
Symbolic Debugging Through Incremental Compilation in
an Integrated Environment *

Peter Fritzson
Linkiiping University, Linkoping, Sweden

It is demonstrated that fine-grained incremental compila-
tion is a relevant technique when implementing powerful
debuggers an incremental programming environments. A
debugger and an incremental compiler for PASCAL has
been implemented in the DICE system (Distributed Incre-
mental Compiling environment). Incremental compilation
is at the statement level which makes it useful for the de-
bugger which also operates at the statement level. The
quality of code produced by the incremental compiler ap-
proaches that required for production use. The algorithms
involved an incremental compilation are not very compli-
cated, but they require information that is easily available
only in an integrated system, like DICE, where editor,
compiler, linker, debugger and program data-base are
well integrated into a single system. The extra information
that has to be kept around, like the cross-reference data-
base, can be used for multiple purposes, which makes
total system economics favorable.

INTRODUCTION

Two possible definitions of incremental compilation are
given in [3]. First, the incremental compiler is to ex-
pend an effort during the translation process that is
roughly proportional to the size of the change to the
source program made by the programmer. A second
possible task for an incremental compiler is to allow the
programmer to execute his program up to a certain
point, stop and edit his source file, and then resume ex-
ecution where he stopped. In the following we assume
that an incremental compiler, or better: an incremental
system, has both of these properties. We will see that
capabilities of a symbolic debugger can be greatly ex-
tended through usage of such an incremental compiler.

*This research was supported by the Swedish Board of Techni-
cal Development.

Address correspondence to Peter Fritzson. Computer Science
Department. Linkiiping University, S-581 83 Linkiiping, Sweden.

PREVIOUS WORK

Examples of incremental programming environments
for block-structured languages with nested statement
structure are INTERLISP [171, Cornell Program Syn-
thesizer [16], GANDALF [12], PATHCAL [18],
ECL [4], LISPEDIT [11, etc. The smallest compilation
unit in systems like INTERLISP, GANDALF, ECL,
and LISPEDIT is the procedure body.

INTERLISP, ECL, the Synthesizer, PATHCAL,
and LISPEDIT all permit continued execution after
program modifications, since these systems contain in-
terpreters. GANDALF is a compiling environment that
permits continued execution after local modifications; it
does not currently (June 1982) keep track of the ma-
chine-code positions of statements after recompilation

[51.
A paper by Rishel, [141 gives a thorough treatment

of statement-level incremental compilation for line-ori-
ented languages like BASIC or FORTRAN. However, all
techniques proposed in that paper requires insertion of
extra instructions between statements. That is not
needed by the techniques proposed here, which have
been implemented in the DICE system.

Kahrs [1 l] describes an interactive programming
system for a block-structured language along ideas dis-
cussed in [131. The system contains an integrated in-
terpreter/compiler, a so-called Tree Factored Inter-
preter, which can switch between interpretation and
code generation at arbitrary points in the abstract syn-
tax tree. The code is highly fragmented, however-one
procedure body for each tree node-and the code is not
separable from the tree since it contains indirect pro-
cedure calls through pointers kept as attributes to tree
nodes.

OVERVIEW

This paper presents two topics: implementation of a de-
bugger through use of an incremental compiler, and

The Journal of Systems and Software 3,285294 (1983)

0 Elsevier Science Publishing Co., Inc., 1983
285

0164-1212/83/$3.00

P. Fritzson

techniques for fine-grained incremental compilation.

Both the debugger and the compiler are components of
the highly integrated programming environment DICE
(Distributed Incremental Compiling Environment)
which aims at providing programmer support in the

case where the programming environment resides in a
host computer and the program is running on a target
computer that is connected to the host.

Commands to the debugger command level include
all legitimate PASCAL statements. The debugger is ma-
chine independent-it calls the incremental compiler
which generates code for evaluation of commands, or
modifies the machine code of the target program for

insertion of breakpoints, etc. Essentially all machine de-
pendences are isolated inside the code generator of the
incremental compiler.

Debug code at conditional breakpoints, etc. is exe-
cuted as efficiently as the compiled code of the normal
program since it also has been compiled by the incre-
mental compiler. Essentially no extra code is inserted

into the target program in order to be able to debug it.
Incremental compilation is at the statement level

which makes it particularly useful to the debugger,
since it operates at the statement level. Statement level
recompilation usually is an order of magnitude faster
than procedure-wise recompilation, which may be im-
portant for big programs or on loaded time-sharing
computers. Also, this will permit acceptable interactiv-
ity even after changes to certain global declarations.
The extra information needed in the program database
to support incremental compilation is almost identical
to that needed for debugging. The system allows con-
tinued execution after most program changes.

