42

AN INTERPRETIVE
ENVIRONMENT FOR OPERATIONS
SUPPORT SYSTEMS

Thaddeus J. Kowalski, Yean-Ming Huang, and Helen V. Diamantidis

Thaddeus J. Kowalski
is @ member of techni-
cal staff in the
Computer-Aided Infor-
mation Systems
Research Department
at AT&T Bell Labora-
tories in Murray Hill,
New Jersey. Mr.
Kowalski is currently
examining how pro-
grammer productivity
can be increased. His
interests also include
artificial intelligence,
operating systems,
computer-aided design,
text-processing environ-
ments, and realtime
systems. Mr. Kowalski
Jjoined the company in
1978. He has a B.S.E.
from the University of
Michigan, Ann Arbor,
and holds the M.S.E.E.
and Ph.D. degrees in
electrical engineering
from Carnegie-Mellon
University, Pittsburgh,
Pennsylvania. Yean-
Ming Huang is a
member of technical
staff in the Special Ser-
vices Automation Ser-
vices Development
Department at AT&T
Bell Laboratories in
Middietown, New Jer-
sey. Mr. Huang is
(continued on page 50)

AT&T TECHNICAL JOURNAL » MARCH/APRIL 1990

We have developed an interactive C programming
environment (cens) with integrated facilities to create,
edit, browse, execute, and debug C programs. At the
heart of cens is a C source-code interpreter, cin, that
implements correct and complete C semantics; enables
rapid prototyping; performs extensive error checks; facil-
itates incremental update; manages multiple software
views; and provides a programmable command lan-
guage. In this article, we discuss how a medium-sized
software project, the switched access remote test system
(SARTS), has benefited from using ¢in for debugging,
software manufacturing, and rapid prototyping. Using
SARTS as a case study, we also describe how the interac-
tive environment catches errors and allows corrections
“on the fly,” thereby shortening the debug cycle by a
factor of 500 percent.
Introduction

In recent years, increased programmer productivity has become
the war cry of almost every organization that creates and maintains
software. One of the largest single factors in productivity is program-
mer experience,! both in the language or languages used and in the
application area. No other factor comes close to the impact of experi-
ence on overall productivity. Experience, however, has a high market
value; and experienced programmers tend to move on to greener
pastures—either to another project or to other companies—leaving the
task of maintaining and enhancing completed applications to less
experienced programmers. Because the new programmers do not
really understand the program and make many mistakes as part of
their “learning curve,” programmer turnover leads to maintenance
headaches in many projects.

The C-language interpreter, cin, is oriented toward program-

mers who need help testing and debugging their code as they write it.
It assists them by providing an environment where they can create

Panel 1. Terms and Acronyms in This Paper

ASCII American Standard Code for
Information/Interchange/Interexchange

LISP programming language
PASCAL programming language
PL/C programming language
RTS remote test systems

| SABLE software product administration system
SARTS switched access remote test system

Smalltalk programming language
(Xerox Corporation)

| SMAS Switched Maintenance Access System

code, test it immediately, and execute it in debugging
mode. Cin is also useful for experienced programmers
who need to debug and manufacture software in a rapid
prototyping environment. It facilitates their program-
ming by:
= Strictly enforcing type checking
= Catching errors and allowing the developers to correct
them “on the fly”
= Providing facilities for incremental compilation and
update
= Interfacing with various product administration tools.
Cin decreases time spent in the debug cycle by allowing
programmers to see the effects of their changes when
they are made. Furthermore, it narrows the gap from
code generation to system test by providing an environ-
ment where a module can be tested as soon as it is
manufactured. Perhaps more important for large sys-
tems, cin’s ability to combine source and object code
seamlessly minimizes run time by limiting the interpreted
portion to routines under development, while the bulk of
the program is executed as compiled code. Thus, pro-
grammers can use cin during maintenance to learn how
existing modules operate by running them in interpreted
mode, while the rest of the system runs in compiled
mode. Finally, cin supports software reuse because
new routines can be individually created, tested, and

efficiently integrated with the rest of the working system.

