RO Y T 0 O
US005590329A

United States Patent 9
Goodnow, II et al.

5,590,329
Dec. 31, 1996

Patent Number:
Date of Patent:

[t1]
(45]

[54] METHOD AND APPARATUS FOR
DETECTING MEMORY ACCESS ERRORS
{75] Inventors: James E. Goodnow, II, Grass Valley,
Calif.; Thaddeus J. Kowalski, Summit;
James R. Rowland, Short Hills, both
of N.J.
[73] Assignee: Lucent Technologies Inc., Murray Hill,
N.J.
[21] Appl. No.: 192,239
[22] Filed: Feb. 4, 1994
{511 Imt. CLS GOGF 11/08
[52] US. CL 395/708
[58] Field of Search 395/650, 700,
395/575
{56] References Cited
U.S. PATENT DOCUMENTS
5,107,418 4/1992 Cramer et al. ...cceveeveeeerriconnes 395/700
5,193,180 3/1993 Hastings 395/650
5,313,387 5/1994 McKeeman et al ... 395/700
5,335,344 8/1994 Hastings 395/575
5,355,469 10/1994 Sparks et al. 395/575
5,361,351 11/1994 Lenkov et al. ... 395/700
5,432,936 7/1995 Gray et al. .cceveeernereeneereecerencne 395/700
OTHER PUBLICATIONS

Kanfer et al., “Saber-C An Interpreter—based Programming
Environment for the C Language”, Jun. 20-24, 1988, pp.
161-171.

Landi et al., “Aliasing with and without pointers: A Problem
Taxonomy” Sep. 25, 1990, pp. 1-55.

Landi et al., “A Safe Approximate Algorithm for Interpro-
cedural Pointer Aliasing”, Jul., 1992, pp. 235-248.
Sulzman, “Saber—C ; A Sharp Programming Tool”, Feb.
1990, pp. 105-109.

Are there
additionat

sl Identify any allocated memary|

Perform data flow analysis

350~ to reduce the number of

painter checks performed
atrun-time

370

Generate
ermor message

380
flow analysis

or null pointer is being
gereferenced?

JYes Tndicate that an uninitialized

Steffen, “Adding Run-Time Checking to the Portable C
Compiler”, Apr. 1992, pp. 305-316.

Hipkins, Steven, The case of the Troublesome Switch (Case
Study of Debugging application Software), Oct. 1, 1992, p.
39,

C Users Journal, Nu-Mega Announces Bounds Checker 2.0,
for MS-DOS Memory Protections, p. 118.

Primary Examiner—Kevin A. Kriess
Assistant Examiner—John 1. Chavis

[57]

Disclosed is a software generation system (SGS) based
memory error detection system which may be utilized to
detect various memory access errors, such as array dimen-
sion violations, dereferencing of invalid pointers, accessing
freed memory, reading uninitialized memory, and automated
detection of memory leaks. Error checking commands and
additional information are inserted into a parse tree associ-
ated with a source code file being tested at read-time which
serve to initiate and facilitate run-time error detection pro-
cesses. Wrapper functions may be provided for initiating
error checking processes for associated library functions. A
pointer check table maintains pointer information, including
valid range information, for each pointer that is utilized to
monitor the use and modification of the respective pointers.
A memory allocation structure records allocation informa-
tion, including a chain list of all pointers that point to the
memory region and an initialization status for each byte in
the memory region, for each region of memory. The chain
list is utilized to monitor the deallocation of the associated
memory region, as well as to detect when there is a memory
leak. The initialization status is used to ensure that a region
of uninitialized memory is not accessed. A data flow analysis
algorithm minimizes the number of pointer checks that have
to be performed and allows certain read-time errors to be
detected.

ABSTRACT

12 Claims, 19 Drawing Sheets

337
<

that function may
access and, if any, set
fiag in intemal symbol table

Insert a pirchk command
for respective pointer
in parse tree

Are there
additionaf pointer
derefesences in ling of
parse tree being
evaluated?,

5,590,329

Sheet 1 of 19

Dec. 31, 1996

U.S. Patent

| Aowep
1 eyoen [~VL
1 'Old
AoElS
19— asjempieH o|qel
84D Loz
Jajulod
o
Yoels U v 55aA
[apo
99 oS) mnoomuwww%o #omﬂw
0)7
., slqeL
PBIS e ! _oﬁ“E\nm
091 Jejaidio) Areiqr jeulajuyl
0L~ Eaam.m>> S
Gl
JOMBAUOD Japosuy| o
9p0N-0pNasd M 29Il
JBJUlld | lojenjeag |« 9p0D HIEIS 9pO0D Jol7 |« Jasied
[euiau| _oy-o01] asied AIOWON asled
N N N N N
Sy Ge 0¢ G¢ 0c

