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It is demonstrated that fine-grained incremental compila- 
tion is a relevant technique when implementing powerful 
debuggers an incremental programming environments. A 
debugger and an incremental compiler for PASCAL has 
been implemented in the DICE system (Distributed Incre- 
mental Compiling environment). Incremental compilation 
is at the statement level which makes it useful for the de- 
bugger which also operates at the statement level. The 
quality of code produced by the incremental compiler ap- 
proaches that required for production use. The algorithms 
involved an incremental compilation are not very compli- 
cated, but they require information that is easily available 
only in an integrated system, like DICE, where editor, 
compiler, linker, debugger and program data-base are 
well integrated into a single system. The extra information 
that has to be kept around, like the cross-reference data- 
base, can be used for multiple purposes, which makes 
total system economics favorable. 

INTRODUCTION 

Two possible definitions of incremental compilation are 
given in [3]. First, the incremental compiler is to ex- 
pend an effort during the translation process that is 
roughly proportional to the size of the change to the 
source program made by the programmer. A second 
possible task for an incremental compiler is to allow the 
programmer to execute his program up to a certain 
point, stop and edit his source file, and then resume ex- 
ecution where he stopped. In the following we assume 
that an incremental compiler, or better: an incremental 
system, has both of these properties. We will see that 
capabilities of a symbolic debugger can be greatly ex- 
tended through usage of such an incremental compiler. 
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PREVIOUS WORK 

Examples of incremental programming environments 
for block-structured languages with nested statement 
structure are INTERLISP [ 171, Cornell Program Syn- 
thesizer [16], GANDALF [12], PATHCAL [18], 
ECL [4], LISPEDIT [ 11, etc. The smallest compilation 
unit in systems like INTERLISP, GANDALF, ECL, 
and LISPEDIT is the procedure body. 

INTERLISP, ECL, the Synthesizer, PATHCAL, 
and LISPEDIT all permit continued execution after 
program modifications, since these systems contain in- 
terpreters. GANDALF is a compiling environment that 
permits continued execution after local modifications; it 
does not currently (June 1982) keep track of the ma- 
chine-code positions of statements after recompilation 

[51. 
A paper by Rishel, [ 141 gives a thorough treatment 

of statement-level incremental compilation for line-ori- 
ented languages like BASIC or FORTRAN. However, all 
techniques proposed in that paper requires insertion of 
extra instructions between statements. That is not 
needed by the techniques proposed here, which have 
been implemented in the DICE system. 

Kahrs [ 1 l] describes an interactive programming 
system for a block-structured language along ideas dis- 
cussed in [ 131. The system contains an integrated in- 
terpreter/compiler, a so-called Tree Factored Inter- 
preter, which can switch between interpretation and 
code generation at arbitrary points in the abstract syn- 
tax tree. The code is highly fragmented, however-one 
procedure body for each tree node-and the code is not 
separable from the tree since it contains indirect pro- 
cedure calls through pointers kept as attributes to tree 
nodes. 

OVERVIEW 

This paper presents two topics: implementation of a de- 
bugger through use of an incremental compiler, and 
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techniques for fine-grained incremental compilation. 

Both the debugger and the compiler are components of 
the highly integrated programming environment DICE 
(Distributed Incremental Compiling Environment) 
which aims at providing programmer support in the 

case where the programming environment resides in a 
host computer and the program is running on a target 
computer that is connected to the host. 

Commands to the debugger command level include 
all legitimate PASCAL statements. The debugger is ma- 
chine independent-it calls the incremental compiler 
which generates code for evaluation of commands, or 
modifies the machine code of the target program for 

insertion of breakpoints, etc. Essentially all machine de- 
pendences are isolated inside the code generator of the 
incremental compiler. 

Debug code at conditional breakpoints, etc. is exe- 
cuted as efficiently as the compiled code of the normal 
program since it also has been compiled by the incre- 
mental compiler. Essentially no extra code is inserted 

into the target program in order to be able to debug it. 
Incremental compilation is at the statement level 

which makes it particularly useful to the debugger, 
since it operates at the statement level. Statement level 
recompilation usually is an order of magnitude faster 
than procedure-wise recompilation, which may be im- 
portant for big programs or on loaded time-sharing 
computers. Also, this will permit acceptable interactiv- 
ity even after changes to certain global declarations. 
The extra information needed in the program database 
to support incremental compilation is almost identical 
to that needed for debugging. The system allows con- 
tinued execution after most program changes. 

