LETTERS

On the issue of whether Lyrix has most of
the capabilities of vi, I think vou and I dif-
Jer on the semantics ofrhe word capabili-
ties. Lyrix does have most of the capabili-
ties of vi, even though vi is a rext editor.

Your comments on the customization
featwres of Lyrix are correct. | have used
the customization features to a much
greater extent than [mentioned in the re-
view. This feature is one of Lyrix 's great-
est selling points.

Idid ven fyseveral of the problems that
vou pointed out, which I had not picked
up inmyusage. In regard to Lyrix s s peed
on my IBM PC, the occasional response
problems also appear with vi on my PC,
so don't think thar Lyrix itself has a sig-
nificant speed problem. I may be a little
biased, because the time-sharing systems
that I use in my work are extremely slow
due 1o the large number ofusers. Lyrix on
my PC is faster than my systems ar work
by a large factor.

—George R Allen

C, More

In the June C interpreter review, Mr.
Unger didn't point out the most obvious
advantage to using the C-terp interpreter.
Whenyousetup C-terp with your current
compiler, C-terp offers exactly the same
functions and features as the compiler.
This means that you don't have to create
wo versions of a program, one for C-terp
and one for the compiler.

By using C-terp, I can write a 10,000-
line program using all the functions of the
Microsoft compiler and still run it under
the interpreter to find a bug or error.
When you'redealing with large programs
with long compile times, C-terpis a god-
send. If [had to take my 10,000-line pro-
gram (in 20 to 30 files) and, for example,
change all occurrences of get() toget-
line({), I could never get a program
developed.

C-terp is too expensive if you are only
trying to learn C, but it is well worth the
money for professional programmers. If
you develop serious C programs, once
wou try C-terp you will never go back.

P. Lyle Mariam
St. Louis, MO

I pointed out in my review that i f vou have
a copy of one of the five C compilers sup-
ported by C-terp, you can create a ver-
sion of the inter preter that uses all the
functions that are available with thar
compiler.

In fact, yow can add other library func-
tions ro the inter preter using a simple but
somewhat tedious procedure; I added the
entire Essential Graphics graphics func-
tions to a version of C-terp. It increases
the size of the interpreter program and

corli nued

6 BYTE = SEPTEMBER 1987

LETTERS

consequently decreases the size of the
source code You can use.

When used in this way, C-terp is a tre-
mendous time saver for developing pro-
grams thar you will later compile.

—John Unger

C Syntax Checker

I read John Unger's review of C interpret-
ers (June) with great interest. C interpret-
ers are created as program-development
and debugging environments, not as
compilers, and the error messages they
generate are one of the most important is-
sues to consider when selecting one. Mr.
Unger deserves particular commendation

for addressing this concern.

As auser of the Microsoft C compiler,
I spent hours trying to locate mysterious
errors before | realized that the most
common mistakes are simple typos,
which the compiler usually notices sever-
al lines past the place where they actually
occur. Frustrated with missing braces
and other details, [wrote a program (see
listing 1) that performs a quick and rudi-
mentary syntax check on my source
code. The exit codes allow the use of this
syntax checker inbatch files, making the

entire compilation even easier.
Jerzy Tomasik
Long Beach, CA

Listing 1: Synrax checker for C source code.

/®syntax.c Programrumning aquick
syntax check on Csource code
Versionl.11
J. Tomasik; created 05/23/87

®/

Flnelude<stdio.h?

main{ arge, argv)
int arge;
char ®argv(];

FILE #fopen(), *infile;

charc;

int lbrace =0, rbrace=0,

squote = 0, dquote =0, lpar=0,
rpar =0; int rbrkt =0, 1brkt = 0;
int bytecount =0, errorecount = J;

if{arge l=2) {
printf("SYNTAX echecker forC
source cade, version 1.1\ n
Copyright (C) J. Tomasik 1987,
1988\ n\ n");
printf("Usage: syntax
fname.ext \n" };
exit{l);
}
infile = fopen{ argv[1], "r" };
if{ infile == NULL) E
printf("Cannot open s \ n",
argv[l]);
exit{2);

}

while((e=fgete(infile}) !=EOF } {

++hytecount;

if{e==1{")
++1lbrace;

elseif{ec=="}")
++rhrace;

elseif{e=="4")
++squote;

else if{ec="4"")
+dquote;

else if{ec=="(")
++1lpar;

else if{ c==")"')
+Hrpar;

elge if{c=="[")
++1brkt;

elgeif{e=="]")
++rhrkt ;

}

felosel infile);
printf{ "The file length is %\ n",
bytecount };
if(lbrace != rbrace) {
printf{ "There are § 3d left and
% 34 right braces\ n", lbrace,
rbrace };
++errarcount

)
if{ lpar != rpar) {
printf("There are ¥ 3d left and
% 3d right parentheses\ n",
lpar, rpar);
++errorcount;
)
1P 1brkt 1= rbrkt) {
printf{ "There are § 3d left and
% 3d right brackets \ n",
lbrkt, rborkt);
++erroreount;

)
if(squote® 2} {
printf{ "The single quote marks
are not paired\ n" };
++errorcount;

if(dquote®2) {
printf{ "The double quote marks

are not paired \ n");
++ETrToreount;
}
if(errorecount==0} {
printf("No errors found, OK to
compile’\ n") ;
exit{0);
}
else
exlt(errorcount);
}

ol fr ke

LETTERS

Understanding C

In thereview of C interpreters in the June
BYTE (" Four C Language Interpreters”
by John Unger), Mr. Ungerlists a single
“major shortcoming” of C-terp as “its
lack of a built-in library." What is horri-
fying about this statement is that it shows
a fundamental failure to understand the
reason for the product's existence.