Gl

°9po)d
90IN0g

5,590,329

Sheet 2 of 19

Dec. 31, 1996

U.S. Patent

—vze

—zee

—02¢

ez 9id
0.2 092 qosz B0ST ove 0g2
/ r. f /, f_ /_
00LI ®Ipsel | papunog 20sS1L 2051 Z051 0602 leyoysey nd
oLziensa)l | pejedo|y 00S€¢ 000¢€ 0022 oo|le ud
061 8jiisal papunog LOS1 00G1 00S1 9802 unsey nd
09l alijsa. papunog 110l 0001 0001 8102 Hed nd
Jaddn | J1omon
JoquinN snjeys spunog Jajuiod ssalppy Jajuiod
auI/alid Aows\ plleA 10 sjusju0) Jajuiod
./oom

U.S. Patent Dec. 31, 1996 Sheet 3 of 19 5,590,329

(Testfile

110 struct part {

120 int number;

130 char name [10];

140 } widget;

150 struct part *ptr_part;

160 ptr_part = &widget;

[70 int testint = 16394;
FIG. 2b 180 char testchar = 88;
. 190 int *ntr_testint = &testint;

1100 char *ptr_testchar = &testchar;

1200 char *ptr_a"oc;

1210 ptr_alloc = malloc (35 *sizeof (char));

1300 ptr_testchar = &widget.namel0];
1310 *ntr_testint = 12024;

U.S. Patent Dec. 31, 1996 Sheet 4 of 19 5,590,329
lines 10-60
widget.number widget.name
e N
an N
1000 1002 1011
FIG. 2¢c <
2048
1000
K ptr_part
[lines 70100y ohonar
testint
1500 1502
|
16?94 88 é
FIG. 2d¢ :
2086 2090
1500 1502
L S
ptr_testint ptr_testchar
ﬁnes 200-210
3000 3034
2200
3000
FIG. 2e PR
' tr_alloc
ptr_ /280
Lower Upper Chain Initialization
bound bound List Bit Veector Status
3500 " ~ "
30003034 ptr_alloc | 11010 » s+« «+ 0110 | ALLOCATED
7 A A T
k 282 284 286 288 290

U.S. Patent

370

Yes

350

360

Generate
error message

Yes

Dec. 31, 1996

Isa

this line of code?

there acallto a
function?

Read line or node
of the parse tree

pointer assigned a value in

5,590,329

Sheet 5 of 19

(F)TOFIG. 6
337

Identify any allocated memory
that function may
access and, if any, set
flag in internal symbol table
]

340

Are there
additional
nodes of parse tree to be
analyzed?

Perform data flow analysis
to reduce the number of
pointer checks performed

at run-time

Does data
flow analysis
indicate that an uninitialized
or null pointer is being
dereferenced?

FIG. 3

380

U.S. Patent Dec. 31, 1996 Sheet 6 of 19 5,590,329

@ FROM FIG. 3

Obtain maximum declared

410~ Size for each dimension

of array from internal
symbol table

subscript reference
for this dimension

No

Y

Insert dimchk command
425 . .
node in parse tree with
maximum size for

430 _ im .
e Yes subscript reference this dimension
* <0 or > maximum for
Generate this dimension?

€rror message

440 i@ 4
Yes

Does array
have additional untested
dimensions?

FIG. 4

U.S. Patent

505~

Dec. 31, 1996

Sheet 7 of 19

@FROM FIG. 3

Generate tblupd
command node

¥

510~

Analyze pointer
expression being

assigned to pointer

Is the
pointer being
assigned the address of
an identified variable
or function?

515

Is the
pointer being
assigned the contents
of a second
pointer?

520

525 .
Is the pointer

being assigned a
string?

is the
pointer being
assigned an illegal

530

5,590,329

Place pointer to internal
symbol table entry for
the identified variable

or function in tblupd node

—D)TOFIG. 3

Insert a readintstk
command in
tblupd node

Place address and
size of string in
tblupd node

Place ILLEGAL
status indication

value? in tblupd node
Is the 537\
535 ointer bein Place size of
P 9 structure member and
assigned the address readintstk command
of a structure in thiupd node
FIG. 5a

(E)TO FIG. 5b

———D)TOFIG. 3

——D)TOFIG. 3

——D)TOFIG. 3

—D)TOFIG. 3

U.S. Patent

(E)FROM FIG. 5a

540

pointer being
assigned by a conditiona
expression in the form
*(Test?exp1:exp2)?

