
Implementation of an Interactive Programming System

Mark Kahrs

Computer Science Department
University of Rochester
Rochester, NY 14627

Abstract: Design and implementation
experience with an Interactive Programming
System are described. Reflections are
made on various design decisions and on
the effect of using a Tree Factored
Interpreter as the core of the system.

Key Words: Incremental Compilation, Tree
Factored Interpreter, Interactive
Programming Systems

I. Introduction

This paper is concerned with the
creation of an efficient and flexible
interactive programming system (IPS)
designed along the lines of the system
discussed by Mitchell [Mitchell, 1970].

For Mitchell, an IPS must exhibit
interactive control, plasticity, con-
textual control and human interfacing.
For example, an IPS might include an
editor, a compiler (or interpreter) and a
debugger. Most interactive programming
systems draw a definite line between code
that is interpreted and code that is
compiled. For example, a LISP system such
as Interlisp [Teitelman, 1978] has the
ability to compile code into machine code.
However, the decision to switch from
interpretation to compilation is made by
the user and not by the system. This
paper is about a system that makes this
decision automatically.

The system is centered around an
interpreter that interprets parse trees.
Execution is divided between walking the
parse tree (executing semantic routines
and calling code generators) and the
actual runtime component of execution.

In fact, interpretation and compilation
are looked upon as endpoints on a spectrum
of execution. The IPS slides back and
forth on this line depending on the
"constancy" of the program. The more
"constant" (i.e., unchanged or unedited) a
program is, the more previously compiled
code is run instead of creating and
interpreting new code.

The design of the system is also
concerned with the creation of a usable
programming tool. The system includes a
display editor. The paper is also
concerned with the interaction between a
programming system and the user.

2. Previous Work

This work is based on the system
described in [Mitchell, 1970], which was
discussed, but never implemented.
Implementation of parts of his thesis can
be found in an interactive ALGOL system

for TSS/360 called LC 2 [Mitchell, et al,
1969] Swinehart [Swinehart, 1974]
implemented the simpler parts of
Mitchell's design but attacked a different
area of interest: a man machine interface
assisted by multiple processes and a
display. Other work on ALGOL IPSes
included the work of Lock [Lock, 1965],
[Peccoud, 1968] and [Atkinson and
McGregor, 1978]. Early work on
interactive interpreters was done by the
Joss group [Baker, 1966] at Rand as well
as the BASIC group [Kemeny, 1966] at
Dartmouth. [Braden and Wulf, 1968] wrote
an incremental BASIC system for the B5500
that combined both interpreted and
compiled code. Each of these systems did
little to improve the runtime efficiency
of the interpreter.

3. The Tree Factored Interpreters and
Compi-~rs--(-P~rt I)

In an interpreter, an internal
representation of the program (such as the
source text) is parsed and executed
immediately. If the internal represen-
tation is changed to the parse tree

© 1979-ACM 0-89791-002-8/79/0800-0076 $00.75 see ii 7 6

generated by parsing the text, then the
interpreter becomes a Tree Interpreter or
TI.

Semantic actions can be decomposed
into two classes: semantic analysis and
code generation (denoted S-action and
X-action by Mitchell). Let a further
distinction be that no S-action can
perform any X-action and vice versa. That
is, no semantic action can effect either
program or data and no code generator can
effect semantics. This separation is
commonly found in compilers, but is
uncommon in interpreters. A tree
interpreter with separate S-actions and
X-actions is called a Tree Factored
Interpreter or TFI. If the parse tree is
used to compile a program by following all
the branches (not only those on the
control path), then this is a Tree
Factored Compiler or TFC. There are two
classes of TFCs: If only the subtrees of
the parse tree which were changed are
compiled, then the TFC is called a Tree
Factored Incremental Compiler (TFIC) or
Tree Factored Partial Compiler (TFPC).
Otherwise, the TFC is a Tree Factored
Total Compiler (TFTC). Clearly, a TFTC is
the same as a "standard" compiler.