The algorithms for incremental compilation are cen- 
tered around a tree representation of the source pro- 
gram, and are applicable to a wide class of languages. 
It is illustrated by the DICE incremental PASCAL 

compiler. 
Program editing is performed through a full-screen 

structure editor. The editor marks new or changed 
nodes in the tree of the current procedure. Recompila- 
tion of changed statement nodes is performed during a 
preorder traversal of the tree. New and old machine 
code is merged; and branch instructions in the old code 
are updated. Branch updating can be incremental on 
the statement level for languages with well-formed con- 
trol structures on machines with PC-relative goto 
instructions. 

Incremental compilation is consistent, i.e., no degen- 
eration of code quality occurs after many edit-recom- 
pilation cycles. Dynamic linking is made easy by gen- 
erating position-independent code and having an extra 
level of indirection for procedure calls. 

The main components of the DICE system are 
shown in Figure 1. 

Figure 1. The main components of DICE, Distributed In- 
cremental Compiling Environment. 

PROGRAM DATABASE 

Most information in the data-base is packaged in pro- 
cedure-units. Each unit contains the source tree pro- 

gram representation, machine code, local symbol table, 
and dependency lists for declarations that are refer- 
enced in other procedures. The symbol table is perma- 

nent and allows updating. 

IMPLEMENTATION STATUS 

Currently (July 1983) DICE is implemented in 20000 
lines of INTERLISP on a DEC20 computer. The in- 
cremental compiler accepts essentially full PASCAL in- 
cluding input-output (currently not including sets and 

procedural parameters) and produce PDPll code of 
reasonable quality. A very rudimentary program data- 
base exits. A full-screen structure editor is imple- 
mented, but it still lacks adequate text editing facilities. 
A screen-oriented debugger is partly implemented and 
currently allows all PASCAL statement types as com- 
mands. It also allows setting of breakpoints, single-step- 
ping and flow-tracing for control of execution. The de- 
bugger operates on the program in the target computer 
via DecNet. 

ECONOMY OF AN INTEGRATED SYSTEM 

An integrated programming environment contains tools 

such as editor, compiler, linker, debugger, data base 
manager, etc. These tools cooperate. For example, the 
editor informs the incremental compiler which state- 

ments need to be recompiled. Also, the parser can be 
used to parse program text or debugging commands, 
and it also serves as a general command level user in- 
terface. This sharing of resources is true also for data 
structures, as exemplified by the source-machine-code 
mapping and the cross-reference database. 

The mapping between source code and machine code 
at statement level is used both for incremental compi- 
lation and for debugging purposes like single stepping 
and insertion of breakpoints. 

The cross-reference and static analysis database 
(similar to the Masterscope subsystem in INTER- 
LISP) serves at least three purposes: 
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It aids the programmer in understanding his program 
and in finding interesting parts of it. 

It makes incremental recompilation possible even after 

It 

edits to global entities, since the cross-reference da- 
tabase contains information about which procedures 
reference such entities. 

is used by the debugger to implement traces and 
watches on variables, since the system contains in- 
formation about which procedures reference or mod- 
ify a certain variable. The incremental compiler can 
be called to insert extra code around relevant state- 
ments in such procedures. 

An incremental compiler provides a single interface 
to the low-level machine. Besides the traditional trans- 
lation task, it can be used instead of a command level 
interpreter, or it can be utilized by a machine-indepen- 
dent source level debugger in implementing break- 
points, single-stepping, etc. 

A DEBUGGER IMPLEMENTED THROUGH 
INCREMENTAL COMPILATION 

The DICE debugger is oriented towards programs that 
may execute on small machines under real-time con- 
traints. It is essential that a minimal amount of extra 
code should be executed in the target program during 
debugging, compared to ordinary execution. This may 
of course also be valuable on an ordinary time-shared 
machine. It is also important that one should be able to 
invoke the debugger if a run-time error occurs during 
an ordinary execution. 

Another requirement is that all legal PASCAL state- 
ments should be accepted as legal commands by the de- 
bugger; continued execution after source program mod- 
ifications should also be permitted. 

Our approach to meet these requirements is to use 
an incremental compiler to generate code for complex 
commands and to make necessary modifications in the 
object code for conditional breakpoints, etc. 

Since fast response to user commands is important, 
and single-stepping should be provided, the compiler 
has been designed to be incremental on the statement- 
level. 

We will consider some of the more important func- 
tions that are normally found in good debuggers, and 
show how they can be implemented in an incremental 
compiling context. 

