
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

An Incremental Programming Environment
RAUL MEDINA-MORA, STUDENT MEMBER, IEEE, AND PETER H. FElLER

Abstract-This paper describes an incremental programming en-
vironment (IPE) based on compilation technology, but providing facili-
ties traditionally found only in interpretive systems. IPE provides a
comfortable environment for a single programmer working on a single
program.
In IPE the programmer has a uniform view of the program in terms

of the programming language. The program is manipulated through a
syntax-irected editor and its execution is controlled by a debugging
facility, which is integrated with the editor. Other tools of the tradi-
tional tools cycle (translator, linker, loader) are applied automatically
and are not visible to the programmer. The only interface to the pro-
grammer is the user interface of the editor.

Index Terms-Ada environments, incremental compilation, incre-
mental program construction, interactive debugging, programming en-
vrionments, programming methodology, software development environ-
ments, syntax-directed editing.

1. INTRODUCTION
A PROGRAMMING ENVIRONMENT supports program-

mers in the process of transformning specifications into
working programs. This process involves creation and modifi-
cation of programs, checking their consistency, generation of
an executable form, and moonitoring of the actual program be-
havior. Traditionally, a programming environment for com-
piled languages consisted of a high-level language and some
simple tools. One of the main purposes of a programming en-
vironment is to make it easier to write more sophisticated pro-
gramming systems. Programming languages contribute to this
goal by supporting concepts such as modularization and data
abstraction. The Ada language is a product of the evolution of
these concepts. Some improvements have also been made to
the different tools of the environment in isolation, but en-
vironments still consist of a set of independent tools. In pro-
gramming environments for interpreted languages emphasis has
been placed on the functionality of tools and their integration.
Such an environment provides the interactive behavior and
flexibility that is desired for experimental program develop-
ment. lnterlisp [1] is an example of such an environment.

Manuscript received August 10, 1980; revised March 9, 1981. This
work was supported in part by the Software Engineering Division of
CENTACS/CORADCOM, Fort Monmouth, NJ, and the National Uni-
versity of Mexico, Mexico City, Mexico. This is a revised version of a
paper presented at the Fifth International Conference on Software
Engineering.
R. Medina-Mora is with the Department of Computer Science,

Carnegie-Mellon University, Pittsburgh, PA 15213, on leave from the
Department of Computer Science, Institute of Applied Mathematics
and Systems, National University of Mexico, Mexico City, Mexico.

P. H. Feiler is with the Siemens Corporation with residence at the
Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA 15213.

In IPE (incremental programming environment) we attempt
to provide the comfort of a flexible and interactive program-
ming environment for compiler-based languages, i.e., to sup-
port development and maintenance of longer lived programs.
This is achieved by integration of the software tools into one
common goal. A common program representation provides
the means of communication among the tools. The environ-
ment has knowledge about the objects it manipulates and their
current state. it is, therefore, able to respond interactively to
incorrect or undesirable user actions. It can also make the
program state available for inspection.
The integration of the tools allows IPE to present the pro-

grammer with a uniform view of the program in terms of its
source form. The program is manipulated through a syntax-
directed editor, and its execution is controlled by a language
oriented debugger. The debugging actions are embedded in
the supported language and are invoked by editing the pro-
gram. Other tools are applied automatically by IPE at the ap-
propriate times. These tools and their representation are not
visible to the user, the only (thus uniform) interface is the user
interface of the editor. During the construction and manipula-
tion of the program, the programmer focuses on a small piece
of the program at a time. The program modifications cause
the system to incrementally compile those pieces and incorpo-
rate them into the executable version of the program.
One of the goals of IPE is to explore whether an IPE system

can be supported based on compilation technology only (i.e.,
no interpretation), but still providing facilities traditionally
found in interpretive systems. By compilation technology we
refer to the translation of the source program into a lower
level representation such as machine code, which is executable
separately from the source representation. In many compiler
systems to date the debugger provides an interpreter for a
limited subset of the language, in contrast with IPE which
implements the debugging facilities based on compilation. In
other words, we make the flexibility as it is found in in-
terpretive systems available to the programmer who uses a
compiler-based system.

Interactive programming environments that support com-
piled code pieces have been implemented before. Interlisp [1]
is a very sophisticated programming system for Lisp based on
interpretation. It allows program pieces to be compiled, but
they are linked into the execution by the interpreter. Simi-
larly debugging is done through interpretation. Other systems
such as the Cornell Program Synthesizer [2] are also based on
interpretation, but support compiled expressions.
Because IPE provides support not only for experimental pro-

gramming but also long-term program maintenance, a strongly

0098-5589/81/0900-0472$00.75 © 1981 IEEE

472

MEDINA-MORA AND FEILER: INCREMENTAL PROGRAMMING ENVIRONMENT

typed Algol-like language with facilities for abstraction and
modularization was chosen. A perfect choice would have been
Ada, but as the language is still going through the final modi-
fications and compilers do not yet exist for it, we have chosen
instead GC, a type-checked variation of C with module struc-
ture that runs under UNLXTM at Carnegie-Mellon University
[3].
IPE as reported here provides a comfortable environment for

a single programmer working on a single program. However,
its design has been influenced by the fact that it is a building
block of a more general software development environment.
Such an environment is being designed and built at Carnegie-
Mellon University in the Gandalf project [4], and IPE is part
of that project [5]. Gandalf, in addition to IPE's facilities,
provides support for managing a project that involves the inter-
action of several programmers [6], and for the manipulation
of system compositions and version control [7].
The rest of the paper is organized as follows. In Section 11

we describe traditional methods of programming in compiler
systems and relate to them the approach taken in IPE. Section
IllI contains a discussion of various design and implementation
issues dealt with in LPE. Finally, in Section IV we draw some
conclusions and describe the current state of the LPE
implementation.

11. PROGRAM MODIFICATION CYCLE
As a programmer goes from specification of programs to

their implementation, many tools are normally used. The im-
portant issue here, however, is not the tools that are used, but
the problems that the tools address. For example, a typical
editor does not manipulate programs, but only manipulates
text.
There are four problems that programming environment

tools must help the programmer solve. First, there must be a
method for the programmer to enter and modify programs.
Second, there must be a way of ensuring the syntactic and
semantic correctness of programs. Third, an executable form
of the program must be created. Fourth, there ought to be a
process that can help the programmer debug programs.