045

pointer being
assugned implicitly upon the
passing of pointer argument
to an interpreted

550

pointer being
assigned a value returned
from an interpreted
function?

960

Place UNKNOWN
status indication
in tblupd node

(é)TO FIG. 3

FIG. 5b

Dec. 31, 1996

Yes

Sheet 8 of 19

542\

Generate a savptr command for
each instruction stream and insert
a rdptrstk command in tblupd node

547

Generate a savptr command prior
to the function call for each pointer|
argument with a pointer to the
function and insert a
raptrstk command in tblupd node

552\

Generate a savptr command
with a pointer to the function
in response to the return call
by the called function for each
returned pointer and insert a
rdptrstk command in tblupd node

@ FROM FIG. 3
¥

5,590,329

—(D)TO FIG. 3

—(D)TOFIG. 3

Insert a ptrchk command
for respective pointer
in parse tree

615
—

620

Are there
additional pointer
dereferences in line of
parse tree being

FIG. 6

U.S. Patent Dec. 31, 1996 Sheet 9 of 19

705

5,590,329

<] Locate row in pointer
check table for
pointer argument
710 3
Status = Generate
FREED? error message
720

725
-

Status =

ALLOCATED
or UNKNOWN?

Generate
error message

725\ Access memory allocation structure

pointed to by pointer retrieved
from entry 250a and set
status member = FREED
i .
Access chain list member in
memory allocation structure and
retrieve list of pointers

v

730
<

735 | Access appropriate row in pointer
check table for each pointer
retrieved from chain list and set
status = FREED
737

Call and execute
compiled memory deallocation
function

Set actual contents of each
pointer listed in chain list
to a null value

740 EXIT)«

739
<

FIG. 7

U.S. Patent =~ Dec. 31, 199 Sheet 10 of 19 5,590,329

800

FROM Evaluate each node of ™\,

FIGS. 9-12 internal pseudo-code

Dimchk Yes TO FIG. 9 825\

Retrieve address of pointer being
copied from top of interpreter
stack and copy pointer information
from associated row of pointer check
table into pointer save stack. Place
pointer to function identifier in pointer
save stack if included with
savptr command.

a compiled
function?

No

860
Are there

additional nodes Yes

of internal pseudo-code
to be evaluated?

870 No

FIG. 8
€l

U.S. Patent Dec. 31, 1996 Sheet 11 of 19 5,590,329

C?FROM FIG. 8
910
\

Calculate array index for
variable subscript reference

920

Is
maximum valid

dimension
=1?

subscript reference
< 0 or > maximum valid
dimension?

928
/

Utilize pointer checking

facilities to determine if

structure as a whole is
within valid range

Generate
error message

a3

b

H)TO FIG. 8

FIG. 9

U.S. Patent

Dec. 31, 1996

Sheet 12 of 19

1002 @ FROM FIG. 8
\

Evaluate tblupd node

1004

Does the
node contain
a pointer to an internal
symbol table
ntry?

No

1022

Does the
node contain
a readintstk

1026
N

FIG. 10a

1008

1006
<

Access identified
symbol table entry
and retrieve address
and size information

a pointer to
a function?

5,590,329

1010
<

Set
status =
UNKNOWN

No

1016 ¥
Set status

= PFUNC

1018

Set status
~=BOUNDED

v

¥

17
10 /] 1019

Setrange =
start address

Calculate
valid range

1020
SN v

Update pointer check table
entry for pointer being assigned

1024
S

A

Access interpreter stack to retrieve
address of second pointer being copied

¥

Locate pointer check table entry for
second pointer using retrieved address

¥

1028

Copy pointer check table entry for second

pointer into entry for pointer being assigned

@To FIG. 8

@To FIG. 8

U.S. Patent Dec. 31, 1996 Sheet 13 of 19 5,590,329

(K) FROM FIG. 10a

1036
1030 =

Does the
node contain
the address and

102 103 ,
- N Update pointer
Ca cu_date | Set status =| | check table entry
vali BOUNDED || for pointer being

size ofa range assigned TOFIG. 8
1042
1038 1040 N
Does the ~ Update pointer
node contain Set status =| | check table entry
an ILLEGAL status ILLEGAL || for pointer being "@TO FIG. 8

indication? assigned

1046
1044 N

Does the
node contain a

Access interpreter
stack to retrieve

address of structure
member
1052
1048 1050 S
No ° N Update pointer
(DTOFIG. 10c |Calculate| [get gtatus =] | check table entry

valid ™ > : :
BOUNDED | | for pointer bein
range gssigned g TOFIG. 8

FIG. 10b

U.S. Patent

1060

1090

FROM

Does the
node contain

c?) rfrjfrﬁngé(? retrieve contents

1080
\

Dec. 31, 1996 Sheet 14 of 19 5,590,329

FIG. 10b
1064
N

Access pointer

Yes save stack and

h 4

o 1066
Does pointer
save stack include a N
pointer to a
1074
retrieved
pointer to a function pointer to a function

= address of function that = address of function

Update pointer check table entry for pointer being assigned |
with pointer information retrieved from pointer save stack |

Does the
node contain

an UNKNOWN status

indication?