EVALUATION OF EXPRESSIONS AND FUNCTION 
CALLS 

The ability to evaluate expressions or call functions is 
just a special case of the general ability of the DICE 
debugger to accept any PASCAL statement as a com- 
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mand. A given statement-command is compiled and 
sent to a free memory area in the target computer 
where it is executed. Output from write-statements ex- 
ecuted on the target is sent to the host through a special 
logical DecNet channel on the same physical link, and 
eventually reaches the users terminal. 

Write-statements are useful for printout of expres- 
sion values; assignment statements are used to change 
variable values and procedure calls are useful to be able 
to perform small tests on single procedures or on sub- 
components of the subject program. Small loops are 
sometimes useful in order to initialize a data structure. 

DECLARATIONS AS COMMANDS 

The user may even declare new types or new variables 
that can be useful during the process of locating a bug 
through a series of small experiments. The following se- 
quence of three commands is perfectly valid: 

type FOOREC = record A:integer; 
ARR:array [l..lO] of integer end;; 

var X : FOOREC;; 
for I: = 1 to 10 do X.ARR[I] : = 3; 

Such temporary variables or types exist only during the 
debugging session and are not inserted into the subject 
program unless it is specifically requested by the user. 

THE DEBUG COMMAND LANGUAGE 

Our experience from the INTERLISP system indicates 
that it is very useful if the source language is a subset 
of the debug language. This is also true in the DICE 
system. 

Is the source language powerful enough as a debug 
language? In the case of LISP we know from experi- 
ence that it is. For PASCAL, one might have to extend 
the debug language in order to overcome the lexical, 
scope rules, and to make the flexibility of the write 
statement more generally available, i.e., generic argu- 
ment types and variable number of arguments. Further 
experience will indicate what is necessary. Essentially 
all the debug commands now available in INTERLISP 
or LISPEDIT could readily be expressed in PASCAL 
syntax after some adaptation. 

Also, the most common commands should be as- 
signed to function keys or control characters in order to 
make the user interface more convenient. 

TEXTUAL WATCHES ON VARIABLES 

A variable in a PASCAL program can be modified either 
by an assignment statement or as a VAR parameter in 
a function or procedure call. The system can use the 
cross-reference data-base to find these positions in the 
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source tree, and insert extra code to trace variable val- 
ues or to generate a break when such variables change 
value. This kind of watch on variables is called textual 
watch since it is coupled to an occurrence of a variable 
name in the program text. 

The selective code insertions used for textual 
watches slow down execution much less than the tra- 
ditional method common in many PASCAL debuggers, 
which is to test values of relevant variables at runtime 
after each executed statement. 

Ideally one would like special hardware facilities for 
watches. An approximation to this may be found for 
computers with a paging virtual memory. The method 
is to write-protect the page that contains the interesting 
variable and to use page trapping on write access. Prob- 
lems may arise if the variable is on the stack (the sub- 
routine call and return instructions on the VAX may 
not work if the stack is write-protected), or if an inner 
loop references the write-protected page. 

ALIASED WATCHES ON VARIABLES 

The traditional method of checking the contents of a 
certain memory location after the execution of each 
statement will detect the “first” statement (first in the 
sense of execution order) in the program which changes 
the value of any of the aliases of a certain variable. We 
call such watches aliased watches on variables. 

The DICE debugger normally uses textual watches 
on variables. The question is: can aliased watches be 
implemented in our scheme? The answer seems to be 
yes, at least to a large extent. 

The information kept in the cross-reference database 
can be used to identify most of the code positions where 
aliases might occur, and conditional breakpoints can be 
inserted at these positions. This will give the same effect 
as the traditional method and still will not slow down 
execution as much as the traditional method, which is 
important when debugging programs that execute 
under real time constraints. One drawback of this 
method may be the great number of possible aliases and 
corresponding code insertions in certain situations, e.g., 
consider pointers to records of a variant record type 
that is often used. 

POSITIONING 

The DICE debugger uses the full-screen structure edi- 
tor in order to provide a simple means of pointing to the 
program-fragment where a certain operation is to be 
performed, e.g., an insertion of a breakpoint. The user 
interface is simplified, since only a single set of posi- 
tioning commands has to be learned. The idea to inte- 

grate the editor and execution-monitor has previously 
been applied successfully both in the Cornell Program 
Synthesizer and in LISPEDIT. We have often experi- 
enced the lack of such an integration between the editor 
and the debug package in the INTERLISP system, al- 
though it is possible to evaluate any LISP expression 
inside the editor. 