In the traditional methods these tools are largely independent
of each other, have different user interfaces, and use different
representations for the programs. In the following sections we
contrast the traditional methods with the IPE approach in
which the programmer is presented with an integrated and
interactive system.

A. Traditional Methods
Each of the programming environment problems mentioned

above has been addressed many times since people started to
program computers. Almost all the solutions, however, fit
into a standard tools cycle. The variations on the tools used
and the order of their use are slight, so the description that
follows is representative of most traditional compiler based
programming environments.
The traditional tools are the editor, the translator, the linker

and loader, and the debugger. The order in which these tasks
are usually applied is: enter/modify, compile, link and load,
debug. This cycle is repeated until the program appears to be

correct. The remainder of the section describes these tools in
more detail.

1) The Editor: The editor is used in a programming en-
vironment as a way to initially enter and subsequently modify
programs that are being developed in a particular programming
language. The drawback with traditional editors is that they
are general purpose text manipulators. The editor usually has
no knowledge of whether the text being entered represents a
program, a document, or a poem. If it has some idea, it is gen-
erally very limited. This ignorance inherently causes the need
for parsers that determine if the text which represents a pro-
gram is syntactically correct. The parser is usually part of the
translator, which makes the checking process very costly.
2) The Translator: The basic job of the translator is to

transform program text into another representation of the pro-
gram. In a compiler this representation is usually machine or
assembly language, while in an interpreter it is often an inter-
mediate language.
In traditional systems there are two tasks required for this

transformation. First, the textual representation of a program
must be analyzed for syntactic and semantic accuracy, a
process that is necessary because of the inability of the editor
to support a programming language. The resulting parse tree is
then checked for consistency of the language semantics, which
includes type checking, parameter checking, and operand
coercion.
The second task is the actual translation of the program into

a machine representation, such as assembly, object, or even
microcode. This is done by a traversal of the parse tree, and is
often combined with some semantic checking. In the process
of generating code, optimizations are often applied at various
points in order to improve the quality of the produced code.
However, during program development, nonoptimizing code
generators are often used.
3) The Linker and Loader: Programs, even small programs,

are often broken into several smaller pieces. It is usually con-
venient to keep these pieces in separate files and work on them
independently. The amount of program text to be checked is
kept small. However, there are often links among the pieces
that must be maintained. These are known as external refer-
ences and information about them is generated by the translator.
In a traditional system it is the job of the linker to resolve

these external references so that previously translated program
pieces can be combined to form a complete executable form
of the program. Because no assumptions are made about other
program pieces already being translated, linking is a separate
pass in the tools cycle, requiring all translated program pieces
to be processed for reference resolution. The loader's job is
simple once the linker has resolved the external references. All
it has to do is actually place the program in memory so that it
can be executed correctly. Traditionally, whenever any kind
of change is made to a loaded program (i.e., a piece is altered
and recompiled), linking and loading has to be done again.
Some systems such as Multics [8] reduce the effort of the
linker and loader by providing a dynamic linking mechanism
as part of the operating system.
4) The Debugger: The debugger is used to help a program-

mer observe the execution of a program. The purpose of this

473

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

is to detect erroneous program behavior and to locate its cause.

A very simple form of debugging support is symbolic dumps.
'A more advanced form is the interactive debugger that allows
programmers to dynamically set trace and break points at arbi-
trary locations, to inspect and alter values of variables and
data structures, and possibly even to use conditional debug
functions (e.g., break whenever x = 0). While debuggers allow-

ing these and possibly other actions are often available, most
of them do not work at the source code level. Variable and
procedure names can be referred to symbolically, but for the
rest the programmer must deal with the machine representation.
Source level debuggers are mostly found in conjunction with

interpreters. Where compiler systems provide source level de-
bugging, it is accomplished with a simple text line to machine
representation mapping. The unit for break and trace points
is a text line rather than a statement or expression. The com-

piler in such a compiler system in general does not optimize
code because certain optimizations (e.g., code motion) make
the mapping between the two representations difficult to
maintain.

B. The IPE Approach
The approach to program development supported by IPE

has some important advantages for both the programmer and
the IPE implementor. The integration of tools and their auto-
matic application at appropriate times provides a single and
uniform user interface. The programmer deals with his pro-

gram uniformly in terms of language constructs. Modularity
of the language restricts the accessibility at any point in the
program. The programmer has controlled access to a subset of
the program's procedures and objects, and thus can cause less
damage to unrelated program pieces.

Modularity also restricts the scope for semantic checking,
making it much more simple and efficient. The fact that a tool
resides in a well-defined environment, i.e., specific tools exist
and they are applied at appropriate times, can be used to
simplify the design and implementation of that tool. To en-

hance this cooperation all tools share a common program

representation-the syntax tree representation. This avoids the
usual necessity of constructing one representation in terms of
another (e.g., writing a syntactically correct program using a

line editor).
The tools cycle in IPE, called incremental program modifica-

tion mechanism, is very different from the traditional tools
cycle. The programmer has a uniform view of his program in
terms of source code. The program is manipulated through a

syntax-directed editor and its execution is controlled by a

language-oriented debugger. Other tools, such as the translator
and the linker/loader, are not visible to the user. They are

automatically invoked to keep the tree representation and the
(invisible) machine representation consistent.
1) Syntax Directed Program Editor: Modifications to the

program can be made through the editor during construction
of the program, and any time the program execution is sus-

pended. Language constructs (such as variables, operators,
expressions, different types of statements) can be added, modi-
fled, or removed. The programmer communicates with the
editor in terms of language constructs.