The algorithms for incremental compilation are cen-
tered around a tree representation of the source pro-
gram, and are applicable to a wide class of languages.
It is illustrated by the DICE incremental PASCAL

compiler.
Program editing is performed through a full-screen

structure editor. The editor marks new or changed
nodes in the tree of the current procedure. Recompila-
tion of changed statement nodes is performed during a
preorder traversal of the tree. New and old machine
code is merged; and branch instructions in the old code
are updated. Branch updating can be incremental on
the statement level for languages with well-formed con-
trol structures on machines with PC-relative goto
instructions.

Incremental compilation is consistent, i.e., no degen-
eration of code quality occurs after many edit-recom-
pilation cycles. Dynamic linking is made easy by gen-
erating position-independent code and having an extra
level of indirection for procedure calls.

The main components of the DICE system are
shown in Figure 1.

Figure 1. The main components of DICE, Distributed In-
cremental Compiling Environment.

PROGRAM DATABASE

Most information in the data-base is packaged in pro-
cedure-units. Each unit contains the source tree pro-

gram representation, machine code, local symbol table,
and dependency lists for declarations that are refer-
enced in other procedures. The symbol table is perma-

nent and allows updating.

IMPLEMENTATION STATUS

Currently (July 1983) DICE is implemented in 20000
lines of INTERLISP on a DEC20 computer. The in-
cremental compiler accepts essentially full PASCAL in-
cluding input-output (currently not including sets and

procedural parameters) and produce PDPll code of
reasonable quality. A very rudimentary program data-
base exits. A full-screen structure editor is imple-
mented, but it still lacks adequate text editing facilities.
A screen-oriented debugger is partly implemented and
currently allows all PASCAL statement types as com-
mands. It also allows setting of breakpoints, single-step-
ping and flow-tracing for control of execution. The de-
bugger operates on the program in the target computer
via DecNet.

ECONOMY OF AN INTEGRATED SYSTEM

An integrated programming environment contains tools

such as editor, compiler, linker, debugger, data base
manager, etc. These tools cooperate. For example, the
editor informs the incremental compiler which state-

ments need to be recompiled. Also, the parser can be
used to parse program text or debugging commands,
and it also serves as a general command level user in-
terface. This sharing of resources is true also for data
structures, as exemplified by the source-machine-code
mapping and the cross-reference database.

The mapping between source code and machine code
at statement level is used both for incremental compi-
lation and for debugging purposes like single stepping
and insertion of breakpoints.

The cross-reference and static analysis database
(similar to the Masterscope subsystem in INTER-
LISP) serves at least three purposes:

Incremental Compilation in an Integrated Environment

It aids the programmer in understanding his program
and in finding interesting parts of it.

It makes incremental recompilation possible even after

It

edits to global entities, since the cross-reference da-
tabase contains information about which procedures
reference such entities.

is used by the debugger to implement traces and
watches on variables, since the system contains in-
formation about which procedures reference or mod-
ify a certain variable. The incremental compiler can
be called to insert extra code around relevant state-
ments in such procedures.

An incremental compiler provides a single interface
to the low-level machine. Besides the traditional trans-
lation task, it can be used instead of a command level
interpreter, or it can be utilized by a machine-indepen-
dent source level debugger in implementing break-
points, single-stepping, etc.

A DEBUGGER IMPLEMENTED THROUGH
INCREMENTAL COMPILATION

The DICE debugger is oriented towards programs that
may execute on small machines under real-time con-
traints. It is essential that a minimal amount of extra
code should be executed in the target program during
debugging, compared to ordinary execution. This may
of course also be valuable on an ordinary time-shared
machine. It is also important that one should be able to
invoke the debugger if a run-time error occurs during
an ordinary execution.

Another requirement is that all legal PASCAL state-
ments should be accepted as legal commands by the de-
bugger; continued execution after source program mod-
ifications should also be permitted.

Our approach to meet these requirements is to use
an incremental compiler to generate code for complex
commands and to make necessary modifications in the
object code for conditional breakpoints, etc.

Since fast response to user commands is important,
and single-stepping should be provided, the compiler
has been designed to be incremental on the statement-
level.

We will consider some of the more important func-
tions that are normally found in good debuggers, and
show how they can be implemented in an incremental
compiling context.

EVALUATION OF EXPRESSIONS AND FUNCTION
CALLS

The ability to evaluate expressions or call functions is
just a special case of the general ability of the DICE
debugger to accept any PASCAL statement as a com-

287

mand. A given statement-command is compiled and
sent to a free memory area in the target computer
where it is executed. Output from write-statements ex-
ecuted on the target is sent to the host through a special
logical DecNet channel on the same physical link, and
eventually reaches the users terminal.