SINGLE-STEPPING 

An important requirement is that it should be possible 
to provide single-stepping for compiled programs which 
have no extra code inserted between each statement for 
debugging purposes. 

We use the alternative method of calling the incre- 
mental compiler on each step during step-wise execu- 
tion in order to insert a new breakpoint before the next 
statement and eliminate the breakpoint that was pre- 
viously inserted before the current statement. On entry 
to a loop-construct, a temporary breakpoint is also in- 
serted immediately after the loop in order to catch the 
exit from the loop. 

VARIED STEPPING 

It is often useful to be able to request atomic comple- 
tion of the execution of the current statement, e.g., it 
may be tedious to step through a small loop hundreds 
of times. This step command is called long resume in 
the Synthesizer and run in LISPEDIT. Its implemen- 
tation in the DICE debugger is straightforward: insert 
a temporary breakpoint at the beginning of the next 
statement on the same level, or at a higher level if it 
was the last statement on this level. 

One complication arises, however, if the execution of 
the current statement causes a recursive call to the cur- 
rent procedure. An unwanted break, which is caused by 
the inserted temporary breakpoint, will happen during 
the execution of the new invocation of the current 
procedure. 

This problem is solved if a conditional breakpoint is 
inserted instead of the unconditional breakpoint. The 
condition is a test that the value of the framepointer 
corresponds to the correct invocation of the current 
procedure. 

A general step-command is called come in LISPE- 
DIT. It means that if the user points to a certain pro- 
gram position and issues the command come, then the 
system will execute until it hits the indicated position. 
This command is easily implemented in the DICE de- 
bugger: simply insert a temporary breakpoint at the in- 
dicated position and remove all other temporary 
breakpoints. 
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CONDITIONAL BREAKPOINTS 

A conditional breakpoint is written as an ordinary if- 
statement in PASCAL. It is compiled and inserted into 
the object code by the incremental compiler. Since the 
extra code associated with the conditional breakpoint is 
compiled with the regular PASCAL compiler, it will have 
the same quality as ordinary compiled code and it will 
usually exact a small amount of extra execution time. 

CONTINUED EXECUTION AFTER PROGRAM 
MODIFICATIONS 

One of the important goals in the DICE system is to 
allow continued execution after program modifications. 
This goal is based on our own extensive experience with 
the INTERLISP system, which has shown us that it is 
valuable to be able to correct small bugs during the 
course of an execution. According to [l] users of the 
Lispedit system tend to fix bugs in the same way. 

Continuation after editing of procedures that cur- 
rently have no activation records on the stack poses no 
special problems. The same is true if global declarations 
are added. 

If a procedure is changed that has several invoca- 
tions on the stack, then it might not be wise to continue 
execution at the current point. Instead execution should 
be restarted at the first invocation of the current pro- 
cedure, or higher. This will be easy if there exist states 
in the call chain that are relatively independent of pre- 
vious side-effects, e.g., we know that relevant data- 
structures are initialized at a certain level. Otherwise a 
lot of manual undoing of side-effects will be necessary 
before restart. 

Edits of declarations of global data structures can 
cause severe problems in the general case. The system 
will take care of the code, but existing data structures 
must be updated according to the changed declarations. 
In the general case reinitialization of data-structures is 
left to the programmer, but some common simple cases 
may be identified where the system could be helpful. 
For example, when changing the maximum number of 
elements of an array, the system could copy the rele- 
vant part of the old data into the new array. When a 
new field is added to a record type, the system could 
trace all pointers to data items of that type, reallocate 
the data item, copy data from the old data item, and 
fill the new field with some null value like NIL or zero. 

If an active procedure is edited, parts of its code may 
be moved. Since this might affect procedure return ad- 
dresses, the stack must be searched for such addresses 
and updated if needed (Both the GANDALF debugger 
and the INTERLISP code swapper [7] update return 
addresses on the execution stack.) The code of other 

procedures is not affected since procedure calls go one 
level indirect. If formal parameter declarations for a 
procedure are edited, all calls to that procedure must 
be recompiled (and probably edited). If such a proce- 
dure is active, one might imagine manipulating argu- 
ment areas on the stack so that subroutine returns still 
would cause no problem, but one might ask if this is 
meaningful. It is probably better to pop a few activation 
records from the stack. 

At last we consider m~ification to the procedure 
that contains the current stopping-point. The incremen- 
tal compiler will keep track of the machine-code posi- 
tion of the current statement, even if extensive modifi- 
cations are done to surrounding statements. This makes 
it possible to continue from the current statement or 
from any other statement in the procedure. The user 
must take care of side-effects himself. Changes to dec- 
larations of local variables will be handled by the incre- 
mental compiler (see the part about incremental vari- 
able allocation). The compiler will also restructure the 
contents of the current activation record. 