The editor constructs and manipulates a program tree di-
rectly. However, the programmer appears to construct the
program by inserting templates that represent different lan-
guage constructs and then filling the "holes" of those tem-
plates with other templates. Since the editor knows which
constructs are valid at any given point, it allows the program-
mer to insert a language construct only in a place where it is
syntactically correct.
For example, instead of typing the character sequence for an

if statement, the programmer calls on the template "if." The
result is the insertion of

if (<expression>)
<statement>

else
<statement>

at the current program position, provided that this construct
is syntactically correct in that context. The current program
position is advanced to <expression> so that it can be simi-
larly expanded. Note that the editor provides all the necessary
keywords, separators, terminators, and all the other "syntactic
sugar" required by the language like the parentheses around
the <expression> construct that are required by the C lan-
guage syntax. Problems such as misspelled or nonmatching
keywords cannot occur because the language constructs are
inserted by the editor and not by the typist. The editor re-
lieves the programmer from the worries of the syntax con-
straints imposed by the language.
The editor internally represents the program as a syntax tree.

Each template corresponds to a node of a certain type in the
tree. The holes of the template are the offsprings of the node.
They will be filled in as subtrees representing the expansion
of those holes. Fig. 1 shows the representation of the "if"
statement of the example above. To present the programmer
the text of his program the editor uses an unparser that trans-
lates the syntax tree into human readable text. As part of its
task this unparser does the pretty-printing of the program.
Thus, the programmer actually constructs and manipulates a
program tree without necessarily being aware of it.
The programmer interacts with the editor through language

commands and editing commands. Language commands are
used to construct new templates (e.g., the call for an "if"
template). Editing commands are used for manipulating the
program tree (e.g., delete a subtree). Even though most of
the debugging interaction is expressed in terms of language
and editing commands on the program tree, the editor com-
mand list is extended to include two commands that control
execution, i.e., start or continue execution and interrupt
execution.
The editor invokes the semantic checking routines while the

programmer is constructing or modifying his program and in-
forms the programmer of any semantic inconsistencies. The
semantic checking goes on while the programmer is "thinking"
at the terminal. When the programmer finishes the editing
session, the program is syntactically correct and semantically
checked, but it could be incomplete, that is, some "holes"
may be left unexpanded. The editor does not enforce semantic
correctness. It informs the programmer of errors and allows

474

MEDINA-MORA AND FEILER: INCREMENTAL PROGRAMMING ENVIRONMENT

i

Il

Fig. 1. Representation of an IF subtree.

their correction. Code will not be produced for a program

that is not semantically correct. Semantic correctness in this
context means correctness with respect to the programming
language semantics.
The idea of syntax-directed editing is not new. Some previ-

ous and related efforts include the following.
* *The Emily System [9] was one of the earliest efforts with

syntax-directed editing. The programmer constructed a pro-

gram by selecting a BNF production to replace the current
nonterminal. Emily was very slow and editing was very diffi-
cult. In order to compile a program, the programmer had to

produce a textual representation of the program which was

parsed by the compiler. The internal structure of the program

was not taken advantage of.
* Mentor [10] is a structure editor oriented towards Pascal.

Mentor incrementally parses the program text to create syntax
trees. It allows structured modification of programs. The syn-

tax trees are not used by the compiler. It must parse the pro-

grams from their textual representation.
* The Cornell Program Synthesizer [2] is a structure editor

that supports construction and manipulation of syntax trees.
At the expression level, however, the programmer inputs his
program as plain text which is then parsed. The synthesizer is
implemented for PL/CS a small subset of PL/i in a micro-
computer, i.e., it is geared towards the construction and execu-

tion of small programs.

By comparison, IPE performs structured editing at all levels
including expressions. The current position in the program

tree is clearly marked by highlighting the program text that
represents the subtree. The abstract syntax description of a

language defines names for operators that are specific (and
mnemonic) for that language. Editors can be automatically
generated from these grammatical descriptions. Finally, the
compiler uses the internal tree representation to generate
code, i.e., avoids parsing and syntax analysis.
2) The Common Representation: The syntax tree con-

structed by the editor has been chosen as the common repre-

sentation of programs. There are two types of nodes in the
syntax tree: terminal nodes (or leaves) and nonterminal nodes.
Terminal nodes are used to represent variables, constants,

some static language elements (e.g., data type names), and un-

expanded program constructs (placeholders or "holes") which
will be substituted by the correct subtree in the process of
constructing a program. The node for variables contains in-
formation about the symbol table. It also provides some

space to put semantic information like the type of the variable
and references to other occurrences of the same variable.

Nonterminal nodes describe subtrees of the program corre-
sponding to control flow constructs and data definitions in
the language (e.g., an if construct). The information available
at the node includes the type of language construct, references
to the parent node, and to its offsprings. There are two classes
of nonterminal nodes, one with a fixed number of offsprings,
and the other with a variable number of offsprings (repre-
sented as a linked list for constructs like a compound state-
ment). In addition, space for semantic information and
mapping information from the code generator is provided.
Fig. 1 illustrates the representation of the if statement ex-

ample mentioned in Section il-BI). The three offsprings are
terminal nodes representing unexpanded nodes.

In the next sections we describe the remaining mechanisms
and tools that are supported by IPE. They all interact with the
common program representation. They are grouped into pro-
gram translation, i.e., the update of the static program repre-
sentation, and debugging, or analysis of dynamic program
behavior.
3) Incremental Program Translation: During the process of

program construction and modification the semantic correct-
ness is checked. This checking is invoked automatically on an
incremental basis whenever the programmer completes changes
to a program piece (e.g., leaves the scope of a procedure with
the display cursor). Semantic correctness is not enforced, that
is, a programmer can use a variable before declaring it. How-
ever, code is only generated for semantically correct program
pieces.

