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Abstract: Design and implementation 
experience with an Interactive Programming 
System are described. Reflections are 
made on various design decisions and on 
the effect of using a Tree Factored 
Interpreter as the core of the system. 
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I. Introduction 

This paper is concerned with the 
creation of an efficient and flexible 
interactive programming system (IPS) 
designed along the lines of the system 
discussed by Mitchell [Mitchell, 1970]. 

For Mitchell, an IPS must exhibit 
interactive control, plasticity, con- 
textual control and human interfacing. 
For example, an IPS might include an 
editor, a compiler (or interpreter) and a 
debugger. Most interactive programming 
systems draw a definite line between code 
that is interpreted and code that is 
compiled. For example, a LISP system such 
as Interlisp [Teitelman, 1978] has the 
ability to compile code into machine code. 
However, the decision to switch from 
interpretation to compilation is made by 
the user and not by the system. This 
paper is about a system that makes this 
decision automatically. 

The system is centered around an 
interpreter that interprets parse trees. 
Execution is divided between walking the 
parse tree (executing semantic routines 
and calling code generators) and the 
actual runtime component of execution. 

In fact, interpretation and compilation 
are looked upon as endpoints on a spectrum 
of execution. The IPS slides back and 
forth on this line depending on the 
"constancy" of the program. The more 
"constant" (i.e., unchanged or unedited) a 
program is, the more previously compiled 
code is run instead of creating and 
interpreting new code. 

The design of the system is also 
concerned with the creation of a usable 
programming tool. The system includes a 
display editor. The paper is also 
concerned with the interaction between a 
programming system and the user. 

2. Previous Work 

This work is based on the system 
described in [Mitchell, 1970], which was 
discussed, but never implemented. 
Implementation of parts of his thesis can 
be found in an interactive ALGOL system 

for TSS/360 called LC 2 [Mitchell, et al, 
1969] Swinehart [Swinehart, 1974] 
implemented the simpler parts of 
Mitchell's design but attacked a different 
area of interest: a man machine interface 
assisted by multiple processes and a 
display. Other work on ALGOL IPSes 
included the work of Lock [Lock, 1965], 
[Peccoud, 1968] and [Atkinson and 
McGregor, 1978]. Early work on 
interactive interpreters was done by the 
Joss group [Baker, 1966] at Rand as well 
as the BASIC group [Kemeny, 1966] at 
Dartmouth. [Braden and Wulf, 1968] wrote 
an incremental BASIC system for the B5500 
that combined both interpreted and 
compiled code. Each of these systems did 
little to improve the runtime efficiency 
of the interpreter. 

3. The Tree Factored Interpreters and 
Compi-~rs--(-P~rt I) 

In an interpreter, an internal 
representation of the program (such as the 
source text) is parsed and executed 
immediately. If the internal represen- 
tation is changed to the parse tree 
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generated by parsing the text, then the 
interpreter becomes a Tree Interpreter or 
TI. 

Semantic actions can be decomposed 
into two classes: semantic analysis and 
code generation (denoted S-action and 
X-action by Mitchell). Let a further 
distinction be that no S-action can 
perform any X-action and vice versa. That 
is, no semantic action can effect either 
program or data and no code generator can 
effect semantics. This separation is 
commonly found in compilers, but is 
uncommon in interpreters. A tree 
interpreter with separate S-actions and 
X-actions is called a Tree Factored 
Interpreter or TFI. If the parse tree is 
used to compile a program by following all 
the branches (not only those on the 
control path), then this is a Tree 
Factored Compiler or TFC. There are two 
classes of TFCs: If only the subtrees of 
the parse tree which were changed are 
compiled, then the TFC is called a Tree 
Factored Incremental Compiler (TFIC) or 
Tree Factored Partial Compiler (TFPC). 
Otherwise, the TFC is a Tree Factored 
Total Compiler (TFTC). Clearly, a TFTC is 
the same as a "standard" compiler. 

