Saber-C
An Interpreter-based Programming Environment
for the C Language

Stephen Kaufer, Russell Lopez, and Sesha Pratap
Saber Software, Inc.
saber@harvard.harvard.edu

ABSTRACT

We describe a programming environment that supports an interpreter-based development scheme
for the C language. The interpreter contains a parser which loads C files and performs static er-
ror checking, an evaluator which executes the intermediate code produced by the parser and per-
forms run-time program checking, a debugger that provides source language debugging, and a
linker that supports dynamic linking and incremental relinking of source and object code files.
Our goal was to develop an integrated run-time environment for C that promotes prototyping and
modular programming, provides comprehensive static and dynamic error detection, and auto-
mates the repetitive tasks associated with thé development cycle.

1. Introduction

Programming in the C language can be a bittersweet experience. The language’s terse syntax and
low-level functionality help programmers produce compact, efficient programs that are "close to the
machine"”, earning C the reputation of being a high-level assembly language. However, these same features
also invite bugs that evade static debugging techniques and frustrate the most seasoned software develop-
ers. Because of the difficulty of locating bugs with existing programming support tools, it is not uncom-
mon for programmers to abandon their debuggers in favor of brute force debugging with prinsf statements.

Attempts to increase the productivity of C programmers have yielded tools that provide better static
error detection (/int), and compilers that offer better support for run-time error detection [5]. As a further
step, a programming environment that integrates the functions of an editor, compiler, and debugger has
been implemented to support incremental compilation and better detection of programming errors [6].

These tools adhere to the compiler-based development model for the C language. Source code files
are individually compiled to produce object code files which are then linked together to produce a stan-
dalone executable program. This development scheme places two limitations on the productivity of the
programmer. First, it restricts prototyping and modular development because a fully-linked program is
required to execute any component of the application. Second, it places the full responsibility for static and
dynamic error detection on the compiler, a demand that cannot be met adequately because of C’s loose
type requirements for data and pointers.

We have designed a programming environment that supports an interpreter-based development
scheme for the C language. Interpreters for the C language have been attempted previously; however,
these endeavors either viewed the interpreter as a standalone tool in the UNIX environment [4] or as an
extension to the debugger to allow the mixture of interpreted code with compiled code during debugging
[2].

Our goal was to construct a single tool that integrated the facilities for creating, testing, and debug-
ging C programs. An interpreter-based development approach was selected to avoid the limitations faced
by compiler-based schemes. The following capabilities are offered:

Interactive Run-time Workspace:
A run-time environment is provided to support testing of code fragments, subsections of programs,

Summer USENIX "88 161 San Francisco, June 20-24

Saber-C: An Interpreter-Based ...

and arbitrary C expressions.

Static Error Checking:
Static errors are detected and reparted as source files are loaded or source code is entered in the
workspace,

Dynamic Error Checking:
Dynamic errors are detected and reported when a program is executed. The checks are designed to
detect subtle violations such as errors resulting from pointer misuse or inappropriate references to
memory.

Source-language Debugging:
A complete set of debugging tools is provided which can access and maodify all source code informa-
tion contained in the program, including macros.

Fast Turnaround Times:
Changes to source code files are reloaded incrementally; and relinking is only needed for modified
modules, not the entire program.

2. Overview of Saber-C

Saber-C consists of a C interpreter, integrated with a dynamic linker, a source language debugger, an
editing facility that works with vi or emacs, and an interface manager. Saber-C runs under the UNIX
operating system on Sun and DEC Vax ! computers equipped with bit-mapped consoles or ascii terminals.
The software consists of approximately 120,000 lines of C source code and 50 lines of assembly code.

All input and output is routed through an interface manager that runs as a separate process and con-
nects to Saber-C via a socket. The interface manager makes use of multiple windows when Saber-C is exe-
cuted in a windowing environment.2 While Saber-C’s windowing interface is not the topic of this paper, a
brief explanation is useful in order to understand the general method of interaction. Saber-C creates
separate windows for program input/output, source file editing and listing, tracing, displaying user data,
displaying general program information, child processes input/output, setting options, and for viewing the
on-line documentation.