Similar to semantic checking, code generation and link/load-
ing are invoked automatically. This activity is invisible to the
programmer, with the exception of possibly noticing it in the
system response. In order to keep the response time at a
reasonable scale, IPE processes the program incrementally.
Whenever the programmer completes modification of a pro-
gram part, e.g., a procedure, code is generated from its abstract
syntax tree. In the process all references can be resolved for
the generated code. The executable code for the modified
procedure is then deposited in the execution image by a load-
ing mechanism that replaces program parts in the execution
image statically, i.e., before execution starts or resumes. The
replacement does not affect other program parts in the execu-
tion image [see Section lil-Bl)].
The incremental program modification mechanism supports

execution of incomplete programs. All semantically correct
procedures have executable code loaded in the execution
image. For procedures with semantic errors IPE loads a code
stub. Execution of the program can be started at any time. If
the control flow encounters a code stub execution is sus-
pended. At this point the programmer can correct the pro-
cedure, causing the cod. stub to be replaced by.the actual code
for the procedure, and resume execution. This leads us to the
debugging support provided by IPE.
4) Language-Oriented Debugging: The debugging facility

of IPE is implemented without interpretation. This is achieved
by integrating the debugger with the incremental program
modification mechanism. By doing so the debugging actions
can be embedded in the program through extensions of the
programming language. For example, a conditional breakpoint

475

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

is set in a procedure through the syntax-directed editor by in-
serting the appropriate construct in the abstract syntax tree of
that procedure. As a result of the insertion the procedure is
automatically processed by the incremental program modifica-
tion mechanism, and the debug statement is reflected in the
execution image. The required language extensions, however,
are limited. Some languages already contain constructs that
can act as debug statements, such as assert in Euclid or Ada
and pause in Fortran.
By integrating the debugger with the incremental program

modification mechanism, the programmer is presented with a
uniform interface to 1PE. All interaction with IPE is per-
formed through the syntax-directed editor in a language-
oriented manner. The implementation of the debugger around
the abstract syntax tree allows the debug facilities to take ad-
vantage of the language knowledge that is embedded in the
tree. The content of variables is displayed according to their
data type. The location of execution is indicated by position-
ing the program cursor in the tree, which is useful for execu-
tion tracing. The programmer can evaluate any legal program
part, such as an expression, by defi1ning it with the syntax-
directed editor. If it is semantically correct code is generated
and it is evaluated by executing the temporarily loaded piece
of code.
The debugger implementation based on the abstract syntax

tree also lends itself to the provision of more sophisticated
debugging actions. One example is the runtime checking of
assertions. This idea has existed for some time (e.g., in Euclid
[11]). Assertions are provided by the programmer as part of
the program. They are in general limited to expressions that
may include calls to functions without side-effects. We at-
tempt to expand the expressive power of assertions beyond
that of many programming languages. In order to express cer-
tain verification conditions, constructs such as quantifiers and
previous values are introduced. lnitially, no code is generated
for assertions, but at any time during program execution the
programmer can request them to be enabled. Assertion code
is then added in the machine representation, and the validity
of the assertions is checked. This mechanism does not guaran-
tee correct programs, but is a small step in the direction of pro-
ducing verified programs.
Other debugging actions make use of the data flow and con-

trol flow information in the program tree. An example of a
debugging action in this class is the tracing of a crazy variable,
i.e., locating the place where a variable is assigned an erroneous
value. This is done by attaching a condition (e.g., an assertion)
to a variable and having it automatically checked whenever
the variable is changed.

In summary, a language-oriented debugging facility with
quite sophisticated functions can be provided without requir-
ing a separate complex system such as an interpreter, by basing
the implementation on the abstract syntax tree. The structure
editor serves as a uniform language-oriented user interface.
The incremental program modification mechanism allows de-
bugging actions to be specified and enabled dynamically.
Furthermore, debugging actions do not impose any overhead

111. DESIGN AND IMPLEMENTATION ISSUES

In this section we discuss some technical issues that have
arisen in the process of designing and implementing IPE.

A. The Editor
As mentioned earlier, the editor knows how to build pro-

grams in a specific programming language. The major ad-
vantages of this constructive approach are that programs are
edited in terms of the programming language constructs, and
that users cannot enter syntactically incorrect programs.
Hence, the first few compiles just "to get the semicolons right"
are no longer necessary. The whole process of translation
should be much more efficient than the normal method of
lexical and syntactic analysis, since the translation of character
strings to lexemes and from sequences of lexemes to syntactic
units are no longer necessary. Parsers are no longer needed.
The programmer can manipulate the program tree through

language commands and editing commands. Language com-
mands facilitate the building of program pieces in terms of
language constructs by expanding the "holes" in the program
templates. The "holes" in the templates are called meta-nodes,
that represent nodes that have not been expanded. Meta-nodes
have a name (also helpful for display purposes). By default
they get assigned the name of the set of language constructs
(also referred to as language operators) that can be applied at
that point (e.g., the set of statements). The programmer may
rename such meta-nodes in order to remember the name and
return to them at a later time, when he wants to expand them.
After every language command the current tree position is ad-
vanced to the next meta-node. Editing commands provide a
facility for more general tree manipulation.
As part of the language specification several unparsing

schemes are given for every language construct. This provides
an easy way to implement several pretty-print formats for the
same programming language. It also allows to present different
"views" of the same program by limiting access to parts of the
abstract syntax tree (e.g., one view that has the specification
and implementation parts of a module and another that only
has the implementation part).

Figs. 2 and 3 illustrate a sample editor session for the process
of creating a "for" loop statement in C. The first column gives
the commands typed by the user, the second column shows
how the terminal display would look like after the command
is executed, and in the third column the syntax tree structure
is presented.
Note that commands do not need to be typed fully, the pro-

grammer only needs- to type those characters needed to un-
ambiguously determine the command. Some commands have
synonyms for convenience (e.g., PLUS has "+" as a synonym).
Variables are preceded by a single quote to differentiate them
from commands.
Some of the editing commands available in the editor are as

follows.
Delete causes the deletion of the subtree that is at the cur-

rent program position. A meta-node is then inserted on its
place.

Clip removes a subtree from the program tree, but does not

476

on the execution when they are not enabled.

MEDINA-MORA AND FEILER: INCREMENTAL PROGRAMMING ENVIRONMENT

Typed
by Display Syntax Tree

User

FOR

f for ((exp>; <exp>; <exp>)
(stat> <exp> (exp> <exp> <stat)

FOR

for (exp> = <exp>; (exp>; <exp>) ASSIG <exp> (exp> (statV
(stat)

<exp> (exp>

FOR

'I for(i = <exp>;<exp);<exp>) ASSIG <exp> <exp> <stat)
(stat)

FOR

O for (i = 0; (exp>; <exp>) ASSIG <exp> <exp> <stat)
(stat) A

I 0

FOR

for(i = 0;i<n;i++)i

<exp> = <exp>; ASSIG LSS INCR ASSIG

iO0 n i <exp> <exp>

Fig. 2. A sample editor session.

throw it away. This command prompts for a name under
which the subtree can be referred to for future use. A meta-
node is put in its place.
Insert prompts for the name of a previously clipped subtree

and inserts it in the place of a meta-node as long as the root of
the subtree is of the correct type (e.g., the insertion is syn-
tactically correct).

