counneninininieinbsieiniadehebuiniel

si—An Interpreter for the C Language
Alan R. Feuer

55 Wheeler Street
Catalytix Corporation
Cambridge, Mass 02138

(617) 497-2160
catalylarf

ABSTRACT

An interpreter for the C language has been developed that offers several
advantages during program development over the traditional C
compiler/linker/debugger: faster turnaround for modifications, finer control
over program execution, better debugging facilities, and more complete run-time
error checking. The interpreter is named.si, the Safe C Interpreter.

This paper begins by describing those features of si that distinguish it from the
traditional C development environment. Next it contains a sample session that
illustrates the interaction between a programmer and the Interpreter. It
concludes with a discussion of a few key design decisions made during the
development of si.

INTRODUCTION |

The advantages of highly interactive program development environments have been described
widely [GOLDS83, KAY69, REIS84, SAND78, TEIT81]. All promise more productive software
development at the expense of more computer cycles; a good tradeoff, these days.

This paper describes si, an interpreter for the C language that, while not a full-fledged
programming environment, shares many attributes with the more ambitious projects. Rather
than supplanting its host, si has been designed to blend into its operating environment.! Its major
advance is that it provides for C the fast turnaround, good debugging tools, fine control over
execution, and extensive error checking of an integrated programming system without sacrificing
the utility of existing program development tools.

MAJOR FEATURES

si was designed to be a programming tool for application programmers.? It handles multi-file,
multi-directory programs, it works with any text editor or special preprocessor, it can access
compiled code, and it understands the full C language.

The first attribute of the Interpreter that attracts people used to compiling C is the short cycle
between editing a program and running it. By removing from the edit-run cycle compiling,
assembling, and link editing, changing a program becomes a low-penalty operation.

1. The Interpreter is running under UNIX, VMS, MS/DOS, and on the Macintosh. However, not all implementations
have all features.

2. A lean version of the Interpreter is being packaged with a textbook for use in teaching C.

47

Link editing is done at run time as needed. One consequence is that pieces of a program can be
run in isolation. As the functions of a program are developed they can be tested without the
need to generate temporary driver routines.

Run-time errors, such as using a variable before it is defined or indexing/pointing beyond the end
of an array (even for dynamic arrays), are trapped. Compiled programs that work by taking
advantage of system-dependent circumstances, e.g., a NULL at location zero or physical
adjacency of separately defined variables, generate run-time errors while being interpreted.

Parameters to functions are also checked at run time. The number and types of the parameters
in a function call are checked against the function definition. For the formatted 170 routines of
the printf/scanf family, the conversion specifications in the control strings are checked against the
types of the remaining parameters passed. For routines in the standard libraries, the value of the
passed parameters are checked for sanity, For example, in a call to fseek, if the origin is from

the start of the file then the offset is checked to make sure it is positive.

There are several ways to stop a program in the Interpreter during its execution: A run-time
error will halt the program immediately; an interrupt from the keyboard will stop the program at
the next semicolon in the source text; a program can be single-stepped, stopping at each
semicolon; assertions inserted into the source code will halt the program if they fail; explicit
breakpoints can be set either in the code or from the command line.

When a program is stopped, the Interpreter accepts C expressions from the standard input. Each

expression entered is evaluated in the context of the stopped program just as though it were
inserted at the current point of execution.

A program can be traced while it executes. Function call/return, statement execution, and
expression evaluation can each be traced separately or in combination.

SAMPLE SESSION

The sample session that follows shows the Interpreter running on the UNIX system. In the
displays, user input appears in bold font and comments are printed in italics.