GOALS FOR FINE-GRAINED STATEMENT-WISE 
INCREMENTAL COMPILATION 

Fast recompilation. A responsive interactive program- 
ming environment is obtained. 

Consistent compilation. Code quality should not degen- 
erate after repeated program changes followed by 
incremental recompilations. 

Preservation of execution state. Execution should be 
able to continue after most program changes. 

Good quality of the rnac~jne code produced. The code 
should be good enough for production use in order to 
demonstrate the feasibility of incremental compila- 
tion concepts in practice. 

Separability. The compiled program should be sepa- 
rated from the source code so that it can execute out- 
side of the program development system. 

Concerning compilation speed: preliminary mea- 
surements on the recompilation time for procedures 
after making a small modification indicate a speed im- 
provement of a factor of ten to 20 in most cases, com- 
pared to recompiling the procedure from scratch. 

The greater part of the code generator of the DICE 
PASCAL compiler originates from the Portable C Com- 
piler [lo]; it has simply been translated by hand from 
C to INTERLISP. This causes the quality of code pro- 
duced by the DICE PASCAL compiler to be almost 
equivalent the code produced by the Portable C Com- 
piler, which has been used to compile many UNIX sys- 
tems (although the C language permits the program- 
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mer to do more source-level optimizations than does 
PASCAL). 

Declarations 

The current DICE incremental PASCAL compiler is 
fully consistent in code generation (see Figure 2). The 
code quality does not degenerate after arbitrarily many 
edit-recompilation cycles. It may not be fully consistent 
in memory allocation, however, since harmless holes in 
stack-frames may arise after deletion of variable 
declarations. 

Type expansion 

AN OVERVIEW OF FINE-GRAINED INCREMENTAL 
COMPILATION 1 , , Code size 

__-___---_-__-_ 

This compiler is centered around an abstract syntax 
tree representation of the source program. During an 
editing session, the editor marks those nodes of the cur- 
rent procedure that represent changed, inserted, or de- 
leted statements or declarations. 

Code update in 

Host data base 

When the user has finished editing, or wants to con- 
tinue execution after he has made program modifica- 
tions, the compiler does a preorder traversal of the 
source code trees of all ,edited procedures, and recom- 
piles all statement nodes that have been changed or 
inserted. 

Figure 2. A block diagram of the DICE incremental 
compiler. 

INCREMENTAL COMPILATION AT THE 
STATEMENT LEVEL 

The compiler achieves flexibility by dividing the 
translation into three passes: (1) name binding, (2) type 
analysis and variable allocation, and (3) generation of 
machine code. 

This problem can be decomposed into two subproblems: 
to find an appropriate mapping between the source code 
and the machine code, and to find an efficient method 
to update branch and goto instructions in the machine 
code of a procedure body. 

Changes to Declarations 

The mapping between the source level and the ma- 
chine code level should have the following properties: 

Changes to declarations occur when the user modifies 
an existing variable or type declaration, or inserts a new 
one. This may force changes in memory allocation of 
variables, i.e., their size and position. It also invalidates 
the compiled code of all statements that contain af- 
fected variables. When recompiling a procedure, the in- 
cremental compiler will search the tree, and recompile 
the smallest enclosing statement nodes that references 
such variables. 

Given a source statement, it must be easy to identify 
the associated machine code. This is for purposes of 
incremental compilation, and for finding statement 
positions for breakpoints during debugging. 

After a change to a global declaration, the compiler 
will use dependency information maintained in the pro- 
gram data-base, which tells which procedures depend 
on the current declaration. 

Given a machine code address, it must be easy to iden- 
tify the corresponding source code statement. This is 
for debugging purposes only. The user should be able 
to stop the target program when it is running, and 
the system should identify at which statement in the 
source code the program was stopped, and generate 
a breakpoint at that position. 

The mapping should be easily updated after program 
edits. Incremental updating properties are of course 
desirable in an incremental system. 

Changes to Statements 

This kind of program modification is much more local 
in scope than changes in declarations, and it usually 
only invalidates the compiled code associated with the 
changed statements. Sometimes, however, such 
changes will affect memory allocation of temporaries 
and constants. 