Write saves the program tree by writing it into a file, so that
it can be retrieved later. This command allows the program-
mer to save his program for later development.
Read retrieves a program tree from a file and places the

current tree position at the first meta-node or at the root if
there are no meta-nodes.
Find moves the cursor to a node that matches a pattern.
Nest and Transform provide more sophisticated program

manipulation, always guaranteeing the syntactic correctness of
the program.
There are also commands to "move" around the tree: they

move the current tree position (e.g., to the "father," to the
"'first son," to the "siblings," or to some subtree specified by a
pattern, etc.). The current tree position is always highlighted
with an "area" cursor on the terminal display.

In addition, there are other commands that provide on-line
help facilities to inform the programmer about the available
commands (e.g., which are the valid language commands at the

current tree position?). ln a sophisticated display device this
information could be presented in a menu-like format.
As mentioned above, syntax-directed editing has a major

impact on the implementation of programming environments
because it makes lexical analyzers and parsers obsolete. ln
addition, it may also influence reference manual writing and
even language design. The manual would no longer have to
describe if a semicolon is a statement separator or a terminator
and the language designer would not necessarily need to decide
this. Emphasis will then be placed on the language constructs
and the facilities provided by the language.
Some language ambiguities (e.g., the "dangling else" problem

of some languages) disappear because with the constructive
approach it is clear what the programmer means (e.g., to which
if statement the else part belongs), and there is no need for a
parser to try to figure it out.
Another traditional problem of programming languages has

been the correct parenthesization of expressions given the
operator precedences of the language. In the syntax-directed
editor the programmer constructs the expression tree, i.e.,
specifies the order of operator application directly: As a part
of the unparsing mechanism, the editor generates the appropri-
ate parenthesization for the text form that is displayed on the
terminal screen given the precedence of operators.
While we believe in the merits of syntax-directed editing,

477

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

Typed
by Display Syntax Tree

Ll er

FOR

'sum for(i = O;i<n;i+ +)
sum = <exp>; ASSIG LSS INCR ASSIG

I

O insum (exp>

FOR

+ for(i = O;i<n;i+ +) ASSIG LSS INCR ASSIG
sum = (exp> + <exp>; I/\ \jt

IO i j sum I

<exp> <exp>

FOR

'sum for(i = O;i<n;i+ +) ASSIG LSS INCR ASSIG
sum = sum + (exp>; > /

i O i n j sum PLUS

sum <exp>

FOR

'I for(i = O;i<n;i+ +) ASSIG LSS INCR ASSIG

sum = sum + arr[iJ; W4/\ | t

II iO in j sum U
sum INDEX

arr

Fig. 3. A sample editor session (continued).

there are, nevertheless, some possible disadvantages. New users
of the editor will find some difficulties in getting used to the
structured editing approach. They would have to go through
a learning period before feeling "at ease" with the editor. Ex-
pression entry and editing is an instance in which structured
editing may be more difficult than text editing. Similarly,
program modification may be perceived to be awkward, but
sophisticated editing operations such as nesting and trans-
formations overcome the problem. Another disadvantage of
the syntax-directed editing approach is that programs are
stored in tree form. In order to use the editor with existing
programs a parser must be provided to convert the program
text into tree form.
1) The Editor Viewed Independently from IPE: The editor

can also be viewed separately from IPE. A syntax-directed
editor generator has been developed. It permits the automatic
generation- of a constructive editor for a formally described
programming language. The syntactic formalism describes
languages in terms of an abstract syntax notation. It defines
the language constructs and the sets of valid language con-
structs and the sets of valid language constructs for every
"hole" in the templates. In addition, formatting (unparsing)
information for the display of a construct, the precedence of
the construct, a synonym with which the construct can be in-
voked as a language command, and the name of a routine that

is invoked by the editor upon an editor operation on the given
node, are specified for every construct in the grammar. Multi-
ple unparsing schemes may be specified, which permits the
definition of different textual program "views" from the same
program tree. These views may show the program at different
levels of abstraction, with different "syntactic sugar" and
formatting. The language description clearly separates be-
tween the abstract syntax that defines the internal structure of
the program, and the concrete program representations that
are displayed on the screen.
A preprocessor is applied to such a description and it pro-

duces the internal tables that are used by the editor as its
"knowledge" of the language. The language designer can also
define extended editor commands that will be tailored to the
specific language or system (i.e., in IPE the extended com-
mands are continue and interrupt). This process has been
applied successfully to several very different types of lan-
guages: to a subset of Ada, to GC on which IPE is currently
based, to Alfa a non-Algol-like applicative language designed
by Habermann [12], to the system composition and version
maintenance language of Gandalf [7], and to the gra,.,matical
description itself.

B. The Program Representation
The IPE system internally maintains two representations of a

478

MEDINA-MORA AND FEILER: INCREMENTAL PROGRAMMING ENVIRONMENT

program, the tree representation and the machine or executable
representation which is interpreted by the hardware during
program execution. The first representation is the syntax tree
of the program. One choice for the representation of the syn-

tax tree was TCOL, especially TCOLAda [13] Iit is a symbolic
tree representation in text form that has been accepted as one

standard in the Ada language development. We decided against
using that representation directly because of the conversion
cost into an internal representation. We have chosen an in-
ternal representation that comes very close to an internal
representation of TCOLAda, and we are able to generate a

TCOL representation if necessary.
The second representation is generated automatically from

the first through a translation step. This separation of a pro-

gram into two representations allows a host/target approach,
i.e., the execution of the program may be performed on a

machine different from the machine running the IPE system, as

required by Stoneman [14]. Since all IPE tools primarily
work. on the tree representation, very little IPE support must
be provided on the target machine. In order to incorporate a

new target machine into IPE, the target machine runtime sup-

port and a code generator for the target machine on the host
must be constructed. Therefore, the dependency on the target
machine is limited.
The changes made by the programmer in the tree representa-

tion of the program must be reflected in the machine repre-

sentation. The behavior of the executing program must be
consistent with what the programmer expressed in terms of
the programming language. Since changes are made incre-
mentally to the program tree, they also are reflected incre-
mentally in the executable representation. However, the cost
of this incremental program modification must be kept small;
otherwise it will be noticeable to the programmer in the sys-

tem response.