Write-statements are useful for printout of expres-
sion values; assignment statements are used to change
variable values and procedure calls are useful to be able
to perform small tests on single procedures or on sub-
components of the subject program. Small loops are
sometimes useful in order to initialize a data structure.

DECLARATIONS AS COMMANDS

The user may even declare new types or new variables
that can be useful during the process of locating a bug
through a series of small experiments. The following se-
quence of three commands is perfectly valid:

type FOOREC = record A:integer;
ARR:array [l..lO] of integer end;;

var X : FOOREC;;
for I: = 1 to 10 do X.ARR[I] : = 3;

Such temporary variables or types exist only during the
debugging session and are not inserted into the subject
program unless it is specifically requested by the user.

THE DEBUG COMMAND LANGUAGE

Our experience from the INTERLISP system indicates
that it is very useful if the source language is a subset
of the debug language. This is also true in the DICE
system.

Is the source language powerful enough as a debug
language? In the case of LISP we know from experi-
ence that it is. For PASCAL, one might have to extend
the debug language in order to overcome the lexical,
scope rules, and to make the flexibility of the write
statement more generally available, i.e., generic argu-
ment types and variable number of arguments. Further
experience will indicate what is necessary. Essentially
all the debug commands now available in INTERLISP
or LISPEDIT could readily be expressed in PASCAL
syntax after some adaptation.

Also, the most common commands should be as-
signed to function keys or control characters in order to
make the user interface more convenient.

TEXTUAL WATCHES ON VARIABLES

A variable in a PASCAL program can be modified either
by an assignment statement or as a VAR parameter in
a function or procedure call. The system can use the
cross-reference data-base to find these positions in the

P. Fritzson

source tree, and insert extra code to trace variable val-
ues or to generate a break when such variables change
value. This kind of watch on variables is called textual
watch since it is coupled to an occurrence of a variable
name in the program text.

The selective code insertions used for textual
watches slow down execution much less than the tra-
ditional method common in many PASCAL debuggers,
which is to test values of relevant variables at runtime
after each executed statement.

Ideally one would like special hardware facilities for
watches. An approximation to this may be found for
computers with a paging virtual memory. The method
is to write-protect the page that contains the interesting
variable and to use page trapping on write access. Prob-
lems may arise if the variable is on the stack (the sub-
routine call and return instructions on the VAX may
not work if the stack is write-protected), or if an inner
loop references the write-protected page.

ALIASED WATCHES ON VARIABLES

The traditional method of checking the contents of a
certain memory location after the execution of each
statement will detect the “first” statement (first in the
sense of execution order) in the program which changes
the value of any of the aliases of a certain variable. We
call such watches aliased watches on variables.

The DICE debugger normally uses textual watches
on variables. The question is: can aliased watches be
implemented in our scheme? The answer seems to be
yes, at least to a large extent.

The information kept in the cross-reference database
can be used to identify most of the code positions where
aliases might occur, and conditional breakpoints can be
inserted at these positions. This will give the same effect
as the traditional method and still will not slow down
execution as much as the traditional method, which is
important when debugging programs that execute
under real time constraints. One drawback of this
method may be the great number of possible aliases and
corresponding code insertions in certain situations, e.g.,
consider pointers to records of a variant record type
that is often used.

POSITIONING

The DICE debugger uses the full-screen structure edi-
tor in order to provide a simple means of pointing to the
program-fragment where a certain operation is to be
performed, e.g., an insertion of a breakpoint. The user
interface is simplified, since only a single set of posi-
tioning commands has to be learned. The idea to inte-

grate the editor and execution-monitor has previously
been applied successfully both in the Cornell Program
Synthesizer and in LISPEDIT. We have often experi-
enced the lack of such an integration between the editor
and the debug package in the INTERLISP system, al-
though it is possible to evaluate any LISP expression
inside the editor.

SINGLE-STEPPING

An important requirement is that it should be possible
to provide single-stepping for compiled programs which
have no extra code inserted between each statement for
debugging purposes.

We use the alternative method of calling the incre-
mental compiler on each step during step-wise execu-
tion in order to insert a new breakpoint before the next
statement and eliminate the breakpoint that was pre-
viously inserted before the current statement. On entry
to a loop-construct, a temporary breakpoint is also in-
serted immediately after the loop in order to catch the
exit from the loop.

VARIED STEPPING

It is often useful to be able to request atomic comple-
tion of the execution of the current statement, e.g., it
may be tedious to step through a small loop hundreds
of times. This step command is called long resume in
the Synthesizer and run in LISPEDIT. Its implemen-
tation in the DICE debugger is straightforward: insert
a temporary breakpoint at the beginning of the next
statement on the same level, or at a higher level if it
was the last statement on this level.