The screendump shown below illustrates a typical session with Saber-C. In the middle of the screen
is the main Saber-C window, which consists of a source panel, a message window, and the user input win-
dow, usually referred to as the workspace, The panel of buttons running along the right-hand side of the
window represent the most common actions taken within the Saber-C environment.

The window on the upper right of the screen is the program i/0 window, where all of the input and
output during program execution is sent. The window in the lower left is an invocation of the Cross Refer-
ence browser which graphically displays variable dependencies. The window in the lower right is the
graphical Data browser, currently displaying the value of two structures. The remainder of this paper will
focus upon the workspace window and the activities performed within it.

'Vax is a trademark of Digital Equipment Corporation.
’Themchpimdinlhhpnpummﬂu&mwewwimtming system. A less sophisticated multi-window display is
amBnUylvnitheundertheXwindowingsyaanwﬁhaﬁmponoflthu.nViw interface is being complesed.

Kaufer, Lopez, Pratap

Summer USENIX ‘88 162 San Francisco, June 20-24

An Interpreter-Based ...

Saber-C

Kaufer, Lopez, Pratap

S RELEH
= onyeA juj

f/v ,pojedorie, v/ 0I°BFQ = 0}0Pv YIV] }I0L)5
1/v TT3SF1 v/ 06TOW0 = ¥XoUy IST] 390135
10 = safes Juj

ISIT 330d3%
Peay]

()yso1joia Ju
()ayuyd jup

+d ()TToys pyoa
PIOA™ juy ssed-aoys M
(

v
Juoyyaesuy pyoa
)o1qquq pyoa
)dnyes pyoa

105P} Sy }STUTAT }3mJY
()oacma juy

wouy uou:o..ohoz\.V\Yn-nn..bano_. 88JuUBJe By :
onmaal.ﬂ:a HTTY g

O ¢- »1 (1 weeuq
LL1eys ano'e :Bujinaex
L1ays um (- g1

1
CS GaGlmier]) :ssesddng

(3esss) [urop a (Baeum) [3veu) (dess (erupauea) wseuey

J84x

'9geqqx@ = punoq _._.m:m ‘BEEYq*@ = punoq mo| ‘OgEqqxg = Jejujog
‘spunog o N0 8} 1wy} Jejujod v Bujduelejeseq
:.mh J40J13) sduesejeseg “()|leys 'pap: 2’3408

Sjusjuod

{

! 43d7[- xepupmoy

098 /o [11Aeaae ./ peEaqxg (. 3U}) t aad f, - Aexmo)

4114

d) }

268

668

1734

18L
1 sdemg ve

(Aeymoy 5 1ad ™,)j1e=
(++nd T ¢ (8218 ¢ ®) =) 03d [£ [& E- NEC I S ¥T.73

!t nd7y, = Aeymoy
¢ a1dj = xapujmo|

LS {®BJBUBY
188%d 065

1408 ||8us 38} 7 Bupyion 1547 eupBiag

GB1-06 :8&8ui

-
-

o:nzu :syueunbae uny)

Liays nd' e

*

San Francisco, June 20-24

163

Summer USENIX 88

Saber-C: An Interpreter-Based ... Kaufer, Lopez, Pratap

3. Sample Session

When Saber-C is started, it places the user in an interactive workspace. The workspace features a
mode-less input processor that accepts both Saber-C commands and C source code. The Saber-C com-
mand set and syntax is similar to that of the UNIX debugger dbx. The input processor also supports a his-
tory and name completion mechanism modeled after the scsk shell.

Any C statement or expression, including preprocessor directives, can be entered in the workspace.
It is possible to define macros, variables, types, and functions directly in the workspace.

1l -> int xx ;
2 >xx=1<< 4 ;

(int) 16

3 -> print = + 123
(int) 139

4 ->

Source code files, object code files, and library files can be loaded into Saber-C. As a file is loaded,
it is dynamically linked with all previously loaded files. When a library is loaded, it is only "attached” to
the workspace; the individual modules contained within the library are loaded as needed during execution.

