Large: Syntax-aided 
Specification Editing, Integration, and 
Maintenance, in Proc. of the 18th Intern. 
Conf. on System Sciences, Hawaii 

C. Lewerentz I A. Schiirr: The Software 
Documents Database GRAS (in German), 
in: GI-Softwaretechnik-Trends 7-2 

N. Madhavji / L. Pinsonneault / 
K. Toubache: A New Approach to Cursor 
Movements in Programming Environments, 
Technical Report SE-87.1, SOCS McGill 
University, Montreal 

N. Madhavji / D. Vouliouris / 
N. Leontsarakos: The Importance of Con- 
text in an Integrated Programming Environ- 
ment, in Proc. 38th Int. Conf. on System 
Sciences, Hawaii 

9



/ /Re WI S.P. Reiss: Program Development with 
PECAN Program Development Systems, in 
/He $41, 30-41 

iRe 851 S.P. Reiss: PECAN: Program Development 
That Supports Multiple Views, in IEEE 
Trans. on SE, Vol.11, No.3, 276-285 

/RT 841 T. Reps / T. Teitelbaum : The Synthesizer 
Generator, in /He 84/, 42-48 

ISc 861 W. Schafer: An Integrated Software Devel- 
opment Environment (in German), Ph.D. 
Thesis, University of Osnabriick 

/Sl 861 U. Schleef: An Incremental Parser as Part 
of a Syntax-Directed Editor (in German), 
Master’s Thesis, University of Osnabriick 

10