Once a statement has been
interpreted, the code can be saved and
used again. However, if the semantics
change, then the X-actions are invalid and
the S-actions must be be reinterpreted.
When this technique is extended to parse
trees, then the following changes must be
made: when the semantics associated with
a parse tree node are changed then the
code that is generated by that node must
be changed. Both semantic information and
code "float up" from leaf nodes to their
parent nodes. In a TFPC, these nodes
continue to bubble information up until
the root node has been reached and all the
code is ready for execution. A TFI does
not need to have all the code ready for
execution, just the code needed at the
particular point on the parse tree.

What are the additional computational
requirements of such a scheme? In terms
of space, the system must keep information
about which lines have been modified as
well as keeping the parse tree present.
The extra time involved in the TFI or TFPC
is principally the time it takes to walk
the parse tree. This overhead is
minimized as the parse tree changes less
and less.

4. The Editor and code constancy

The editor is one of the common ways
the semantics of a program may be made
invalid. If the user deletes, inserts or
modifies a statement, the TFI must be made
aware of the modification. Other ways of
affecting the semantics of the program
include user actions such as changing type

declarations at an execution break and
other actions. However, this paper is
mainly concerned with modifications made
with the editor.

Each line in the editor has a block
of information that contains a bit about
whether a lexical level change (such as
those indicated by a BEGIN/END statement)
is contained within the line. It also
contains other flags that indicate whether
the line is parsable from the beginning of
that line. A line is parsable if the
parser is able to restart the parse by
starting the scan on the beginning of that
line. This bit is used in the reparsing
algorithm, which will be discussed in the
parser section.

The editor knows nothing about the
language it is editing. Both the scanner
and the parser interact indirectly with
the information block associated with each
line, but the editor does not use this
information.

5. The symbol table

The symbol table is another critical
tool in determining whether a statement
should be reinterpreted. If the type of a
variable changes, it is the symbol table
handler's responsibility to find which
lines contains that variable and to
invalidate the code associated with that
line. This process is aided by a linked
list of pointers to statements which
contain the variable. This list is
attached to each instance of a variable
name in the symbol table. The implemented
language is block structured and "modular"
in the sense of Modula [Wirth, 1976]
Therefore, the symbol table entry (bucket)
for each symbol also contains fields for
the current block pointer as well as a
pointer to the current module.

6. The parser

The parser was implemented using
production language. This decision was
made for the following reasons:

- Production language parsers are
relatively easy to implement

- Error recovery is easy to program
- It is possible to implement

different parsing strategies
- It is easy to restart the parser
- It is possible to call semantic

actions at parse time which can
assist incremental parsing later.

Currently, the parser is implemented in a
top down fashion.

Incremental parsing involves both the
parser and the editor. As mentioned
before, each line contains information on

77

whether it contains a BEGIN in it as well
as whether a statement starts this line.
Reparsing takes place in the following
manner: When a changed line is found, an
attempt is made to find a line preceding
it which can be used to start the parse.
Clearly, there must always be such a line
(in the worst case, the first line).
Reparsing starts from that line. Before
starting the parse however, it is
necessary to restore the lexical
environment. This can beeasily done by
backing up through the lines detecting

BEGINs. (I) The new parse tree can be
grafted onto the node that has the changed
text.

Each line with a BEGIN/END has a
lexical level associated with it as well
as a pointer to the symbol table with a
list of all identifiers declared at that
level. If this block was lexically
active, the pointer to the identifier list
is put onto the lexical level stack and
the search proceeds for the previous level
(until the lexical level pointers are
restored). Then the system can reparse
and accommodate the changes. The system
can stop reparsing if all of the following
are true:

- No declarations have been detected
- No new BEGIN/ENDs were detected
- The current line is unchanged
- The parser is back up at statement

level

Because of the extensive modifi-
cations that the parse tree may undergo as
the result of the insertion or deletion of
a lexical level change, it is necessary
for the reparsing algorithm to restart
parsing at the level where the new change
was inserted. Note that insertion and or
deletion is detectable because the system
knows which lines are inserted or deleted
as well as whether this statement has a
BEGIN or END in it. However, the
implemented system chooses to give up and
restart parsing from the top line.

Incremental parsing in a more general
context has been attempted by many others
including [Lock, 1965] and [Lindstrom,
1970], but none have really succeeded. A
restricted approach such as the one
discussed here is a nice intermediary.
Note that reparsing procedures could save
the implementation complexity of searching
for lines which begin a statement.