One complication arises, however, if the execution of
the current statement causes a recursive call to the cur-
rent procedure. An unwanted break, which is caused by
the inserted temporary breakpoint, will happen during
the execution of the new invocation of the current
procedure.

This problem is solved if a conditional breakpoint is
inserted instead of the unconditional breakpoint. The
condition is a test that the value of the framepointer
corresponds to the correct invocation of the current
procedure.

A general step-command is called come in LISPE-
DIT. It means that if the user points to a certain pro-
gram position and issues the command come, then the
system will execute until it hits the indicated position.
This command is easily implemented in the DICE de-
bugger: simply insert a temporary breakpoint at the in-
dicated position and remove all other temporary
breakpoints.

Incremental Compilation in an Integrated Environment 289

CONDITIONAL BREAKPOINTS

A conditional breakpoint is written as an ordinary if-
statement in PASCAL. It is compiled and inserted into
the object code by the incremental compiler. Since the
extra code associated with the conditional breakpoint is
compiled with the regular PASCAL compiler, it will have
the same quality as ordinary compiled code and it will
usually exact a small amount of extra execution time.

CONTINUED EXECUTION AFTER PROGRAM
MODIFICATIONS

One of the important goals in the DICE system is to
allow continued execution after program modifications.
This goal is based on our own extensive experience with
the INTERLISP system, which has shown us that it is
valuable to be able to correct small bugs during the
course of an execution. According to [l] users of the
Lispedit system tend to fix bugs in the same way.

Continuation after editing of procedures that cur-
rently have no activation records on the stack poses no
special problems. The same is true if global declarations
are added.

If a procedure is changed that has several invoca-
tions on the stack, then it might not be wise to continue
execution at the current point. Instead execution should
be restarted at the first invocation of the current pro-
cedure, or higher. This will be easy if there exist states
in the call chain that are relatively independent of pre-
vious side-effects, e.g., we know that relevant data-
structures are initialized at a certain level. Otherwise a
lot of manual undoing of side-effects will be necessary
before restart.

Edits of declarations of global data structures can
cause severe problems in the general case. The system
will take care of the code, but existing data structures
must be updated according to the changed declarations.
In the general case reinitialization of data-structures is
left to the programmer, but some common simple cases
may be identified where the system could be helpful.
For example, when changing the maximum number of
elements of an array, the system could copy the rele-
vant part of the old data into the new array. When a
new field is added to a record type, the system could
trace all pointers to data items of that type, reallocate
the data item, copy data from the old data item, and
fill the new field with some null value like NIL or zero.

If an active procedure is edited, parts of its code may
be moved. Since this might affect procedure return ad-
dresses, the stack must be searched for such addresses
and updated if needed (Both the GANDALF debugger
and the INTERLISP code swapper [7] update return
addresses on the execution stack.) The code of other

procedures is not affected since procedure calls go one
level indirect. If formal parameter declarations for a
procedure are edited, all calls to that procedure must
be recompiled (and probably edited). If such a proce-
dure is active, one might imagine manipulating argu-
ment areas on the stack so that subroutine returns still
would cause no problem, but one might ask if this is
meaningful. It is probably better to pop a few activation
records from the stack.

At last we consider m~ification to the procedure
that contains the current stopping-point. The incremen-
tal compiler will keep track of the machine-code posi-
tion of the current statement, even if extensive modifi-
cations are done to surrounding statements. This makes
it possible to continue from the current statement or
from any other statement in the procedure. The user
must take care of side-effects himself. Changes to dec-
larations of local variables will be handled by the incre-
mental compiler (see the part about incremental vari-
able allocation). The compiler will also restructure the
contents of the current activation record.

GOALS FOR FINE-GRAINED STATEMENT-WISE
INCREMENTAL COMPILATION

Fast recompilation. A responsive interactive program-
ming environment is obtained.

Consistent compilation. Code quality should not degen-
erate after repeated program changes followed by
incremental recompilations.

Preservation of execution state. Execution should be
able to continue after most program changes.

Good quality of the rnac~jne code produced. The code
should be good enough for production use in order to
demonstrate the feasibility of incremental compila-
tion concepts in practice.

Separability. The compiled program should be sepa-
rated from the source code so that it can execute out-
side of the program development system.

Concerning compilation speed: preliminary mea-
surements on the recompilation time for procedures
after making a small modification indicate a speed im-
provement of a factor of ten to 20 in most cases, com-
pared to recompiling the procedure from scratch.

The greater part of the code generator of the DICE
PASCAL compiler originates from the Portable C Com-
piler [lo]; it has simply been translated by hand from
C to INTERLISP. This causes the quality of code pro-
duced by the DICE PASCAL compiler to be almost
equivalent the code produced by the Portable C Com-
piler, which has been used to compile many UNIX sys-
tems (although the C language permits the program-

290 P. Fritzson

mer to do more source-level optimizations than does
PASCAL).