AN IMPLEMENTATION OF THE MAPPING 
BETWEEN SOURCE CODE POSITIONS AND 
MACHINE CODE POSITIONS 

Binary machine code is the only low-level code that is 
kept in the database or in the target computer. The 
codesize attribute of each statement node in the tree 



Incremental Compilation in an Integrated Environment 

implements the mapping between source and machine 
code. The address of a statement can easily be found by 
adding the procedure start address with the codesizes 
of preceding statements. 

During the edit-session, the editor marks changed 
and deleted statement nodes by modifying an attribute 
called editmark. A new inserted node has the editmark 
value changed and codesize value zero; an unchanged 
previously compiled node has editmark value un- 
changed; an old statement that has been edited is also 
marked as changed and finally, a node which is to be 
deleted is marked deleted. Deleted nodes with nonzero 
codesize cannot be removed immediately by the editor 
because then the old machine code would remain. Such 
nodes are eventually physically removed by the incre- 
mental compiler. 

The previously mentioned attributes codesize and 
editmark are synthesized for compound statements like 
BEGIN-END, IF-THEN-ELSE, WHILE, REPEAT, 
FOR, WITH, and CASE statements in PASCAL. 

The editmark attribute is synthesized by the editor, 
and the codesize attribute is synthesized by the incre- 
mental compiler according to the following rules (we 
assume that S is a compound statement that has some 
sons). 

Attribute editmark: 

If all sons of S are deleted then S is marked as deleted 

If all sons of S are unchanged then S is marked as un- 
changed otherwise S is marked as changed. 

Attribute codesize: 

The codesize of S is the sum of the codesizes of all its 
sons. 

(One might regard the backward branch of a WHILE- 
statement as a virtual son in order to preserve the 
truth of the above rule for codesize). 

Initially, all new nodes have editmark value changed 
and codesize value zero. 

A SMALL EXAMPLE SUBTREE 

A subtree corresponding to the statement 

whilei< = 15do i:=i+2; 

is shown decorated with the attributes (codesize. edit- 
mark), together with the PDPl 1 machine code in Fig- 
ure 3. The constant 2 has been changed to 1 by an edit, 
which also has changed the editmark attribute. 

MERGING OLD AND NEW MACHINE CODE 

The strategy for merging code is actually quite simple. 
To begin with, reserve a memory area where the up- 
dated code will be stored. A variable OLDPOS holds 
the current machine code position in the old code, and 
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1: 

2: cmp -2(rS), 16 

3: Li 4 
4: bgt +4 

6: 
6: 1°C -Z(6) t 

7: b, -6 / 

Figure 3. An example of an incremental recompilation of a 
while-loop in the form of an abstract syntax tree. 

a variable CURPOS holds the current position in the 
merged code. Both location counters are relative to the 
beginning of the current procedure. Do a preorder trav- 
ersal of the tree and during that traversal perform the 
following: 

If a node is unchanged, copy its code to the new area 
and advance OLDPOS and CURPOS by an equal 
amount codesize. 

If a node is marked as deleted, skip its code, i.e., ad- 

vance OLDPOS but do not change CURPOS. 

If a node is changed, first compile the node and store 
generated code into the new memory area. The 
CURPOS counter is automatically incremented by 
the code generator during code production. There- 
after, advance OLDPOS by the old value of the at- 
tribute codesize, and update codesize to be the size 
of the new code piece that was generated. 

It is important that CURPOS always refers to the 
current position in the updated machine code, in order 
that the back-patching of label references in new 
branch instructions should be done correctly. A more 
detailed description of the alogrithm may be found in 

[61. 
In the current implementation, new machine code is 

temporarily stored in a code buffer, and the sequence 
of insert/delete operations are temporarily stored and 
not executed immediately. This approach permits the 
the removal of some of these update operators, which is 
described in Figure 4. 

Before the sequence of insert/delete operations are 
performed, further reduction of the number of update 
operations is possible if the copy part of insert opera- 
tions are extracted. This enables the system to detect 
the important special case where the total net expansion 
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Old cods Merged code 

Figure 4. An example of the merging of old and new ma- 
chine code, together with deletion of some old code. 

23 

is zero. Figure 5 shows the saving of expand/contract 
operations. 

If all contractions are performed before the expan- 
sions, at most 2N word moves are needed for a code 
piece of size N words. 

In the DICE system, machine code is updated si- 
multaneously in the target computer address space and 
in a code area of the program database. Simple replace- 
ment and data movement commands are sent to rou- 
tines in the target computer over the network link. 