(I) Currently only a bit is used to signal
that a BEGIN is contained in that line.
This naturally restricts lines to have one
BEGIN statement. This restriction could
be removed by placing a linked list of
lexical level pointers for a line with
multiple BEGINs.

7. The Tree Factored Interpreters and
Compi-~rs--(-~rt 2)

A TFI can operate between two
endpoints of the "spectrum of
compilation". Interpretation involves
executing semantic routines along a path
of control. If a line is changed under
interpretation then the TFI will discover
it during the parse tree walk which occurs
with execution. Execution begins by
calling the parse tree root node's
semantic routine which calls a procedure
(Mitchell called it PERFORM) that calls
the TFI for the subnodes on the path of
execution. If the lines associated with a
parse tree node are unchanged, then the
code associated with that node is called.
If some lines where changed or if its
semantics change, then the S-actions
attached to the subnodes are called.
Therefore, the semantic routine for a
parse tree node assures that code found
below it in the parse tree is correct.

In a TFPC, execution begins by
calling the TFPC with the root node of the
parse tree. The TFPC executes a depth
first search of the parse tree. If the
lines associated with a parse tree node
are unchanged, then the code is left
unchanged. On the other hand, if one of
the lines was modified or its semantics
changed, then the TFPC algorithm is
applied to the node. Code is ready for
execution when all the nodes in the parse
tree have valid code attached to them.

The implemented system is both a TFI
and TFPC. By setting a flag, it is
possible to ignore calls to PERFORM. In
this mode of operation the TFI is called
for all of the subnodes of a node. This
corresponds directly to a TFPC.

Note that since each node generates
code and new code can be inserted at any
point, the code linkages between nodes can
become quite complicated. One way out of
this problem is to generate the code for a
parse tree node as a procedure. The
ancestors of the node can then integrate
the code by generating an indirect
procedure call through a vector kept in
the parse tree node. Changes to the
program can be made by patching the new
code's address into the address vector.

A reasonable question to ask at this
point is how the system would detect that
a node had been changed, given the fact
that the user changes text lines and not
parse tree nodes created by the parser.
This problem is solved in the following
manner: Each node has a first and last
line pointer. Then the tree is being
checked end-order, it is possible to
examine all the subranges of a given node
by processing the children of that node.

78

When a modified line is found (2) then
that node is marked as being modified.
That line is then reparsed, according to
the reparsing algorithm described above.
The TFI can then proceed with the
processing. If on the other hand, if a
type change has occurred that would effect
the semantics of the code belonging to a
line, then that line is marked for
reinterpretation. When the TFI algorithm
comes across that line, it will
reinterpret the node that belongs to that
line.

If program text is modified during a
program break, then the new text might be
inserted near the line parsed into the
parse tree node that generated the code
executing at the time of the break. The
strategy to return from a break after such
a modification is not simple. For this
reason, Mitchell (pp. 4C3-7) used the
following idea to re-establish the proper
context: recompile up to the point at
which the break occured, but never
directly change a piece of code where the
break occurred. If the code around a
break point is changed, then switch into
interpretation mode but keep the old code
around to proceed from. Of course, after
proceeding from the break, the old code
can be replaced by the new code.

8. Writing Semantic routines

There are several considerations that
must be followed in writing semantic
routines for a TFI. If the user would
like partial compilation (using a TFPC),
then it may be possible for the compiler
to skip over nodes on its way down to the
node that has the changed lines. For this
reason, the semantic routines must not
depend on "inherited" attributes [Knuth,
1969] or must save the results so that the
compiler can pick them up on its way down
the tree. On the other hand, if the user
uses a TFI, then saving semantics is not
necessary because the interpreter will
have the full state at any given node. Of
course, "synthesized" attributes are
perfectly acceptable to either scheme.

After calling PERFORM, the next step
for a TFI semantic routine is to coerce
the types of any arguments on the stack
into their proper type. After that, code
is generated. Lastly, the code is marked
as being "complete" and passed to the
parent node (in reality, pointers to the
code are just passed). Before the code is
passed up, it is executed.

(2) Note that this search can be shortened
by bringing changes up the parse tree at
the time the changes were made.

