
SOFTWARE PRACTICE AND EXPERIENCE, VOL. 14(2). 177-190 (FEBRUARY 1984)

The Design of an Interactive Program
Development System for Pascal

BENGT NORDSTROM AND AKE WIKSTROM

L-aboratory f o r Programming Methodology, Department of Computer Sciences, Chalmers University of
Technology and University of Goteborg, S-412 96 Goteborg, Sweden

SUMMARY

A program language can be defined as the language in which computer programs are written,
and a programming language as the language used by the programmer to create programs.
This paper presents the design of an interactive program development system which uses
Pascal as both program and programming language. Principal properties of the system are a
complete immediate syntax check, a program-structure oriented editor, incremental com-
piling techniques, and interactive interpretation and debugging of programs. The syntax
check is split into three phases, and the user can change the degree of check wanted. After
a change of the program only part of it is recompiled, and only necessary phases of the
compiling process are performed.

KEY WORDS Interactive programming environment Incremental compiler Pascal
Structure-oriented editor Program manipulation Programming methodology

1. INTRODUCTION

Programming habits are most certainly influenced by the first programming language
learned.' Today, BASIC' is perhaps the most used beginner's language. I t is easy to
learn, but a major reason for its widespread use seems to be the interactive
environment offered by most BASIC systems. On the other hand, Pascal3 is widely
accepted as a good language for teaching programming techniques. Therefore, an
interactive Pascal system would be very attractive in a teaching environemnt. But
certainly, interactive systems are also very attractive for professional programmers.

The objective of this project was twofold. We want to produce a good interactive
Pascal environment, but we also want to experiment with strongly interactive program
development environments in general. Ideally, such systems should give the user
immediate response to all types of errors and maximal support in all programming
phases. Several systems with, in some respect, ambitions like these exist today. 4 - 7

In the current project we experiment with different system properties that we think
are useful to the user. Below is a list of some of them, which we believe may be of
special interest:

(a) a uniligual environment saving efforts both for users and implementors
(b) a programmable editor and an environment for program manipulation
(c) a special mode for executing programs immediately when they are inserted
(d) a truly incremental compiler doing a minimum of recompilation for any change.

0038-0644/84/020177-149601.40'
@ 1984 by John Wiley & Sons, Ltd.

Received 22 April 1982

178 BENGT NORDSTROM AND AKE WIKSTROM

Also described are ideas and techniques used to get a well-structured and portable
system.

The rest of this paper is organised as follows. We describe a user’s view of the
system in Section-2. In the next section we outline the design of the system. We
explain the importance of horizontal and vertical incremental compiling. Section 4
describes our view of a program development system and the next three sections
outline the editor, the compiler and the interpreter of the system. We conclude the
paper with some comments on our experiences of using Pascal for a rather big
program (the system is currently approximately 25,000 lines of text).

2. T H E USER’S VIEW OF T H E SYSTEM

The user types Pascal statements on the terminal, and these are immediately executed.
The system can, for instance, be used as a desk calculator if the user types statements
of the form:

write (3*697-12)

There is no particular command language for the system, as all commands are written
in Pascal. I t is possible to see the system as a machine which understands and executes
Pascal and which has a set of predefined procedures and functions. For instance, the
editing commands are a set of predefined procedures working on syntactic represen-
tations of programs. The editor has special knowledge about the language Pascal. I t
uses a cursor that can be positioned at various points in the program. The user can
move the cursor forwards and backwards and insert, delete or change a program
fragment where the cursor is positioned. The editor will check for errors and will
(unless told to do otherwise) not accept a change leading to a syntactically erroneous
program. The programmer can choose between three levels of error detection: coarse
syntax check, local syntax check and total syntax check.

The coarse syntax check only checks the consistency of reserved words, i.e. that end
matches begin, that then precedes else, and so on. This is useful when the user wants
to use the system to manipulate incomplete Pascal programs, for instance in an early
design phase of a project or when importing Pascal programs from an installation
which uses non-standard Pascal.

The local syntax check will discover all context-independent errors, i.e. it will
discover all errors that are not dependent on information in the declaration lists. This
makes it possible to use the system for top-down programming; it is, for instance,
possihle to use procedures that have not yet been defined.