1096
O

Generate
error message

1098

@To FIG. 8

1094
<

1092
b Update pointer
Set status =| | check table entry

UNKNOWN [for pointer being
assigned |TO FIG. 8

FIG. 10¢c

U.S. Patent Dec. 31, 1996 Sheet 15 of 19 5,590,329

@ FROM FIG. 8

Access interpreter stack
and retrieve address of
pointer being checked

v

Locate pointer check
table entry for pointer being
checked using retrieved
address of pointer

1104
<

1108
-

1116
1112 \
Status = Obt'amfaddrc.asts of l
PEUNC? - function from interna
symbol table
¥
No 1120| Set recorded contents
~ = address from
symbol table
.]
1128
Recorded =
— Set status =
contents = actual UNKNOWN —@TO FIG. 8
contents?

Jes,(P) TO FIG. 13

No
(N)TO FIG. 11b

FIG. 11a

U.S. Patent

(N)FROMFIG. 11a

Status =
BOUNDED?

1160

Status =
ALLOCATED?

Generate
error message

@ \1176

FIG. 11b

Dec. 31, 1996

Is the

contents of the
pointer within valid

Sheet 16 of 19

(H)TOFIG. 8

5,590,329

1168
\

Yes|

WRITE to
allocated

Update appropriate
bits of initialization
bit vector to indicate
initialized status

memory?

Access appropriate
bits of initialization
bit vector to determine
if corresponding bytes
of allocated memory
have been initialized

1174

Have
bytes been

@DTO FIG. 8

U.S. Patent Dec. 31, 1996

1202 Does

compiled
function have an
associated pre-
execution wrappe
function?

(0) FROMFIG. 8

Sheet 17 of 19

1204
~

Initiate associated pre-
execution wrapper function
to perform pointer check

1205

Has
allocation

No

access flag
been set?

1207
—~

Execute initialization
bit vector maintenance
subroutine

1260 : S
Call and execute
compiled code

<&
<

1265 Does

compiled
function have an
associated post-
execution wrappe
function?

No

1270
\

Initiate associated
post-execution
wrapper function

@STO FIG. 8

FIG. 12a

5,590,329

U.S. Patent

Dec. 31, 1996

Begin initialization
bit vector maintenance
subroutine

l

1210
Y

Analyze initialization bit vector in
memory allocation structure for all
accessible allocated memory to
identify uninitialized bytes at time
compiled function is called

!

1220
Y

Perform CRC checksum on all
uninitialized accessible bytes

1225

Call and execute
compiled code

1230
J

Perform CRC checksum on
all bytes uninitialized before
execution of compiled code

1235

Sheet 18 of 19 5,590,329

FROM FIGS. 11a
1310 OR 11b

Generate error message
indicating error type and
the line number in which the
pointer was last modified

I

Utilize read-time facilities
to allow programmer to
correct detected error

13%
TOFIG. 8

FIG. 13

1240
o

Does
CRC = CRC"?

Read flag defined by user to determine
if entire block should be marked

with the initialized status

Yes
1255
<
Identify each 4 byte! Update each bit
block having a of initialization bit
contents not equal vector to indicate
to FFFA 5A5A initialization sta\tus
1250
1258 | Update corresponding
~ bits of initialization bit
vector to indicate
initialized status

Return to
compiled function error
checking process

FIG. 12b

U.S. Patent

FIG. 14a

Set 1

DEF (170)
USED (180)
USED (190)
USED (1100)

:

Dec. 31, 1996

Sheet 19 of 19 5,590,329

Sourcecode = Sample

110 struct part {
120 int number;
130 char name [10];
140 char color;
150 } widget;
160 struct part *ptr part;
70 ptr_part = &widget;
180 ptr_part—>number = 860;
190 strcpy (ptr_part—>name, " chait');
1100 ptr_part—color ="b’;
1150 ptr_part = 0;
1160 ptr_part—>number = 870;
Set 2
DEF 0 (1150)
| FIG. 14b
USED (1160)

5,590,329

1

METHOD AND APPARATUS FOR
DETECTING MEMORY ACCESS ERRORS

FIELD OF THE INVENTION

The present invention relates to a system for testing and
debugging software programs, and more particularly, to a
method and apparatus for detecting memory access errors in
both interpreted source code and compiled object code.

