
AN INTERPRETIVE
ENVIRONMENT FOR OPERATIONS
SUPPORT SYSTEMS

________ Thaddeus J. Kowalski, Yean-Mlng Huang, and Helen V. Dlamantldls

42

Thaddeus J. Kowalski
is a member of techni­
cal staff in the
Computer-Aided Infor­
mation Systems
Research Department
at AT&T Bell Labora­
tories in Murray Hill,
New Jersey. Mr.
Kowalski is currently
examining how pro­
grammer productivity
can be increased. His
interests also include
artificial intelligence,
operating systems,
computer-aided design,
text-processing environ­
ments, and real-time
systems. Mr. Kowalski
joined the company in
1978. He has a B.S.E.
from the University of
Michigan, Ann Arbor,
and holds the M.S.E.E.
and Ph.D. degrees in
electrical engineering
from Carnegie-Mellon
University, Pittsburgh,
Pennsylvania. Yean­
Mlng Huang is a
member of technical
staff in the Special Ser­
vices Automation Ser­
vices Development
Department at AT&T
Bell Laboratories in
Middletown, New Jer­
sey. Mr. Huang is
(continued on page 50)

AT&TTECHNICAL JOURNAL.MARCHIAPRlL 1990

We have developed aninteractive Cprogramming
environment (cens) with integrated facilities tocreate,
edit, browse, execute, and debug Cprograms. At the
heartofcens is a Csource-code interpreter, cin, that
implements correct and complete Csemantics; enables
rapid prototyping; performs extensive errorchecks; facil­
itates incremental update; manages multiple software
views; and provides a programmable command lan­
guage. Inthis article, we discuss how a medium-sized
software project, the switched access remote test system
(SARTS) , has benefited from using c in for debugging,
software manufacturing, and rapid prototyping. Using
SARTS as a case study, we also describe how the interac­
tive environment catches errors and allows corrections
"on the fly," thereby shortening the debug cycle bya
factor of500 percent.
Introduction

In recentyears, increased programmer productivity has become
the warcryofalmost every organization that createsandmaintains
software. Oneofthe largestsingle factors in productivity is program­
mer experience;' both in the language or languages used and in the
application area. No other factor comesclose to the impact ofexperi­
enceon overall productivity. Experience, however, has a high market
value; andexperienced programmers tend to move on to greener
pastures-either to anotherproject or to other companies-leavingthe
taskofmaintaining andenhancing completed applications to less
experienced programmers. Because the newprogrammers do not
really understand the program andmakemany mistakes as partof
their "learning curve," programmer turnover leadsto maintenance
headaches in many projects.

The Clanguageinterpreter, cin, is oriented toward program­
mers who needhelptestingand debugging their codeas theywrite it.
It assiststhem byproviding an environment wheretheycancreate

SMAS

LISP
PASCAL
PL/C
RTS
SABLE
SARTS
Smalltalk

Panel 1. Terms and Acronyms In This Paper
ASCII American Standard Codefor

Information/Interchange/Interexchange
programming language
programming language
programming language
remote test systems
software productadministration system
switched access remotetest system
programming language

(Xerox Corporation)
Switched Maintenance Access System

code, test it immediately, and executeit in debugging
mode. Gin is alsouseful forexperienced programmers
who need to debug and manufacture software in a rapid
prototyping environment. It facilitates their program­
mingby:
- Strictly enforcing typechecking
- Catching errors and allowing the developers to correct

them "onthe fly"
- Providing facilities for incremental compilation and

update
- Interfacing with various productadministration tools.
Cin decreases timespent in the debugcycle by allowing
programmers to see the effects oftheir changeswhen
theyare made. Furthermore, it narrows the gapfrom
code generation to systemtest by providing an environ­
mentwhere a module can be tested as soonas it is
manufactured. Perhaps more important for large sys­
tems, cin's ability to combine sourceand object code
seamlessly minimizes run timebylimiting the interpreted
portion to routines under development, while the bulkof
the program is executed as compiled code. Thus, pro­
grammers can use cin duringmaintenance to learnhow
existing modules operateby runningthem in interpreted
mode, while the rest ofthe systemruns in compiled
mode. Finally, c in supportssoftware reuse because
new routines can be individually created, tested, and

efficiently integrated with the rest ofthe working system.
Gin consistsofthe following:

- cin_read, an incremental parser and analyzerfor
sourcecode

- cin_compile, an optimizer
- cin_load and cin_unload, an incremental loader

forobject and library code
- cin_eval, an evaluator
- cin_print, a universal printer.
These tightly coupled routines are the foundation ofthe
debuggertoolkit.