Cin consists of the following:

= cin_read, an incremental parser and analyzer for
source code

= cin_compile, an optimizer

= cin_load and cin_unload, an incremental loader
for object and library code

= cin_eval, an evaluator

= cin_print, a universal printer.

These tightly coupled routines are the foundation of the

debugger tool kit.

¢in command language is identical to the C pro-
gramming language. Like the C programming language,
cin is extended by predefined routines and variables.
We have found this makes it easy to customize and inter-
face cin to existing software product environments. See
Panels 2 and 3 for a complete list of the ¢ in routines and
user-accessible variables.

Interactive programming environments are not
anew idea. Environments for the LISP,%3 PASCAL,*-%
PL/C,"8 and Smalltalk®1? languages have existed for
several years. These environments are designed to
improve the productivity of programmers and the quality
of their programs.!1-13 Within the last few years, work has
started on various pieces of a C program environment,
including syntax-directed editors,* smart compilers,
interpreters,!>17 debuggers,'#1% and browsers.?-?!

Our solution to the problem combines a multi-
window editor and browser, an on-line advisor, a C
source-code interpreter, and an incremental object file
loader. Our programming environment is not tightly
integrated; that is, the pieces work separately as well as
together. This means that any one utility—advisor,
browser, editor, interpreter, or loader—can be used by
itself, or with one or more additional tools, in a custom-
ized environment. Thus, we have created an open archi-
tecture for rapid prototyping.

Rapid prototyping means different things to dif-
ferent people. To us, it means that existing modules can
be found and modified easily; that the effects of changes

AT&T TECHNICAL JOURNAL ¢ MARCH/APRIL 1990

43

44

Panel 2. cin User-Modifiable Routines
cin_break, set breakpoints
cin_unbreak,

cin_stopin,

cin_system,

cin_return

cin_step, step through code
cin_stepin,

cin_stepout

watch variables for
access or modification

cin_spy,cin_unspy

watch routines for calls
and return

cin_wrapper,
cin_unwrapper

save the incrementally-built
environment as an
executable program

cin_dump

cin_log record user sessions

cin_find_ident,
cin_info,cin_ltof

provide information

control the symbol tables
of source and object code

cin_view

cin_quit exit
cin_reset start a program from its
initial state

can be seen and tested immediately; that specifications
can be created and tested through prototypes; and that
the separate tools all work together as a single unit.

In this article, we focus on how a medium-sized
software project, SARTS, has benefited by using cin for
debugging, software manufacturing, and rapid prototyp-
ing. We introduce the SARTS development environment
and describe how SARTS is manufactured. This discus-

AT&T TECHNICAL JOURNAL « MARCH/APRIL. 1990

Panel 3. cin User-Accessible Variables
cin_argce number of arguments

cin_argv arguments

cin_err_f£d, cin’s file descriptors
cin_in_fd,

cin_out_fd

name of the currently execut-
ing file

cin_filename

number of times the inter-
preter has been invoked

cin_level

cin_libpath search path for libraries

cin_lineno line number in the currently

executing file
cin_prompt user prompt
cin_stack run time stack

list of loaded source and
object files

cin_views

sion is followed by an outline of the novel method we
used to transfer the ¢ in technology from research to
development. Next, we show how the interactive pro-
gramming environment catches errors and allows
corrections “on the fly,” thereby shortening the debug
cycle by a 500 percent. Finally, we conclude with a dis-
cussion of open problems and future work.

The Switched Access Remote Test System

SARTS, the switched access remote test system,
is a computer-based remote access and test system for
special-service circuits. It was designed to provide access
and testing functions through a central interface located
at a special-service center (SSC), and has been serving
special-services customer needs for over 15 years.

A SARTS testing station consists of a bisynchro-
nous terminal and telephone console. Through the ter-
minal, the circuit tester accesses the minicomputer pro-
cess controller, which processes the test commands and
translates them into control codes. The process con-
troller then sends the control codes to testing devices
such as the remote test system (RTS), which accesses
the circuit via the Switched Maintenance Access System
(SMAS). Figure 1 depicts a simple SARTS configuration.

Central Office Central Office Figure 1. SARTS
configuration, show-

= test point test point T ing connections
o T Elee ks =5 between the central
[Sy offices, SSC, and pro-
smas | smas
R | & cess controller.
rts s

= e

Special Services Center Process controller

Data link line

Test status verify and talk lines

The SARTS Development Environment operating system. It is manufactured using nmake.

For the SARTS development organization, it is Each generic release in this view-pathing environment
costly and time consuming to set up equipment and real has an official node containing the approved software; all
special-services circuits for each software developer to the other nodes contain changes only for the different
test. Moreover, software developers need to share limited versions of the generic release.
laboratory resources such as process controllers, test dev- SARTS is composed of about 30 simultaneous
ices, and circuits. Therefore, many simulated subsystems, processes up to 3 megabytes in size. These processes
such as the test station emulator and the RTS simulator, communicate through shared memory and messages.
were developed to do unit and integration tests. Tools have been built to allow a software developer to

The SARTS software is 400,000 lines of C source create libraries and subsystems for unit and integration
code administered by the SABLE?? software product tests. During testing, SARTS runs using the latest execut-
administration system, running under the UNIX® able programs and data files along the view path.

AT&T TECHNICAL JOURNAL « MARCH/APRIL 1990

46

urs ibsim |

Figure 2. SARTS multiuser environment as the central point
for stout, ibsim, and urs.

The standard development environment is called
the SARTS multiuser environment. SARTS developers
thus have a personal test environment where they can
build process controller software subsystems without
using scarce laboratory resources. Multiple developers
can also test process controller software in parallel.

Figure 2 depicts a few of the processes in the
SARTS multiuser environment. The UNIX system process
stout is the test station emulator that accepts input from
an asynchronous terminal and emulates the bisynchro-
nous protocol with the rest of the SARTS core software.
The urs process is the UNIX system RTS simulator. Urs
can be programmed to generate different responses
representing different measurements on a variety of cir-
cuits. The ibsim process is the inboard simulator for dif-
ferent kinds of remote measurement systems available in
the SARTS environment.

The Transfer of Interpretive Technology to SARTS

Although the SARTS multiuser environment gives
SARTS developers an adequate testing capability, the

AT&T TECHNICAL JOURNAL » MARCH/APRIL. 1990

testing cycle remains lengthy. When SARTS developers
found a problem in the multiuser environment, they typi-
cally used three methods to isolate the problem. They
examined message traces, inserted print statements, and
pondered function call traces. The SARTS management
team wanted to find a way to improve programmer pro-
ductivity in debugging code.

They looked to research for a solution. How-
ever, technology transfer is a difficult problem because it
requires an interface between two different cultures:
research and development. We employed a technology
broker to simplify the transfer of cin. As the name
implies, a broker is an internal consultant whose respon-
sibility is matching the technology available in research
with the needs of a development organization. As a rule,
the broker establishes the connections between the
research and development organizations; matches needs
to solutions before the initial meeting; and plays an ongo-
ing part during the transfer process.

Through a customer needs assessment, the
consultant/broker found that the cens programming
environment capabilities matched SARTS'’s technology
and productivity needs. She found that a typical error in
SARTS during the unit test period would take many hours
to fix, including:
= Identifying the error
= Finding the file and function
= Correcting the software
= Rebuilding the troubled subsystem
= Booting up the multiuser environment
= Submitting the changes to SABLE.

This cycle would be repeated for each error found in the
multiuser environment.

The broker explained that SARTS was looking for
a debugger to help developers troubleshoot their code.
This debugger had to be introduced into the environ-
ment of a stable operations support system with minimal
risk. Though cin was a technical match, it needed to
meet requirements in other areas:
= Was it robust?