Basic Interaction

Interaction with the Interpreter is modeled after program development on the UNIX system. The
Interpreter operates in two modes: command (the Shell) and execution (C). On invocation, the
Interpreter is in command mode:

$ si invoke si
si.$

Command mode is used to establish the environment for running a program. In the file system,
programs are kept in files; within the Interpreter they are packaged in modules. A module is the
internal representation of a file. When a file is read into the Interpreter a corresponding module
is created:

48

EEEEEEaESSSssassEssaE

si.$ r echo.c read a file and create a module
loading "./echo.c"

si.$ p print the current module

echo (in file ./echo.c)

1 main(argc,argv)
2 int argc;
3 char *argv[];
4
5 int i;
6
7 STOP();
8 for(i=1; iCarge; + +1i)
9 printf("%s%c", argv[i], iarge—1?’ *:’\n’);
10 }
si.$

Programs can be executed in the Interpreter using syntax modeled after the Shell. Shell quoting,
environment variables, pattern matching, and I/0 redirection are all supported:

si.$ echo \’Twas brillig *at SHOME"
STOP on line 7 in function "main" of module "echo"

Execution mode is entered whenever a program is stopped. One way to stop a program is to call
the built-in routine STOP, as on line seven of echo. In execution mode the Interpreter accepts C
expressions from the standard input, evaluates them, and prints the resulting value and type.
Any expression can be entered, including calls to functions and references to active variables:

. arge

= (int) 3

. argv[0] .

= (char *) 643492 (0x9D1A4) "echo"

. PR(argv)

argv (char **)
[0]
(1]
(2]

643492 (0x9D1A4) "echo"
643504 (0x9D1B0) "’ Twas"
643516 (0x9D1BC) "brillig"
(3] 643528 (0x9D1C8) "at /usr/arf"
(4] (NULL)
PR on line 7 in function "main" of module "echo"
= (void) (UNDEFINED)

The built-in function PR expands the first level of structure for aggregate data. It does not
return an explicit value, so the result of the call is (UNDEFINED).

Variables can be modified using standard C syntax:

. argv[l] = "’Twasn’t"
= (char *) (644044,644053) 644044 (0x9D3CC) "' Twasn’t"

The pair of numbers printed in the parentheses above are the bounds of the pointer argv[1].
Execution of the stopped program continues following an end-of-file ({eof}):

. (eof)
*Twasn’t brillig at /usr/arf
si.$

49

To change a module, the Interpreter invokes a user-specified text editor on the file associated
with the module. In this example I will use the ed editor because it matches the paper medium
best:

s1.$ e edit the current module
134

7d delete the call to STOP
w

126

q
loading "./echo.c"

si.$

After editing, the Interpreter rereads those files that have been changed since the last time they
were read. echo now reflects the change, i.e., it no longer stops on line seven:

si.$ echo my text editor is called $editor
my text editor is called /bin/ed
si.$

Watching a Program Execute

A program can be traced on any of three levels: expression, statement, and function. Each level
is controlled by the setting of a flag:

si.$ +te enable tracing of expressions
—d —1 —ss +te —tf —ts

In an expression trace, the operands to an operator appear before the operator:

si.$ x enter execution mode

. 3.4 + 5%
3.4 = (doyble) 3.4
5 = (int) 5
6 = (int) 6

5*%6 = (int) 30
3.4+ 5*6 = (double) 33.4
= (double) 33.4

.1110
1 = (int) 1
1110 = (int) 1
= (int) 1
.1&&0
1 = (int) 1
0 = (int) 0
1&&0 = (int) 0
= (int) 0

The levels of tracing can be mixed in any combination. Here is a statement and function trace of
a recursive power function:

s0

llllllllllll.‘

8i.$ r power.c

loading "./power.c"

si.$ p power is now the current module

power (in file ./power.c)

1 power(x,n) int X, n; { /* return x to the nth power */

2 if(n)0) return(x*power(x,n—1));

3 else return(l);

4 }

si.$ —te, +tf,ts expression trace off, function and statement trace on

—d —] —ss —te +tf +ts

. power(3,2)

power(3,2)
power: n= (int) 2
x= (int) 3

if(n)0)
return(x*power(x,n—1))
power: n= (int) 1
x= (int) 3
if(n)0)
return{ x*power(x,n—1))
power: n= (int) 0
x= (int) 3
if(n)0)
return(1)
power = (int) 1
power = (int) 3
power = (int) 9
= (int) 9

Detecting Run-Time Errors

Run-time errors such as inaexing beyond the end of an array, marching a pointer off the end of
an object, passing the wrong arguments to a function, or using a variable before it is defined are
caught by the Interpreter. When a run-time error is detected, the program is stopped and a new
expression evaluator, in Lisp-like fashion, is spawned:

. $ 8 is a generic variable
= (void) (UNDEFINED) initially $ is undefined
. $ = malloe(—10)
bad argument to "malloc"
int arg should be)= 0
STOP

Entering end-of-file returns to the previous evaluator:

s1

. . (eof)
= (void) (UNDEFINED)

. $ = malloc(10) $ takes on the type of the value assigned to it
= (char *) (403024,403034) 403024 (0x62650) ""
. PR(®)
$ (char *)

{0l =@’ (00)

(1] =""@’ (00)

(2] =""@’ (00)

31 ="'"@ (00)

(4] =@’ (00)

(5] ="'"@"' (00

{6l = ’:@' (00)

M =""@’ (00)

(8] =@’ (00)

(91 =""@’ (00)
PR

= (void) (UNDEFINED)

The generic variable $ is now a pointer to a 10-element character array. A pointer to an object is
bounded by the object, hence stray references can be detected:

. 3091
= (char) " @’ (00)
. $[10]
pointer/index out of range
STOP
. ¥ $+10)
pointer/index out of range
STOP .
. {(eof)
= (void) (UNDEFINED)

The result of an erroneous operation is always (UNDEFINED). (UNDEFINED) is also the
return value of a function that returns no value and the initial value of uninitialized automatic
variables.

Linking to Compiled Functions

Compiled modules are manipulated similarly to interpreted ones. First the compiled file is read
and a module is created:

si.$ lcc —c power.c create a compiled file
si.$ r power.o read the compiled file
vpower" already loaded, type o to overwrite: 0
loading "./power.o"

Since the interpreted version of power was still loaded, the Interpreter asked for confirmation to
replace it with the compiled one. When 2 compiled module is loaded, user-specifiable libraries
are searched to satisfy unresolved references. Thus the compiled module may contain functions
that were not in the source:

si.$ f power list the functions in power
power (in file ./power.o) compiled

Imul() : (int)

mul() : (int)

power() : (int)

52

lllllllllllll\

The compiled version of power can be executed just like the interpreted one:

si.$ x
. power(3,2)
= (int) 9

DISCUSSION
A few fundamental design decisions have been responsible for much of the nature of si.
Tools versus Environments

Innovation in programming tools continues [HEND84]. The current vogue is to weave these tools
into an integrated environment to achieve conceptual cleanliness and added efficiency. Our goal
with si is not so ambitious.

Without joining into the tools vs. environment fray, it is clear that si is a tool, not an
environment; it can be used alongside a programmer’s other tools Making the decision to build
a tool made other design decisions easy:

Should si contain its own editor? No. There are real advantages to building an editor
into an interpreter, such as immediate syntax checking and faster context switch between
editing and execution. Nevertheless, editors live in our fingers and not our heads;
everyone has their favorite editor. And if you like a particular syntax-directed editor, si
won’t stop you from using it.

Should si contain its own preprocessor? No. C is evolving in a direction that encourages
embedding cpp into the translator. On some systems, embedding cpp results in a nice
performance gain. But the existence of special preprocessors has shown that having cpp
as a separate program makes C more malleable. For instance, C+ + [STRO83] was first
implemented as a special preprocessor to C. The Safe C Runtime Analyzer [FEUESS] is a
source-to-source transformer that runs after cpp and before the first pass of the C
compiler.

Should si control the screen like a visual editor? No. The Interpreter would be easier to
use if the different kinds of output were directed to different places on the screen. Some
development environments divide the screen into different windows, one showing the
currently executing text, another showing the values of interesting variables, a third
showing the output of the running program, and another used for commands to the
system.

In the implementation of si, we have tried to separate the user-interface from the
Interpreter engine. To assist in building a clean interface, the different types of output
from the Interpreter are sent to distinct streams. If the underlying system has the
flexibility to attach those streams to different windows, then si can be given a multi-
window front-end. The interface built into si is easily transportable across systems and
does not compete with the program being interpreted.