Once a statement has been 
interpreted, the code can be saved and 
used again. However, if the semantics 
change, then the X-actions are invalid and 
the S-actions must be be reinterpreted. 
When this technique is extended to parse 
trees, then the following changes must be 
made: when the semantics associated with 
a parse tree node are changed then the 
code that is generated by that node must 
be changed. Both semantic information and 
code "float up" from leaf nodes to their 
parent nodes. In a TFPC, these nodes 
continue to bubble information up until 
the root node has been reached and all the 
code is ready for execution. A TFI does 
not need to have all the code ready for 
execution, just the code needed at the 
particular point on the parse tree. 

What are the additional computational 
requirements of such a scheme? In terms 
of space, the system must keep information 
about which lines have been modified as 
well as keeping the parse tree present. 
The extra time involved in the TFI or TFPC 
is principally the time it takes to walk 
the parse tree. This overhead is 
minimized as the parse tree changes less 
and less. 

4. The Editor and code constancy 

The editor is one of the common ways 
the semantics of a program may be made 
invalid. If the user deletes, inserts or 
modifies a statement, the TFI must be made 
aware of the modification. Other ways of 
affecting the semantics of the program 
include user actions such as changing type 

declarations at an execution break and 
other actions. However, this paper is 
mainly concerned with modifications made 
with the editor. 

Each line in the editor has a block 
of information that contains a bit about 
whether a lexical level change (such as 
those indicated by a BEGIN/END statement) 
is contained within the line. It also 
contains other flags that indicate whether 
the line is parsable from the beginning of 
that line. A line is parsable if the 
parser is able to restart the parse by 
starting the scan on the beginning of that 
line. This bit is used in the reparsing 
algorithm, which will be discussed in the 
parser section. 

The editor knows nothing about the 
language it is editing. Both the scanner 
and the parser interact indirectly with 
the information block associated with each 
line, but the editor does not use this 
information. 

5. The symbol table 

The symbol table is another critical 
tool in determining whether a statement 
should be reinterpreted. If the type of a 
variable changes, it is the symbol table 
handler's responsibility to find which 
lines contains that variable and to 
invalidate the code associated with that 
line. This process is aided by a linked 
list of pointers to statements which 
contain the variable. This list is 
attached to each instance of a variable 
name in the symbol table. The implemented 
language is block structured and "modular" 
in the sense of Modula [Wirth, 1976] 
Therefore, the symbol table entry (bucket) 
for each symbol also contains fields for 
the current block pointer as well as a 
pointer to the current module. 

6. The parser 

The parser was implemented using 
production language. This decision was 
made for the following reasons: 

- Production language parsers are 
relatively easy to implement 

- Error recovery is easy to program 
- It is possible to implement 

different parsing strategies 
- It is easy to restart the parser 
- It is possible to call semantic 

actions at parse time which can 
assist incremental parsing later. 

Currently, the parser is implemented in a 
top down fashion. 

Incremental parsing involves both the 
parser and the editor. As mentioned 
before, each line contains information on 
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whether it contains a BEGIN in it as well 
as whether a statement starts this line. 
Reparsing takes place in the following 
manner: When a changed line is found, an 
attempt is made to find a line preceding 
it which can be used to start the parse. 
Clearly, there must always be such a line 
(in the worst case, the first line). 
Reparsing starts from that line. Before 
starting the parse however, it is 
necessary to restore the lexical 
environment. This can beeasily done by 
backing up through the lines detecting 

BEGINs. (I) The new parse tree can be 
grafted onto the node that has the changed 
text. 