In order to separate the S actions
from the X actions, Mitchell pointed out
that FSL's [Feldman, 1964] notion of "code
brackets" is useful. This syntax provides
a mechanism to separate these two actions.
Ideally, any compiler compiler or
semantics language should provide such a
facility for the semantic routine writer.

9- Debugger considerations

Satterthwaite [Satterthwaite, 1974]
discusses source language debuggers at
length. Interpreters have a great deal of
useful information for a source language
debugger. In Satterthwaite's system two
interpreters were used to control tracing
and maintain frequency counts. The X
interpreter (not to be confused with the X
actions mentioned above) executed machine
code, the R interpreter simulated machine
code execution and the E interpreter
displayed and edited source text.
Satterthwaite uses two markers called
"alpha" and "beta" to synchronize the two
interpreters. When a "alpha" is
encountered, control switches from the X
interpreter to the R interpreter. When a
"beta" is encountered, control switches
from the R interpreter to the X
interpreter. These markers are explicity
introduced for conditional statements. In
a TFI, the X interpreter and R interpreter
may still be desired for tracing the
execution of programs. The facilities of
the E interpreter may be easily provided
since the source text is still present at
debug time.

Note that it is easy to find the
point at which a program break occurs
because the range of code can be found in
the parse tree nodes. Therefore, given a
code address, it suffices to find the node
in the parse tree node that generated the
code and then print out the text line
which generated that node. However, this
would entail a search of the entire parse
tree. Therefore, one stategy is to place
a back pointer to the parse tree node in
front of the code generated by that node.

10. An example of the operation of the TFI

In order to illustrate the operation
of a TFI, a factorial program with two
bugs introduced is used as an example.

[I] procedure Factorial
[2] (n: integer);
[3] begin
[4] var result,i: integer;
[5] while i > 0 do
[6] begin
[7] result := result*i;
[8] i :: i
[9] + I;
[10] end;
[11] Return(result) ;
[12] end;

79

Text lines are denoted by [n], where n is
the line number. Note that line 8 has
been split across two lines. The parse
tree constructed from this program is
shown below. The pointers to the lines
are shown as well.

The code can now be executed and the
walk of the parse tree continues.

pr.oced uEe[I : 12]

/ / ~ / e m e n ~ 1 2]

/ / / whil~10]

/ / / / statemen_t[6 : ~

/ / / / sto~e[7] ~'~s o r e [~

facto'ri~al /eis~g<~ L'J ?\[0] resu~it r~ult~i / ~\I :9] r]si~t

Figure I

Since i will increase, clearly the program
as constructed will never terminate. In
order to correct this, the user will
change statement 9 from i + I to i - I.
Note that the correction comes on a line
that is impossible to cleanly restart the
parse. When the editor modifies line 9,
the line is marked invalid. The parse
tree is left in its present state until an
attempt is made to run the program.

When this happens, then under partial
compilation, the parse tree is walked in
end-order, checking the range of lines
associated with each statement node. If
any of the lines have been modified then
the algorithm checks to see whether that
line can be used to restart the parse. In
the case of line 9, this is not the case,
because + I couldn't possibly start a
statement. Therefore, the previous line
is checked. Fortunately, the TFI need not
look any further, the parse can be started
from that line. A new tree is constructed
and is grafted onto the existing tree.
However, another bug still lurks. The
variable i is never initialized to n. So,
the user would insert a line (Call it
[4.5]) that sets i to be n. This new tree
is also grafted in and then the tree would
look as follows: (the new branches are
shown with doubled lines)

11. The state of the implementation

The system described here is
implemented in BCPL [Richards, 1969] on a
16 bit minicomputer. Versions of the
parser, scanner, symbol table routines, a
display editor and the TFI algorithm are
working. Currently, a formal semantic
language known as ISLE is being developed.
A grammar exists and the semantic actions
are being developed. In addition to FSL's
primitives, ISLE will provide the notion
of separation between abstraction and
implementation as discussed in the
language ALPHARD. [Wulf, 1978]

12. Conclusion

Since semantic analysis is separated
from parsing, parse time "semantic
actions" can be used to help the
interactive system. In particular, this
was used to implement the incremental
parsing hooks as well as assists for the
editor.

statement[6~

/ / -'/--.~'.~ " 2-'~ " ^ t . . n[11]

factorial n result i i n i u result result i i i i result

Figure 2

80

A clear advantage of the TFI over
other organizations is the fact that the
user gets the advantages of an interpreter
and a compiler together in one integrated
system. This means that the system writer
can use the extensive information present
in a interpreter to write a useful editor
and a helpful debugger.