The total syntax check will check that the program text is a legal Pascal program.
So, in addition to the local syntax check, it will check that expressions have proper
types.

The user has some syntactic liberties while inserting a program. Declarations can be
inserted anywhere where a statement can be inserted, and the declaration is
automatically moved to the nearest, appropriate declaration list, The system inserts
semicolons between statements on different lines.

An interactive system gives the user many possibilities for easy debugging. The
user can stop the execution of a program (either from the terminal or from the
program), inspect values of variables (by executing the standard output procedures),
change them (by ordinary assignments), edit the program (by procedure calls) and

INTERACTIVE PROGRAM DEVELOPMENT 179

resume the execution. It is possible to move the execution pointer (program
counter) to an earlier instantiation of a procedure, i.e. it is possible to move to the
environment belonging to the procedure that activated the current procedure. There
will also be primitives for tracing a variable, a statement or a routine.

There is a possibility to save an execution, i.e. store a program and all its variables
and their values on a backup memory. The programmer can then log out from the
terminal and later come back to the same, partially executed, program.

There is a special mode of inserting programs which we call ‘append and execute
mode’. In this mode the program is executed at the same time as it is entered at the
terminal. The programmer can, for instance, type a procedure call, and this call is
immediately executed. If the procedure is not yet declared, the programmer has to
enter the procedure. The interpreter then executes the statements of the procedure as
they are entered by the programmer. After that the interpreter returns to the
procedure call.

3 . DESIGN OF T H E SYSTEM

3.1. System objectives
In the early design phase a set of general principles and guidelines for the design

were agreed upon. We will first describe this set and then the actual design.
A danger with an interactive system is that it may tempt the user to write and debug

a program before it is thoroughly designed. An interactive system can certainly
simplify program development in many respects, but no set of programming tools can
substitute for good design work. The goal should be to produce a system that
encourages good programming habits and discourages bad ones.

T o provide a system that is easy to learn and flexible to use is also important. I t
should contain those features that the user really needs and no others. We will achieve
this by providing a small set of well-chosen primitives and an extension mechanism to
combine them. A natural way of providing these primitives is to extend Pascal by
suitable predefined procedures and functions and to use Pascal for all types of user
interactions. There are several advantages in using one single language within the
system. The user does not have to learn one language to use for debugging and one
language for communicating with the operating system. This economy of concepts for
the user has, of course, had an imapct on the number of concepts (i.e. the size) within
the system itself. There is only one scanner, one parser and one interpreter within the
system.

Another advantage of using one language is that the user can very easily define
his/her own editing and debugging procedures by using the procedure concept in
Pascal. It may be convenient to have a shorthand notation for editor commands which,
however, internally will be expanded to Pascal notation, and also explained by this
expansion.

In an interactive environment a fast response is a necessity. To avoid recompiling
the whole program after a change, one may use incremental compiling. The ultimate
goal is to recompile only as small a part of the program as possible and only redo that
part of the compiling process that is necessary. We refer to these two possibilities of
incremental compiling as horizontal and vertical incremental compiling, respectively.
If, for example, a programmer changes the type of a variable from integer to real, the
system should only redo the type checking and not the syntax analysis (vertical

180 BENGT NORDSTROM AND AKE WIKSTROM

incremental compiling) and only do this for the procedure to which the variable is
local, not the whole program (horizontal incremental compiling). T o add or delete a
statement should only involve compilation of that statement.

It is natural to let the system help the user with trivial tasks, but it may also be good
to let, or even require, the programmer to give redundant information about a
program and have the system check all available information for consistency. Most
declarations in a Pascal program are used in this way. For the meaning of the program
they are almost always redundant. One may also, for example, associate assertions and
invariants with statements and variables and check them when executing the program.
In this way errors are found earlier during debugging and, more importantly, the user
is forced to think more about his or her program during the design.

A final goal is to produce a portable system that is well structured, easy to
understand and modify, and adaptable to a mini-computer environment. In order to
have a portable system, it was written in a subset of Pascal. This is described later in
the sections on Implementation and Experiences with Pascal. We have decided in the
initial implementation to select simple solutions to problems even at the cost of an
inefficient system. Optimization should be a second phase of the project.