Source files are checked for syntax violations and lint-style warnings as they are loaded. If a viola-
tion is detected, the loading process is interrupted and the location of the problem is displayed. Benign vio-
lations are reported as warnings, from which the user can continue loading the file. More severe violations
are reported as errars, which require the user to correct the problem and reload the file.

1 -> load test.c
Loading: -Dlint -DUNIX -DSUN test.c

"test.c":4, sum(), Used before set (Warning #290)

3: int total ;
* 4: total += arg_one + arg_two ;
5: printf ("arg_one = %d, arg_two = %d, total = %d\n",

Automatic variable ‘total’ may be used before set.
General options: continue/silent/quit/abort/edit/reload
Suppress options: Everywhere/File/Line/Procedure/Name [c] ?

When a file is loaded, all symbols (variables, functions, types, and macros) defined at the global level
of the file become visible in the workspace. For example, the file test.c defines the function sum and it
includes the file /usr/include/sidio.h as a header file. Once the file is loaded, it is possible to examine and
use any symbols defined by test.c and the header files included by it.

2 =-> sum(123, 456)

arg one = 123, arg_two = 456, total = 579
(int) 579

3 -

4 -> whatis stdin

#define stdin (&_iob{0])

5 >

Saber-C automatically checks for run-time violations as a program is being executed. Possibly
benign violations are reported as warnings, from which the user can continue execution. Serious violations

Summer USENIX ‘88 164 San Francisco, June 20-24

Kaufer, Lopez, Pratap Saber-C: An Interpreter-Based ...

are reported as errors, requiring the user to correct the problem or provide a value to substitute for the
incorrect expression.

29 -> deref (0):;
About to dereference 0x0

"deref.c":13, deref(), Dereference (Error #67)

12: printf ("About to dereference 0x%lx\n", ptr);
* 13: *ptr++ = 0;
14: printf ("Done\n") ;

Dereferencing a pointer that is out of bounds.

Pointer = 0x0, low bound = 0x0, high bound = 0x0.
Options: break/quit/edit/reload [(b] 2 b
(break 1) 30 ->

When a run-time violation occurs, execution can be suspended to create a new invocation of the workspace
called a breaklevel. This breaklevel is scoped to the location where execution stopped, allowing the user to
examine variables, view the execution stack, and single-step execution of the program.

(break 1) 30 -> where

error #67 (Dereference)

deref (ptr = (int *) 0x0) at "deref.c":13
(break 1) 31 -> ptr ;

(int *) 0x0

(break 1) 32 ->

While at a breaklevel, the user can execute code that may gemerate another breaklevel. Saber-C’s
support of multiple breaklevels preserves the context of each break in execution, thereby allowing the user
to investigate several problems during a single run of the program.

When a load-time or run-time violation is reported, the user can choose to edit the file containing the
violation. The editing interface will start the editor specified by the user's EDITOR environment variable.
In a windowing environment, a new window is opened for each editing job. In a non-windowing environ-
ment, Saber-C mimics the behavior of csh, allowing the user to start, suspend, and resume edit jobs.

Files can be reloaded directly from the editor. If a violation is detected during the reloading process,
the editor is automatically updated to the location of the violation. Files can be reloaded and unloaded
without restriction. If a source file has been completely debugged, it can be compiled with the system com-
piler, and the resulting object file can be loaded in place of the source code.

Saber-C incorporates several feawres that control the the severity and scope of its error checking.
Both load-time and run-time error detection can be suppressed interactively when a violation is reported,
by embedding comments in the source code, or by using the suppress command. The reporting of viola-
tions can be suppressed individually by line, function, file, or globally. Lint comments (e.g.
/*VARARGSn*/) are recognized and handled appropriately.

4. Interpreting C Source Code

The interpreter accepts and executes the C language as defined by K&R and as implemented by the
BSD UNIX version of pcc. Extensions proposed by the draft ANSI standard have also been included.