As Swinehart pointed out (pp. 162),
it may be necessary for a TFI interpreter
to intervene as often as every statement.
This is not the case with a TFI that
operates as an incremental compiler.

Of course, it should be clear that
one must pay a price for the combination
of an interpreter and a compiler. The
most substantial cost is that of space.
In the implemented system each text line
occupies at least 7 words and each parse
trepies at least 7 words and each parse
tree node has at least 3 words of
overhead. For a program of any size, this
can be substantial. Another expense is
the space used by the dependency lists.
For a program with many variables and
variable references, this begins to occupy
space.

Another problem is that generated
code may become quite disjointed. Because
of this, code optimization across
statements may be difficult. It is
possible to get around this problem by
coalescing the code through copying code
attached to subnodes.

The purpose of this work is to build
a flexible and efficient interpreter as
well as to explore the interface between
interactive languages and line editors.
The system is flexible because it allows
portions of the program to be incomplete.
Certain statements will be compiled while
others will be interpreted. The
efficiency of the TFI (as discussed in the
TFI section above) is slightly below
compiling, but far above interpretation.

13. Acknowledgements

Peter Deutsch of Xerox PARC suggested
the implementation of a TFI as an
interesting topic to investigate. Peter
also provided advice at nearly every
stage. Dan Swinehart, also of Xerox PARC,
tolerated my questions about both his and
Mitchell's thesis as well as read several
versions of this paper. Many people have
read this paper in various forms and at
various times. I thank them all for their
help. Of course, I am solely responsible
for the content. This research was
supported through the generosity of the
Xerox PARC Computer Science Laboratory.
Preparation of this report was sponsored
in part by the NSF and the Sloan
Foundation.

14. Bibliography

I.

2.

.

4.

5.

6.

.

8.

9.

10.

11.

12.

13.

14.

15.

Atkinson, L.V. and McGregor, J.J.
"CONA - A Conversational ALGOL
System" Software Practice and
Experience, vol.8, 699-708 (1978)

Baker, C.L., "Joss: Introduction to
a Helpful assistant", Rand memo
RM-5058-PR, July 1966

Braden, B. and Wulf, W., "The
implementation of BASIC in a
Multiprogramming environment", CACM,
v.11, no.10, pp. 88-692

Feldman, J.A., "A formal semantics
for computer oriented languages", PhD
thesis, Carnegie Institute of
Technology, May 1964

Kemeny, J. BASIC manual, Dartmouth
College, 1966

Knuth, D.E., "Semantics of Context
Free Languages", Mathematical System
Theory, v.2 no.2, 1967, pp. 127-145

Lindstom, G. "Variability in
Programming Languages", PhD thesis,
Carnegie Mellon University, 1970

Lock, K., "Structuring programs for
multiprogram time-sharing on-line
applications", AFIPS FJCC 1965, pp.
457-472

Mitchell, J.M., "The design and
construction of flexible and
efficient interactive programming
systems", PhD thesis, Carnegie Mellon
University, 1970

Mitchell, J., Perlis, A.J., Van

Zoeren, H.V., "LC 2 - A language for
interactive computing", in "Inter-
active Systems for Experimental
Mathematics"

Peccoud, M. et al, "Incremental
Interactive Compilation", IFIP 1968,
pp. B33-B37

Richards, M., "BCPL - A language for
systems programming", AFIPS SJCC
1969, pp. 557-566

Satterthwaite, E.H., "Source language
debugging", PhD thesis Stanford
University, 1974

Swinehart, D.C., "Copilot: A
multiple-process approach to Inter-
active Programing Systems", PhD
thesis, Stanford University, 1974

Teitelman, W., ed., Interlisp
reference manual, Xerox PARC report,
1978

81

16. Wirth, N., "Modula: a language for
modular multiprogramming", Software
Practice and Experience, "vol.7 noJ,
1977

17. Wulf, W. , ed., "An informal
Definition of Alphard (preliminary)",
Carnegie-Mellon University Computer
Science Report CMU-CS-78-I05

82