INCREMENTAL UPDATING OF GOT0 
INSTRUCTIONS 

Control structures in high-level languages are usually 
compiled to a number of goto or brunch instructions in 
the machine-code. If the code inside a construct, i.e., a 
while-loop, expands or contracts during incremental re- 
compilation, the addresses of certain goto-instructions 
must be updated. This may be hard or easy to do incre- 
mentally depending on the source language and the tar- 
get machine instruction set. We will consider two 
methods which are applicable to different classes of lan- 
guages and machines. 

INCREMENTAL BRANCH UPDATING ON 
MACHINES WITH RELATIVE GOT0 
INSTRUCTIONS 

This method relies on the fact that structured-program- 
ming constructs like WHILE-loops transfers control in 
a local well-structured manner. The only exception 
from this rule in the language PASCAL is the GOT0 
statement-this is yet another argument against goto 
programming. This updating method also requires the 
existence of PC-relative branch instructions in the tar- 

Figure 5. Reductions in the number of insert/delete opera- 
tions and conversion to cheaper operations like copy. 

Update Operation:: code Move Opr: Transfer Opa: 

Insert 4 words at 13 
Delete 2 words at 13 => Expand 5 at 13, copy 4 to new 13 
Delete 3 words at 15 Copy 6 to new 17 
Insert 6 words at 18 

get computer instruction set, which makes it possible to 
move code associated with compound statements with- 
out invalidating the code. 

Each control structure is compiled in a predefined 
way; it is known which parts of the code contain branch 
instructions which may need updating. In the current 
compiler, a hand-written procedure for each type of 
control-structure takes care of the branch updating. 
These procedures should not be too hard to generate 
automatically, e.g., from a denotational description of 
the control flow aspects of PASCAL. Sethi, [ 151 has done 
something similar to that in a small nonincremental 
compiler for a subset of C. 

An example, the WHILE-statement: 

Syntax: WHILE (pred) DO (statement) 
Record: TYPE whilestm = RECORD pred : expr; 

body : statement END; 

Predefined machine code structure of a WHILE 
loop: 

Ll: (code for conditional branches to L2) 
(code for statement body) 

L2: (branch to Li) 

The branches to Ll and L2 need be updated only if the 
code for the statement body changes size. A special pro- 
cedure scans through the relevant code portion and 
identifies those branch instructions that must be up- 
dated. More details on the updating algorithm, are 
given in [6]. 

If the computer has both short branch instructions 
with a limited range and long branches with unlimited 
range, then short branches sometimes may have to be 
converted to long ones. This means that sometimes an 
extra traversal of the tree is required since conversion 
to long branches causes insertion of binary code. 

GOT0 statements must be handled specially; all 
such instructions in the procedure body must be 
checked and updated if needed. 

BRANCH UPDATING FOR A WIDER RANGE OF 
MACHINES 

On machines that lack PC-relative branch instructions 
our previous incremental algorithm for updating 
branch addresses will not work because branch instruc- 
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tions in the code for statements like IF statements and 
WHILE statements will be invalid if the code is moved. 
A single insertion at the beginning of a procedure body 
can thus invalidate all branch instructions in its ma- 

chine code. 
Thus, if a code expansion or contraction occurs, all 

branch instructions in the procedure body must be 
scanned and updated. (A bit-vector marking all 
branches can be maintained for each procedure body.) 
This means a slightly increased overhead which is pro- 
portional to the size of the procedure body, but the 
scanning process is still very fast compared to recom- 
pilation of the procedure from scratch. This method is 
equivalent to the traditional loading process, although 
it is done incrementally for each procedure body. 

CONFLICTS BETWEEN INCREMENTALITY AND 
CODE OPTIMIZATION 

The current DICE compiler uses the same code gener- 
ation strategy as the portable C-compiler: i.e., no inter- 
mediate results in temporary registers are kept between 
statements, and optimizations are performed only in- 
side statements. This goes along well with symbolic de- 
bugging and incremental compilation, but of course 
gives lower object code quality. 

There is a conflict between optimization and incre- 
mental compilation: global optimizations introduce de- 
pendencies between different parts of the program, 
which will destroy the possibility for incrementality. 
We are currently starting to investigate if there exist a 
reasonable compromise between optimization and in- 
cremental compilation for medium-sized code pieces 
(5-10 small statements). 

The problem of combining some degree of optimi- 
zation with incremental compilation is similar to the 
problem of providing source language debugging on op- 
timized code. [8] gives a thorough treatment of part of 
the debugging-optimization problem. 