C-terpis for those who need 1o develop
code for their compilers. It requires you
10 use the compiler's libraries, because it
is trying o limit the degree to which the
same source causes different results
when run under the inter preter and when
compiled by the compiler. In short, C-
terpis designed to be adevelopment envi-
ronment. Indeed, you cannot order C-
terp without specifying which compiler
you will be using. To fail to understand
that you must use your own compiler’s li-
brary of routines with C-terp is to fail to
understand the nature of the product. It's
much like complaining that a calculator
is a flawed product because it's too
mathematical.

There also seems 1o be a notion that C
interpreters are a great way to learn C.
Certainly Gimpel Software is not perpet-
uating that misconception, but the idea
exists nonetheless. BASIC is an ideal

learner's interpreted language, because
the significant unit in BASIC is the line.
[t is not idiotic to sit down at a computer
keyboard and start writing BASIC 1o
learn it. However, to produce code in a
modular language you must understand
the structure of the language, the scope of
variables, and so on In C, the words of
the language are less important than the
structure. Awoiding syntax errors is not
the heart of learning C.

At the Eye Research Institute, we re-
cently purchased a site license for C-terp
because it is so useful. In particular, it
has a good line editor, lets you run quick
checks o make sure you didn'tleave off a
semicolon, and lets you quickly test what
actually comes out of a function before
developing too much code for easy de-
bugging Furthermore, C-terp is a dream
for, say, graphics-routine development
With C-terp, you can interactively devel-
op what youwanttosee. [nsuch an appli-
cation, it's a minor miracle to have your
first compiled output the only compiled
output.

Tom Clune
Boston, MA

First, let me add the next three words of
the sentence that you quoted from my re-

view. The entire phrase is, "its lack of a
built-in library of mathematical func-
tions. "' C-terp comes with a complete
built-in library of extremely useful func-
tions and is lacking only in this one spe-
cific area—support for math functions.
Because both Run/C and Instant-C in-
clude mathematical functions in their
built-in libraries, I thought it was fair 1o
point out the omission of such functions
in C-rerp's.

C-terp is designed primarily for use in
adevelopmeni environment as a compan-
fon program to a specific C language
compiler; this makes its own lack of math
Jfunctions not as crucial. Bur C-terp can
also be used alone, as a tool to learn C, 1o
test conce pts of the language, and 1o pro-
duce useful programs that can run within
the confines of its interpreter environ-
ment. It is wrong to imply that C-terp
miust be used with a specific compiler. [
agree, however, thar any C language in-
terpreter is most useful when it can work
with source code that can be seamlessly
ported between the interpreter and com-
piler environments.

I wholeheartedly support your opinion
that trying ro learn C using a mindset de-
veloped in BASIC is a serious mistake.

corlined

18 BYTE » SEPTEMBER 1987

LETTERS

However, an interpreter s ability o carch
syntax errors guickly, which you yourself
mention, does make it a useful learning
tool for beginming C programmers.
—John Unger

Alternate Approach to DTP

The theme of the May issue of BY TE was
deskiop publishing; however, nowhere in
the articles or charts was there any men-
tion of the PowerText Formatter, an
$89.95 desktop-publishing product an-
nounced and shown at PC-Expo in July
1986.

John W. Seybold's view of deskiop
publishing is but one approach; he dis-
misses all approaches other than
WYSIWYG. But current Macintosh and
IBM WYSIWYG software leaves a lot to
be desired and suffers from some funda-
mental problems, and the alternatives
may be more cost-effective, both in initial
cost and in day-to-day operation in a pro-
duction environment

WYSIWYG is really only approxi-
mately what you get. The fons differ
from screen to page, and interletter and
word spacing differ. What looks nice
kerned on the screen can often end up as
touching characters on the printout, and
what seems to be centered on the screen

may notbe when it's printed.

Scaled fonts, such as those of Post-
Script, do not map onto dots very well. In
addition, a good typographer will often
change the shapes of letiers in different
sizes simply because they look better.
Mathematics can't do this. As a result,
scaled fonts are not as crisp and clear as
fonts discretely designed for each point
size.

WYSIWYG systems don't function
very well in environments where several
people supply the copy and where exter-
nal artwork and halftones have to be fac-
tored in. And, at least on the IBM PC and
the Macintosh, using WYSIWYG screens
1o lay out metro-size newspapers is some-
what like painting through a keyhole.

WY SIWYG requires alotof hardware.
In the PC arena, one really needs a PC
AT -class machine, an EGA card, a hard
disk drive, and a mouse, not to mention
the laser printer. Can everyone who
needs desktop publishing really afford all
this hardware?

WYSIWYG is ideal for flyers and
short newsletters. But is it really practical
for books of 200 or more pages?

When you strip away the hype from
desktop publishing, what you really find
is a problem of economics. Typesetting

costs a lot of money. That problem can be
addressed by 300-dot-per-inch(dpi) laser
printers, at least in typesetting textual
material. Page-layout and composition
programs have their place, but they are
only a part of the typesetting and publish-
ing problem. When the visual aspects of
each individual page are as important as
the textual aspects, then page-layout pro-
grams may be the ultimate solution.
However, advertising material, flyers,
and newsletters represent only a wvery
small percentage of the printed material
produced in this world. Are we o0 believe
that the economic solution to the high
cost of typesetting for each and every
page printed is to sit in front of a screen
with a mouse?

Your theme articles indicated that
desktop-publishing hardware costs be-
tween $10,000 and $15,000, with soft-
ware running between $200 and $800.
But consider this: The street price of an
HP LaserJet Series I printer is about
$1700, a good set oftimes roman and hel-
vetica fonts costs about $155, and the
PowerText Formatter costs $89.95. Inset
2, a graphics-capturing and editing pro-
gram from American Programmers
Guild Ltd., costs $99, and a clone costs

conlinyed