Gin command language is identical to the C pro­
gramming language. Like the C programming language,
cin is extended bypredefined routines andvariables.
Wehavefound this makesit easyto customize and inter­
face cin to existing software productenvironments. See
Panels2 and 3for a complete listofthe cin routines and
user-accessible variables.

Interactive programming environments are not
a newidea. Environments for the LISp,Z,3 PASCAL,4-6
PL/C,7,8 andSmalltalkv'? languages haveexisted for
several years. These environments are designed to
improve the productivity ofprogrammers and the quality
oftheir programs.11-13 Within the last few years,workhas
started onvarious piecesofa C program environment,
including syntax-directed editors," smartcompilers,
interpreters.P'"? debuggers,18-19 andbrowsers.zQ-z1

Our solution to the problem combines a multi­
window editorandbrowser, an on-line advisor, a C
source-code interpreter, and an incremental object file
loader. Ourprogramming environment is not tightly
integrated; that is, the piecesworkseparately as well as
together. This meansthat anyone utility-advisor,
browser, editor, interpreter, or loader-ean be used by
itself, or with one or moreadditional tools, in a custom­
ized environment. Thus,wehavecreatedan openarchi­
tecture for rapid prototyping.

Rapid prototyping meansdifferent thingsto dif­
ferentpeople. To us, it meansthat existing modules can
be found and modified easily; that the effects ofchanges

AT&T TECHNICAL JOURNAL. MARCHIAPRIL 1990

43

Panel 3. cion User-Accessible Variables
cin_argc number ofarguments
cin_argv arguments
cin_erLfd, c Ln's file descriptors

---------------------~ cin_in_fd,
cin_out_fd

sionis followed by an outline ofthe novel method we
used to transferthe c in technology from researchto
development. Next, weshow howthe interactive pro­
gramming environment catcheserrors andallows
corrections "onthe fly," therebyshortening the debug
cycle bya 500 percent. Finally, weconclude with a dis­
cussion ofopenproblems andfuture work.

nameofthe currently execut­
ingfile

numberoftimesthe inter­
preter has been invoked

searchpathforlibraries

linenumberin the currently
executing file

user prompt
run timestack
listofloaded sourceand
object files

cin_prompt

cin_stack

The Switched Access Remote Test System
SARTS, the switched accessremote test system,

is a computer-based remoteaccessand test system for
special-service circuits. It was designed to provide access
andtestingfunctions througha central interface located
at a special-service center (SSe), andhas been serving
special-services customer needsforover15years.

ASARTS testingstation consists ofa bisynchro­
nousterminal and telephone console. Throughthe ter­
minal, the circuit tester accesses the minicomputer pro­
cess controller, which processesthe test commands and
translates them intocontrol codes. The process con­
trollerthen sends the control codesto testingdevices
such as the remotetest system (RTS), which accesses
the circuit viathe Switched Maintenance Access System
(SMAS). Figure 1depicts a simple SARTS configuration.

Panel 2. cion User-Modifiable Routines
c in_b reak, set breakpoints
cin_unbreak,
cin_stopin,
cin_system,
cin_return

canbe seen and tested immediately; that specifications
canbe createdand tested throughprototypes; and that
the separatetools allwork togetheras a single unit.