BACKGROUND OF THE INVENTION

Today’s world of computer programming offers many
high-level programming languages. The flexibility and
power offered by programming languages such as C, C++
and Pascal, however, have made these languages very popu-
lar among programmers. These programming languages
place few, if any, constraints on what a programmer can
implement in software, allowing a program to perform
virtually any task that may be performed by the underlying
assembly language.

One feature of these programming langnages which offers
significant power and flexibility is the ability to access
memory by means of pointers, without restriction. The
unrestricted use of pointers, however, invites program bugs
which are often difficult to detect and correct with conven-
tional debugging techniques.

A number of software testing and debugging tools have
been developed for detecting various memory access errors.
For example, the Purify™ software testing tool, commer-
cially available from Pure Software, Inc., of Sunnyvale,
Calif., and described in U.S. Pat. No. 5,193,180, provides a
system for detecting memory access errors and memory
leaks. The Purify™ system monitors the allocation and
initialization status for each byte of memory.

In addition, the Purify™ system establishes eight byte
buffer zones before and after each block of allocated
memory in order to facilitate the detection of array bound
violations and similar memory access errors. The status of
each byte in the buffer zone is set to an unallocated and
uninitialized state. For each instruction that accesses
memory, the Purify™ system performs a test to ensure that
the program is not writing to unallocated memory, and is not
reading from uninitialized or unallocated memory.

‘While the Purify™ system provides an effective basis for
detecting many memory access errors, it will not detect the
common programming error that occurs when a pointer
associated with a first block of allocated memory incorrectly
accesses a second block of allocated and initialized memory.
The Purify™ system will only verify that the memory
pointed to by a pointer is allocated and initialized, and will
not verify that the memory pointed to by the pointer is within
the proper bounds that have been established for that pointer.

Other software testing and debugging tools have been
developed which have attempted to overcome this limita-
tion. For example, the compiler-based memory access error
detection system described in Joseph L. Steffen, “Adding
Run-time Checking to the Portable C Compiler,” Software-
Practice and Experience, Vol. 22(4), Apr. 1992, pp. 305-316,
utilizes three words for each pointer, so that the pointer may
include information on the valid range of the pointer. Thus,
each time a pointer accesses memory, a check may be
performed to ensure that the memory pointed to by the
pointer is within the proper bounds for the respective
pointer.

10

20

25

30

35

45

50

55

60

65

2

Many programmers, however, prefer to test and debug
their software in an interpreter environment, as opposed to
a compiler environment, because interpreter-based debug-
ging is typically more flexible and provides greater assis-
tance during debugging, i.e., by providing sophisticated
tracing and other diagnostic techniques. Perhaps even more
common is partial interpretation, wherein some files are
comprised of interpreted source code while others files are
comprised of compiled object code.

However, software debugging tools that operate in a
partial interpreter environment, such as the Centerline Code-
Center system, formerly known as the Saber-C™ system,
commercially available from Centerline Software, Inc., typi-
cally have the same limitations with respect to error check-
ing of the compiled object code as the Purify™ system
discussed above. Specifically, these partial interpretation
debugging tools will typically only verify that the memory
pointed to by a pointer within compiled ohject code is
allocated and initialized, and will not verify that the memory
pointed to by the pointer is within the proper bounds that
have been established for that pointer.

As is apparent from the above deficiencies with the prior
art, a need exists for a software testing and debugging tool
that is capable of performing error detection tasks while
executing both interpreted source code and compiled object
code. A further need exists for a software testing and
debugging tool that ensures that the memory pointed to by
a given pointer is within the proper bounds for the respective
pointer. In addition, a need exists for a more efficient
software testing and debugging tool that reduces the number
of duplicative or overlapping pointer checks that are per-
formed at run-time by utilizing information that is derived at
read-time or parse time.

SUMMARY OF THE INVENTION

Generally, according to one aspect of the invention, a
software testing and debugging tool is provided for detecting
a number of memory access errors in a software program,
such as array dimension violations, dereferencing of invalid
pointers, accessing freed memory, reading uninitialized
memory, and automated detection of memory leaks. In
addition, diagnostic information is provided that facilitates
the identification and correction of detected errors.

Another aspect of the invention provides a system for
recording pointer information for each pointer in a software
program. The recorded pointer information preferably
includes, e.g., the address and contents of the associated
pointer, as well as the range of memory where the associated
pointer may validly point. The recorded pointer information
is utilized to monitor the use and modification of the
associated pointers.