= Did it run on computer and terminal equipment com-
patible with the SARTS environment?

— Did it run on simple ASCII terminals?

— Did it run on the VAX™ version of UNIX System V?
= Was it documented?
= Would it be supported for SARTS use?
= Had it been used by other projects in production work?
The answer to all these questions was yes. Because cin
met all the entrance criteria, it seemed to be a good can-
didate for use in the SARTS world.

Later, during the transfer of cin to the SARTS
project, the broker increased our productivity by facilitat-
ing communications, planning and decision-making, and
by keeping the momentum going during the trial period.

SARTS/cin Multiuser Environment
We designed a new architecture for the SARTS
multiuser environment. It provided a friendly on-line
debugging tool that allowed the developers to:
= Change and test the source code interactively, without
restarting the multiuser environment. This is of con-
siderable significance, because it usually takes five to
ten minutes just to start the multiuser environment.

= Set multiple breakpoints in the source code.

= Check pointer and range error, the number and type
of arguments, and the pre- and post-conditions for
standard functions.

= Load the newest object and source files from the
SARTS view path.
Cin’s debugging facility and incremental loader
provide the desired features with minor modification. All
that was needed was to:
= Modify cin to suspend the SARTS test station emula-
tor (the stout process) when a UNIX system signal
or a breakpoint in software is detected, and resume
stout after appropriate action has been taken.

= Modify the SARTS multiuser environment to allow
four to six developers to run simultaneously on a sin-
gle machine.

= Modify the test station emulator to suspend itself

when it receives the appropriate signal from cin,
and to continue when it receives a signal to resume.
= Integrate c in with the view path build tool and
nmake.
= Modify cin to reduce the process run size by 50
percent.
= Install AT&T 630 MTG software and a Hewlett-Packard
terminal emulator in SARTS development machines.
The new process controller software development sys-
tem is called the SARTS/ cin multiuser environment.

We further noted that SARTS developers spend
about 10 to 30 percent of their time searching for a func-
tion and probing the relationship between that function
and other subroutines. Searching for a function in a file
usually requires either excellent guesswork or liberal
use of grep, a UNIX system “search a file for a pattern”
utility. A research solution from the cens programming
environment is the C browser, samuel. It can answer
queries about C constructs that retrieve references to a
C symbol or function; definitions of structures or func-
tions; calls to a function; calls by a function to other func-
tions; and a listing of all definitions of functions in the
source code. The browser will also do grep-like string
searches. In addition, the advisor feature provides a
quick desk reference—e.g., the calling sequence of a
function and its return value—to a catalog of previously
written modules. It scans both user-defined reuse cata-
logs and the standard UNIX system libraries.

The advisor’s database is simple to create and
maintain. Several examples have been created by
developers to simplify using large library packages (such
as the X library). samuel is currently being tested by
SARTS developers on a limited number of AT&T 630
MTG terminals.

An Example In the SARTS/cin Multiuser Environment

In the past, SARTS developers used message
traces, print statements, and function call traces to debug
their code. Each time a fix was tested, the system had to
be brought down and restarted. Once the SARTS/cin

AT&T TECHNICAL JOURNAL « MARCH/APRIL 1990

47

48

init

stout |

” cin

L.~ uminit.c
umgr mMSgproc.o |

libcisl.a

Figure 3. SARTS/CIN multiuser environment shown when
user interface manager (umgr) process dies.

multiuser environment was introduced, the developers
could use an environment that never needed restarting.
This section provides a glimpse of the current debugging
process.