Declarations

The current DICE incremental PASCAL compiler is
fully consistent in code generation (see Figure 2). The
code quality does not degenerate after arbitrarily many
edit-recompilation cycles. It may not be fully consistent
in memory allocation, however, since harmless holes in
stack-frames may arise after deletion of variable
declarations.

Type expansion

AN OVERVIEW OF FINE-GRAINED INCREMENTAL
COMPILATION 1 , , Code size

__-___---_-__-_

This compiler is centered around an abstract syntax
tree representation of the source program. During an
editing session, the editor marks those nodes of the cur-
rent procedure that represent changed, inserted, or de-
leted statements or declarations.

Code update in

Host data base

When the user has finished editing, or wants to con-
tinue execution after he has made program modifica-
tions, the compiler does a preorder traversal of the
source code trees of all ,edited procedures, and recom-
piles all statement nodes that have been changed or
inserted.

Figure 2. A block diagram of the DICE incremental
compiler.

INCREMENTAL COMPILATION AT THE
STATEMENT LEVEL

The compiler achieves flexibility by dividing the
translation into three passes: (1) name binding, (2) type
analysis and variable allocation, and (3) generation of
machine code.

This problem can be decomposed into two subproblems:
to find an appropriate mapping between the source code
and the machine code, and to find an efficient method
to update branch and goto instructions in the machine
code of a procedure body.

Changes to Declarations

The mapping between the source level and the ma-
chine code level should have the following properties:

Changes to declarations occur when the user modifies
an existing variable or type declaration, or inserts a new
one. This may force changes in memory allocation of
variables, i.e., their size and position. It also invalidates
the compiled code of all statements that contain af-
fected variables. When recompiling a procedure, the in-
cremental compiler will search the tree, and recompile
the smallest enclosing statement nodes that references
such variables.

Given a source statement, it must be easy to identify
the associated machine code. This is for purposes of
incremental compilation, and for finding statement
positions for breakpoints during debugging.

After a change to a global declaration, the compiler
will use dependency information maintained in the pro-
gram data-base, which tells which procedures depend
on the current declaration.

Given a machine code address, it must be easy to iden-
tify the corresponding source code statement. This is
for debugging purposes only. The user should be able
to stop the target program when it is running, and
the system should identify at which statement in the
source code the program was stopped, and generate
a breakpoint at that position.

The mapping should be easily updated after program
edits. Incremental updating properties are of course
desirable in an incremental system.

Changes to Statements

This kind of program modification is much more local
in scope than changes in declarations, and it usually
only invalidates the compiled code associated with the
changed statements. Sometimes, however, such
changes will affect memory allocation of temporaries
and constants.

AN IMPLEMENTATION OF THE MAPPING
BETWEEN SOURCE CODE POSITIONS AND
MACHINE CODE POSITIONS

Binary machine code is the only low-level code that is
kept in the database or in the target computer. The
codesize attribute of each statement node in the tree

Incremental Compilation in an Integrated Environment

implements the mapping between source and machine
code. The address of a statement can easily be found by
adding the procedure start address with the codesizes
of preceding statements.

During the edit-session, the editor marks changed
and deleted statement nodes by modifying an attribute
called editmark. A new inserted node has the editmark
value changed and codesize value zero; an unchanged
previously compiled node has editmark value un-
changed; an old statement that has been edited is also
marked as changed and finally, a node which is to be
deleted is marked deleted. Deleted nodes with nonzero
codesize cannot be removed immediately by the editor
because then the old machine code would remain. Such
nodes are eventually physically removed by the incre-
mental compiler.

The previously mentioned attributes codesize and
editmark are synthesized for compound statements like
BEGIN-END, IF-THEN-ELSE, WHILE, REPEAT,
FOR, WITH, and CASE statements in PASCAL.

The editmark attribute is synthesized by the editor,
and the codesize attribute is synthesized by the incre-
mental compiler according to the following rules (we
assume that S is a compound statement that has some
sons).

Attribute editmark:

If all sons of S are deleted then S is marked as deleted

If all sons of S are unchanged then S is marked as un-
changed otherwise S is marked as changed.

Attribute codesize:

The codesize of S is the sum of the codesizes of all its
sons.

(One might regard the backward branch of a WHILE-
statement as a virtual son in order to preserve the
truth of the above rule for codesize).

Initially, all new nodes have editmark value changed
and codesize value zero.

A SMALL EXAMPLE SUBTREE

A subtree corresponding to the statement

whilei< = 15do i:=i+2;

is shown decorated with the attributes (codesize. edit-
mark), together with the PDPl 1 machine code in Fig-
ure 3. The constant 2 has been changed to 1 by an edit,
which also has changed the editmark attribute.

