
Optimizing an ANSI C Interpreter with Superoperators

Todd A� Proebsting�

University of Arizona

Abstract

This paper introduces superoperators� an opti�
mization technique for bytecoded interpreters�
Superoperators are virtual machine operations
automatically synthesized from smaller opera�
tions to avoid costly per�operation overheads�
Superoperators decrease executable size and can
double or triple the speed of interpreted pro�
grams� The paper describes a simple and e�ec�
tive heuristic for inferring powerful superopera�
tors from the usage patterns of simple operators�
The paper describes the design and implemen�

tation of a hybrid translator�interpreter that em�
ploys superoperators� From a speci�cation of the
superoperators �either automatically inferred or
manually chosen�� the system builds an e�cient
implementation of the virtual machine in assem�
bly language� The system is easily retargetable
and currently runs on the MIPS R	


 and the
SPARC�

� Introduction

Compilers typically translate source code into
machine language� Interpreter systems trans�
late source into code for an underlying virtual

�Address� Todd A� Proebsting� Department of Com�

puter Science� University of Arizona� Tucson� AZ ������

Internet� todd�cs�arizona�edu

machine �VM� and then interpret that code�
The extra layer of indirection in an interpreter
presents time�space tradeo�s� Interpreted code
is usually slower than compiled code� but it can
be smaller if the virtual machine operations are
properly encoded�

Interpreters are more �exible than compilers�
A compiler writer cannot change the target ma�
chine�s instruction set� but an interpreter writer
can customize the virtual machine� For instance�
a virtual machine can be augmented with special�
ized operations that will allow the interpreter to
produce smaller or faster code� Similarly� chang�
ing the interpreter implementation to monitor
program execution �e�g�� for debugging or pro�
�ling information� is usually easy�

This paper will describe the design and imple�
mentation of hti� a hybrid translator�interpreter
system for ANSI C that has been targeted to
both the MIPS R	


 KH���� and the SPARC
Sun���� hti will introduce superoperators� a
novel optimization technique for customizing in�
terpreted code for space and time� Superopera�
tors automatically fold many atomic operations
into a more e�cient compound operation in a
fashion similar to supercombinators in functional
language implementations FH���� Without su�
peroperators hti executables are only ���� times
slower than unoptimized natively compiled code�
Superoperators can lower this to a factor of 	���
Furthermore� hti can generate program�speci�c
superoperators automatically�

The hybrid translator� hti� compiles C func�
tions into a tiny amount of assembly code for
function prologue and interpreted bytecode in�
structions for function bodies� The bytecodes



represent the operations of the interpreter�s vir�
tual machine� By mixing assembly code and
bytecodes� hti maintains all native code calling
conventions� hti object �les can be freely mixed
with compiled object �les�
The interpreter is implemented in assembly

language for e�ciency� Both the translator� hti�
and the interpreter are quickly retargeted with a
small machine speci�cation�

� Translator Output

hti uses lcc�s front end to translate ANSI C
programs into its intermediate representation
�IR� FH��b� FH��a�� lcc�s IR consists of ex�
pression trees over a simple �
��operator lan�
guage� For example� the tree for ��� would be
ADDI�CNSTI�CNSTI�� where ADDI represents in�
teger addition �ADD�I�� and the CNSTI�s repre�
sent integer constants� The actual values of the
CNSTI�s are IR node attributes�
hti�s virtual machine instructions are byte�

codes �with any necessary immediate values��
The interpreter uses an evaluation stack to eval�
uate all expressions� In the simplest hti virtual
machines� there is a one�to�one correspondence
between VM bytecodes and lcc IR operators
�superoperators will change this�� Translation is
a left�to�right post�x emission of the bytecodes�
Any necessary node attributes are emitted im�
mediately after the corresponding bytecode� For
this VM� the translation of ��� would be similar
to the following�

�byte �� � CNSTI

�word � � immediate value

�byte �� � CNSTI

�word � � immediate value

�byte 	 � ADDI

The interpreter implements operations via a
jump�table indexed by bytecodes� The inter�
preter reads the �rst CNSTI�s bytecode �	��� and
jumps to CNSTI�s implementation� CNSTI code
reads the attribute value ��� and pushes it on
the stack� The interpreter similarly handles the
�	�� After reading the ADDI bytecode� the inter�
preter pops two integers o� the evaluation stack�
and pushes their sum�

The evaluation stack for each translated pro�
cedure exists in its own activation record� Lo�
cal stacks allow programs to behave correctly
in the presence of interprocedural jumps �e�g��
longjmp��
hti produces an assembly �le� Most of the �le

consists of the bytecode translation of C func�
tion bodies� and data declarations� hti does�
however� produce a tiny amount of assembly
language for function prologues� Prologue code
tells the interpreter how big the activation record
should be� where within it to locate the evalua�
tion stack� where to �nd the bytecode instruc�
tions� and ultimately for transferring control to
the interpreter� A prologue on the R	


 looks
like the following�

main


li ���� �� � put activation

� record size in ���

li �	� �� � put location of

� evaluation stack in �	

la ���� �� � put location of

� bytecode in ���

j �prologue�scalar � jump to interpreter

��prologue�scalar unloads scalar arguments
onto the stack � the R	


 calling conventions
require a few di�erent such prologue routines�
Once the arguments are on the stack� the inter�
preter is started�� Prologue code allows natively
compiled procedures to call interpreted proce�
dures without modi�cation�

� Superoperator Optimization

Compiler front ends� including lcc� produce
many IR trees that are very similar in struc�
ture� For instance� ADDP�INDIRP�x��CNSTI� is
the most common 	�node IR pattern produced
by lcc when it compiles itself� �x is a place�
holder for a subtree�� This pattern computes a
pointer value that is a constant o�set from the
value pointed to by x �i�e�� the l�value of x��b in
C��
With only simple VM operators� translating

ADDP�INDIRP�x��CNSTI� requires emitting three
bytecodes and the CNSTI�s attribute� Interpret�
ing those instructions requires



�� Reading the INDIRP bytecode� popping x�s
value o� the stack� fetching and pushing the
referenced value�

�� Reading the CNSTI bytecode and attribute�
and pushing the attribute�

	� Reading the ADDP bytecode� popping the two
just�pushed values� computing and pushing
their sum�

If the pattern ADDP�INDIRP�x��CNSTI� were
a single operation that takes a single operand� x�
the interpreter avoids � bytecode reads� � pushes�
and � pops� This new operator would have one
attribute � the value of the embedded CNSTI�
These synthetic operators are called superopera�
tors�
Superoperators make interpreters faster by

eliminating pushes� pops� and bytecode reads�
Furthermore� superoperators decrease code size
by eliminating bytecodes� The cost of a super�
operator is an additional bytecode� and a cor�
respondingly larger interpreter� Experiments in
x� show that carefully chosen superoperators re�
sult in smaller and signi�cantly faster interpreted
code�

��� Inferring Superoperators

Superoperators can be designed to optimize the
interpreter over a wide range of C programs� or
for a speci�c program� The lcc IR includes only
�
� distinct operators� thus leaving ��� byte�
codes for superoperators� Furthermore� if the in�
terpreter is being built for a speci�c application�
it may be possible to remove many operations
from the VM if they are never generated in the
translation of the source program �e�g�� �oating
point operations�� thereby allowing the creation
of even more superoperators�
The addition of superoperators increases the

size of the interpreter� but this can be o�set
by the corresponding reduction of emitted byte�
codes� Speci�c superoperators may optimize for
space or time� Unfortunately� choosing the opti�
mal set of superoperators for space reduction is
NP�complete � External Macro Data Compres�
sion �SR�� GJ���� reduces to this problem� Sim�

ilarly� optimizing for execution time is equally
complex�

����� Inference Heuristic

hti includes a heuristic method for inferring a
good set of superoperators� The heuristic reads
a �le of IR trees� and then decides which ad�
jacent IR nodes should be merged to form new
superoperators� Each tree is weighted to guide
the heuristic� When optimizing for space� the
weight is the number of times each tree is emit�
ted by the front end of lcc� When optimizing
for time� the weight is each tree�s �expected� ex�
ecution frequency�
A simple greedy heuristic creates superopera�

tors� The heuristic exams all the input IR trees
to isolate all pairs of adjacent �parent�child�
nodes� Each pair�s weight is the sum of the
weights of the trees in which it appears� �If the
same pair appears N times in the same tree� that
tree�s weight is counted N times�� The pair with
the greatest cumulative weight becomes the su�
peroperator formed by merging that pair� This
new superoperator then replaces all occurrences
of that pair in the input trees� For example� as�
sume that the input trees with weights are