Is the code quality produced by this compiler ac- 
ceptable for normal usage? As mentioned before, it is 
comparable to the quality of the code which is gener- 
ated by the Portable C Compiler. The enormous 
amount of software that has been produced using that 
compiler seems to indicate that there are relatively few 
cases where global optimization might be essential. 

cept those generated by keyboard interrupt or runtime 
error. 

THE IMPACT OF INCREMENTAL COMPILATION 
ON VARIABLE ALLOCATION 

In this section we will consider variable allocation in the 
context of incremental compilation. The goal is to 
choose storage allocation schemes that minimize the 
amount of recompilation without sacrificing efficiency 
of compiled code. The following discussion is centered 
around variable allocation in a procedure activation re- 
cord; static allocation of global variables and constants 
can be regarded as a special case. 

A typical activation record, or stack-frame, for the 
language PASCAL is shown in Figure 6. It shows both a 
frame pointer, FP, and a stack-pointer to top of stack, 
SP. Parameters, local variables, and (sometimes) tem- 
poraries are addressed with constant offsets relative to 
FP. It might be unnecessary to have both FP and SP, 
since all addressing can be done relative to SP. 

Parameters are constrained to reside at the bottom 
of a stack-frame in their declared order, since they are 
pushed on the stack at procedure call. 

If a variable does not increase in size after editing its 
declarations, only statements referring to that vari- 
able need be recompiled. 

If a variable declaration (not a parameter) is deleted, 
only statements referring to that variable need be re- 
compiled. This will usually result in an unused hole 
in the stack-frame. This hole can be used to accom- 
modate future local variables, or it can be eliminated 
by packing the stack-frame, which will usually affect 
the positions of other local variables and cause re- 
compilation of more statements. 

lncrementality for Variable Insertions 

If we have both a Frame Pointer, FP, and a Stack 
Pointer, SP, this redundancy makes possible the inser- 
tion of new variable declarations, without forcing re- 
compilation of existing source code. 

Figure 6. An activation record for PASCAL with both stack 
pointer and frame pointer. 

If global optimization is introduced in this compiler, 
it should probably be as optional extra passes over a 
procedure body as a unit. This will, however, destroy 
the transparent debugging behavior that is possible 
with statement-wise compilation. One strategv to pre- 

!_________________________-_! <=== St.%Ck point.r. SP 
! huporrri*a I 

! ! 

!___________________----____! <=== Frua pointm. FP 

! st.tic link ! __ I 

serve the debugging facilities would be to replace the 
!___________________________! 
! D,nuic link. = pr.r. FP ! 

optimized procedure body by an unoptimized version as 
soon as the user tries to plant a breakpoint inside it, or 
single-step through it. This will work for all breaks ex- 

!___________________________! 
! R.tArn addr.ss ! 
!___________________________! 
! PUameterB I 
!___________________________( 
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!__________________! (_____ SP. stack Pointor 
! l.cIca1 variaw** ! 
! ! 
!__________________! <_____ optima1 insertion point 
! 1 ior n*. nr‘i.blw3 

!________-_________! 

! PPruetRTs ! 

!__________________, 

Figure 7. An activation record for PASCAL where a single 
register functions as both stack pointer and frame pointer. 

If there exist several invocations of the current pro- 
cedure on the stack, then it might be hard to update the 
previous activation records in a meaningful way. In- 
stead it could be better to pop these activation records 
from the stack and restart execution from an earlier po- 
sition (See Figure 7). 

If everything is referenced relative to SP, as in the 
figure 7, an insertion of a new local variable will cause 
changed offsets for all parameters. The advantage is 
more efficient code for procedure entry and return. 

FURTHER WORK 

To this date (July 1983) a static analyzer is still missing 
from the system. Also, further research is needed into 
the organization of the program database and the user 
interface. It could be interesting to study debugging in 
an incremental system that also supports concurrency. 
Another topic is to study the use of special hardware 
like an In Circuit Emulator together with a tool such as 
an incremental compiler in order to aid debugging and 
to present the low-level data collected by such hardware 
in a higher-level fashion. 

CONCLUSION 

It has been demonstrated that fine-grained incremental 
compilation is a relevant technique when implementing 
powerful debuggers in incremental programming envi- 
ronments. The quality of code produced by the incre- 
mental compiler approaches that required for produc- 
tion use. The algorithms involved in incremental 
compilation are not very complicated, but they require 
information that is easily available only in an integrated 
system, where editor, compiler, linker, debugger, and 
program data-base are well integrated into a single sys- 
tem. The extra information that has to be kept around, 
like the cross-reference data-base, can be used for mul- 
tiple purposes, which makes total system economics 
favorable. 
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