Each line with a BEGIN/END has a 
lexical level associated with it as well 
as a pointer to the symbol table with a 
list of all identifiers declared at that 
level. If this block was lexically 
active, the pointer to the identifier list 
is put onto the lexical level stack and 
the search proceeds for the previous level 
(until the lexical level pointers are 
restored). Then the system can reparse 
and accommodate the changes. The system 
can stop reparsing if all of the following 
are true: 

- No declarations have been detected 
- No new BEGIN/ENDs were detected 
- The current line is unchanged 
- The parser is back up at statement 

level 

Because of the extensive modifi- 
cations that the parse tree may undergo as 
the result of the insertion or deletion of 
a lexical level change, it is necessary 
for the reparsing algorithm to restart 
parsing at the level where the new change 
was inserted. Note that insertion and or 
deletion is detectable because the system 
knows which lines are inserted or deleted 
as well as whether this statement has a 
BEGIN or END in it. However, the 
implemented system chooses to give up and 
restart parsing from the top line. 

Incremental parsing in a more general 
context has been attempted by many others 
including [Lock, 1965] and [Lindstrom, 
1970], but none have really succeeded. A 
restricted approach such as the one 
discussed here is a nice intermediary. 
Note that reparsing procedures could save 
the implementation complexity of searching 
for lines which begin a statement. 

(I) Currently only a bit is used to signal 
that a BEGIN is contained in that line. 
This naturally restricts lines to have one 
BEGIN statement. This restriction could 
be removed by placing a linked list of 
lexical level pointers for a line with 
multiple BEGINs. 

7. The Tree Factored Interpreters and 
Compi-~rs--(-~rt 2) 

A TFI can operate between two 
endpoints of the "spectrum of 
compilation". Interpretation involves 
executing semantic routines along a path 
of control. If a line is changed under 
interpretation then the TFI will discover 
it during the parse tree walk which occurs 
with execution. Execution begins by 
calling the parse tree root node's 
semantic routine which calls a procedure 
(Mitchell called it PERFORM) that calls 
the TFI for the subnodes on the path of 
execution. If the lines associated with a 
parse tree node are unchanged, then the 
code associated with that node is called. 
If some lines where changed or if its 
semantics change, then the S-actions 
attached to the subnodes are called. 
Therefore, the semantic routine for a 
parse tree node assures that code found 
below it in the parse tree is correct. 

In a TFPC, execution begins by 
calling the TFPC with the root node of the 
parse tree. The TFPC executes a depth 
first search of the parse tree. If the 
lines associated with a parse tree node 
are unchanged, then the code is left 
unchanged. On the other hand, if one of 
the lines was modified or its semantics 
changed, then the TFPC algorithm is 
applied to the node. Code is ready for 
execution when all the nodes in the parse 
tree have valid code attached to them. 

The implemented system is both a TFI 
and TFPC. By setting a flag, it is 
possible to ignore calls to PERFORM. In 
this mode of operation the TFI is called 
for all of the subnodes of a node. This 
corresponds directly to a TFPC. 

Note that since each node generates 
code and new code can be inserted at any 
point, the code linkages between nodes can 
become quite complicated. One way out of 
this problem is to generate the code for a 
parse tree node as a procedure. The 
ancestors of the node can then integrate 
the code by generating an indirect 
procedure call through a vector kept in 
the parse tree node. Changes to the 
program can be made by patching the new 
code's address into the address vector. 

A reasonable question to ask at this 
point is how the system would detect that 
a node had been changed, given the fact 
that the user changes text lines and not 
parse tree nodes created by the parser. 
This problem is solved in the following 
manner: Each node has a first and last 
line pointer. Then the tree is being 
checked end-order, it is possible to 
examine all the subranges of a given node 
by processing the children of that node. 
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When a modified line is found (2) then 
that node is marked as being modified. 
That line is then reparsed, according to 
the reparsing algorithm described above. 
The TFI can then proceed with the 
processing. If on the other hand, if a 
type change has occurred that would effect 
the semantics of the code belonging to a 
line, then that line is marked for 
reinterpretation. When the TFI algorithm 
comes across that line, it will 
reinterpret the node that belongs to that 
line. 