In this article, wefocus on howa medium-sized
software project, SARTS, has benefited by using c in for
debugging, software manufacturing, and rapid prototyp­
ing. Weintroduce the SARTS development environment
anddescribe howSARTS is manufactured. This discus-

cin_step, step throughcode
cin_stepin,
cin_stepout

cin_spy,cin_unspy watch variables for
accessor modification

cin_wrapper, watch routines forcalls
cin_unwrapper and return
cin_dump savethe incrementally-built

environment as an
44 executable program

cin_log recorduser sessions
cin_find_ident, provide information
cin_info,cin_ltof

cin_view control the symbol tables
ofsourceandobject code

cin_quit exit
cin_reset start a program from its

initial state

AT&T TECHNICAL JOURNAL. MARCHIAPRIL 1990

iI

Central Office

test point

Special Services Center

Central Office

illIIlIIIJ m
r.:z:-

Process controller

Figure 1. SARTS
configuration, show­
Ing connections
between the central
offlces,SSC,andpr~

cess controller.

45

Data link line

- - -- - Test status verify and talk lines

The SARTS Development Environment
For the SARTS development organization, it is

costly and timeconsuming to set up equipment and real
special-services circuits foreach software developer to
test. Moreover, software developers needto share limited
laboratory resourcessuch as processcontrollers, test dev­
ices, andcircuits. Therefore, many simulated subsystems,
such as the test station emulator and the RTS simulator,
were developed to do unitand integration tests.

The SARTS software is 400,000 linesofC source
code administered by the SABLE22 software product
administration system, running under the UNIX®

operating system. It is manufactured usingnmake.
Each generic releasein thisview-pathing environment
has an official nodecontaining the approved software; all
the other nodescontain changesonly forthe different
versions ofthe genericrelease.

SARTS is composed ofabout30simultaneous
processes up to 3 megabytes in size. These processes
communicate throughsharedmemory andmessages.
Tools have been builtto allow a software developer to
createlibraries andsubsystems forunitand integration
tests. During testing, SARTS runs usingthe latestexecut­
able programs and datafiles along the view path.

AT&TTECHNICALJOURNAL. MARCH/APRIL 1990

46

SARTS
core

Figure 2. SARTS multiuser environment as the central point
for stout, Ibslm, and urs.

The standard development environment is called
the SARTS multiuser environment. SARIS developers
thus have a personal test environment wheretheycan
build processcontroller software subsystems without
usingscarcelaboratory resources. Multiple developers
can also test processcontroller software in parallel.

Figure 2 depicts a few ofthe processes in the
SARIS multiuser environment. The UNIX systemprocess
s taut is the test station emulator that accepts inputfrom
an asynchronous terminal and emulates the bisynchro­
nousprotocol with the rest ofthe SARIS core software.
The urs processis the UNIX system RTS simulator. Urs
canbe programmed to generatedifferent responses
representing different measurements on a variety ofcir­
cuits. The ib s im processis the inboard simulator for dif­
ferentkindsofremotemeasurement systems available in
the SARIS environment.

The Transfer of Interpretive Technology to SARTS
Although the SARIS multiuser environment gives

SARIS developers an adequate testingcapability, the

AT&T TECHNICAl JOURNAl. MARCHIAPRIL 1990

testingcycle remains lengthy. WhenSARIS developers
found a problem in the multiuser environment, theytypi­
cally used three methods to isolate the problem. They
examined message traces, inserted printstatements, and
pondered function call traces. The SARIS management
teamwanted to find a way to improve programmer pro­
ductivity in debugging code.

Theylooked to researchfora solution. How­
ever, technology transferis a difficult problem because it
requiresan interface between two different cultures:
researchand development. Weemployed a technology
broker to simplify the transfer of c in. Asthe name
implies, a broker is an internal consultant whose respon­
sibility is matching the technology available in research
with the needsofa development organization. Asa rule,
the broker establishes the connections between the
researchand development organizations; matches needs
to solutions before the initial meeting; andplays an ongo­
ingpart duringthe transferprocess.

Througha customer needsassessment, the
consultant/broker found that the cens programming
environment capabilities matched SARIS's technology
and productivity needs. Shefound that a typical error in
SARIS duringthe unittest period would takemany hours
to fix, including:
- Identifying the error
- Finding the file andfunction
- Correcting the software
- Rebuilding the troubled subsystem
- Booting up the multiuser environment
- Submitting the changesto SABLE.
This cycle would be repeated foreacherror found in the
multiuser environment.