Summer USENTIYX “88 165 San Francisco, June 20-24

._—_—

Saber-C: An Interpreter-Based ... Kaufer, Lopez, Pratap

4.1. The Parser

The parser uses a single pass to convert C source code into an internal pseudo-code closely resem-
bling assembly language. This process is approximately 3 to 5 times faster than compiling the file with the
UNIX C compiler.

Source code is passed through a lexer that handles all preprocessing directives and comments, and
produces a list of tokens. The list of tokens is read by a LALR parser that generates pseudo-code. If the
source code is from a file, the pseudo-code is saved for later evaluation. If the source code if from the
workspace, it is passed directly to the evaluator.

. list of internal
ai:::llcal > parser evaluator
code yzer tokens pseudo-code

source

|

42. The Evaluator |
|

I

The evaluator implements a stack-based machine that executes the pseudo-code produced by the
parser. The evaluator executes C code approximately 200 times slower than compiled object code; much
of this speed penalty is due to the extensive error checking performed during execution.

During execution, the evaluator detects approximately 70 run-time violations involving out-of-
bounds pointers, illegal array indices, memary used before set for variables and allocated data, improper
function arguments, arithmetic over/underfiow, and type mismatches.

In order to perform this error checking, Saber-C implements its own memory management system
that is used for all statically and dynamically defined data. The memory manager maintains information
about the size and type of data stored at any memory address. The size and layout of data is exactly the
same as is produced by the compiler (e.g. pointers are always 4 bytes), thereby allowing data to be defined,
initialized, and used by both source and object code.

The following example illustrates an out-of-bounds pointer error. When the error occurs, execution
is interrupted and information about the cause and the location of the problem is displayed.

1l -> char *cp, buf[10]:;

2 => for (cp = buf; cp <= buf + 10; cp++)

3 +> *cp = 0;

Error #67: Dereferencing a pointer that is out of bounds.
Pointer = 0xb7f5a, low bound = 0xb7£50, high bound = 0xb7f5a.

Pointer went bad on line 2 in (workspace)

Pointer previously pointed to variable buf.

The evaluator maintains information about the type of data stored at an address, enabling it to detect
dynamic type mismatches. In the example below, a value of type char * is stored in the variable
data_instance, only to be retrieved later as type double.

Summer USENIX °88 166 San Francisco, June 20-24

Kaufer, Lopez, Pratap Saber-C: An Interpreter-Based ...

~> union DATA { char *name ; double value ; }

-> union DATA data_instance ;

->

-> data_ instance.name = "foobar";

-> print£("%£\n", data_instance.value);

Warning #54: Retrieving a <double> from data_instance.
The object stored there is a <pointer>.

(SIS FU RN N I o

The following example illustrates a dynamic used-before-set error. Saber-C notes in its memory
manager that an address is uninitialized, allowing it to detect this violation on a byte-by-byte basis.

1l -> int i, *ptr ;

2 -> ptr = (int *)malloc(l0 * sizeof(int)) ;

(int *) Oxbbl30 /* (allocated) */

3 =>1 = *ip ;

Warning #55: Using allocated address <0xbbl30> which has not been set.

4.3. System Environment

Since Saber-C and the user’s program execute as the same process (unlike debuggers such as sdb and
dbx), certain system calls are trapped to provide correct behavior during execution. For instance, all of the
system calis relating to signals are handled by the interpreter so that errors in object code do not cause a
core dump of Saber-C itself. Also, the functions setjmp and longjmp have been modified to allow programs
to jump between object code and source code.

Both fork and vfork have been modified to provide better control over programs that spawn child
processes. When a program calls fork or vfork, the entire Saber-C process forks. The interface manager,
which executes as a separate process, also forks and reestablishs a new communication channel with the
child process. In a windowing environment, Saber-C redirects the input/output streams of the evaluator to
a new window. On an ascii terminal, Saber-C prompts during the forking process for a tty device to use as
the console for the child process.

5. Linking Files

The dynamic linker takes the place of the UNIX linker within the Saber-C environment. As files are
loaded into the environment, they are linked with all previously loaded files. The symbol and type infor-
mation from source code and object code files is stored in common global tables. Saber-C allows indivi-
dual files to be unloaded and reloaded without requiring that any of the other files be reloaded or relinked.
Thus, the process of relinking a single file requires only a few seconds.