If program text is modified during a 
program break, then the new text might be 
inserted near the line parsed into the 
parse tree node that generated the code 
executing at the time of the break. The 
strategy to return from a break after such 
a modification is not simple. For this 
reason, Mitchell (pp. 4C3-7) used the 
following idea to re-establish the proper 
context: recompile up to the point at 
which the break occured, but never 
directly change a piece of code where the 
break occurred. If the code around a 
break point is changed, then switch into 
interpretation mode but keep the old code 
around to proceed from. Of course, after 
proceeding from the break, the old code 
can be replaced by the new code. 

8. Writing Semantic routines 

There are several considerations that 
must be followed in writing semantic 
routines for a TFI. If the user would 
like partial compilation (using a TFPC), 
then it may be possible for the compiler 
to skip over nodes on its way down to the 
node that has the changed lines. For this 
reason, the semantic routines must not 
depend on "inherited" attributes [Knuth, 
1969] or must save the results so that the 
compiler can pick them up on its way down 
the tree. On the other hand, if the user 
uses a TFI, then saving semantics is not 
necessary because the interpreter will 
have the full state at any given node. Of 
course, "synthesized" attributes are 
perfectly acceptable to either scheme. 

After calling PERFORM, the next step 
for a TFI semantic routine is to coerce 
the types of any arguments on the stack 
into their proper type. After that, code 
is generated. Lastly, the code is marked 
as being "complete" and passed to the 
parent node (in reality, pointers to the 
code are just passed). Before the code is 
passed up, it is executed. 

(2) Note that this search can be shortened 
by bringing changes up the parse tree at 
the time the changes were made. 

In order to separate the S actions 
from the X actions, Mitchell pointed out 
that FSL's [Feldman, 1964] notion of "code 
brackets" is useful. This syntax provides 
a mechanism to separate these two actions. 
Ideally, any compiler compiler or 
semantics language should provide such a 
facility for the semantic routine writer. 

9- Debugger considerations 

Satterthwaite [Satterthwaite, 1974] 
discusses source language debuggers at 
length. Interpreters have a great deal of 
useful information for a source language 
debugger. In Satterthwaite's system two 
interpreters were used to control tracing 
and maintain frequency counts. The X 
interpreter (not to be confused with the X 
actions mentioned above) executed machine 
code, the R interpreter simulated machine 
code execution and the E interpreter 
displayed and edited source text. 
Satterthwaite uses two markers called 
"alpha" and "beta" to synchronize the two 
interpreters. When a "alpha" is 
encountered, control switches from the X 
interpreter to the R interpreter. When a 
"beta" is encountered, control switches 
from the R interpreter to the X 
interpreter. These markers are explicity 
introduced for conditional statements. In 
a TFI, the X interpreter and R interpreter 
may still be desired for tracing the 
execution of programs. The facilities of 
the E interpreter may be easily provided 
since the source text is still present at 
debug time. 

Note that it is easy to find the 
point at which a program break occurs 
because the range of code can be found in 
the parse tree nodes. Therefore, given a 
code address, it suffices to find the node 
in the parse tree node that generated the 
code and then print out the text line 
which generated that node. However, this 
would entail a search of the entire parse 
tree. Therefore, one stategy is to place 
a back pointer to the parse tree node in 
front of the code generated by that node. 

10. An example of the operation of the TFI 

In order to illustrate the operation 
of a TFI, a factorial program with two 
bugs introduced is used as an example. 

[I] procedure Factorial 
[2] (n: integer); 
[3] begin 
[4] var result,i: integer; 
[5] while i > 0 do 
[6] begin 
[7] result := result*i; 
[8] i :: i 
[9] + I; 
[10] end; 
[ 11 ] Return(result) ; 
[12] end; 
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Text lines are denoted by [n], where n is 
the line number. Note that line 8 has 
been split across two lines. The parse 
tree constructed from this program is 
shown below. The pointers to the lines 
are shown as well. 