1) The Machine Representation: The structure of the ma-

chine representation has a strong influence on the cost of an

incremental program modification. On one hand, a certain
complexity in the supported structure, e.g., segmentation, per-
mits a simple replacement mechanism. On the other hand, the
representation should be supported directly on existing con-

ventional machines without a software simulator.
The procedure has been chosen as the replacement unit of

the program. Procedures have fixed entry points that refer to
the actual location of the code. They are assigned when the
procedures are specified. All procedure calls are made in-
directly through these entry points. Global data are placed in
an area that is separate from (and unaffected by) the replace-
ment of program pieces.
Code generation is invoked on a semantically correct subtree

representing the procedure to be compiled. Since the pro-

cedure is semantically correct, all called procedures must
have been specified, i.e., entry points have been assigned
to them, and all referenced global objects must have been
declared, and therefore, space has been allocated for them.
Therefore, all global references are known at code gener-

ation time. All local references within the procedure can

be produced with all external references resolved. A separate
linking step is not necessary.

When the machine representation of a procedure is replaced,
the new copy may not fit into the space of the old one. There-
fore, it must be placed in some free memory space. Since
memory space is often limited, released memory space must be
recovered and the allocated space compacted. This may re-
quire moving the machine code for some of the procedures. In
order to make this moving possible without requiring a relink
of the moved program pieces, restrictions are imposed on the
use of different addressing modes of the machine. References
are kept invariant from the physical location of the code, if all
references within the moved code piece, i.e., local references,
are relative to the code piece (e.g., PC relative), and all refer-
ences outside the moved code piece, i.e., global references, are
absolute. Thus, code can be compacted through a simple
block-move operation. This garbage collection problem may
not be relevant if an underlying machine with a more complex
memory structure than linear memory space is available (e.g.,
a segmented machine).
A comparison with conventional compilation techniques,

including separate compilation, shows that the cost of gener-
ating code for a modified program part is greatly reduced, thus
keeping the response time small. Since the program is already
in tree form, text does not have to be processed: lexical and
syntax analysis is not done. Semantic checking is performed
incrementally while the programmer modifies the tree through
the editor. Code is generated and loaded incrementally. The;
link-editing step is merged into the code generation phase.
Thus, the processing cost consists of the cost of code gener-
ation and loading of the modified program part.
2) The Mapping: For debugging purposes, a mapping be-

tween the tree representation and the machine representation
is required. This mapping allows the flow of execution in the
machine representation to be traced in the tree representation.
The mapping, however, does not need to be complete. Only
certain tree nodes must have an exact mapping in order to de-
termine the exact execution state in both representations (e.g.,
routine entry, return addresses, debugging stoppage points).
For other program parts only an approximate mapping is
needed. For example, signals from program execution that
are not handled by a debugging action, are only indicated to
have happened in a certain program region.
The mapping is produced by the code generator. It may be

either locators for tree nodes in the machine representation or
references to code pieces corresponding to tree nodes stored in
the tree representation. Optimizations are applied by the code
generator in order to improve the quality of the machine
representation. However, they may affect the mapping of the
program. Optimizations that transform the program tree can-
not be employed at mapping points, and optimizations that
cache program state in machine registers must update the
cached values in memory at those points. Because the mapping
is incomplete and the mapping points are sparse, optimized
code is produced for large parts of the program, and debugging
is still supported.

C. Program Execution
So far we have discussed mechanisms in lPE that maintain

the static part of a program. This assumes that program execu-

479

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

tion is restarted after a modification. This is, however, an un-
acceptable approach for IPE, especially because debug actions
are implemented through the incremental program modifica-
tion mechanism. In order for the programmer to be able to
dynamically debug programs, continuation of execution must
be supported at least for certain program modifications.
1) Continuation of Execution: IPE supports three forms

of continuation of execution. The first is resumption of execu-
tion, i.e., continuation at the point where execution was sus-
pended. The second form of continuation is unwinding of the
stack of procedure activations. In this case the state ofvariables
is not changed. The third form of execution continuation in-
volves restoration of the execution state to a previous point.
When the programmer modifies a suspended program IPE

attempts to preserve the execution state so that execution can
be resumed. Resumption of execution can be permitted if the
two program representations and the execution state of the
program are in a consistent state. Consistent state means that
the program shows the same behavior on resumption of execu-
tion after a change as it would when restarting the execution
with the new executable version.
Program changes to the control flow are easily dealt with if

they do not involve active procedures. The modified pro-
cedures are replaced by the incremental program modification
mechanism and have no side-effects on the execution state.
However, when replacing the executable representation of an
active procedure, the placement of the code body may in-
validate the return address on the activation stack and require
an update. Similarly, garbage collection in the executable
representation affects the return address of all active pro-
cedures that are being moved. Since return addresses are lo-
cated on the activation stack, they are retrievable and can be
updated.
Certain program modifications do not affect the execution

state other than moving -the activation points of active pro-
cedures, i.e., return addresses and current program counter.
These are modifications to a part of an active procedure whose
subtree does not contain an activation point. An example is
the addition of a statement. All debug statements fall into
this category.
For other mnodifications the execution state cannot be ad-

justed to the change. This is the case when the change to the
program affects the dynamic control flow. For example, pro-
cedure A calls procedure B. Both are on the activation stack
and execution is suspended in B. The change is to remove the
call to B in A. What is the execution state from which execu-
tion can be safely resumed? Thus, resumption from within B
does not make sense.
One alternative that IPE offers to the programmer is to un-

wind the nesting of active procedures until the modified active
procedure is removed from the stack. The programmer can
then continue execution which will repeat the last procedure
call that was removed from the activation stack. Execution
unwinding does not restore the state of variables to their previ-
ous values. Therefore, the programmer must decide whether
continuation is safe after unwinding or whether certain values
(e.g., semaphores) must be restored explicitly.
A second alternative, other than starting execution from