In addition, a system is provided for recording allocation
information for each region of allocated memory. The
recorded allocation information preferably includes, e.g., a
chain list of all of the pointers currently pointing to the
associated region of allocated memory, as well as an initial-
ization bit vector which maintains the initialization status of
each byte of the associated region of allocated memory.

A read-time error checking process analyzes each line of
the parse tree associated with the interpreted source code.
The read-time error checking process will insert error check-
ing commands and additional information into the parse
tree, as appropriate, in response to each pointer assignment
or pointer dereference that appears in the interpreted source
code.

5,590,329

3

A run-time error checking process will initiate an update
of the appropriate recorded pointer information for each
error checking command that has been inserted into the
parse tree in response to a pointer assignment. Similarly, for
each error checking command that has been inserted into the
parse tree in response to a pointer dereference, the run-time
error checking process will initiate a pointer check of the
pointer information that has been recorded for the derefer-
enced pointer. The run-time pointer check will evaluate the
recorded pointer information for the dereferenced pointer
and detect if the dereferenced pointer is pointing outside its
valid memory space.

According to a further feature of the invention, error
checking processes may be performed on compiled object
code functions by means of interpreted wrapper functions
that may be associated with a compiled function that
requires error checking. The wrapper functions may be
executed before and/or after the associated compiled func-
tion, as necessary, to implement the necessary error check-
ing processes.

A pre-execution wrapper function is preferably associated
with each compiled function that is known to dereference a
pointer during execution of the compiled code, in order to
initiate a pointer check for each dereferenced pointer. Pre-
execution wrapper functions may perform additional error
checking on arguments that are passed to a compiled func-
tion, as well.

A post-execution wrapper function is preferably associ-
ated with each compiled function that is known to create a
pointer during the execution of the compiled code, as well
as with each compiled function that is known to return a
pointer value that is subsequently assigned to a pointer upon
return by the calling function. If the associated compiled
function creates a pointer, the post-execution wrapper func-
tion preferably records the pointer information for the cre-
ated pointer in the appropriate memory location. If the
associated compiled function is returning a pointer value to
the calling function, the post-execution wrapper function
preferably places the necessary pointer information in a
pointer save stack, for subsequent retrieval during execution
of the calling function.

According to a further feature of the invention, a method
is provided for detecting when a region of deallocated
memory is accessed. Upon the deallocation of a region of
allocated memory, the chain list that is included in the
allocation information associated with the region of memory
is accessed to obtain the list of all of the pointers currently
pointing to the region of allocated memory. Thereafter, an
indication is recorded in the pointer information associated
with each pointer listed in the chain list that the pointer is
now pointing to a region of memory that has been deallo-
cated. Thus, an error is detected if a pointer is dereferenced
while containing an indication that the pointer is pointing to
a deallocated memory space.

According to another feature of the invention, a method is
provided for detecting when a region of uninitialized
memory is being read. Each time one or more bytes of a
region of allocated memory is initialized by interpreted
source code, the initialization bit vector in the allocation
information for the associated region of memory is updated
to indicate that the corresponding bytes of memory have
been initialized. An initialization bit vector maintenance
subroutine is performed each time a compiled function is
executed that may initialize memory. The initialization bit
vector maintenance subroutine detects the initialization of
one or more bytes of memory by the compiled function and

20

25

30

35

45

50

55

60

65

4

updates the initialization bit vector to indicate that the
corresponding bytes of memory have been initialized. Each
time a pointer is dereferenced to read a region of memory,
the initialization bit vector is evaluated to determine if the
region of memory being read has been initialized.

Another feature of the invention allows a memory leak to
be detected automatically. The chain list included in the
allocation information associated with each region of allo-
cated memory is updated each time a pointer assignment
modifies the list of pointers currently pointing to the region
of allocated memory. A memory leak is identified if the
chain list is empty.

Yet another feature of the invention utilizes a data flow
analysis to minimize the number of pointer checks that have
to be performed at run-time by eliminating duplicative, i.e.,
overlapping, pointer checks from the read-time parse tree. In
addition, the data flow analysis allows the dereferencing of
a null or uninitialized pointer to be detected at read-time.