MERGING OLD AND NEW MACHINE CODE

The strategy for merging code is actually quite simple.
To begin with, reserve a memory area where the up-
dated code will be stored. A variable OLDPOS holds
the current machine code position in the old code, and

291

1:

2: cmp -2(rS), 16

3: Li 4
4: bgt +4

6:
6: 1°C -Z(6) t

7: b, -6 /

Figure 3. An example of an incremental recompilation of a
while-loop in the form of an abstract syntax tree.

a variable CURPOS holds the current position in the
merged code. Both location counters are relative to the
beginning of the current procedure. Do a preorder trav-
ersal of the tree and during that traversal perform the
following:

If a node is unchanged, copy its code to the new area
and advance OLDPOS and CURPOS by an equal
amount codesize.

If a node is marked as deleted, skip its code, i.e., ad-

vance OLDPOS but do not change CURPOS.

If a node is changed, first compile the node and store
generated code into the new memory area. The
CURPOS counter is automatically incremented by
the code generator during code production. There-
after, advance OLDPOS by the old value of the at-
tribute codesize, and update codesize to be the size
of the new code piece that was generated.

It is important that CURPOS always refers to the
current position in the updated machine code, in order
that the back-patching of label references in new
branch instructions should be done correctly. A more
detailed description of the alogrithm may be found in

[61.
In the current implementation, new machine code is

temporarily stored in a code buffer, and the sequence
of insert/delete operations are temporarily stored and
not executed immediately. This approach permits the
the removal of some of these update operators, which is
described in Figure 4.

Before the sequence of insert/delete operations are
performed, further reduction of the number of update
operations is possible if the copy part of insert opera-
tions are extracted. This enables the system to detect
the important special case where the total net expansion

292 P. Fritzson

Old cods Merged code

Figure 4. An example of the merging of old and new ma-
chine code, together with deletion of some old code.

23

is zero. Figure 5 shows the saving of expand/contract
operations.

If all contractions are performed before the expan-
sions, at most 2N word moves are needed for a code
piece of size N words.

In the DICE system, machine code is updated si-
multaneously in the target computer address space and
in a code area of the program database. Simple replace-
ment and data movement commands are sent to rou-
tines in the target computer over the network link.

INCREMENTAL UPDATING OF GOT0
INSTRUCTIONS

Control structures in high-level languages are usually
compiled to a number of goto or brunch instructions in
the machine-code. If the code inside a construct, i.e., a
while-loop, expands or contracts during incremental re-
compilation, the addresses of certain goto-instructions
must be updated. This may be hard or easy to do incre-
mentally depending on the source language and the tar-
get machine instruction set. We will consider two
methods which are applicable to different classes of lan-
guages and machines.

INCREMENTAL BRANCH UPDATING ON
MACHINES WITH RELATIVE GOT0
INSTRUCTIONS

This method relies on the fact that structured-program-
ming constructs like WHILE-loops transfers control in
a local well-structured manner. The only exception
from this rule in the language PASCAL is the GOT0
statement-this is yet another argument against goto
programming. This updating method also requires the
existence of PC-relative branch instructions in the tar-

Figure 5. Reductions in the number of insert/delete opera-
tions and conversion to cheaper operations like copy.

Update Operation:: code Move Opr: Transfer Opa:

Insert 4 words at 13
Delete 2 words at 13 => Expand 5 at 13, copy 4 to new 13
Delete 3 words at 15 Copy 6 to new 17
Insert 6 words at 18

get computer instruction set, which makes it possible to
move code associated with compound statements with-
out invalidating the code.

Each control structure is compiled in a predefined
way; it is known which parts of the code contain branch
instructions which may need updating. In the current
compiler, a hand-written procedure for each type of
control-structure takes care of the branch updating.
These procedures should not be too hard to generate
automatically, e.g., from a denotational description of
the control flow aspects of PASCAL. Sethi, [151 has done
something similar to that in a small nonincremental
compiler for a subset of C.

An example, the WHILE-statement:

Syntax: WHILE (pred) DO (statement)
Record: TYPE whilestm = RECORD pred : expr;

body : statement END;

Predefined machine code structure of a WHILE
loop:

Ll: (code for conditional branches to L2)
(code for statement body)

L2: (branch to Li)

The branches to Ll and L2 need be updated only if the
code for the statement body changes size. A special pro-
cedure scans through the relevant code portion and
identifies those branch instructions that must be up-
dated. More details on the updating algorithm, are
given in [6].

If the computer has both short branch instructions
with a limited range and long branches with unlimited
range, then short branches sometimes may have to be
converted to long ones. This means that sometimes an
extra traversal of the tree is required since conversion
to long branches causes insertion of binary code.