The broker explained that SARIS waslooking for
a debuggerto helpdevelopers troubleshoot their code.
This debuggerhad to be introduced into the environ­
mentofa stableoperations support system with minimal
risk. Though c in was a technical match, it needed to
meet requirements inother areas:
- Wasit robust?

- Did it run on computerand terminal equipmentcom­
patible withthe SARTS environment?
- Didit run on simpleASCII terminals?
- Didit run on the VAX™ versionofUNIX SystemV?

- VVasitdocumented?
- VVould it be supportedfor SARTS use?
- Had it been used by other projectsin production work?
Theanswerto allthese questionswasyes. Because cin
metallthe entrance criteria, it seemed to be a good can­
didate for use in the SARTS world.

Later,during the transfer of cin to the SARTS
project, the broker increased our productivity by facilitat­
ing communications, planning and decision-making, and
bykeepingthe momentumgoing during the trialperiod.

SARTSjcin Multiuser Environment
VVe designed a newarchitecturefor the SARTS

multiuser environment. It provided a friendly on-line
debugging tool that allowed the developers to:
- Change and test the source code interactively, without

restartingthe multiuserenvironment. This is ofcon­
siderable significance, because it usually takes five to
ten minutesjust to start the multiuserenvironment.

- Setmultiple breakpointsin the source code.
- Checkpointerand range error, the number and type

ofarguments,and the pre-and post-conditions for
standardfunctions.

- Load the newestobjectand source filesfromthe
SARTS view path.

Cin's debuggingfacility and incremental loader
provide the desired features withminormodification. All
thatwasneeded was to:
- Modify cin to suspend the SARTS test stationemula­

tor (the stout process) when a UNIX system signal
or a breakpointin software is detected, and resume
stout after appropriate action has been taken.

- Modify the SARTS multiuserenvironment to allow
four to six developers to run simultaneously on a sin­
glemachine.

- Modify the test stationemulatorto suspend itself

whenit receives the appropriate signalfrom cin,
and to continue when it receives a signalto resume.

- Integrate cin withthe view path buildtooland
nmake.

- Modify cin to reduce the process run sizeby 50
percent.

- Install AT&T 630 MTG software and a Hewlett-Packard
terminalemulatorin SARTS development machines.

The newprocess controller software development sys­
tem is calledthe SARTS/cin multiuserenvironment.

We further noted that SARTS developers spend
about 10to 30percent oftheir time searchingfor a func­
tion and probingthe relationship betweenthat function
and other subroutines. Searchingfor a function in a file
usually requires either excellentguessworkor liberal
use of grep, a UNIX system"search a file for a pattern"
utility. Aresearch solution fromthe cens programming
environment is the Cbrowser, samuel. It can answer
queries about C constructs that retrievereferencesto a
C symbol or function; definitions ofstructures or func­
tions; callsto a function; callsby a function to other func­
tions; and a listingofalldefinitions offunctions in the
source code. The browserwill alsodo grep-like string
searches. In addition, the advisor featureprovides a
quickdesk reference-e.g., the calling sequenceofa
function and its return value-to a catalog ofpreviously
writtenmodules. It scans both user-defined reuse cata­
logsand the standard UNIX system libraries.

The advisor's database is simple to create and
maintain. Several examples havebeen createdby
developers to simplify using large librarypackages (such
as the Xlibrary). Samuel is currentlybeingtested by
SARTS developers on a limited number ofAT&T 630
MTG terminals.

An Example In the SARTSjcin Multiuser Environment
In the past,SARTS developers used message

traces, print statements,and function calltraces to debug
their code. Each time a fixwastested, the systemhad to
be brought down and restarted. Oncethe SARTS/cin

AT&T TECHNICAL JOURNAL. MARCHIAPRIL 1990

47

Figure 3. SARTSjCIN multiuser environment shown when
user Interface manager (umgr) process dies.

multiuser environment wasintroduced, the developers
could use an environment that neverneeded restarting.
This section provides a glimpse ofthe current debugging
process.