A more complete understanding of the present invention
may be had by reference to the following Detailed Descrip-
tion with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a schematic block diagram illustrating a memory
access error detection system according to the present inven-
tion;

FIG. 2a illustrates a pointer check table that maintains
current pointer information for each pointer that is declared
in the sample source code file of FIG. 2b;

FIG. 2b illustrates the sample source code file that
declares and initializes the pointers listed in the pointer
check table of FIG. 2q;

FIGS. 2¢ and 2d illustrate the relationship between a
number of pointers and the respective memory spaces
pointed to by the pointers, following execution of lines 10
through 60 and 70 through 110, respectively, of the source
code of FIG. 2b;

FIG. 2¢ illustrates the relationship between a pointer,
ptr_alloc, and a block of allocated memory pointed to by the
pointer, following execution of lines 200 through 210 of the
source code of FIG. 2b, as well as an associated memory
allocation structure that maintains additional information on
the block of allocated memory;

FIG. 3 is a flow chart describing an exemplary read-time
error checking process as utilized by a memory error detec-
tion code inserter in analyzing a parse tree;

FIG. 4 is a flow chart describing an exemplary read-time
array dimension checking subroutine as utilized by the error
checking process of FIG. 3;

FIGS. 5a and 5b, collectively, are a flow chart describing
an exemplary read-time pointer table updating subroutine as
utilized by the error checking process of FIG. 3;

FIG. 6 is a flow chart describing an exemplary read-time
pointer checking subroutine as utilized by the error checking
process of FIG. 3;

FIG. 7 is a flow chart describing an exemplary memory
deallocation monitoring subroutine as utilized by an evalu-
ator while executing a compiled memory deallocation func-
tion;

FIG. 8 is a flow chart describing an exemplary run-time
error checking process as utilized by an evaluator while
analyzing nodes of internal pseudo-code at run-time;

FIG. 9 is a flow chart describing an exemplary run-time
array dimension checking subroutine as utilized by the error
checking process of FIG. 8;-

5,590,329

5

FIGS. 10a through 10c, collectively, are a flow chart
describing an exemplary run-time pointer table updating
subroutine as utilized by the error checking process of FIG.
8;

FIGS. 11a and 115, collectively, are a flow chart describ-
ing an exemplary run-time pointer checking subroutine as
utilized by the error checking process of FIG. §;

FIG. 12a is a flow chart describing an exemplary com-
piled function error checking process as utilized by the error
checking process of FIG. 8;

FIG. 12b is a flow chart describing an exemplary initial-
ization bit vector maintenance subroutine as utilized by the
compiled function error checking process of FIG. 12a;

FIG. 13 is a flow chart describing an exemplary diagnostic
subroutine as utilized by the run-time pointer checking
subroutine of FIGS. 11q and 11b;

FIG. 144 illustrates a sample source code file that declares
and initializes a pointer, ptr_ part; and

FIG. 14b illustrates the flow sets that are established
during the data flow analysis of the source code iliustrated
in FIG. 14a.

DETAILED DESCRIPTION

A memory error detection system according to the present
invention is illustrated in FIG. 1. The memory error detec-
tion system disclosed herein is a software generation system
(SGS) based software testing and debugging tool. The
software generation system may be embodied as an inter-
preter or a compiler or a similar system capable of translat-
ing source code into an executable format.

The memory error detection system analyzes a software
program being tested in order to detect various memory
access errors, including, e.g., array dimension violations,
dereferencing of invalid pointers, accessing freed memory,
reading uninitialized memory, and automated detection of
memory leaks. In addition, the memory error detection
system provides diagnostic information that facilitates the
identification and correction of detected errors.

The invention will be described in five main sections as
follows. First, an introductory section will initially describe
the memory error detection system relative to the schematic
block diagram of FIG. 1. The introductory section will
include a detailed description of a pointer check table 200,
shown schematically in FIG. 1 and in greater detail in FIG.
2a. The pointer check table 200 shown in FIG. 2a has been
populated with data from an associated example discussed
relative to FIGS. 2b through 2e.

Second, the read-time error checking processes of the
present invention, as executed by a memory error detection
code inserter 25 shown in FIG. 1, will be described in a
section entitled READ-TIME ERROR CHECKING
OPERATIONS. The read-time error checking processes are
discussed relative to FIGS. 3 through 6. This section con-
cludes with a discussion relative to FIGS. 14a and 145 of a
data flow analysis that may be performed at read-time to
minimize the number of pointer checks that have to be
performed at run-time and to allow certain read-time errors
to be detected.

Third, preferred embodiments for implementing error
checking on compiled function will be described in a section
entitled ERROR CHECKING OF COMPILED OBIJECT
CODE. This section will include a discussion of interpreted
wrapper functions which may be executed to perform error
checking tasks on associated compiled functions, as neces-

10

15

20

25

30

35

50

55

60

65

6

sary. A preferred pre-execution wrapper function that may be
associated with each compiled memory deallocation func-
tion is also discussed relative to FIG. 7.