GOT0 statements must be handled specially; all
such instructions in the procedure body must be
checked and updated if needed.

BRANCH UPDATING FOR A WIDER RANGE OF
MACHINES

On machines that lack PC-relative branch instructions
our previous incremental algorithm for updating
branch addresses will not work because branch instruc-

Incremental Compilation in an Integrated Environment 293

tions in the code for statements like IF statements and
WHILE statements will be invalid if the code is moved.
A single insertion at the beginning of a procedure body
can thus invalidate all branch instructions in its ma-

chine code.
Thus, if a code expansion or contraction occurs, all

branch instructions in the procedure body must be
scanned and updated. (A bit-vector marking all
branches can be maintained for each procedure body.)
This means a slightly increased overhead which is pro-
portional to the size of the procedure body, but the
scanning process is still very fast compared to recom-
pilation of the procedure from scratch. This method is
equivalent to the traditional loading process, although
it is done incrementally for each procedure body.

CONFLICTS BETWEEN INCREMENTALITY AND
CODE OPTIMIZATION

The current DICE compiler uses the same code gener-
ation strategy as the portable C-compiler: i.e., no inter-
mediate results in temporary registers are kept between
statements, and optimizations are performed only in-
side statements. This goes along well with symbolic de-
bugging and incremental compilation, but of course
gives lower object code quality.

There is a conflict between optimization and incre-
mental compilation: global optimizations introduce de-
pendencies between different parts of the program,
which will destroy the possibility for incrementality.
We are currently starting to investigate if there exist a
reasonable compromise between optimization and in-
cremental compilation for medium-sized code pieces
(5-10 small statements).

The problem of combining some degree of optimi-
zation with incremental compilation is similar to the
problem of providing source language debugging on op-
timized code. [8] gives a thorough treatment of part of
the debugging-optimization problem.

Is the code quality produced by this compiler ac-
ceptable for normal usage? As mentioned before, it is
comparable to the quality of the code which is gener-
ated by the Portable C Compiler. The enormous
amount of software that has been produced using that
compiler seems to indicate that there are relatively few
cases where global optimization might be essential.

cept those generated by keyboard interrupt or runtime
error.

THE IMPACT OF INCREMENTAL COMPILATION
ON VARIABLE ALLOCATION

In this section we will consider variable allocation in the
context of incremental compilation. The goal is to
choose storage allocation schemes that minimize the
amount of recompilation without sacrificing efficiency
of compiled code. The following discussion is centered
around variable allocation in a procedure activation re-
cord; static allocation of global variables and constants
can be regarded as a special case.

A typical activation record, or stack-frame, for the
language PASCAL is shown in Figure 6. It shows both a
frame pointer, FP, and a stack-pointer to top of stack,
SP. Parameters, local variables, and (sometimes) tem-
poraries are addressed with constant offsets relative to
FP. It might be unnecessary to have both FP and SP,
since all addressing can be done relative to SP.

Parameters are constrained to reside at the bottom
of a stack-frame in their declared order, since they are
pushed on the stack at procedure call.

If a variable does not increase in size after editing its
declarations, only statements referring to that vari-
able need be recompiled.

If a variable declaration (not a parameter) is deleted,
only statements referring to that variable need be re-
compiled. This will usually result in an unused hole
in the stack-frame. This hole can be used to accom-
modate future local variables, or it can be eliminated
by packing the stack-frame, which will usually affect
the positions of other local variables and cause re-
compilation of more statements.

lncrementality for Variable Insertions

If we have both a Frame Pointer, FP, and a Stack
Pointer, SP, this redundancy makes possible the inser-
tion of new variable declarations, without forcing re-
compilation of existing source code.

Figure 6. An activation record for PASCAL with both stack
pointer and frame pointer.

If global optimization is introduced in this compiler,
it should probably be as optional extra passes over a
procedure body as a unit. This will, however, destroy
the transparent debugging behavior that is possible
with statement-wise compilation. One strategv to pre-

!_________________________-_! <=== St.%Ck point.r. SP
! huporrri*a I

! !

!___________________----____! <=== Frua pointm. FP

! st.tic link ! __ I

serve the debugging facilities would be to replace the
!___________________________!
! D,nuic link. = pr.r. FP !

optimized procedure body by an unoptimized version as
soon as the user tries to plant a breakpoint inside it, or
single-step through it. This will work for all breaks ex-

!___________________________!
! R.tArn addr.ss !
!___________________________!
! PUameterB I
!___________________________(

294

!__________________! (_____ SP. stack Pointor
! l.cIca1 variaw** !
! !
!__________________! <_____ optima1 insertion point
! 1 ior n*. nr‘i.blw3

!________-_________!