In Figure3,we are runningthe SARTS multiuser
environment when the process umgr (user interface
manager) dies. We mayuse the software debugger, sdb,
to determinethat umgr diedat the function umg r.i.Ln i.t,
in the file uminit . c. We then copythe uminit . c file
in the subdirectory s r c / umg r, and invoke the view path
buildtool, cinbldmu. This instructs cin to load
uminit . c and allthe. 0 files fromthe view path. The
ability to combine source and objectcode seamlessly is a
key feature of cin: the programmercan choose to inter­
pret only those routinescurrentlyunder development,
while executing the bulk ofthe programas compiled
code. This facility guarantees that, evenin large

48

umgr

init

---.....
msgproc.o

libcisl.a

systems, the productivity benefitsofdebugging withcin
can be obtained for a small price.

Now we are readyto run SARTS/cin againby
typing tinit to start the environment. This time cin is
runningthe umgr process in interactive mode. During
the initialization ofumg r, cin detects an integerdivide
byzero, suspends stout, takes over input/output con­
trol,and promptsthe user for input. Atthe linenumber
shown by cin, the function umgcinit has an assign­
mentstatement'average = total/time;.' The
developer typesthe variable name 'time;,' and cin .
returns withvalue (d.rrt) o. To correct the problem, the
developer must set the variable time equalto value 1.
This is doneby entering't ime = 1;' afterthe cin>
prompt. Now the developer can continue to test by typ­
ing 'cin_return () ..' Gin will instruct stout to con­
tinue. Note, too, that the developer can set breakpoints
at various placesin the sourcecode. This causes cin to
suspend stout, and permitsthe developer to change
the source code at the breakpoint without bringing down
the multiuserenvironment.

This example showsthat a developer does not
haveto shutdown the SARTS multiuser environment to
change the value ofthe variable time. This savesfrom
five to ten minutes ofthe developer's timewhenever an
error is found and fixed. There is a furthergain in pro­
ductivity because the developer's concentration stays
focused on the error and its solution; there is no 10­
minute delay. Astudydoneat Hewlett-Packard shows
that it can take as much as 20minutesto recover from
evenshort interrupts in a programmer's trainofthought.

Other Projects
The toolsin the cens interactive C program­

mingenvironment havebeen mixed and matched to
formseveralcustomized programming environments
throughoutAT&T.

Interactive Graphics. Gin is used to develop the Xt­
based OPEN LOOK® "widget" set. Gin provides

AT&T TECHNICAL JOURNAL. MARCHIAPRIL \990

incremental compiling and loading for developing and
testing Xtwidgets. It has reduced the typical loadand
testtimefrom3 minutes to 30seconds. It alsoeliminates
theneedfor disk storage oflarge numbers ofexecutable
unit tests. Similarly, cin is also used for MITX
Windows™ widgetsynthesis and editing.

LargeMultiprocess Systems. Gin is used to debug
and test the SARTS multiuserenvironment. When com­
bined with sable and nmake, cin provides a software
manufacturing environment where errors are caught and
corrected "on the fly" withoutreloading the multiuser
environment. Gin has replacedthe five- to ten-minute
reload ofthe multiuserenvironment withan incremental
update ofunder a minute. A similar effort is going on
with the AT&T Definity" 75development team.

Unit Testing. Gin is used to builda unit test envi­
ronment for the AT&T AUTOPLEX® cellulartelecom­
munications system. It provides a simulation ofthe disk­
lessstandalone environment needed to test and integrate
software modules. Regression, coverage, error-path,
low-level integration, and unit tests are performed, and
unit test historiesare recorded.

Incrementalloading AndCompiling. Gin'S incremen­
talloaderis used to add customized functions at run time
inAT&T's schematic capture system, schema; a simula­
tion system, midas; and AT&T's placeand route tool,
1tx2. Schema uses c Ln's incremental loaderto decrease
execution time by a factor ofmore than 27 (Le., 2700 per­
cent) and memoryusage by a factor of260 percent. The
interpreter is under consideration as a simulation engine
for behavioral synthesiswork.

Integrated Debugging Environments. Gin is used as a
debugger for the software development assistant
environment.P Combined withthe objectgenerationsys­
tem, MITXWindows, and the Andrew system, it pro­
vides a software manufacturing environment for unit test­
ing in the Definity 75system.