In Figure 3, we are running the SARTS multiuser
environment when the process umgr (user interface
manager) dies. We may use the software debugger, sdb,
to determine that umgr died at the function umgr_init,
in the file uminit.c. We then copy the uminit. c file
in the subdirectory src/umgr, and invoke the view path
build tool, cinbldmu. This instructs cin to load
uminit.c and all the . o files from the view path. The
ability to combine source and object code seamlessly is a
key feature of cin: the programmer can choose to inter-
pret only those routines currently under development,
while executing the bulk of the program as compiled
code. This facility guarantees that, even in large

AT&T TECHNICAL JOURNAL « MARCH/APRIL 1990

systems, the productivity benefits of debugging with cin
can be obtained for a small price.

Now we are ready to run SARTS/ cin again by
typing tinit to start the environment. This time cin is
running the umgr process in interactive mode. During
the initialization of umgr, cin detects an integer divide
by zero, suspends stout, takes over input/output con-
trol, and prompts the user for input. At the line number
shown by cin, the function umgr_init has an assign-
ment statement ‘average = total/time;.’ The
developer types the variable name ‘time;, and cin
returns with value (int) 0. To correct the problem, the
developer must set the variable time equal to value 1.
This is done by entering ‘time = 1;’ after the cin>
prompt. Now the developer can continue to test by typ-
ing ‘cin_return() ;. Cin will instruct stout to con-
tinue. Note, too, that the developer can set breakpoints
at various places in the source code. This causes cin to
suspend stout, and permits the developer to change
the source code at the breakpoint without bringing down
the multiuser environment.

This example shows that a developer does not
have to shutdown the SARTS multiuser environment to
change the value of the variable time. This saves from
five to ten minutes of the developer’s time whenever an
error is found and fixed. There is a further gain in pro-
ductivity because the developer’s concentration stays
focused on the error and its solution; there is no 10-
minute delay. A study done at Hewlett-Packard shows
that it can take as much as 20 minutes to recover from
even short interrupts in a programmer’s train of thought.

Other Projects

The tools in the cens interactive C program-
ming environment have been mixed and matched to
form several customized programming environments
throughout AT&T.

Interactive Graphics. Cin is used to develop the Xt-
based OPEN LOOK® “widget” set. Cin provides

incremental compiling and loading for developing and
testing Xt widgets. It has reduced the typical load and
test time from 3 minutes to 30 seconds. It also eliminates
the need for disk storage of large numbers of executable
unit tests. Similarly, cin is also used for MIT X
Windows™ widget synthesis and editing.

Large Multiprocess Systems. Cin is used to debug
and test the SARTS multiuser environment. When com-
bined with sable and nmake, cin provides a software
manufacturing environment where errors are caught and
corrected “on the fly” without reloading the multiuser
environment. Cin has replaced the five- to ten-minute
reload of the multiuser environment with an incremental
update of under a minute. A similar effort is going on
with the AT&T Definity® 75 development team.

Unit Testing. Cin is used to build a unit test envi-
ronment for the AT&T AUTOPLEX® cellular telecom-
munications system. It provides a simulation of the disk-
less standalone environment needed to test and integrate
software modules. Regression, coverage, error-path,
low-level integration, and unit tests are performed, and
unit test histories are recorded.

Incremental Loading And Compiling. Cin's incremen-
tal loader is used to add customized functions at run time
in AT&T’s schematic capture system, schema; a simula-
tion system, midas; and AT&T’s place and route tool,
1tx2. Schema uses cin’s incremental loader to decrease
execution time by a factor of more than 27 (i.e., 2700 per-
cent) and memory usage by a factor of 260 percent. The
interpreter is under consideration as a simulation engine
for behavioral synthesis work.

Integrated Debugging Environments. Cin isusedasa
debugger for the software development assistant
environment.? Combined with the object generation sys-
tem, MIT X Windows, and the Andrew system, it pro-
vides a software manufacturing environment for unit test-
ing in the Definity 75 system.

Program Generation Environments. cin’s incremental
loader is used to add synthesized functions at run time in

the BriefCase project. Combined with an object-oriented
database, the loader provides software environments
where object-oriented database properties, written in the
C language, can be modified and then reused dynamically.