I�A�Z�Y�� �

A�Y�Y� 

The original operators�s frequencies of use are

Y �

Z �

I �

A 

The frequencies of the parent�child pairs are

I�A���� �

A�Z��� �

A���Y� 

A�Y��� 

Therefore� A���Y� would become a new superop�
erator� B� This new unary operator will replace
the occurrences of A���Y� in the subject trees�
The resulting trees are

I�B�Z�� �

B�Y� 



The new frequencies of parent�child pairs are

I�B���� �

B�Z� �

B�Y� 

Repeating the process� a new superoperator
would be created for either I�B���� or B�Z��
Ties are broken arbitrarily� so assume that B�Z�
becomes the new leaf operator� C� Note that C is
simply the composition of A�Z�Y�� The rewritten
trees are

I�C� �

B�Y� 

The frequencies for the bytecodes is now

Y 

Z �

I �

A �

B 

C �

It is interesting to note that the B superoper�
ator is used only once now despite being present
in �� trees earlier� Underutilized superoperators
inhibit the creation of subsequent superoperators
by using up bytecodes and hiding constituent
pieces from being incorporated into other su�
peroperators� Unfortunately� attempting to take
advantage of this observation by breaking apart
previously created� but underutilized superoper�
ators was complicated and ine�ective�
Creating the superoperators B and C elimi�

nated the last uses of the operators A and Z� re�
spectively� The heuristic can take advantage of
this by reusing those operators�s bytecodes for
new superoperators� The process of synthesizing
superoperators repeats until exhausting all ���
bytecodes� The heuristic may� of course� merge
superoperators together�
The heuristic implementation requires only

�
� lines of Icon GG�
�� The heuristic can be
con�gured to eliminate obsolete operators �i�e��
reuse their bytecodes�� or not� as superoperators
are created� Not eliminating obsolete operators
allows the resulting translator to process all pro�
grams� even though not speci�cally optimized for
them�

� Translator Design

��� Bytecode Emitter

hti translates lcc�s IR into bytecodes and at�
tributes� Bytecodes can represent simple IR op�
erators� or complex superoperator patterns� The
optimal translation of an IR tree into bytecodes
is automated via tree pattern matching using
burg FHP���� burg takes a cost�augmented set
of tree patterns� and creates an e�cient pattern
matcher that �nds the least�cost cover of a sub�
ject tree� Patterns describe the actions associ�
ated with bytecodes� Some sample patterns in
the burg speci�cation� interp�gr� follow�

stk 
 ADDP�INDIRP�stk��CNSTI� � � �� �

stk 
 ADDP�stk�stk� � � �� �

stk 
 CNSTI � �� �� �

stk 
 INDIRP�stk� � �� �� �

The nonterminal stk represents a value that re�
sides on the stack� The integers after the ��s are
the burg rule numbers� and� are also the actual
bytecodes for each operation� Rule �� for exam�
ple� is a VM instruction that pops two values
from the stack� adds them� and pushes the sum
onto the stack� The ���s represent that each
pattern has been assigned a cost of �� The pat�
tern matcher would choose to use rule � �at cost
�� over rules �� 	�� and �� �at cost 	� whenever
possible�

The burg speci�cation for a given VM is gen�
erated automatically from a list of superoperator
patterns� To change the superoperators of a VM
� and its associated translator and interpreter
� one simply adds or deletes patterns from this
list and then re�builds hti� hti can be built with
inferred� or hand�chosen superoperators�

��� Attribute Emitter

hti must emit node attributes after appropri�
ate bytecodes� In the previous example� it
is necessary to emit the integer attribute of
the CNSTI node immediately after emitting the
bytecodes for rules � or 	�� This is sim�
ple for single operators� but superoperators



may need to emit many attributes� The pat�
tern ADDI�MULI�x�CNSTI��CNSTI� requires two
emitted attributes � one for each CNSTI�
To build hti� a speci�cation associates at�

tributes with IR operators� A preprocessor
builds an attribute emitter for each superoper�
ator� The attribute speci�cation for CNSTI is

reg
 CNSTI � ��

�emitsymbol��P��syms�����x�name� �� ����

The pattern on the �rst line indicates that the
interpreter will compute the value of the CNSTI

into a register at cost �� The second line indi�
cates that the translator emits a ��byte value
that is ��byte aligned� The preprocessor ex�
pands �P to point to the CNSTI node relative to
the root of the superoperator in which it exists�
�P��syms�����x�name is the emitted value� For
the simple operator� stk
 CNSTI� the attribute
emitter executes the following call after emitting
the bytecode

emitsymbol�p��syms�����x�name� �� ���

where p points to the CNSTI�
For stk
 ADDP�INDIRP�STK�� CNSTI�� the at�
tribute emitter executes

emitsymbol�p��kids����syms�����x�name�

�� ���

where p��kids�� points to the CNSTI relative
to the root of the pattern� ADDP�
A preprocessor creates a second burg spec�

i�cation� mach�gr� from the emitter speci�ca�
tion� The emitter speci�cation patterns form the
rules in mach�gr� The mach�gr�generated pat�
tern matcher processes trees that represent the
VM�s superoperators� For every emitter pattern
that matches in a superoperator tree� the asso�
ciated emitter action must be included in the
translator for that superoperator� This is done
automatically from the emitter speci�cation and
the list of superoperator trees� �Single node VM
operators are always treated as degenerate su�
peroperators�� Automating the process of trans�
lating chosen superoperators to a new interpreter
is key to practically exploiting superoperator op�
timizations�

� Interpreter Generation

The interpreter is implemented in assembly lan�
guage� Assembly language enables important
optimizations like keeping the evaluation stack
pointer and interpreter program counter in hard�
ware registers� Much of the interpreter is auto�
matically generated from a target machine spec�
i�cation and the list of superoperators� The tar�
get machine speci�cation maps IR nodes �or pat�
terns of IR nodes� to assembly language� For
instance� the mapping for ADDI on the R	


 is

reg
 ADDI�reg�reg� � ��

�addu ��r� �r� ��r�n�

This pattern indicates that integer addition
�ADDI� can be computed into a register if the
operands are in registers� ��r� �r� and ��r rep�
resent the registers for the left�hand side non�
terminal� the left�most right�hand side nonter�
minal� and the next right�hand side nonterminal�
respectively�
The machine speci�cation augments the emit�

ter speci�cation described above � they share
the same patterns� Therefore� they can share the
same burg�generated pattern matcher� The pat�
tern matcher processes superoperator trees to de�
termine how to best translate each into machine
code� Below is a small speci�cation to illustrate
the complete translation for an ADDI operator�

reg
 ADDI�reg�reg� � ��

�addu ��r� �r� ��r�n�

reg
 STK � ��

�lw ��r� �P��������n�

stmt
 reg � ���

�sw ��r� �U������n�

STK is a terminal symbol representing a value on
the stack� The second rule is a pop from the eval�
uation stack into a register� �P� is a ��byte pop�
and �� is the evaluation stack pointer register�
The third rule is a push onto the evaluation stack
from a register� �U� is the ��byte push�
To generate the machine code for a sim�

ple ADDI operation� the interpreter�generator re�
duces the tree ADDI�STK�STK� to the nontermi�



nal stmt using the pattern matcher� The re�
sulting code requires two instances of the second
rule� and one each of the �rst and third rules�

lw �	� ������� � pop left operand

� �reg
 STK�

lw ��� �������� � pop right operand

� �reg
 STK�

addu �	� �	� �� � add them

� �reg
 ADDI�reg�reg��

sw �	� �	���� � push the result

� �stmt
 reg�

addu ��� �� � adjust stack

The interpreter�generator automatically allo�
cates registers �	 and �� and� generates code to
adjust the evaluation stack pointer�
The interpreter�generator selects instructions