! PPruetRTs !

!__________________,

Figure 7. An activation record for PASCAL where a single
register functions as both stack pointer and frame pointer.

If there exist several invocations of the current pro-
cedure on the stack, then it might be hard to update the
previous activation records in a meaningful way. In-
stead it could be better to pop these activation records
from the stack and restart execution from an earlier po-
sition (See Figure 7).

If everything is referenced relative to SP, as in the
figure 7, an insertion of a new local variable will cause
changed offsets for all parameters. The advantage is
more efficient code for procedure entry and return.

FURTHER WORK

To this date (July 1983) a static analyzer is still missing
from the system. Also, further research is needed into
the organization of the program database and the user
interface. It could be interesting to study debugging in
an incremental system that also supports concurrency.
Another topic is to study the use of special hardware
like an In Circuit Emulator together with a tool such as
an incremental compiler in order to aid debugging and
to present the low-level data collected by such hardware
in a higher-level fashion.

CONCLUSION

It has been demonstrated that fine-grained incremental
compilation is a relevant technique when implementing
powerful debuggers in incremental programming envi-
ronments. The quality of code produced by the incre-
mental compiler approaches that required for produc-
tion use. The algorithms involved in incremental
compilation are not very complicated, but they require
information that is easily available only in an integrated
system, where editor, compiler, linker, debugger, and
program data-base are well integrated into a single sys-
tem. The extra information that has to be kept around,
like the cross-reference data-base, can be used for mul-
tiple purposes, which makes total system economics
favorable.

ACKNOWLEDGMENTS

Jerker Wilander, who wrote the PATHCAL system,
gave me the necessary inspiration at the beginning of
this work. Thanks also go to Anders Sundquist who
wrote the primitives that manipulate the memory of the

P. Fritzson

target computer via DecNet, and who succeeded in
overcoming the RSXl 1M operating system (on the tar-
get). Thanks, Bengt Lennartsson, Anders Haraldsson,
Jim Goodwin, and Erik Sandewall for helpful com-
ments on my work, and on this paper.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14

15.

16.

17.

18.

C. Albaerga, A. Brown, G. Leeman, M. Mikelsons, and
M. Wegman, A Program Development Tool, Sympo-
sium on Principles of Programming Languages (Jan
1981).

P. Brown, Throw-away Compiling, Software-Practice
and Experience (July-Aug 1976).
J. Earley and P. Caizergues, A Method for Incremen-
tally Compiling Languages with Nested Statement
Structure, Commun. ACM 15, 12 (Dee 1972).
ECL Programmers Manual, Center for Research in
Computing Technology, Harvard University, Cam-
bridge, Mass., Dee 1974.
R. Ellison, Private Communication, The GANDALF
project, Carnegie-Mellon University, June 17, 1982.
P. Fritzson, Fine-grained Incremental Compilation for
PASCAL-like Languages, LiTH-MAT-R-82-15, Soft-
ware Systems Research Center, Linkoping University,
July 1982.
J. Goodwin, Private Communication, Software Systems

Research Center, Linkoping University, Nov 1982.
J. Hennessy, Symbolic Debugging of Optimized Code,
ACM Trans. Programming Languages and Systems 4, 3
(July 1982).
K. Jensen and N. Wirth, PASCAL User Manual and
Report, Lecture Notes in Computer Science, Springer,
Berlin, 1977, vol. 18.
S. C. Johnsson, A Tour Through the Portable C Com-
piler from Unix Programmers Manual, 7th ed, vol 2B,
Jan 1979.
M. Kahrs, Implementation of an Interactive Program-
ming System, SIGPLAN Notices 14, 8 (Aug 1979).

R. Medina-Mora and P. Feiler, An Incremental Pro-
gramming Environment, IEEE Trans. Software Engi-
neering SE-7, (Sept 1981).

J. G. Mitchell, The Design and Construction of Flexible
and Eficient Interactive Programming Systems. Ph.D.
thesis, Carnegie Mellon University. Reprinted by Gar-
land, New York, 1979.
W. Rishel, Incremental Compilers, Datamation (Jan
1970).
R. Sethi, Control Flow Aspects of Semantics Directed
Compiling, Proc. SIGPLAN ‘82 Symposium on Com-
piler Construction, Boston June 23-25, 1982; in SIG-
PLAN Notices, 17, 6 (June 1982).
T. Teitelbaum and T. Reps, The Cornell Program Syn-
thesizer: A Syntax-Directed Programming Environment
Commun. ACM 24,9 (Sept 1981).
W. Teitelman, Interlisp Reference Manual., Xerox Palo
Alto Research Center.
J. Wilander, An Interactive Programming System for
PASCAL, BIT 20, 163-174 (1980).