Program Generation Environments. cin'S incremental
loader is used to add synthesized functions at run time in

the BriefCase project. Combined withan object-oriented
database, the loaderprovides software environments
where object-oriented databaseproperties, writtenin the
C language, can be modified and then reused dynamically.

FutureWork
We are currentlyusing cens to explore interface

design, pedagogical methods,and programming environ­
ment technology. Insteadofcreatingan application­
orientedlanguage, we provide an interpretive C-language
interface that allows programmers to use C code to .
enter, manipulate, and debug an application. This design
choiceboth decreases trainingtimefor the application
and increases reuse ofexistinginterface code. Gens,
used withbonsai,25 facilitates learningthe C language
by helpingstudents quickly pinpoint programming
errors; by providing data structure animation facilities;
and by reducingthe number oflanguagesthey must
master. (Because the command language of cin is C,
the burden ofteachingyet another debugger language to
the novice programmerdisappears). This easy-to-use
instructional environment helps students concentrate on
programming conceptsand algorithms rather than
language syntax. Finally, our current research in pro­
gramming environment designexploresthe use ofdistri­
buted interpretation. For example, a distributed version
of cin couldreduce the debuggingand maintenance
cycle for switch-development applications like the
Definity 75system. We are alsointerested in developing
a programmer'stoolbox. Currently, we are enhancing
cens withadditional facilities for large multiprocess sys­
tems, e.g., intelligent testing, reverse execution, and
graphical interfaces.

Conclusion
In this article, we havefocused on howa

medium-sized software project, SARTS, has benefited by
using cin for debugging, software manufacturing, and
rapid prototyping. SARTS uses cin's breakpoint facilities

AT&T TECHNICAL JOURNAL. MARCHIAPRIL 1990

49

50

to debug multiuser environment code. The developers
havebenefited from c i.n's strong typechecking ofC
code,startinga phasedclean-up oftheir codewhile han­
dlingmaintenance requests. Theyhavealsobenefited
from an average decreaseoffive minutes or more in the
"error fix to retry" time. The introduction of c in into
SARTS has shown that c in can be incorporated intoa
stableoperations supportsystemwith minimal risk. The
firstof these payoffs wasexpected, but the last three
wereadditional benefits.

Wehaveoutlined the novel method used to
transferthe c in technology from research to develop­
ment. Having a leading edge research area requires the
mostmodem methodsto transfertechnology in a timely
and seamless fashion to development. Research gains
from more timely feedback; development gainsfrom new
technology. These benefits provide strongmotivation
for technology transfermatches.

References
1. C.Jones,Programming Productivity, McGraw-Hili, NewYork, 1986.
2. W.Teitelman and L. Masinter, 'The INTERLISP Programming

Environment," Computer, Vol. 14, No.4, April 1981, pp.25-33.
3. E. Sandewall, "Programming in an Interactive Environment The

'LISP' Experience," Computing Surveys, Vol. 10, No. I, March1978,
pp.35-71.

4. N.M. Delisle, D. E. Menicosy, and M.D.Schwartz, "Viewing a Pro­
gramming Environment as a Single Tool," Software Engineering
Symposium onPractical Software Development Environments,
April 24,1984, pp.49-56.

5. S. P. Reiss, "Graphical ProgramDevelopment withPECAN Pro­
gram Development Systems," ACMSIGPLAN Notice, Vol. 19,
No.5, May1984, pp.30-41.

6. M.H. Brown and R. Sedgewick, "ASystem forAlgorithm Anima­
tion," Computer Graphics, Vol. 18, No.3, July1984, pp.177-186.

7. J Archer, Jr. and R. Conway, "COPE: ACooperative Programming
Environment, Technical Report TR81-459, Cornell University,
Department ofComputer Science, June 1981.

8. T. Teitelbaum andT. Reps, 'The Cornell ProgramSynthesizer: A
Syntax-Directed Programming Environment," Communications of
the ACM, Vol. 24, No.9, September1981, pp.563-573.

9. A J Goldberg and D.Robson, Smalltalk-80: The Language andits
Implementation, Addison-Wesley, Reading, Massachusetts, 1985.

10. L. Tesler, 'The Smalltalk Environment," BITE, August 1981,
pp.90-147.

AT&T TECHNICAL JOURNAL.MARCHIAPRIL 1990

11. W.Teitelman and L. Masinter, 'The INTERLISP Programming
Environment," Computer Vol. 14, No.4, April 1981, pp.25-33.

12. S. P. Reiss, "Graphical Program Development withPECAN Pro­
gram Development Systems," ACMSIGPLAN Notice, Vol. 19, No.
5, May 1984, pp.30-41.

13. A.R. Feuer,"si-AnInterpreterfor the C Language," USENIX
Summer Conference Proceedings, USENIX Association, Portland,
Oregon, June 1985, pp.47-55.

14. J R. Horgan and D.J Moore, ''Techniques for Improving
Language-Based Editors," ACMSIGPLAN Notices, Vol. 19, No.5,
May 1984.

15. S. Kaufer, R. Lopez, andS. Pratap, "Saber-C: AnInterpreter-Based
Programming Environment for the C Language," USENIX Summer
Conference Proceedings, USENIX Association, SanFrancisco, Cali­
fornia, 1988, pp.161-171.

16. A. R. Feuer,"si-AnInterpreterfor the C Language," USENIX
Summer Conference Proceedings, USENIX Association, Portland,
Oregon, June 1985, pp.47-55.

17. D.G.Belanger, G.D. Bergland, and M.Wish, "Some Research
Direction for Large-Scale Software Development," AT&TTechnical
journal, Vol. 67, No.4, JulyIAugust 1988, pp.77-92.

18. E.Adams andS.S.Muchnick, "Dbxtool AWindow-Based Symbolic
DebuggerforSunWorkstations," USENIX Summer Conference
Proceedings, USENIX Association, Portland, Oregon, June 1985,
pp.213-227.

19. T. A. Cargill, 'The FeelofPi,"USENIX Winter Conference Proceed­
ings, USENIX Association, Denver, Colorado, January1986,
pp.62-71.

20. J L. Steffen, "Interactive Examination ofa C Program with
Cscope,' USENIX Winter Conference Proceedings, USENIX Associa­
tion,Dallas, Texas,January1985, pp.170-175.

21. D.G.Belanger, G.D.Bergland, and M.Wish, "Some Research
Direction forLarge-Scale Software Development," AT&TTechnical
journal, Vol. 67,No.4,July/August 1988, pp.77-92.

22. S. Cichinski and G.S. Fowler, "ProductAdministration Through
Sable and Nmake,' AT&TTechnicaljournal, Vol. 67,No.4,
JulyIAugust1988, pp.59-70.

23. C.C.Hayden, J. C.Mitchell, J. Mukerji and F.A. Schmidt, 'The
Software Development Assistant," AT&TTechnical journal, Vol. 69,
No.2, MarchiApril 1990, pp.76-90.

24. D.G.Belanger, G.D.Bergland, and M.Wish, "Some Research
Direction for Large-Scale Software Development," AT&TTechnical
journal, Vol. 67, No.4, july/August 1988, pp.77-92.

Biographies (continued)
currently working on the Switched Access Remote Testing
Systems development. His interests include computer aided
software engineering tools, network management systems,

software manufacturing, and testing environment. Mr. Huang
joined the company in 1983. He has a B.S. from Taiwan Nor­
mal University, Taipei, an M.S. in Computer Science from the
University of South Carolina, Columbia, and a Ph.D in
Mathematics from the University of Minnesota, Minneapolis.
Helen V. Dlamantldls is a member of technical staff in the
Software Architecture Department at AT&T Bell Laboratories
in Liberty Corner, New Jersey. Ms. Diamantidis is currently
analyzing what it would take to run her center as a business
and what change agents need to be put in place to increase
software productivity from a process point of view. Her
interests also include long range planning on productivity for

software development in the R&D community, economics­
driven technology transfer, analysis and management of
software development processes, and organizational dynam­
ics. She has a B.S. in mathematics from the City College of
New York and an M.S. incomputer science from Stevens
Institute of Technology, Hoboken, New Jersey.

(Manuscript receivedJanuary 13, 1990)

AT&T TECHNICAL JOURNAL. MARCHIAPRIL 1990

51