One mode versus many

A central feature of some programming environments is that they operate in one mode;
expressions in a universal language are always acceptable [DELI84, GOLD83, SAND78]. The
traditional C development environment on the UNIX system embodies several modes and at least
two languages: the Shell and C. With the Interpreter we had the opportunity to drop one of the
languages, presumably the Shell, but chose instead to stick with the UNIX model.

53

Our feeling is that C does not make a wonderful command language. Since a command language
is interactive, we prefer short commands with little extraneous punctuation. Typing

r("power.c")
instead of
r power.c
does not seem worth the conceptual purity.

In addition, the Shell has shown us the utility of 1/0 redirection and pattern matching in a
command language. Since these are not features of C, using C as a command language would
force us to give up the convenient and familiar Shell syntax for something bulkier.

On the other hand, C seems like the natural choice for the language to explore a C program.
With this decision we leave ourselves slightly vulnerable because we have just argued that C does
not make a good command language. Browsing surely requires a command language of some
sort.

Our experience with debuggers that have opted for an interactive language instead of C convinces
us that, in this context, it is worth the extra keystrokes to have the versatility of C. In providing
all of the peeking and poking commands, debugging languages invariably become too complex.
C has all the requisite power plus the advantage of familiarity.

Translation-time versus run-time checking

Standard practice when designing a compiler is to do as much checking at translation time as is
possible, thus saving run-time overhead. We observe that during program development, more
time is spent editing, compiling, assembling, and linking than running. By delaying some checks
until run time, translation time is reduced.

In addition, during program development it is advantageous to have complete checking. For
some important classes of errors, run-time checking is required for completeness. Since the
Interpreter links on demand allowing pieces of a program to be executed in isolation, the referent
for a function is not known (and may not exist!) until run time. Thus type checking of function
calls across modules cannot be done at translation time. The use of a variable before it has been
assigned a value, indexing outside the bounds of an array, and indirection through a stray or
dangling pointer could each be detected in some cases at translation time. Complete checking for
these errors, however, can only be done at run time.

CONCLUSION

si is a young program, it has been available outside of Catalytix for just five months. si
continues to evolve based on feedback from its users. The most active areas of evolution deal
with the user-interface and the performance of interpreted programs.

Within Catalytix, the Interpreter has become the translator of choice for developing new
programs. It offers superior error checking and good tools for debugging at a tolerable cost in
run-time performance. Our compilers have been relegated to what they do best, translating
already debugged programs for fast execution.

REFERENCES

DELI84 Delisle, Norman M., David E. Menicosy, and Mayer D. Schwartz,
“Viewing a Programming Environment as a Single Tool,”” Proc. ACM
SIGSOFT/SIGPLAN Symp. on Practical Software Development
Environments, Pittsburgh, PA, April 1984.

FEUESS Feuer, Alan R, “Introduction to the Safe C Runtime Analyzer,”
Catalytix Corp. Technical Report, January 1985.

1 x)

_enenininininibeinininiuinls

GOLD83

HEND&g4

KAY69

REIS84

SAND78

STROS83

TEITS1

Goldberg, A. J. and D. Robson, Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, 1983.

Henderson, Peter (editor), Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, Pittsburgh, PA, April 1984.

Kay, Alan Curtis, The Reactive Engine, Ph.D. Thesis, Department of
Computer Science, University of Utah, 1969.

Reiss, Steven P., “‘Graphical Program Development with PECAN
Program Development Systems,”” Proc. ACM SIGSOFT/SIGPLAN
Symp. on Practical Software Development Environments, Pittsburgh,
PA, April 1984.

Sandewall, Erik, ‘‘Programming in an Interactive Environment: the
‘Lisp’ Experience,’”” Computing Surveys, vol 10, no 1, March 1978.

Stroustrup, B., ‘‘Adding Classes to C: An Exercise in Language
Evolution,”’ Software—Practice and Experience, vol 13, pp 139-61, 1983.

Teitelbaum, T. and T. Reps, ‘““The Cornell program synthesizer: a
syntax-directed programming environment,”” Communications of the
ACM, vol 24, no 9, Sept. 1981.

§5