Future Work

We are currently using cens to explore interface
design, pedagogical methods, and programming environ-
ment technology. Instead of creating an application-
oriented language, we provide an interpretive C-language
interface that allows programmers to use C code to ,
enter, manipulate, and debug an application. This design
choice both decreases training time for the application
and increases reuse of existing interface code. Cens,
used with bonsai,? facilitates learning the C language
by helping students quickly pinpoint programming
errors; by providing data structure animation facilities;
and by reducing the number of languages they must
master. (Because the command language of cin is C,
the burden of teaching yet another debugger language to
the novice programmer disappears). This easy-to-use
instructional environment helps students concentrate on
programming concepts and algorithms rather than
language syntax. Finally, our current research in pro-
gramming environment design explores the use of distri-
buted interpretation. For example, a distributed version
of ¢in could reduce the debugging and maintenance
cycle for switch-development applications like the
Definity 75 system. We are also interested in developing
a programmer’s toolbox. Currently, we are enhancing
cens with additional facilities for large multiprocess sys-
tems, e.g., intelligent testing, reverse execution, and
graphical interfaces.

Conclusion

In this article, we have focused on how a
medium-sized software project, SARTS, has benefited by
using < in for debugging, software manufacturing, and
rapid prototyping. SARTS uses cin’s breakpoint facilities

AT&T TECHNICAL JOURNAL « MARCH/APRIL 1990

49

50

to debug multiuser environment code. The developers
have benefited from cin’s strong type checking of C
code, starting a phased clean-up of their code while han-
dling maintenance requests. They have also benefited
from an average decrease of five minutes or more in the
“error fix to retry” time. The introduction of cin into
SARTS has shown that cin can be incorporated into a
stable operations support system with minimal risk. The
first of these payoffs was expected, but the last three
were additional benefits.

We have outlined the novel method used to
transfer the c in technology from research to develop-
ment. Having a leading edge research area requires the
most modern methods to transfer technology in a timely
and seamless fashion to development. Research gains
from more timely feedback; development gains from new
technology. These benefits provide strong motivation
for technology transfer matches.

References

1. C.Jones, Programming Productivity, McGraw-Hill, New York, 1986.

2. W. Teitelman and L. Masinter, “The INTERLISP Programming
Environment,” Computer, Vol. 14, No. 4, April 1981, pp. 25-33.

3. E. Sandewall, “Programming in an Interactive Environment: The
‘LISP’ Experience,” Computing Surveys, Vol. 10, No. 1, March 1978,
pp. 3571.

4. N. M. Delisle, D. E. Menicosy, and M. D. Schwartz, “Viewing a Pro-
gramming Environment as a Single Tool,” Software Engineering
Symposium on Practical Software Development Environments,

April 24, 1984, pp. 49-56.

5. S. P. Reiss, “Graphical Program Development with PECAN Pro-
gram Development Systems,” ACM SIGPLAN Notice, Vol. 19,

No. 5, May 1984, pp. 30-41.

6. M. H. Brown and R. Sedgewick, “A System for Algorithm Anima-
tion,” Computer Graphics, Vol. 18, No. 3, July 1984, pp. 177-186.

7. . Archer, Jr. and R. Conway, “COPE: A Cooperative Programming
Environment, Technical Report TR 81-459, Cornell University,
Department of Computer Science, June 1981.

8. T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment,” Communications of
the ACM, Vol. 24, No. 9, September 1981, pp. 563-573.

9. A.J. Goldberg and D. Robson, Smalltalk-80; The Language and its
Implementation, Addison-Wesley, Reading, Massachusetts, 1985.

10. L. Tesler, “The Smalltalk Environment,” BYTE, August 1981,
pp. 90-147.

AT&T TECHNICAL JOURNAL » MARCH/APRIL 1990

11. W. Teitelman and L. Masinter, “The INTERLISP Programming
Environment,” Computer Vol. 14, No. 4, April 1981, pp. 25-33.