Libraries are initially attached to the environment, meaning that their contents are available to the
linker when required. Befare program execution begins, or anytime an undefined object is referenced in
the warkspace, the linker searches all attached libraries for definitions that will satisfy currently unresolved
or undefined variables or functions.

Saber-C conforms to the behavior of the UNIX linker /d with regard to linking order, treatment of
common symbols, and processing symbol tables and relocation information. However, while i only com-
plains when a symbol is initialized in more than one file, Saber-C aiso complains about size and type
mismatches. When faced with a size and type mismatch, Id simply chooses the largest size and ignores the

Summer USTFNTX 88 167 San Francisco, June 20-24

Saber-C: An Interpreter-Based ... Kaufer, Lopez, Pratap

source object

i coxde library
symbols symbols symbols
dynamic program
linker in memory

type. In such similar situation, Saber-C reports a mismatch and prompts the user to either continue linking
(in which case it will chose the largest size as the linker does), or abort the linking process to allow the user
to correct the error.

5.1. Intermixing Source and Object code

Saber-C’s linker can link together source code and object code without any restrictions. While it is
relatively easy to link together data symbols, resolving function calls between object code and source code
proved quite challenging. Functions have only one address, and function calls (including dereferencing
function pointers) must work from both source and object code.

In Saber-C, object code functions remain completely untouched; however, each source code function
is preceded by a header that contains several assembly code instructions. These assembly code makes a
call to the ‘eval’ function in the evaluator, passing the name of the function to be executed.. The address of
a source code function is the address of the header, making it possible to pass function pointers to object
code without any conversions. When a source code function calls another source code function, the header
is ignored. .

52. Prototyping

Unlike the UNIX linker, Saber-C's dynamic linker does not require that all symbols be defined
before execution can begin. This greatly facilitates bottom-up and top-down development, as well as test-
as-you-code debugging techniques. Saber-C maintains a list of undefined variables and functions, and pro-
pagates this information to all objects that directly or indirectly depend on the undefined entity. These
dependent objects are then considered to be unresolved. For example, the function rest() is unresolved if it
directly calls an undefined function or uses an undefined variable, or if any execution path originating in
test() can eventually call some undefined function or use an undefined variable.

Unresolved source code functions can be executed until the point at which an undefined variable is
used or an undefined function is called. Since Saber-C cannot control execution within object code, the
user is notified when entering object code that has not been fully resolved. At this point, it is possible to
suspend execution and load the appropriate files or libraries to define the needed objects. Alternatively, the
programmer may provide a substitute value to be used instead of calling the function or referencing the
variable, thereby allowing execution to continue with the object remaining undefined.

Summer USENIX "88 168 San Francisco, June 20-24

Kaufer, Lopez, Pratap Saber-C: An Interpreter-Based ...

1 -> int 4, foo():

2 -> j = foo() :

Error #61: Calling undefined function foo().

To continue, use ‘cont <int>’.

If you define the function, use ‘cont’ or <Control-D> to retry.
(break 1) 3 -> cont 4

(int) 4

4 -> print J
(int) 4

5 =>

6. Source Language Debugging

Saber-C’s source language debugger is more a collection of debugging commands than a separate
component within the system. The debugging commands support breakpoints, watchpoints (suspending
execution when an address is modified), racing, and controlled execution (step and next). All of the
debugging commands work at the source language level.

6.1. Extensibility

Since a fixed set of debugging commands cannot satisfy all possible debugging requests that a user
could have, Saber-C’s debugging commands are designed to be extensible.

All commands may be invoked through a C language interface. This involves adding the prefix
"saber_" to the name of the command, and then calling it as a C function. The options and switches for the
command are passed within a string as an argument to the function. The example below indicates how one
might write a function to show the definition and the defining iocation for an identifier.