The code can now be executed and the 
walk of the parse tree continues. 

pr.oced uEe[ I : 12 ] 

/ /  ~ / e m e n ~ 1 2  ] 

/ / / whil~10] 

/ /  / / statemen_t[6 : ~  

/ /  / / sto~e[7] ~'~s o r e [ ~  

facto'ri~al /eis~g<~ L'J ?\[0 ] resu~it r~ult~i / ~\I :9] r]si~t 

Figure I 

Since i will increase, clearly the program 
as constructed will never terminate. In 
order to correct this, the user will 
change statement 9 from i + I to i - I. 
Note that the correction comes on a line 
that is impossible to cleanly restart the 
parse. When the editor modifies line 9, 
the line is marked invalid. The parse 
tree is left in its present state until an 
attempt is made to run the program. 

When this happens, then under partial 
compilation, the parse tree is walked in 
end-order, checking the range of lines 
associated with each statement node. If 
any of the lines have been modified then 
the algorithm checks to see whether that 
line can be used to restart the parse. In 
the case of line 9, this is not the case, 
because + I couldn't possibly start a 
statement. Therefore, the previous line 
is checked. Fortunately, the TFI need not 
look any further, the parse can be started 
from that line. A new tree is constructed 
and is grafted onto the existing tree. 
However, another bug still lurks. The 
variable i is never initialized to n. So, 
the user would insert a line (Call it 
[4.5]) that sets i to be n. This new tree 
is also grafted in and then the tree would 
look as follows: (the new branches are 
shown with doubled lines) 

11. The state of the implementation 

The system described here is 
implemented in BCPL [Richards, 1969] on a 
16 bit minicomputer. Versions of the 
parser, scanner, symbol table routines, a 
display editor and the TFI algorithm are 
working. Currently, a formal semantic 
language known as ISLE is being developed. 
A grammar exists and the semantic actions 
are being developed. In addition to FSL's 
primitives, ISLE will provide the notion 
of separation between abstraction and 
implementation as discussed in the 
language ALPHARD. [Wulf, 1978] 

12. Conclusion 

Since semantic analysis is separated 
from parsing, parse time "semantic 
actions" can be used to help the 
interactive system. In particular, this 
was used to implement the incremental 
parsing hooks as well as assists for the 
editor. 

statement[6~ 

/ / -'/--.~'.~ " 2-'~ " ^ t . . n[11] 

factorial n result i i n i u result result i i i i result 

Figure 2 
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A clear advantage of the TFI over 
other organizations is the fact that the 
user gets the advantages of an interpreter 
and a compiler together in one integrated 
system. This means that the system writer 
can use the extensive information present 
in a interpreter to write a useful editor 
and a helpful debugger. 

As Swinehart pointed out (pp. 162), 
it may be necessary for a TFI interpreter 
to intervene as often as every statement. 
This is not the case with a TFI that 
operates as an incremental compiler. 

Of course, it should be clear that 
one must pay a price for the combination 
of an interpreter and a compiler. The 
most substantial cost is that of space. 
In the implemented system each text line 
occupies at least 7 words and each parse 
trepies at least 7 words and each parse 
tree node has at least 3 words of 
overhead. For a program of any size, this 
can be substantial. Another expense is 
the space used by the dependency lists. 
For a program with many variables and 
variable references, this begins to occupy 
space. 

Another problem is that generated 
code may become quite disjointed. Because 
of this, code optimization across 
statements may be difficult. It is 
possible to get around this problem by 
coalescing the code through copying code 
attached to subnodes. 

The purpose of this work is to build 
a flexible and efficient interpreter as 
well as to explore the interface between 
interactive languages and line editors. 
The system is flexible because it allows 
portions of the program to be incomplete. 
Certain statements will be compiled while 
others will be interpreted. The 
efficiency of the TFI (as discussed in the 
TFI section above) is slightly below 
compiling, but far above interpretation. 
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