3.2. Design-implementation-evaluation cycle
Most systems are designed, implemented and evaluated just once. Very often, an

erroneous design is detected too late, and a change is out of the question. The
experience gained by implementing the system cannot be used in the design of the
system. It is more economical in the long run to run through the cycle of design,
implementation and evaluation several times so as to allow experience from earlier
cycles to be used in later ones.8

In courses on compiling techniques a similar, but less ambitious, system has been
constructed. Experience from that project has been very valuable in the design of the
current project.

In the original student project two methods for syntax check were to be used for
pedagogical reasons, namely recursive descent and a precedence method. Later, when
a program editor was to be written, it turned out to be very difficult to implement
commands such as move, change and delete. It was easy to change the program, which
was represented as a tree structu're (below called the program tree), but to change the
stack for the bottom-up method or, even worse, the dynamic chain in the recursion of
recursive descent was harder. The immediate lesson was that ordinary syntax check
methods were difficult to combine with a flexible editor in an interactive system and
with an incremental compiler. A syntax analysis method that can work on smaller
pieces of a program and that can be split in several phases is needed. Such a method
may still be based on a conventional method, however.

A more general lesson learned was the danger of duplicating information in several
places. I t was therefore decided that, as a general principle, every piece of information
should be represented in only one place in the system. Furthermore, this information
should be stored in such a way as to simplify changes of the program tree. As an
example, no symbol tables are kept in the system as in an ordinary compiler. That
information is, instead, contained in the declaration lists, thereby significantly
simplifying, for example, deletions in the tree.

Furthermore, we found that the representation of the tree had to be carefully

INTERACTIVE PROGRAM DEVELOPMENT 181

designed in order to allow simple and general procedures for program-tree
manipulation.

3.3. Top-down data structure design
Design of data structures as well as control structures should first be performed on

an abstract level. The lack of understanding of the abstract properties of data
structures as well as a lack of a good notation for abstract data structures has made this
type of program design less developed than top-down design of control structures.

3 .3 .1 . The abstract syntax
In the system, the information to be represented was a program. T o find its abstract

properties it was natural to start with its abstract syntax or ‘deep structure’. By the
abstract syntax we mean a structure that is convenient to use for describing the
meaning of a program. For example, a while statement in Pascal consists of a Boolean
expression and a statement. A repeat statement consists of a Boolean expression and a
list of statements. The reserved words and delimiters used are not present in the
abstract syntax.

T o be able to talk about the abstract syntax, one needs a representation of it.
Starting from the BNF representation of Pascal, we tried to find patterns correspond-
ing to the properties of the abstract syntax. A recursive Cartesian product combined
with a disjoint union and the sequence (list) concepts proved to be appropriate for
describing programs. A notation for these concepts was defined, and the whole syntax
for Pascal was rewritten using this notation.

3 . 3 . 2 . The internal representation
The next step was to specify an internal representation for a program, starting with

the abstract syntax. There are several requirements on the representation of a
program. The very fact that we start with the abstract syntax makes some of them
quite natural, whereas others are more artificial and force us to make compromises.
Our requirements were

(i) a clean and uniform structure
(ii) no redundant information in the tree

(iii) easy traversal in textual order
(iv) easy manipulation by all program manipulators
(v) one distinguishable object for each possible cursor position.

In the representation chosen, Cartesian products and unions are represented by
records with variants, and sequences are represented by singly-linked, circular lists
always containing a list head. With one exception, we have a strict, hierarchical
structure never allowing two pointers to the same object. The structure, therefore, is
tree-like, and the internal representation will henceforth be called the tree. The
exception mentioned above is that records (representing Cartesian products) and list
heads contain a father pointer in order to allow easy traversal through the tree. Note,
however, these pointers refer to very close neighbours and, therefore, do not disturb
the overall structure.

To allow easy manipulation of a program, all information about it is stored in the
tree, including the symbol table and the values at run time, i.e. the run-time stack. In
many compilers, identifiers are represented by pointers to their symboI table entries.
In our case that would destroy the tree structure, and the deletion of a declaration

182 BENGT NORDSTROM AND AKE WIKSTROM

would require a great deal of searching and updating. Instead, each identifier is
assigned a unique number, which is used to denote the identifier. This implies a search
for its declaration node at run time every time it is used. This decision makes some
operations very inefficient, but we strongly believe that optimization should be
performed when a running version of the system exists and not in an initial design.

Expressions and simple statements are stored as text strings in terminal nodes in the
tree during the first compilation phase, the coarse syntax check. This was done for the
following reasons.

(a) In designing a program top-down, one may want to use pseudonotation instead
of syntactically correct expressions and statements. By storing them in the
leaves in textual form, we can postpone the syntax check.

(b) It allows a split of the syntax check into many phases, thereby making possible a
high degree of horizontal incremental compiling.

(c) If a partially correct program is read from a file rather than a terminal, it is
advantageous to be able to first build a tree and then correct it with the system
rather than to use some other editor. This is possible to some extent in this
system, as partially checked programs can be accepted by the system.

'I'his text is expanded into trees in the later compilation phase.

3 . 3 . 3 . The external representation
To be able to inspect the internal representation of a program, one needs a

printable, external representation of it. An extension of the representation of the
abstract syntax was specified for this purpose. It contains all information about the
internal form. Of the representation-transforming functions read and print we require
that for any program P in internal form, read(print(P)) = P is always satisfied.

The external form has been extremely valuable in all debugging of the system. I t
has also been used for storing programs on files and transmitting them between
processes. This is not possible with the internal form as it contains pointers.

3.3 .4 . System structure
In an experimental system it is of utmost importance to keep open all possible ways

of changing it. One excellent way of achieving this is through the use of the module or
class concept. Unfortunately, this concept is not supported by Pascal, but was still
used in the design and organization of data and procedures. The main module in the
system is the tree module containing a cursor to the tree and a set of procedures and
functions manipulating the tree and the cursors.

As the tree module is the kernal of the whole system, almost all procedures use it.
To avoid changing all procedures when changing the tree data structure, we organized
them in layers. Procedures at one level are allowed to use only those on the nearest
layer below. The lowest layer contains the only procedures working directly on the
tree, for example, step cursor forward, backward and to father, insert empty element
in list, replace node, delete node, push/pop current cursor, and a set of functions
fetching information out of the tree without changing it.

By this design we try to minimize the work when decisions to change the
representations are made. As the design is derived from the abstract syntax, we hope
that the set of primitive procedures chosen is natural and, in some sense, minimal.

INTERACTIVE PROGRAM DEVELOPMENT 183

4. A VIEW OF A PROGRAM DEVELOPMENT SYSTEM

To be able to make a good system design, one must have a good understanding of what
is required of the system, what different facilities and subsystems should be included,
what they are to do and how they are to interact with each other. The purpose of an
experimental system is to give answers to some of these questions, and it is therefore
impossible to make a complete design in advance. However, we have tried to develop a
general model and derive system properties from it.

By the program development process we mean the activity of transforming a given
problem into a program that can be executed on a machine and solving the problem. A
program development system is a system that makes this process as safe and simple as
possible and helps to produce a well-structured, high-quality end product.

To specify what an algorithm shall do and have it mechanically generated is today
possible only for small programs, even with user interaction. What a system can do,
however, is to give the user languages and tools that simplify the task of expressing
his/her thoughts and have them checked in different ways, such as consistency
checking of redundant information.

The system can also help the user with trivial tasks such as expansion of shorthand
notation, correction of trivial errors, editing and, in general, offer a flexible and easy-
to-use environment. Further, the system can provide facilities that make it possible to
create an environment that suits a particular user.

A program development system consists of a set of program manipulators. We
distinguish the following classes of manipulators:

(i) Program translators are manipulators whose source and target representations

(ii) Program checkers use redundancy to check the program, or part of it, for

(iii) Program generators use redundancy to expand (incomplete) programs into

(iv) Program optimizers transform program representation into more efficient

As the actions of checkers and generators are often connected, we will include
generators in the class of checkers in the following discussion.

When developing a program the user enters program parts osinformation about the
program and then, either automatically or on command, this information is checked
for correctness and/or consistency. There is a whole set of checkers with many
properties in common and also with very similar response actions. We distinguish five
different types of checker responses: reject, ask for more information, correct, accept
and expand program, i.e. generate additional program parts.

There is a logical ordering of checkers, i.e. one checker can do its work only if other
checkers have completed their tasks. This ordering is essentially a total ordering. If we
include program generators, the ordering is only partial, as program expansion is just a
helpful tool, not a necessary checking action. The ordering is shown in Figure 1. We
include some possible actions not actually in the system.

All checkers may give several response types and many of them even all five types.
Also note that the user is included in the process. The main goal of program
development is not to produce useful program results but useful programs.

In our system, these checkers are all separate programs working on the tree, thereby

are significantly different.

consistency and make only minor changes of its representation.

more complete versions.

versions.

184 BENGT NORDSTROM AND KKE WIKSTROM

[coarse syntax c h e c k k

I dexpand shorthand notation)

* e * y d deduce declarations I

+-[generate check types test data set[
I check test data set

lcheck results (bv user)l

Figure 1 . Ordering of checkers

making possible a high degree of horizontal incremental compiling. The smallest unit
they can work on is a single statement, expression or declaration, thereby also making
possible a high degree of vertical incremental compiling at the same time.

There are several ways of ordering the invocation of the checkers. The two extreme
cases are

(i) vertical (many-pass) scanning, where all checkers work through the whole

(ii) horizontal (one-pass) scanning, where all checkers are applied to each program

Which scheme to use can, to some extent, be chosen directly by the user through
commands. Advanced users can get full control by programming their own schemes.

As the checkers are totally ordered, it is easy to describe how much checking has
been performed on each node in the tree. There is information associated with each
node in the tree showing how much checking has been done, and it is ‘incremented’ by
the checkers. Internal nodes in the tree are marked with a degree of check that is the
minimum of all its subtrees. Editing procedures, such as insert, delete and change,
may ‘decrease’ the degree of check for a certain node or even for a larger part of the
program. If the user has requested more checking at that time, the appropriate
checkers are automatically invoked to perform the demanded checking. I t can be
described as a yo-yo process. Besides checking, the checkers also transform the
program tree into a form suitable for the successor checkers. T o get full flexibility one
needs the following properties:

(a) The pretty-print routine must give the same result, regardless of the degree of

(b) The routine printing the external representation must give all details of the

The editing routines may ‘decrease’ the degree of check for program parts of various
sizes. T o reduce the required work, we want the following property to hold.

(c) The only action that shall be required for ‘unchecking’ shall be a decrease of its

Thus no unparsing shall be required, implying that all checkers must accept nodes in
the abstract syntax tree as long as they have a sufficient degree of check. Excessive
check shall have no influence. In some cases this forces us to save some extra
information in the nodes, but in most cases this is not necessary.

program, one at a time

unit inserted by the user (cf the append-and-execute mode above).

check.

tree, regardless of the degree of check.

degree of check.

INTERACTIVE PROGRAM DEVELOPMENT 185

5 . T H E EDITOR
The editor is the part of a programming system that lets the user create and change the
program (and possibly data). This can, of course, be done with an ordinary interactive
text editor, but there are many advantages in using an editor which has some
knowledge about the structure of the program. For instance, it is easy to change all
identifiers named d without changing all other occurrences of the letter d . It also
makes certain ungrammatical changes impossible. I t is, for instance, impossible to
delete a then without deleting its matching if. Furthermore, such an editor lets the
user view the program as declarations, statements, reserved words, etc. rather than a
text of lines. We think this helps the user to view the program in a useful manner and,
therefore, encourages good programming practice.

A program editor should also be programmable, i.e. not only simple commands that
are executed one at a time should exist, but also compound commands which are built
up from simpler commands, for instance, repetitive commands, conditional com-
mands and user-defined commands. As mentioned above, Pascal is used for this
purpose, and the user sees the editor as a set of predefined Pascal procedures and
functions, extensible by defining Pascal procedures for new commands.

The editor uses a cursor which can be. moved within the program. The cursor can,
for example, be positioned on a simple statement, the Boolean expression in an if-
statement, an identifier in a declaration, or on a reserved word. Such a unit is called an
item. The cursor can be repositioned by using one of the following tree-oriented
commands:

(i) parent
(ii) oldest child

(iii) older sibling
(iv) younger sibling

move the cursor to the parent node
move the cursor to the ‘left-most’ child
move the cursor to the sibling to the left
move the cursor the sibling to the right.

These are the basic operations moving the cursor. They are used to implement all
operations needed for moving the cursor.

There is also a search command that can be used to search for an identifier or a
reserved word. The search command can be combined with the positioning com-
mands to obtain search strategies.

6. T H E COMPILER

The compiler consists of four parts, the lexical scanner, the coarse-syntax checker, the
expression checker and the type checker. The first two work in parallel and perform
both controlling and translating actions when entering a Pascal text or when reading a
file.

In an interactive system, the possibility of representing a partial user program is a
necessity. But partially built data structures may easily lead to both complicated and
erroneous programs. It was therefore decided that the tree should always represent a
complete program, possibly only partially checked. The way this is done will be
exemplified by the repeat statement. On entering the word repeat on the terminal, the
system creates

(a) a repeat node
(b) an until node marked ‘not written’

186 RENGT NORDSTROM AND AKE WIKSTROM

(c) a statement list with list head and one statement, the empty statement marked

(d) an empty expression marked ‘not written’.
‘not written’

These nodes are used to build a (sub)tree, and the system checks whether this tree can
be inserted at the current cursor position and still yield a correct program. When the
programmer later enters a ‘real’ statement after the word repeat, the empty statement
is replaced, and when until is entered, the until node is marked written. The empty
objects were introduced into the tree to keep it free from nil pointers. This gives a
clean structure, which is simple to work with and which gives an easily debugged
system.

This way of handling the tree has as a secondary effect that it is simple to provide the
user with a ‘button’ that, when pushed, automatically may print the next appropriate
reserved word, for example, a then after a Boolean expression in an if statement, or an
end or until after a statement list. l’he system can also complete (i.e. mark written)
the whole program to the final end by repeating this process.

If a declaration occurs in the middle of a statement list, the compiler pushes the
current cursor, changes environment, inserts the declaration and finally pops the
cursor to return to the statement list.

As far as the coarse syntax checker is concerned, only some of the reserved words
are of interest. Expressions and simple statements are not checked at all. They are
treated as indivisible text objects. The expression checker checks the program as much
as possible withouth knowledge of declarations. ‘x + *y’ can never be an expression.
‘ x+y ’ is never a Boolean expression, but is considered a legal (but not type-correct)
expression even if x and y are declared Boolean. A leaf in the tree produced by the
coarse syntax check contains a source text and a string of so-called lexemes. The
expression checker consumes a string of lexemes and generates a string of tokens
representing the expression in reverse-Polish notation as well as a tree representing
the expression. This is done for ‘historical’ reasons and we would prefer having only a
tree structure. The tree form is used for editing.

The type checker reads the reverse-Polish notation and generates a slightly
modified version of it, for example, discriminating different + operators. It may also
read already type-checked Polish notation. This is necessary as, for example, the
deletion of a declaration invalidates the type check, and we want to be able to redo the
type check without unparsing.

7. ‘l’HE INTERPRETER

The interpreter starts executing the main block of the program. The current cursor is
used as program counter. It can terminate normally by passing the final end. It
terminates abnormally if an error, a break-point, an unsatisfied assertion or a not-
written statement is encountered. In these cases, the control returns to the user, who
may inspect variables, examine a flow trace, change variable values or program text
and then restart execution. Further, a program may stop to wait for data to be
submitted by the user. Finally, a program may, in the append-and-execute mode, stop
to wait for more program text to be inserted. Execution is then resumed as soon as
possible. Note, however, that if the else part is selected in an if statement, the whole
then part must be inserted before execution can be resumed.

INTERACTIVE PROGRAM DEVELOPMENT 187

If the interpreter encounters a node that is not fully checked, it invokes the
appropriate checker(s) before execution is continued.

8. IMPLEMENTATION

The system has mainly been implemented on a PDP-11 under UNIX,’ although
another machine initially was used, as no Pascal compiler was available under UNIX.
T o do without a Pascal compiler it was decided that the system itself should be used
for translating Pascal programs into C programs; C is a Pascal-like language under
UNIX.

The work with a translator from Pascal to C has continued, however, as it is a good
example of using the system for program manipulation, and also yields a facility useful
for other purposes. On two points we have to restrict Pascal in order to simplify the
translation process. Nested procedures are not allowed, and field names in records
have to be unique in the system.

The system soon became too big for the small address space of a PDP-11 and it was
therefore split into several processes communicating via pipes. This work has been the
main obstacle of the project, but also an advantage as it has forced us to partition the
system into small parts with well-defined interfaces. The conclusion is, however, that
the system is too big for a PDP-11.

The system has now been moved to a VAX computer with UNIX, which allows us
to run the system as one process. It also allows us to use the system for the
development of the system itself, a goal we had hoped to reach at an earlier stage.

9. EXPERIENCES W I T H PASCAL

The most serious problem in using Pascal for writing large programs is the lack of a
module concept in the language. A module is a construct which helps the programmer
to distinguish between an abstract data type and its implementation. For instance,
nothing can prevent a programmer from using the representation of the program tree
even though we have designed a particular abstract data type to handle the tree. The
only solution to this problem is to create conventions which the programmer has to
follow.

Another serious problem is the deallocation of dynamically created storage. There
is a standard procedure in Pascal called dispose which is intended to solve this
problem. Few Pascal compilers have implemented dispose as it is described in the
Pascal report. This makes it impossible to write a portable program which uses
dispose. Most Pascal compilers use a mark-release strategy for deallocation of
memory. This is not standard Pascal, and it is dangerous to use. Some compilers are
using an automatic garbage collection which also is unsafe (because of the weak typing
restrictions in records with variants). Our solution to this problem has been to write
our own procedures for handling dynamically allocated storage (using arrays and
records with variants).

Other drawbacks in the language are the insecurity of using variants, unorthogon-
ality of types and the imprecise language definition. There are some drawbacks which
are peculiar to an interactive environment. If the language allowed statement lists in
while-, case- and if-statements, the editing of a program would be simplier. T o

188 BENGT NORDSTROM AND AKE WIKSTROM

change a while loop to contain two statements instead of one is now impossible
without adding an extra begin-end pair.

Two more problems in interactive Pascal have to do with input/output. The first is
that Pascal assumes read-ahead, which is hard to use in an interactive system. The
other is that input/output is not defined for arbitrary values. This is a great
disadvantage in an interactive system, where you want to inspect and change values of
variables. It is easy to define an input/output notation for arrays, records, scalars and
sets. It is a more serious problem for pointers, where a complete redesign of the
language would be necessary.

We find the choice of using Pascal as the editor language to be an important decision
to keep the number of concepts small. This use of Pascal is somewhat unsatisfactory,
since the language does not treat functions as first-class objects. It is, for instance,
impossible to have functions returning functions, and it is also impossible to have a
function as an argument to a functior, without giving a name to the argument function.

The system is implemented in a 'portable' subset of Pascal. By portable constructs
we mean those that are implemented, and implemented in the same way in most
compilers. For example, we do not use procedures as parameters or set of char even
though they would have been useful. The system, however, will accept full Pascal.
The system has been ported twice, both times with little effort. The required changes
have been of lexical nature and have been performed with a text editor in a couple of
hours.

A module structure was forced on Pascal, mainly with the aid of the file system and a
copy facility. We also decided to follow a suggestion by Ledgard" regarding a Pascal
program standard. The standard was extended by some further rules, for example,
restricted use of global variables, no backward jumps, assignment to a funtion
identifier must always be the last thing executed in a function, and some conventions
concerning comments.

10. FUTURE DEVELOPMENTS

As mentioned earlier, the most serious drawback of using Pascal in large programs is
the lack of a module facility. We have designed a module concept for Pascal which is
similar to the class concept of SIMULA (except that variables cannot be used out-
side a module). We want to make suitable additions to our system so that it handles
Pascal with modules. In addition, we plan to write a program which translates
Pascal with modules into standard Pascal.

We also plan to make some extensions to our system such that it is more convenient
for different kinds of users. The system should be able to distinguish between an
advanced user and a beginner in that a beginner gets a more verbose conservation. The
user should tell the system what kind of terminal is to be used. If a hard copy terminal
is used, the system should insert a number of blank characters (corresponding to the
expected indentation depth) before each line. A user with a screen-oriented terminal
should get a pretty-printed version of an input line as a response. This will be printed
on the same line as the input line, so that the user always has a pretty-printed version
of the program on the screen.

An interesting idea, which has been used in the Mentor system,6 is to associate
attributes with each subtree in the program tree. If this is done in a flexible way such

INTERACTIVE PROGRAM DEVELOPMENT 189

that the number of attributes is not fixed, it is a very valuable tool, which can be used
for

(a) documentation (by associating comments with various parts of the program)
(b) debugging (by inserting break, trace and statistics-collecting procedures)
(c) proving (by inserting assertions, pre- and post-conditions).

With the small address space of contemporary mini-computers, it is an advantage to
have some kind of virtual memory in a large programming system. Almost all
information that our system uses is contained in the internal representation of the
user's program. The system should therefore be able to store subtrees of the program
representation on backup memory. The innermost tree module should take care of
swapping between different memories and the virtual memory could be absolutely
invisible to other modules.

11. COMPARISONS W I T H OTHER STRUCTURE ORIENTED EDITORS

The Lisp community has a long experience in using structure-oriented editors.'
The first structure-oriented editor for Pascal which we know of is the Mentor

editor, developed by Donzeau-Gouge, H.uet, Kahn and Lang at IRIA.' They have a
special language for manipulating abstract syntax trees. Type-checking is not done
while program text is inserted and there is no interpreter for Pascal.

Medina-Mora and Feiler have described a structure-oriented editor for a sub-
set of C within the Gandalf project at Carnegie-Mellon." There is no interpreter
for the language, instead they want to generate code from the abstract syntax trees. It
is not clear how much of the system is implemented.

Shapiro et a1.I2 have described their plans on a programming environment for
Pascal with an interpreter and a structure oriented editor. Their plans seems to be
quite close to the system described here.

12. CONCLUSIONS

One way of having the computer take part in the creation of programs is to use
interactive programming environments. Such environments let the user create
programs and the system immediately checks the programs for errors. They also help
the programmer with bookkeeping of programs. Most of such systems are based on
Lisp (because of the ease of representating Lisp programs in Lisp). Some ideas
present in these systems exist in a premature form in Basic systems. The system
presented in this paper is an interactive programming environment for Pascal. It
differs from most other systems in that the user can control the amount of checking to
be performed. The highest level of check is a complete syntactical check, including
type checking. This checking can occur immediately when the user enters a program.

ACKNOWLEDGEMENTS

We would like to thank Bror Bjerner and Kent Pettersson for participation in the
design of the system and also thank them, as well as Barbro Atlestam, for programm-
ing the editor, the parser and the type-checker of the system. Further, we thank Per
Bergsten and Kent Karlsson for programming the interpreter, Sven Wiberg for

190 BENGT NORDSTROM AND AKE WIKSTROM

programming the translator to the C language, Dan Magnerot for work with the type
checker and Thomas Johnsson for the design of the virtual memory.

This work has been supported by The Swedish Board for Technical Development
(77-3580, 78-3719, 79-3692).

REFERENCES

1. E. W. Dijkstra, A Discipline of Programming, Prentice Hall, Englewood Cliffs, 1976.
2. T. E. Kurts, ‘BASIC’, History of programming language conference, S I G P L A N Notices, 13 (8) ,

(1978).
3 . N. Wirth, The Programming Language Pascal (Revised report), Eidg. Technische Hochschule,

Zurich, 1972.
4. W. Teitelman, Interlisp Reference Manual, Xerox Palo Alto Research Center, Palo Alto, Calif., 1978.
5. R. P. van de Riet, ‘BASIS-an interactive system for the introductory courses in informatics’,

6. V. Donzeau-Gouge et al., ‘A structure oriented editor: a first step towards computer assisted

7. T. Teitelbaum, ‘The Cornell program synthesizer: a tutorial introduction’, T R 79-381, Department

8. E. Sandewall, ‘Programming in the interactive environment: the Lisp experience’, Computing

9. K. Thompson and D. M. Ritchie, ‘The Unix timesharing system’, C A C M , 17(7), (1974).

IFIP Congress, Toronto, 1977.

programming’, I R I A report no. 114, Paris, April 1975.

of Computer Science, Cornell University, 1979.

Surveys, 10(1), (1978).

10. H. Ledgard et al. ‘A basis for executing Pascal programmers’, S I G P L A N Notices, 12(7), (1977).
11 . R. Medina-Mora and P. H. Feiler, ‘An incremental programming environement’, IEEE Trans.

12. E. Shapiro ei al. ‘PASES: a programming environment for Pascal’, SZGPLAN, 16(8) (1981).
Software Engineering, (S), (1981).