scratch, is to restart execution at a safe point (e.g., the call to
the procedure with the change). This requires resetting the
current execution state to the execution state at the time of
the call. Depending on the definition of the execution state,
this may be a hard problem. It is related to work done on re-
covery mechanisms (e.g., recovery blocks (15], stable variables
[161). In IPE we take a conservative approach. Initially, there
is no automatic facility to reset program execution other than
starting it over. However, the programmer may explicitly
specify and enable checkpoints to which the execution state
can be restored. The cost for checkpoints is high, and the
programmer must anticipate the program location to which
restoration is desired.
2) Debugging: Debugging actions in IPE are implemented

through the incremental program modification mechanism.
This approach has several advantages. The debugger works on
the tree representation, i.e., in terms of the source language.
Debug statements are actually recorded in the tree and are
visible to the user. Their implementation in the machine
representation is done by the code generator. Therefore, the
debugger has very limited knowledge of the machine represen-
tation. The evaluation of expressions in context is imple-
mented in a similar fashion by temporarily adding a subtree
for the expression and generating code for it. Potentially, the
display of variable contents can be implemented by using the
expression evaluation mechanism. This implementation, how-
ever, is slow. Therefore, a special variable display mechanism
is implemented to provide access to the program state in a
more efficient manner.
The approach taken to implement the debugging actions also

has some disadvantages. First of all the responsiveness of the
debugger is dependent on the response time of the incremental
program modification mechanism. Therefore, that mechanism
is the critical path of the whole IPE system. Some debugging
functions are more difficult to implement. One such function
is single stepping, a mechanism found in many traditional sys-
tems. It requires a substantial amount of retranslation over-
head if it is applied to large parts of the program. As an al-
ternative, however, IPE provides more sophisticated debugging
actions that are more tailored towards the actual debugging
goal.

IV. CONCLUSIONS
This paper presents IPE, an incremental programming en-

vironment, being designed and implemented by the authors at
Carnegie-Mellon University. This system gives programming
support to a single programmer working on a single program.
Even though it is presented as a system in itself, IPE is part of
Gandalf, a more general software development environment
project. For Gandalf, WPE is being extended to incorporate
support for description of larger systems, multiple versions of
programs, and rmanagement of several programmers on the
same system.
We consider the major impacts of IPE to be its integrated

approach and the fact that it provides an interactive environ-
ment based on compilation technology. The programming
environment is now viewed as a single system rather than as a
set of independent tools. There is a smooth transition be-

480

MEDINA-MORA AND FEILER: INCREMENTAL PROGRAMMING ENVIRONMENT

tween the tools, and some tools are not directly visible to the
programmer because they are automatically applied.
At all levels of the program development the programmer

deals with language constructs. The programmer does not
have to worry about the syntax constraints of the program-
ming language any more, nor has he to be aware of the differ-
ent components of the environment. By making it easier for
the programmer to construct and debug programs, it is very
likely that the quality of his programs will be improved and
the programming time will be reduced.
IPE is based solely on compilation technology. No software

interpreter is provided. Compilation has the advantage that a
high-level program representation is transformed into a sepa-
rate program representation (machine code) for a computer
which is not necessarily the same as the host machine. There-
fore, IPE may be able to support several target machines with
most of the IPE system residing on one host machine.
A syntax-directed constructive editor allows the programmer

to build and change programs in terms of language constructs.
This reduces the amount of typing and eliminates program-
ming errors such as missing semicolons. The editor uses its
knowledge about the programming language and permits only
syntactically correct programs to be constructed. Despite the
fact that the editor has knowledge of the language, it is lan-
guage independent in the sense that the editor is automatically
generated from an editor kernel and a formal description of
the language. The program is internally represented by an
abstract syntax tree, from which the text form is dynamically
generated for display to the programmer. This syntax tree is
the common program representation for all tools in lPE. Se-
mantic checking, translation, and debugging work on the
syntax tree.
The translation phase uses the fact that code is produced

only for semantically correct program pieces to merge the
linking step into the code generation. As the programmer is
incrementally ch,anging the tree representation of the program,
the IPE system incrementally updates and maintains an
executable version by automatically applying the translation
phase to program pieces and incorporating them on the tarrget
machine. The debugging facility of IPE also works on the ab-
stract syntax tree. It is implemented using the incremental
program modification mechanism, i.e., incremental update,
translate and load, and, therefore, does not perform software
interpretation. The code generator provides the mapping from
the tree representation to the machine representation. Some
optimization can be applied during code generation because
only certain points in the tree require an exact mapping, even
for debugging. Since the abstract syntax tree is the primary
program representation for the debugger, more sophisticated
debugging actions in terms of the underlying programming
language can be provided.
An IPE prototype is running under the UN1XTM operating

system on a DEC/VAXTM. At the time of this writing the
state of implementation is the following. The editor generator
has been implemented and an editor that supports GC has
been generated. Semantic checking is performed by the in-
cremental code generator for GC. An incremental loader and
a basic debugging facility have been implemented. The de-

bugger is currently being extended to include sophisticated
functions. To implement IPE we have used an incremental
system that already incorporates some of the program develop-
ment philosophy supported by IPE 1171 (i.e., it uses the
syntax-directed editor for GC).
The IPE prototype implementation indicates that an inter-

active, incremental programming environment based on com-
pilation is feasible. The editor generator has shown to be a
powerful tool for experimentation with structured editing of
different languages. The ability to specify multiple unparse
schemes for one -abstract syntax tree permits the definition of
program views of different abstraction levels, e.g., list of
modules, module specification, module specification and im-
plementation, and pretty-printing tailored to the individual
programmer.
Practical experience in the use of IPE for the construction of

larger programs will be gained over the next months, as it will
be used as the tool to continue the development of lPE in the
context of Gandalf.

ACKNOWLEDGMENT

The authors would like to thank the members of the Gandalf
project at Carnegie-Mellon University for their helpful dis-
cussions. They would also like to thank the referees for their
constructive comments which improved the presentation of
this paper.

REFERENCES

[1] W. Teitelman, Interlisp Reference Manual. Xerox Palo Alto Res.
Cen., 1978.