and allocates temporary registers for each super�
operator� In essence� creating an interpreter is
traditional code generation � except that it is
done for a static set of IR trees before any source
code is actually translated�
The emitter and machine speci�cations use the

same patterns� so only one �le is actually main�
tained� The juxtaposition of the emitter code
and machine code makes their relationship ex�
plicit� Below is the complete R	


 speci�cation
for CNSTI�

reg
 CNSTI � ��

�addu ��� ��

srl ��� ��

sll ��� ��

lw ��r� �������n�

�emitsymbol��P��syms�����x�name� �� ����

Register �� is the interpreter�s program counter
�pc�� The �rst three instructions advance the pc
past the ��byte immediate data and round the
address to a multiple of �� �Because of assembler
and linker constraints on the R	


� all ��byte
data must be word aligned�� The lw instruction
loads the immediate value into a register�

Machine�emitter speci�cations are not limited
to single�operator patterns� Complex IR tree
patterns may better express the relationship be�
tween target machine instructions and lcc�s IR�
For example� the R	


 lb instruction loads

and sign�extends a ��byte value into a ��byte
register� This corresponds to the IR pattern�
CVCI�INDIRC�x��� The speci�cation for this
complex pattern follows�

reg
 CVCI�INDIRC�reg�� � ��

�lb ��r� ���r��n�

��

The interpreter�generator may use this rule for
any superoperators that include
CVCI�INDIRC�x���

��� Additional IR Operator

To reduce the size of bytecode attributes� one
additional IR operator was added to lcc�s orig�
inal set� ADDRb� lcc�s ADDRLP node represents
the o�set of a local variable relative to the frame
pointer� hti emits a ��byte o�set attribute for
ADDRLP� ADDRLb is simply an abbreviated ver�
sion of ADDRLP that requires only a ��byte o��
set� Machine�independent back end code does
this translation�

� Implementation Details

Building an hti interpreter is a straightfor�
ward process� The following pieces are needed
to build hti�s translator and interpreter�

� A target machine�emitter speci�cation�

� lcc back end code to handle data layout�
calling conventions� etc�

� A library of interpreter routines for observ�
ing calling conventions�

� Machine�dependent interpreter�generator
routines�

Figure � summarizes the sizes of the machine
dependent and independent parts of the system
�lcc�s front end is excluded��

The R	


�speci�c back end code and the
interpreter library are much bigger than the
SPARC�s because of the many irregular argu�
ment passing conventions observed by C code on
the R	


�



Function Language Sizes �in lines�
Machine Independent R	


 SPARC

Target Speci�cation grammar � 	�� 	��

lcc back end C �	� ��� ��


interpreter library asm � �	
 ��

interpreter generator C �
� �� �


Figure �� Implementation Details

� System Obstacles

Unfortunately� hti�s executables are slower and
bigger than they ought to be because of limi�
tations of system software on both R	


 and
SPARC systems� The limitations are not intrin�
sic to the architectures or hti� they are just the
results of inadequate software�
Neither machine�s assembler supports un�

aligned initialized data words or halfwords� This
can cause wasted space between a bytecode and
its �aligned� immediate data� Consequently� the
interpreter must execute additional instructions
to round its pc up to a ��byte multiple be�
fore reading immediate ��byte data� Initial tests
indicate that approximately ��� of the bytes
emitted by hti are wasted because of alignment
problems��

The R	


 assembler restricts the ability to
emit position�relative initialized data� For in�
stance� the following is illegal on the R	


�

L��


�word ��

�word ��L��

Position relative data would allow hti to im�
plement pc�relative jumps and branches� Pc�
relative jumps can use ��byte immediate values
rather than ��byte absolute addresses� thus sav�
ing space�

� Experimental Results

hti compiles C source into object code� Ob�

�I understand that the latest release of the R	


 as�

sembler and linker supports unaligned initialized data�

and that the R	


 has instructions for reading unaligned

data� Unfortunately� I do not have access to these new

tools�

ject code for each function consists of a native�
code prologue� with interpreted bytecodes for the
function body� Object �les are linked together
with appropriate C libraries �e�g�� libc�a� and
the interpreter� The executable may be com�
pared to natively compiled code for both size
and speed� The code size includes the function
prologues� bytecodes� and one copy of the inter�
preter� Interpreter comparisons will depend on
available superoperators�
Comparisons were made for three programs�

� burg� A ���


�line tree pattern matcher
generator� processing a �	��rule speci�ca�
tion�

� hti� The ��	�


�line translator and sub�
ject of this paper� translating a �����line C
�le�

� loop� An empty for loop that executes
�
�


�


 times�

On the 		MHz R	


� hti is compared to a
production quality lcc compiler� Because lcc�s
SPARC code generator is not available� hti is
compared to acc� Sun�s ANSI C compiler� on
the 		MHz Sun ����
� Because lcc does little
global optimization� acc is also run without op�
timizations� hti is run both with and without
enabling the superoperator optimization� Super�
operators are inferred based on a static count of
how many times each tree is emitted from the
front end for that benchmark � hti�so repre�
sents these tests� The columns labelled hti rep�
resent the interpreter built with exactly one VM
operator for each IR operator�
Figures � and 	 summarize the sizes of the code

segments for each benchmark� �code� is the to�
tal of bytecodes� function prologues� and wasted



space� �waste� is the portion wasted due to
alignment restrictions� �interp� is the size of the
interpreter� �The sizes do not include linked sys�
tem library routines since all executables would
use the same routines��

The interpreted executables are slightly larger
than the corresponding native code� The inter�
preted executables are large for a few reasons be�
sides the wasteful alignment restrictions already
mentioned� First� no changes were made to the
lcc�s IR except the addition of ADDRb� and lcc

creates wasteful IR nodes� For instance� lcc

produces a CVPU node to convert a pointer to
an unsigned integer� yet this a nop on both the
R	


 and SPARC� Removing this node from IR
trees would reduce the number of emitted byte�
codes� Additionally� lcc produces IR nodes that
require the same code sequences on most ma�
chines� like pointer and integer addition� Dis�
tinguishing these nodes hampers superoperator
inference� and superoperators save space� Unfor�
tunately� much of the space taken up by executa�
bles is for immediate values� not operator byte�
codes� To reduce this space would require either
encoding the sizes of the immediate data in new
operators �like ADDRb� or tagging the data with
size information� which would complicate fetch�
ing the data�
Fortunately� hti produces extremely fast in�

terpreters� Figures � and � summarize the exe�
cution times for each benchmark�

lcc does much better than acc relative to in�
terpretation because it does modest global reg�
ister allocation� which acc and hti do not do�
lcc�s code is ���� times faster than the inter�
preted code on loop because of register alloca�
tion� Excluding the biased loop results� inter�
preted code without superoperators is less than
�� times slower than native code � sometimes
signi�cantly� Furthermore� superoperators con�
sistently increase the speed of the interpreted
code by ��	 times�

These results can be improved with more en�
gineering and better software� Support for un�
aligned data would make all immediate data
reads faster� Inferring superoperators based
on pro�le information rather than static counts
would make them have a greater e�ect on execu�

tion e�ciency�
If space were not a consideration� the in�

terpreter could be implemented in a directly
threaded fashion to decrease operator decode
time Kli���� The implementation of each VM
operator is unrelated to the encoding of the oper�
ators� so changing from the current indirect table
lookup to threading would not be di�cult�

� Limitations and Extensions

Almost certainly� each additional superoperator
contributes decreasing marginal returns� I made
no attempt to determine what the time and space
tradeo�s would be if the number of superopera�
tors were limited to some threshold like �
 or
�
� I would conjecture that the returns for a
given application diminish very quickly and that
�
 superoperators realize the bulk of the poten�
tial optimization� The valuable superoperators
for numerically intensive programs probably dif�
fer from those for pointer intensive programs� To
create a single VM capable of executing many
classes of programs e�ciently� the ��� additional
bytecodes could be partitioned into superopera�
tors targeted to di�erent representative classes of
applications�
This system�s e�ectiveness is limited by lcc�s

trees� The common C expression� x � y� cannot
be expressed as a single tree by lcc� Therefore�
hti cannot infer superoperators to optimize its
evaluation based on the IR trees generated by
the front end� Of course� any scheme based on
looking for common tree patterns will be limited
by the operators in the given intermediate lan�
guage�
hti generates bytecodes as �data assembler

directives and function prologues as assembly
language instructions� Nothing about the tech�
niques described above is limited to such an im�
plementation� The bytecodes could have been
emitted into a simple array that would be im�
mediately interpreted� much like in a traditional
interpreter� This would require an additional
bytecode to represent the prologue of a function
� to mimic the currently executed assembly in�
structions� To make this work� the system would
have to resolve references within the bytecode�



R	


 Code Size Summary �in bytes�

Benchmark Translator
lcc hti hti�so

code code interp waste code interp waste

burg ����� ����� ���� ����� ����� ��	�� �	���

hti �	
��
 	��
�
 ���� ����� ������ ����� �����

loop �� �� ���� � �� �

 �

Figure �� R	


 Benchmark Code Sizes

SPARC Code Size Summary �in bytes�

Benchmark Translator
acc hti hti�so

code code interp waste code interp waste

burg ����� ����
 �
�
 �	��
 �	��� ����
 �
���

hti ����	� ������ �
�
 ����	 ����
� �
��� 	��
�

loop �
 �� �
�
 � �� 	�� �

Figure 	� SPARC Benchmark Code Sizes

R	


 Execution Summary

Benchmark Times �in seconds� Ratios
lcc hti hti�so hti�lcc hti�so�lcc hti�hti�so

burg ���� ���
� ��
� ��� ��	 ��


hti ���� ����	 �	��� ���� ��� ���

loop ���	 �	��� �	��� ���� ��� 	��

Figure �� R	


 Benchmark Code Speeds

SPARC Execution Summary

Benchmark Times �in seconds� Ratios
acc hti hti�so hti�acc hti�so�acc hti�hti�so

burg ���� ����� ��	� �
�� ��� ���

hti ��	� ����� ����	 �	�	 ��� ��


loop ���� ����� �
�
� ��	 	�
 	��

Figure �� SPARC Benchmark Code Speeds



which would require some additional machine�
independent e�ort� �The system linker�loader
resolves references in the currently generated as�
sembler�� Not emitting function prologues of ma�
chine instructions would make seamless calls be�
tween interpreted and compiled functions very
tricky� however�

�	 Related Work

Many researchers have studied interpreters for
high�level languages� Some were concerned with
interpretation e�ciency� and others with the di�
agnostic capabilities of interpretation�
Supercombinators optimize combinator�based

functional�language interpreters in a way sim�
ilar to how superoperators optimize hti� Su�
percombinators are combinators that encompass
the functionality of many smaller combinators
FH���� By combining functionality into a sin�
gle combinator� the number of combinators to
describe an expression is reduced and the num�
ber of function applications necessary to evaluate
an expression is decreased� This is analogous to
reducing the number of bytecodes emitted and
fetched through superoperator optimization�
Pittman developed a hybrid interpreter and

native code system to balance the space�time
tradeo� between the two techniques Pit���� His
system provided hooks for escaping interpreted
code to execute time�critical code in assembly
language� Programmers coded directly in both
interpreted operations� or assembly�
Davidson and Gresch developed a C inter�

preter� Cint� that� like hti� maintained C call�
ing conventions in order to link with native code
routines DG���� Cint was written entirely in C
for easy retargetability� Cint�s VM is similar to
hti�s � it includes a small stack�based operator
set� On a set of small benchmarks the interpreted
code was ��������� times slower than native code
on a VAX������
� and �
������� times slower on
a Sun�	���� Executable sizes were not compared�
Kaufer� et� al�� developed a diagnostic C inter�

preter environment� Saber�C� that performs ap�
proximately �
 run�time error checks KLP����
Saber�C�s interpreted code is roughly �

 times
slower than native code� which the authors at�

tribute to the run�time checks� The interpreter
implements a stack�based machine� and main�
tains calling conventions between native and in�
terpreted code� Unlike hti interpreted functions
have two entry points� one for being called from
other interpreted functions� and another for na�
tive calls� with a machine�code prologue�
Similarly� Feuer developed a diagnostic C in�

terpreter� si� for debugging and diagnostic out�
put Feu���� si�s primary design goals were quick
translation and �exible diagnostics � time and
space e�ciency were not reported�
Klint compares three ways to encode a pro�

gram for interpretation Kli���� The methods
are �Classical�� �Direct Threaded� Bel�	�� and
�Indirect Threaded�� Classical � employed by
hti and Cint � encodes operators as values
such that address of the corresponding inter�
preter code must be looked up in a table� Direct
Threaded encodes operations with the addresses
of the corresponding interpreter code� Indirect
Threaded encodes operations with pointers to
locations that hold the actual code addresses�
Klint concludes that the Classical method gives
the greatest compaction because it is possible to
use bytes to encode values �or even to use Hu��
mann encoding� to save space� However� the
Classical method requires more time for the table
lookup�

�� Discussion

hti translates ANSI C into tight� e�cient code
that includes a small amount of native code with
interpreted code� This hybrid approach allows
the object �les to maintain all C calling con�
ventions so that they may be freely mixed with
natively compiled object �les� The interpreted
object code is approximately the same size as
equivalent native code� and runs only 	��� times
slower�
Much of the interpreter�s speed comes from

being implemented in assembly language� Re�
targeting the interpreter is simpli�ed using
compiler�writing tools like burg and special�
purpose machine speci�cations� For the MIPS
R	


 and the SPARC� each machine required
fewer than �

 lines of machine�speci�c code to



be retargeted�
Superoperators� which are VM operations that

represent the aggregate functioning of many con�
nected simple operators� make the interpreted
code both smaller and faster� Tests indicate su�
peroperators can double or triple the speed of in�
terpreted code� Once speci�ed by the interpreter
developer� new superoperators are automatically
incorporated into both the translator and the in�
terpreter� Furthermore� heuristics can automati�
cally isolate bene�cial superoperators from static
or dynamic feedback information for a speci�c
program or for an entire suite of programs�

�� Acknowledgements

Chris Fraser provided useful input on this work�

References

Bel�	� James R� Bell� Threaded code� Com�
munications of the ACM� ������	�
�
	��� June ���	�

DG��� J� W� Davidson and J� V� Gresch� Cint�
A RISC interpreter for the C pro�
gramming language� In Proceedings of
the SIGPLAN ��� Symposium on In�
terpreters and Interpretive Techniques�
pages �������� June �����

Feu��� Alan R� Feuer� si � an interpreter
for the C language� In Proceedings of
the ���� Usenix Summer Conference	
Portland	 OR� June �����

FH��� Anthony J� Field and Peter G� Harri�
son� Functional Programming� Addison
Wesley� �����

FH��a� Christopher W� Fraser and David R�
Hanson� A code generation interface
for ANSI C� Software
Practice and
Experience� ��������	����� September
�����

FH��b� Christopher W� Fraser and David R�
Hanson� A retargetable compiler for
ANSI C� SIGPLAN Notices� ����
��
October �����

FHP��� Christopher W� Fraser� Robert R�
Henry� and Todd A� Proebsting�
BURG � fast optimal instruction se�
lection and tree parsing� SIGPLAN
Notices� ������������ April �����

GG�
� Ralph E� Griswold and Madge T� Gris�
wold� The Icon Programming Lan�
guage� Prentice Hall� ���
�

GJ��� M� R� Garey and D� S� Johnson� Com�
puters and Intractability� A Guide to
the Theory of NP�Completeness� W�
H� Freeman and Company� �����

KH��� Gerry Kane and Joe Heinrich� MIPS
RISC Architecture� Prentice Hall� �����

Kli��� Paul Klint� Interpretation tech�
niques� Software
Practice and Expe�
rience� ����
����	���	� October �����

KLP��� Stephen Kaufer� Russell Lopez� and Se�
sha Pratap� Saber�C� An interpreter�
based programming environment for
the C language� In Proceedings of the
���� Usenix Summer Conference	 San
Francisco	 CA� June �����

Pit��� T� Pittman� Two�level hybrid inter�
preter�native code execution for com�
bined space�time program e�ciency� In
Proceedings of the SIGPLAN ��� Sym�
posium on Interpreters and Interpre�
tive Techniques� pages ��
����� June
�����

Sun��� Sun Microsystems� Inc� The SPARC
Architecture Manual �Version �� �����


