
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 22(4), 305-316 (APRIL 1992)

Adding Run-time Checking to the Portable C
Compiler

JOSEPH L. STEFFEN
AT&T Bell Laboratories, Room IHC IP-336, P. 0. Box 3013, Naperville, Illinois 60566-

7013, U. S. A .

SUMMARY
Run-time checking of array subscripts and pointer bounds was added to the Portable C Compiler (PCC).
Memory overwrite bugs are then caught as they happen instead of when the overwritten memory is used
later in the program execution. The run-time checking compiler is used both to find the true cause of a
core dump and to eliminate run-time errors as the cause of unexpected program behavior. On average,
it takes about 40 percent longer to compile, the generated code is about three times larger, and it runs
about ten times slower. This performance may seem slow, but it typically reduces days of debugging to
less than an hour. The implementation described herein can be adapted to any C compiler as it describes
how to generate run-time checking code in a machmekompiler independent way by changing the
intermediate expression trees. In four years of use it has found latent bugs and the cause of intermittent
core dumps in programs used for many years by thousands of people.

KEY WORDS PCC Error checking Range checking

INTRODUCTION

The need for run-time checking of array subscripts and pointer bounds is apparent
to any experienced C programmer. For example, it once took six months to find the
cause of an intermittent bug because it could not be reliably reproduced. Saying that
some other language should have been used instead of C is not productive, as each
language has its problems, and there are usually several constraints that lead to the
choice of a particular language.

A language may do run-time checking by definition or through a standard
implementation, e.g. SNOBOL4,I or make it easy to implement run-time checking
of pointers, e.g. ALGOL 68 requires the run-time maintenance of pointer bounds
for use by the lower- and upper-bound operators.* A language may restrict operations
on pointers, such as PW13 or P a ~ c a l , ~ . ~ thus eliminating some types of run-time
errors. However, the C language allows completely unrestricted use of pointers,
including pointer arithmetic and conversion of integers to pointers. Thus, C may
have the greatest need for run-time checking and may also be the most difficult
language in which to implement it.6

OO3&0644/92/O40305-12$06 .OO
0 1992 by John Wiley & Sons, Ltd.

Received 10 April 1991
Revised 21 October 1991

306 J. L. STEFFEN

REQUIREMENTS
An excellent description of the language requirements for C language run-time
checking is given in Reference 6. The intended use of run-time checking was during
debugging and testing, not during production use of the programs, so the user
requirements for run-time checking of C language array subscripts and pointer
bounds were

(a) an acceptable increase in compilation time, code size, and run time
(b) minimal change to compilellink command names (cc/ld) and options
(c) no restictions on use of the UNIX* operating system calls and C function

libraries
(d) minimal restrictions on C language usage, such as casting integer constant 0

(NULL) function arguments to pointers
(e) no restrictions on C preprocessor use, that is, file inclusion (#include), macro

definition (#define), and conditional compilation (#if).

DESIGN ALTERNATIVES
Historically, it has been easier to do run-time checking in an interpreter than a
compiler because an interpreter can keep symbol information in memory and can
augment it with whatever is needed for run-time checking. The code to do the run-
time checking and printing of error messages may be large, and is easier to add to
an interpreter than to have a compiler generate. At the time this work was started
nearly five years ago, interpreters either restricted the language, or had an unaccept-
able increase in run time. The latter can be solved by partial interpretation, where
some files are compiled and others are interpreted, but run-time checking is not
done on the compiled files, so the program is only partially checked. Saber-Ct7
allows partial interpretation so existing C function libraries can be used, and because
its interpreted code is about 200 times slower than compiled code, so it may be too
slow to interpret all the files all the time.

The SPITBOL8 compiler for the SNOBOL4l language showed how a compiler
could be written for a language whose only previous implementation had been an
interpreter. SPITBOL generated mostly function calls to a large run-time package
that the SPITBOL object file was linked to, so it can be thought of as a compilerhn-
terpreter hybrid.

The bcc6 C language run-time checker was a source-to-source translator that took
each C language file and added function calls to a run-time package. These files
were then compiled by the C compiler for that machine and linked to the run-time
package. Note the similarity to the SPITBOL approach. Bcc was tried on a 0-8 MIPS
machine on two programs of several thousand lines each. It took a long time to get
them to compile because the source for parts of the standard C library and all of
the curses and termcap screen terminal libraries had to be found and recompiled.
Executing the bcc-generated code was supposed to be about 30 times slower than
normal, but the programs ran too slow to be useful. For example, several minutes

UNIX is a registered trademark of UNIX System Laboratories, Inc., a subsidiary of AT&T, in the U.S. and

t Saber-C is a registered trademark of Saber Software, Inc.
other countries.

ADDING RUN-TIME CHECKING 307

were insufficient for the initialization that normally took a second, so the program
execution was aborted.

The main advantage of a source-to-source translator is the ease of porting it to a
new machine type, but it was hoped that putting run-time checking into the machine-
independent front end of the Portable C Compiler (PCC)9 would require little if any
code to be changed for a new machine type, and that it would be much faster than
bcc .

The biggest problem with implementing run-time checking is finding a place to
store the array and pointer bounds. One approach would be to have a normal size
pointer containing a pointer to the real pointer and its bounds. Unfortunately there
is now a harder problem of allocating and reclaiming memory associated with pointers
that may be in static or dynamic (heap) memory or on the stack. Hashing the address
of the pointer into a bounds table allocated from the heap was considered, but this
could be too slow and use too much memory, because reclaiming the space for
pointers on the stack or in the heap might not be practical. Consider how an array
of pointers on the stack would be handled, or a structure (record) containing pointers
in the heap.

Another approach is to save the bounds with the variable or object pointed to.
SPITBOL had untyped variables and tagged memory so a variable pointed to a type
tag, value, and bounds if it was a bounded type. PLUM3 already had a run-time
symbol table, so bounds were added to each entry. Bcc makes a pointer three times
normal size so it can contain its lower and upper bounds, that is, the memory
addresses of the first and last byte of the object the pointer originally pointed to.
These larger pointers seemed to require the least change and had the fewest potential
problems, despite the frequent use of an integer constant 0 (NULL) as a pointer
argument to a function. They could be treated as structures when generating code
to pass pointers to and return pointers from functions. See the ‘Implementation’
section for a discussion of the bounds deduced when addresses are assigned to
pointers.

It was not clear how bcc checked the upper bound of an array subscript. In C,
array names can be used like pointers, but a separate pointer is not allocated by the
compiler for an array name. The size of an external array is not known when
compiling a file because even if a size is given in the external declaration it may not
match the size in the definition in another file that allocates the memory for the
array. It was decided to put the upper integer subscript bound just before an external
array in memory, which is similar to what SPITBOL does, and does not change the
size of the array because the subscript bound is outside the array. Multi-dimension
arrays are not a problem because in C they are actually arrays of arrays, so the
bounds of each subscript are checked against the array at each subscript level.

COMPARISON OF BCC AND RTCC
Having chosen bcc as the model for the run-time checking compiler (rtcc), some of
its checks were not reimplemented because they were too restrictive or were for
unlikely errors:

1. It warned of indirection through a constant integer, but this is possible in code
dealing with memory mapped hardware interrupt vectors or peripheral registers.

2. It warned of relational comparison (<=, <, >=, or >) to a null (0) pointer,

308 J . L. STEFFEN

but while this may be poor coding it may not be a bug, e.g. p > 0 has the same
effect as p != 0 because pointers are unsigned on most machines.

3. It warned of pointer arithmetic wraparound-it is not worth checking for this
unlikely error, given that on many machines the code is at the bottom of the
virtual address space and the stack grows from the top down, the program
would have to be incrementing a pointer past the bottom of the stack.

4. It caught dangling pointers to the heap at the expense of never reusing freed
memory; but it did not catch dangling pointers to the stack, which experience
has shown are more frequent, e.g. returning the address of a local variable
from a function.

BCC had great error messages including the file name, source line, and an arrow
pointing to the part of the line causing the error, but to do this it had to pass the
file name, source line and character number to the run-time package; thus increasing
compile and run-time. The character number is not available from PCC; and the
sdb debugger* gives the file name and line number in the stack trace from a core
dump, so it was decided to have rtcc’s run-time package print a brief message and
call the abort standard C library function to cause a core dump.

Since pointers are three times normal size, they must be converted to normal size
at some point to interface with the operating system, and this is called encapsulation.
Bcc did this for most system calls and standard C library functions, but dealing with
missing system calls, functions, and libraries was a real user interface drawback, as
noted before. It was decided to encapsulate all system calls and compile all libraries
with rtcc. Many system calls have character string arguments, which should be a
pointer to a character array containing at least one null (\O) character to terminate
the string. Since there is no run-time checking of pointer bounds within system calls,
while encapsulating system calls to removeladd pointer bounds, it was decided to
verify that character string arguments are terminated with a null character within
bounds, and that other pointer arguments point to an object that is large enough to
hold the returned data. For example, the open system call’s file name character
string argument is checked for a non-null pointer within the bounds of a character
array, and that there is a null character between where the pointer points and the
end of the array. The read system call’s buffer pointer argument is checked to be
non-null, within bounds, and that the number of bytes between the pointer and the
upper bound are as large as the number of bytes to be read.

On machines where pointers and integers (int) are the same size, an integer
constant 0 (NULL) is often used as a function argument without casting it to a pointer.
The run-time checking code just takes the next two memory words as the bounds
of this null pointer, and it may cause an out-of-bounds pointer error. Thus, before
rtcc can be used to find the real run-time error that is causing a core dump, pointer
casts must be added to all uses of 0 as a function pointer argument. Bcc had a user
manual section on using lint to help find these places in the code. Unfortunately,
the few lint messages that affect run-time checking must be found in the mass of lint
output, and there may still be occurrences that lint does not find. This checking
would be best done with an enhanced compiler that would store the equivalent of
ANSI C function prototypes in the object file and an enhanced linker that would

* Systems based on Berkeley UNIX have an equivalent debugger called dbx.

ADDING RUN-TIME CHECKING 309

check them, but this work was deferred. Since it is difficult to find 0 or NULL
arguments visually in thousands of lines of code, it was decided to add an option to
lint to just print messages for pointerhon-pointer function argument and return
value mismatches. This option is necessary even if run-time checking is put in an
ANSI C compiler because function prototypes are optional so the compiler cannot
depend on every function having a template. Run-time checking was added to a
PCC that had function templates, which are syntactically identical to prototypes but
the compiler does not coerce function arguments to the correct type. Programmers
found that templates were much work to add and maintain in a large system, so
their use did not become widespread.

OVERVIEW
Before describing the implementation of rtcc, it is best to describe it and its related
commands, how they are used, and problems that may be encountered.

Rtlint is a version of the lint C program static analyser command that only checks
for use of an int where a pointer was expected in a function argument or return
value. This check is needed as pointers are three times normal size because they
contain the upper and lower bound of the object being pointed to, in addition to
the pointer value, so before using rtcc, use rtlint on all C source files, e.g.

rtlint *.c

If rtlint prints any messages, fix the cause of them, and rerun rtlint until there are
no messages. Rtcc is a version of the cc C program compiler command that generates
code to check array subscripts and pointer bounds at run-time, so compile the
program with rtcc

rtcc *.c

Now execute the program. If a message prefaced by rtcc: is printed: a 'run-time
check has failed, e.g.

rtcc: null pointer used
sh: 29655 abort-core dumped

The second message occurs because the run-time checking code calls abort to cause
a core dump.

Rtsdb is a version of the sdb symbolic debugging command that understands that
pointers have an upper and lower bound, and prints the bounds in angular brackets.
It also has access to the C language source files of the standard C library and other
libraries. Now execute rtsdb, whose output is shown in italics

,rtsdb
kill: address Ox15632

and use its t command to print a stack trace of the program

310 J . L. STEFFEN

t
kill(Oxf5e, 0x6)
abort0 [abort. c: 151
-error-(s = 1048933) [rtcrto. c. :801
-ind-(pointer=Ox 1055a8) [rtcrtO.c: 7831
main(argc= l,argv=0xl00b30(0x10Ob3O-Oxl00b47)) [main.c: 71

On the top of the stack is the kill system call made by abort, which is called by
-error- in the run-time checking code (rtcrt0.c). The run-time error was found in the
function below the last rtcrt0.c function in the stack trace, which is main in this
example. Use the e command to set the current procedure in rtsdb to main

e main

and print the source line by typing the line number in the stack trace

7
if(*p== *q)

Print the values of the pointers in the source line to find the one that is null

PI

q/
O(0 - 0)

OX 1 OOb30(0~ 1 OOb30 - OX 1 OOb4 7)

The bounds of a pointer are printed inside angular brackets. Note that q is the null
pointer because its value is 0. Its bounds are also 0 because a null pointer does not
point to anything.

All run-time pointer errors except for dereferencing (using) a dangling pointer are
caught. A dangling pointer is either a global pointer to an automatic (stack) variable
after the function defining it has returned, or a pointer to memory allocated with
malloc that has been freed with free. The latter form of dangling pointer can be
caught by rtcc if the pointer is set to 0 after it has been freed, e.g.

free(p);

p = 0;
#if RTCC

#endif

If there is code assigning p to other pointers, then these pointers also have to be set
to 0. Note that rtcc sets the RTCC preprocessor variable so the additional code above
is compiled only when using rtcc.

Run-time checking can be circumventing by casting a pointer to int and back
again because this makes the pointer bounds all memory except location 0 (null).
Occasionally it is easier to do this than to rewrite code, e.g. when the addresses of
two structure members are used to copy a portion of one structure to another, or if
the program has its own version of malloc. If the latter, a bounded pointer p to
allocated memory of size s can be generated by calling the -pea- function in the
run-time checking package:

ADDING RUN-TIME CHECKING 311

#if RTCC
char **-pca-O;
p = (char *I -pca-((int) p, s - 1);

#endif

IMPLEMENTATION
The intent of this section is to describe a PCC host-independent implementation for
rtcc and its related commands under the UNIX operating system.

Rtlint

pointer function argument and return value mismatches.
Rtlint just calls lint with an option (-G) to just print messages for pointerhon-

Rtcc
Similarly, rtcc just calls the cc C program compiler command with the -G option,

which also causes any execution profiling option (-p) to be ignored. Cc executes
other files that do phases of the compilation:

(a) C preprocessing (cpp)
(b) compiling into assembly language (comp)
(c) optimizing (optim)
(d) assembling into an object file (as)
(e) linking into an executable file (Id)

and various options are passed to them for run-time checking, e.g. the -DRTCC
option to define the RTCC preprocessor symbol for use in #ifdirectives is passed to
CPP.

The -G option is passed to comp to generate code to check array subscripts and
pointer bounds by inserting calls to the run-time checking package rtcrt0.c into the
expression tree as it is created in the machine-independent part of comp. Since there
are few changes to the machine-dependent part of comp, porting the run-time
checking code to another version of PCC is as easy as possible. The -g option is
enabled and passed to comp to produce the symbolic debugging information.

The -G option is passed to as to set the run-time checking flag in the object file
header, and to Id to verify that all object files were compiled with rtcc and to set
the run-time checking flag in the executable file header. Library names in -I options
have rt prepended to them before they are passed to Id, e.g. -1m becomes -1rtm.
The -lg option is passed to Id so the object file is linked with the sdb library. The
run-time checking package is passed to Id instead of the normal C run-time package
as the interface between the UNIX exec operating system calls and a C program.

Compiler phase (comp)

If comp is passed the -G option, it generates assembly language code to call the
run-time package to check array subscripts and to generate and check pointer
bounds. The generated bounds of

312 J . L. STEFFEN

(a) a null (0) pointer are 0,
(b) an integer constant are all memory except location 0,
(c) a string constant are the memory containing the string,
(d) a function pointer are the function address,
(e) other pointers are the memory containing the object they point to.

The upper integer subscript bound is put just before an external array in memory.
The latter is one of two machine-dependent changes to comp because the assembly
language for declaring the upper subscript bound’s value differs among assemblers.
In an undimensioned initialized global array declaration, the upper subscript bound
is not known until the end of the initialization value list, so the value of the upper
subscript bound must be an assembler symbol, and an assembler definition of the
symbol must be emitted after initialization.

Constant array subscripts not in address (&) expressions are checked at compile-
time for negative values and values greater than the array dimension, if known*.
These checks are done even when run-time checking is not requested, so they cause
warning instead of error messages to allow compilation to continue.

Since the assembly language to declare an external name also differs among
assemblers, the other machine-dependent change is to add the leading and trailing
underscores (-) to encapsulated names of system calls and the malloc and realloc
memory allocation library functions.

Since pointers are three times normal size, to preserve the call-by-value semantics
of pointer function arguments, they are passed to and returned from functions
compiled with rtcc and encapsulation functions as if they were structures. This
change to argument passing requires tighter checking of pointerhon-pointer type
mismatches, so the ‘illegal combination of pointer and integer’ message was changed
from a warning to an error so it stops compilation for run-time checking, and the
‘function was not declared to return a pointer’ error message was added. These
machine-independent changes are in the code shared with rtlint.

Pointers are not passed to or returned from the non-encapsulation run-time
checking functions as structures; instead the address of a pointer is passed or
returned, partly because it is faster and the generated code is smaller. More signifi-
cantly however, the temporary register allocation and spilling in comp does not have
to be changed to allocate three registers for a pointer, spill the pointer registers into
a temporary structure on the stack when it runs out of temporary registers, and
reload them when needed later in the generated code for the expression.

C run-time package (rtcrt0.c)
The exec system calls do not call the main function of a C program; they call the

-crt function in the C run-time package. In the C language, it looks something like

-crtO(argc, argv, envp)
int argc;
char *argv[], *envp[];

extern char **environ;
{

The latter check caught surprisingly many off-by-one errors in a large software system.

ADDING RUN-TIME CHECKING 313

environ = envp;
exit(main(argc, argv, envp));

1
The name of this function may differ among UNIX variants, e.g. it may be start or
-start because it is sometimes called the start-up function. For run-time checking,
before they are passed to the main function, the normal pointer size argument (argv)
and environment (envp) string arrays must be copied into three times larger arrays
with pointer bounds calculated from the string lengths.

The previously described system call encapsulations are also in this file, and they
remove the bounds from pointers passed to system calls, including pointers in arrays
or structures. Pointer bounds are added to pointers returned from system calls such
as sbrk and the malloc and realloc memory allocation library functions. For example,
the sbrk system call returns a pointer that is the old break value with bounds of the
original break value (&end) and the new break value less one; malloc and realloc
return pointers with the lower bound equal to the pointer and the upper bound
equal to the pointer plus the size argument less one. The system call encapsulations
also verify that string pointers arguments are terminated a null (0) character, pointers
to buffers have enough space for the data to be read, and other pointers are non-
null unless null is allowed. The realloc library function encapsulation’s first argument
is not checked for null because if it is null it causes a run-time error ayway.

This file also contains the run-time checking functions called by the compiler-
generated run-time checking code in the program, and they and the encapsulations
produce these error messages:

(a) array subscript is too big
An array subscript is larger than the size of the array. Note that the largest
valid array subscript is one less than the size of the array, because the first
valid subscript of an array is 0, not 1.

An array subscript is less than 0.

A null (0) pointer was used with the indirection (*) operator, the -> operator,
an array subscript, or as an argument to the brk or shmdt system calls. Note
that a null pointer is not a null (””) string.

A pointer is not within the bounds of the object pointed to, and it was used
with the indirection (*) operator, the -> operator, or an array subscript.

A pointer is within the bounds of the object pointed to, but this object is too
small to contain the stored value. For example, the address of a char variable
instead of an int was passed to the scanf library function.

(f) system cull: argument points to an object that is too small, must be >= size
bytes
This argument to this system call points to an array, structure, or union that
is too small. Argument matches the argument name in the user manual entry
for this system cull.

This argument to this system call points to a character array that does not

(b) negative array subscript

(c) null pointer used

(d) out-of-bounds pointer used

(e) use of pointer to an object that is too small

(g) system cull: argument is not a null-terminated string

314 J. L. STEFFEN

contain a null (‘\O’) character. Argument matches the argument name in the
user manual entry for this system call.

(h) msgct1:invalid cmd
(i) semct1:invalid cmd
(j) shmct1:invalid cmd

This system call’s cmd argument is invalid.

Rtsdb
Rtsdb is just a consistent alias for the enhanced sdb symbolic debugger that

recognizes an executable file compiled with rtcc and displays a pointer’s bound in
angular brackets after its value, e.g.

0x1 00b30<0~100b30-0~100b47>

However, pointers in the run-time package do not have bounds so they are not
printed. Rtsdb also searches a directory of library source files so the sdb subcom-
mands to display the C language source can be used when a run-time error occurs
in a library function such as strcpy (string copy).

TESTING
Rfcc was tested with an extensive set of run-time checking tests; and sets of compiler,
system call, and library regression tests. Not only were bugs found in the new run-
time checking code, but also in the old compiler code where it was unable to generate
code for some expressions involving functions returning structures or pointers, e.g.

function0.member
function()-)member

Many run-time errors were found while testing libraries; some of these required
circumventing the run-time checking by casting a pointer to an integer and back to
a pointer to give bounds of all memory except location 0. For example, in the libc
free and realloc functions the bounds had to be removed from the pointer argument
so they could access the preceding union containing the busy bit or the free list
pointer. The bounds of the pointer returned by malloc do not include this union so
it cannot be accidentally overwritten by the program being checked. Other run-time
errors were caused by poor coding practices such as

(a) not using the varargs macros for functions with variable numbers of arguments,
(b) casting a pointer to a pointer to a different sized object,
(c) dereferencing a pointer that had been incremented past the structure member

it originally pointed to.
For the latter it was often easiest to use a cast to defeat the run-time checking rather
than extensively rewrite the code. The remaining four run-time errors were bugs
that are probably harmless but had to be fixed. Some were surprising in that they
were in code that had been used for years, such as an uninitialized local variable in
fseek.

ADDING RUN-TIME CHECKING 315

RESULTS
On average, the rtcc compile time is about 40 per cent longer than cc because it is
generating code (.text) that is about three times larger, and the code runs about ten
times slower. Rtcc has been used for four years by many programmers; it found the
cause of intermittent core dumps in the compiler and an internal version of the
ernucs editor, and it found four latent bugs in ctruce'" that had not surfaced in nine
years of use. It reduces the time needed to find memory overwrite bugs because
they are caught as they happen instead of when the overwritten memory is used
later in the program execution. Even if a run-time error is not found in a misbehaving
program, it aids debugging because this eliminates the whole class of memory
overwrite bugs so another cause for the problem can be searched for.

Some programmers assume that the size of a pointer equals the size of an int or
long integer, which can require code changes so rtcc generated code does not falsely
report run-time errors. For example, the PCC parse tree node union of structures
has this assumption, so this code had to be added after the integer structure member
corresponding to a pointer in another structure in the union

#if RTCC

#endif
int lowerbound, upperbound; /*allow for "N0DE"left; " bounds*/

Only one program, sdb, has resisted all efforts to use rtcc on it because it is unable
to recognize a core dump file because the process user structure contains pointers.
When the core dump file is created, these pointers are normal size pointers, but sdb
compiled with rtcc expects them to have bounds and thus be three times normal
size.

Porting the run-time checking code to another compiler will not be as easy as
hoped, mainly because of the compiler bugs that are exposed by the run-time
checking code generation, and the extensive testing required for confidence in the
generated code. It took about six months to implement rtcc on an AmdahVIBM
mainframe, and it is estimated it would take two months to port it to the PCC for
another machine. Funding for porting was never approved, possibly because the
rapid rise and fall in use of different machine types makes it difficult to justify this
effort for machines that may be in use only a few years, and possibly because most
past users of rtcc still have access to an Amdahl/IBM mainframe and can copy their
code to it to use rtcc. Even more effort would be needed to add run-time checking
to the ANSI C and C+ + languages because their compilers/translators are not based
on PCC, so all the machine-independent changes would have to be redone.

CONCLUSIONS
The user interface of rtcc could be improved; users do not realize that they must
use rtlinf before rfcc, and find rtsdb hard to learn to use if they have not used sdb
before. Surprisingly, many experienced C programmers rarely if ever use lint or sdb.

The performance of rtcc is good and the code it produces is of manageable size
and runs fast enough. All in all, rtcc works better and faster than bcc with fewer
restrictions on the C language code used, and no restrictions on Iibrary usage, so all

316 J . L. STEFFEN

the requirements were met. It has proved the usefulness of run-time checking time
and again in the last four years.

REFERENCES
1. R. E. Griswold, J . F. Poage and I. P. Polonsky, The SNOBOL4 Programmirtg Language, 2nd

edn, Prentice-Hall, Englewood Cliffs, NJ 1971.
2. C. M. Thompson, ‘Error checking, tracing, and dumping in an ALGOL 68 checkout compiler’,

ACM SIGPLAN Notices, 12, 106-111 (1977).
3. M. V. Zelkowitz, Paul R. McMullin, Keith R. Merkel and Howard J. Larsen, ‘Error checking

with pointer variables’, Proceedings of the 1976 ACM National Conference, ACM, New York,
1976.

4. J. Welsh, ‘Economics range checks in Pascal’, Software-Practice and Experience, 8 , 85-97 (1978).
5. C. N. Fischer and R.N. LeBlanc, ‘The implementation of run-time diagnostics in Pascal’, IEEE

Trans. Software Engineering, 6 , 313-319 (1980).
6. S. C. Kendall, ‘Bcc: runtime checking for C programs’. USENIX Toronto 1983 Summer Conference

Proceedings, USENIX Association, El Cemto, CA 1983.
7. S. Kaufer, R. Lopez and S. Pratap, ‘Saber-C: an interpreter-based programming environment for

the C language’, USENIX San Francisco 1988 Summer Conference Proceedings, USENIX Associ-
ation, El Cemto, CA 1988.

8. R. B. K. Dewar, SPITBOL Version 2.0, Illinois Institute of Technology, Chicago 1971.
9. S. C. Johnson, ‘A portable compiler: theory and practice’, Fifth ACM Symposium on Principles

10. J. L. Steffen, ‘Experience with a portable debugging tool’, Software-Practice and Experience, 14,
of Programming Languages Conference Record, ACM, New York, 1978.

323-334 (1984).