[2] T. Teitelbaum and T. Reps, "The Cornell program synthesizer: A
syntax-directed programming environment," Dep. Comput. Sci.,
Cornell Univ., Ithaca, NY, Tech. Rep. TR80-421, May 1980.

[3] P. H. Feiler and R. Medina-Mora, "The GC language," Gandalf In-
ternal Documentation, 1979.

[4] D. S. Notkin and A. N. Habermann, "Software development en-
vironment issues as related to Ada," Dep. Comput. Sci., Carnegie-
Mellon Univ., Pittsburgh, PA, Tech. Rep., 1979.

[5] A. N. Habermann, "An overview of the Gandalf project," CMU
Comput. Sci. Res. Rev. 1978-79,1980.

[6] -, "A software development control system," Dep. Comput.
Sci., Carnegie-Mellon Univ., Pittsburgh, PA, Tech. Rep., 1979.

[7] A. N. Habermann and D. E. Perry, "Well-formed system compo-
sitions," Dep. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh,
PA, Tech. Rep. CMU-CS-80-117, Mar. 1980.

[8] E. I. Organik, The Multics System; An Examination of its Struc-
ture. Cambridge, MA: M.I.T. Press, 1972.

[9] W. J. Hansen, "Creation of hierarchic text with a computer dis-
play," Ph.D. dissertation, Dep. Comput. Sci., Stanford Univ.,
Stanford, CA, June 1971.

,[0] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang, "Program-
ming environments based on structured editors: The MENTOR
experience," presented at Workshop Programming Environments,
Ridgefield, CT, June 1980.

[11] B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and
G. L. Popek, "Report on the programming language Euclid,"
SIGPLANNotices, vol. 12, Jan. 1977.

[12] A. N. Habermann, "Notes on programatics and its language Alfa,"
private communication.

[13] B. Schatz, B. Leverett, J. Newcomer, A. Reiner, and W. Wulf,
"TCOLAda: An intermediate representation for the DoD standard
programming language," Dep. Comput. Sci., Carnegie-Mellon
Univ., Pittsburgh, PA, Tech. Rep., 1979.

[14] Dep. of Defense, "Requirements for Ada programming support
environments, 'Stoneman,"' Feb. 1980.

[15] B. Randell, "System structure for fault tolerance," SIGPLAN
Notices, vol. 10, June 1975.

481

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

[16] B. Liskov, "Primitives for distributed computing," Distinguished
Lecture Series, Carnegie-Mellon Univ., Pittsburgh, PA, 1980.

[17] P. H. Feiler, "IPC system version 1," Gandalf Internal Documen-
tation, 1979.

Raul Medina-Mora (S'81) was born in Mexico
City, Mexico in 1953. He received the B.S. de-
gree in applied mathematics (Actuario) from
the National University of Mexico, Mexico
City, Mexico, and the M.S. degree in computer
science from Carnegie-Mellon University, Pitts-
burgh, PA, in 1976 and 1979, respectively.
Since 1975 he has been a Research Assistant

| l ||in the Department of Computer Science, Insti-
tute for Applied Mathematics and Systems, Na-
tional University of Mexico, and is currently on

leave at Carnegie-Mellon University. He has been a graduate student at
Carnegie-Mellon University since September 1976 and is currently fin-
ishing his Ph.D. His current research interests include software engi-
neering, programming environments, and specifically, syntax-directed
editing. He is presently working with the Gandalf Project in the design
and implementation of a program development environment.

Mr. Medina-Mora is a student member of the Association for Com-
puting Machinery.

Peter H. Feiler was born in Bad Toelz, Federal
Republic of Germany, in 1952. He received the
Vordiplom in mathematics and computer sci-
ences from the Technical University in Munich
in 1973.
Since September 1974 he has been a graduate

student in computer sciences at Carnegie-Mellon
University, Pittsburgh, PA, and is currently
completing the Ph.D. degree. Since December
1980 he has been employed by Siemens Corpo-
ration with residence at Carnegie-Mellon Uni-

versity. He participated in the Family of Operating Systems project, in
the design of STAROS, a multiprocessor operatinig system, and is cur-
rently involved in the design and implementation of a program de-
velopment support environment (Gandalf Project). Other research
interests include personal computing and local networks.
Mr. Feiler is a member of the Association for Computing Machinery.

An Experiment in Small-Scale Application Software
Engineering

BARRY W. BOEHM

Abstract-This paper reports the results of an experiment in applying
large-scale software engineering procedures to small software projects.
Two USC student teams developed a small, interactive application
software product to the same specification, one using Fortran and one
using Pascal. Several hypotheses were tested, and extensive experimenal
data collected. The major conclusions were as follows.
a Large-project software engineering procedures can be cost-effectively

tailored to small projects.
* The choice of programming language is not the dominant factor in

small application software product development.
* Programming is not the dominant activity in small software product

development.
* The "deadline effect" holds on small software projects, and can be

used to help manage software development.
* Most of the code in a small application software product is devoted

to "housekeeping."
The paper presents the experimental data supporting these conclu-

sions, and discusses their context and implications.

Index Terms-Programming languages, programming methodology,
software engineering, software management, software project data.

Manuscript received April 18, 1980; revised December 29, 1980.
The author is with the Systems Engineering and Integration Division,

TRW, Redondo Beach, CA 90278.

I. INTRODUCTION
Background
THE experiment described in this paper took place as part

Tof a first-year graduate course in software engineering
given at the University of Southern California (USC) in the
Fall of 1978. It involved the development of a small (2000
deliverable source instructions) application software product:
an interactive version of the COCOMO [1] model for estimat-
ing software costs. Two teams specified and developed inde-
pendent versions of the same product, one team using Fortran
and the other using Pascal.
The main reason for the project was to give the students

experience in applying all the disciplines involved in practical
software engineering: project planning, requirements specifi-
cation, design, programming, testing, maintenance, manage-
ment, technical communication, and human engineering of
the man-machine interface. The choice of a cost estimation
model as the product to be developed was based on three main
criteria.

1) Its size appeared appropriate for the one-semester course
schedule.
2) The subject matter was easy for students to understand.

0098-5589/81/0900-0482$00.75 i 1981 IEEE

482