12. S. P. Reiss, “Graphical Program Development with PECAN Pro-
gram Development Systems,” ACM SIGPLAN Notice, Vol. 19, No.
5, May 1984, pp. 30-41.

13. A. R. Feuer, “si - An Interpreter for the C Language,” USENIX
Summer Conference Proceedings, USENIX Association, Portland,
Oregon, June 1985, pp. 47-55.

14.]. R. Horgan and D. J. Moore, “Techniques for Improving
Language-Based Editors,” ACM SIGPLAN Notices, Vol. 19, No. 5,
May 1984.

15. S. Kaufer, R. Lopez, and S. Pratap, “Saber-C: An Interpreter-Based
Programming Environment for the C Language,” USENIX Summer
Conference Proceedings, USENIX Association, San Francisco, Cali-
fornia, 1988, pp. 161-171.

16. A. R Feuer, “si - An Interpreter for the C Language,” USENIX
Summer Conference Proceedings, USENIX Association, Portland,
Oregon, June 1985, pp. 47-55.

17. D. G. Belanger, G. D. Bergland, and M. Wish, “Seme Research
Direction for Large-Scale Software Development,” AT&T Technical
Journal, Vol. 67, No. 4, July/August 1988, pp. 77-92.

18. E. Adams and S. S. Muchnick, “Dbxtool A Window-Based Symbolic
Debugger for Sun Workstations,” USENIX Summer Conference
Proceedings, USENIX Association, Portland, Oregon, June 1985,
pp. 213-227.

19. T. A. Cargill, “The Feel of Pi,” USENIX Winter Conference Proceed-
ings, USENIX Association, Denver, Colorado, January 1986,
pp. 62-71.

20. J. L. Steffen, “Interactive Examination of a C Program with
Cscope,” USENIX Winter Conference Proceedings, USENIX Associa-
tion, Dallas, Texas, January 1985, pp. 170-175.

21. D. G. Belanger, G. D. Bergland, and M. Wish, “Some Research
Direction for Large-Scale Software Development,” AT&T Technical
Journal, Vol. 67, No. 4, July/August 1988, pp. 77-92.

29. S. Cichinski and G. S. Fowler, “Product Administration Through
Sable and Nmake,” AT&T Technical Journal, Vol. 67, No. 4,
July/August 1988, pp. 59-70.

23. C.C. Hayden, J. C. Mitchell,]. Mukerji and F. A. Schmidt, “The
Software Development Assistant,” AT&T Technical Journal, Vol. 69,
No. 2, March/April 1990, pp. 76-90.

24. D. G. Belanger, G. D. Bergland, and M. Wish, “Some Research
Direction for Large-Scale Software Development,” AT&T Technical
Journal, Vol. 67, No. 4, July/August 1988, pp. 77-92.

Biographies (continued)

currently working on the Switched Access Remote Testing
Systems development. His interests include computer aided
software engineering tools, network management systems,

software manufacturing, and testing environment. Mr. Huang

joined the company in 1983. He has a B.S. from Taiwan Nor-
mal University, Taipei, an M.S. in Computer Science from the
University of South Carolina, Columbia, and a Ph.D in
Mathematics from the University of Minnesota, Minneapolis.
Helen V. Diamantidis is a member of technical staff in the
Software Architecture Department at AT&T Bell Laboratories
in Liberty Corner, New Jersey. Ms. Diamantidis is currently
analyzing what it would take to run her center as a business
and what change agents need to be put in place to increase
software productivity from a process point of view. Her
interests also include long range planning on productivity for

software development in the R & D community, economics-
driven technology transfer, analysis and management of
software development processes, and organizational dynam-
ics. She has a B.S. in mathematics from the City College of
New York and an M.S. in computer science from Stevens
Institute of Technology, Hoboken, New Jersey.

(Manuscript received January 13, 1990)

AT&T TECHNICAL JOURNAL « MARCH/APRIL 1990

51