1l -> int show(iden)

2 +> char *iden;

3 +> {

4 +> saber whatis(iden);
5 +> saber_ whereis (iden):
6 +> }

Saber-C also provides an extensible debugging command called an action. The action works much
like a breakpoint or watchpoint, but instead of stopping when the line is reached or variable modified, a
user-specified section of code is executed. The text of the action can be used to test conditions, print mes-
sages, or suspend execution under certain circumstances. For example, a conditional debugging action that
prints the value of two variables and suspends execution when they are equal can be specified as:

Summer USENTX “88 169 San Francisco, June 20-24

Saber-C: An Interpreter-Based ...

10 -> action in main

Setting action #1 at "main.c":50

action -> {

action ~> printf("abc = %d, xyz = %d\n", abc, xyz)
action -> if(abc == xyz) saber_stop("")

action -> }

11 >

In the second line of the debugging action, the C version of the stop command is used to suspend
execution when the conditional statement is true,

A final, extensible feature of Saber-C is that users may override the default printing mechanisms for
displaying data. For every unique type, the user may request that a function of their own be called when-
ever Saber-C would normally try and display the object. In practice, this is most commonly used to display
structures according to the semantic notion of the data inside.

7. Problems and Future Directions

Saber-C is a memory and computation intensive application. Our rule of thumb is that for every
megabyte of executable image, your machine should have 4 megabytes of available RAM. Saber-C will
run with smaller amounts of memory, but the paging activity from the operating system quickly becomes a
problem. Current development efforts are targeted at reducing Saber-C’s memory requirements.

We have identified several areas in which Saber-C could be functionally improved. The debugging
commands (such as step and stop) currently operate only on interpreted source code. This limitation could
be eliminated by adding the capability to disassemble and debug object code.

The process of reloading a file from a breaklevel currently requires that execution start over after the
reloading has completed. Ideally, users should be able to continue execution, with the newly reloaded func-
tions replacing the old versions upon subsequent invocations.

An area that shows great potential is optimizing the intermediate code produced by the parser. The
current intermediate code is based on a complex instruction set that requires the evaluator to perform
several lookups for even simple C statements. Simplifying the intermediate code could improve the speed
of execution significantly.

8. Conclusion

At the time this paper is being written, Saber-C is being used by several hundred users. Saber-C has
been used to help develop software such as the X11 Toolkit at MIT’s Project Athena, the Diamond Mul-
timedia Editor at Bolt Beranek & Newman in Cambridge, as well as, of course, development of Saber-C
itself,

Saber-C has proven to be a practical tool for developing software in the C language. The interactive
workspace provides a unique run-time environment for testing and debugging C code. The ability to
experiment with arbitrary C expressions or subsections of a program is extremely useful for prototyping
and modular development of programs.

Saber-C’s comprehensive load-time and run-time error detection reduces the difficulty of locating
program errors. The debugging commands provide users with complete source language debugging. Also,
the editing interface facilitates easy movement between the workspace and an edit job.

Kaufer, Lopez, Pratap

Summer USENIX “88 170 San Francisco, June 20-24

s

Kaufer, Lopez, Pratap Saber-C: An Interpreter-Based ...

References

[1] Adams, E. and Muchnick, S.S., "Dbxtool: A window-based symbolic debugger for Sun worksta-
tions," Software - Practice and Experience, vol. 16, no. 7, July 1986, pp. 653-669.

[2] Chase, B. B. and Hood, R. T., "Selective interpretation as a technique for debugging computationally
intensive programs”, ACM SIGPLAN Notices, vol. 22, no. 7, July 1987, pp. 113-124,

[3] Delisle, NM. el AL, "Viewing a programming environment as a single tool,” ACM SIGPLAN
Notices, vol. 19, no. 5, April 1984, pp. 49-56.

[4] Feuer, A. R, "si - an interpreter for the C language,” USENIX Conference Proceedings, Summer
198S5, pp. 47-55.

[51 Feuer, A. R, "Introduction to the Safe C Runtime Analyzer," Catalytix Corporation Technical
Report, January 1985.

[6] Ross, G., "Integral C - a practical environment for C programming,” ACM SIGPLAN Notices, vol.
22, no. 1, January 1987, pp. 42-48.

Summer USENIX “88 171 San Francisco, June 20-24