Fourth, the run-time error checking processes of the
present invention, as executed by an evatuator 35 shown in
FIG. 1, will be described in a section entitled RUN-TIME
ERROR CHECKING OPERATIONS. The run-time error
checking processes are discussed relative to FIGS. 8 through
13.

Finally, a method for detecting memory leaks and a
method for identifying the source of undetected pointer
modifications by compiled functions are then described in a
section entitled IDENTIFYING MEMORY LEAKS AND
THE SOURCE OF UNDETECTED POINTER MODIFI-
CATIONS.

As shown in FIG. 1, the memory error detection system
preferably employs an interpreter 15, such as the CIN
interpreter for the C programming language, commercially
available from AT&T, as modified herein to provide error
checking facilities. As discussed further below, the inter-
preter 15 performs error detection tasks while executing
both interpreted source code and compiled object code.

The source code received by the interpreter 15 is analyzed
at read-time by a parser 20 which converts the source code
into well-known parse trees. In addition, as the source code
is read into program memory, an internal symbol table 75 is
created by the parser 20. The internal symbol table 75
inctudes an entry for each symbolic label defined in the
source code, in a known manner. Each entry in the internal
symbol table 75 identifies the associated symbolic label and
includes the address of the memory location that has been
allocated for the respective symbolic label.

A memory error detection code inserter 25 is provided to
perform read-time error checking processes, discussed fur-
ther below relative to FIGS. 3 through 6, on the parse tree
generated by the parser 20. As discussed further below, the
memory error detection code inserter 25 analyzes the parse
tree derived from the source code and, where appropriate,
inserts error checking commands and additional information
into the parse tree that will be evaluated at run-time. The
modified parse tree generated by the memory error detection
code inserter 25, which includes the inserted error checking
commands and additional information, is then entered into a
tree-to-stack code converter 30. The tree-to-stack code con-
verter 30 generates the internal pseudo-code, which is essen-
tially in a machine language format.

As indicated above, the interpreter 15 preferably performs
error detection tasks while executing both interpreted source
code and compiled object code. Thus, a linker 40 is pro-
vided, which relocates compiled object code. As the object
code is loaded into program memory by the linker 40 at
read-time, the internal symbol table 75 is updated to include
entries for each symbolic label defined in the object code, in
the manner described above.

At run-time, the evaluator 35 utilizes an interpreter stack
60 to execute the internal pseudo-code that has been gen-
erated by the tree-to-stack code converter 30, as well as any
compiled object code that may be called from the interpreted
internal pseudo-code, in a manner described further below.
In order to monitor the output of the evaluator 35, a printer
45 is provided, which may list the internal pseudo-code
programs that are executed by the evaluator 35 in a source
code format.

According to a feature of the invention, the evaluator 35
will generate a pointer check table 200, discussed further
below relative to FIG. 2a, based on the commands and

5,590,329

7

information that were placed in the intemal pseudo-code
during read-time, as well as on run-time conditions. The
pointer check table 200 records information for each pointer
that is utilized to monitor the use and modification of the
respective pointers.

In addition, pointer information can be temporarily stored
by the evaluator 35 in a cache memory 74, i.e., an area of
very fast memory, for anticipated future use by the evaluator
35. In a preferred embodiment, the cache memory 74 will
siore the address of the two pointers that have been refer-
enced most recently. In this manner, when these values are
subsequently needed by the evaluator 35 during run-time
operations, discussed below, they can be transferred directly
to the evaluator 35, thereby increasing operating speed. If
the desired pointer information is not found in the cache
memory 74, then the pointer check table 200 will be
accessed preferably using a bucket hash lookup algorithm
where the buckets are sorted by most recent pointer update.

A well-known hardware stack 67 may be accessed by the
evaluator 35, e.g., to store the arguments of functions being
executed by the evaluator 35. In addition, while implement-
ing preferred embodiments of the run-time error checking
operations, the evaluator 35 will access a pointer save stack
65, which will be discussed further below.

A wrapper library 70, discussed further below in the
section entitted ERROR CHECKING OF COMPILED
OBIJECT CODE, is preferably provided for storing inter-
preted pre-execution and post-execution wrapper functions
which may be associated with compiled functions. The
interpreted pre-execution and post-execution wrapper func-
tions permit error checking processes to be performed, as
necessary, on the associated compiled functions.

As discussed further below in the section entitled RUN-
TIME ERROR CHECKING OPERATIONS, the appropri-
ate entries of the pointer check table 200 will be updated at
run-time by the evaluator 35 each time a pointer is assigned
anew value. In this manner, the pointer check table 200 will
record current pointer information for each pointer.

As is well-known, however, conventional interpreters are
not normally aware of modifications made to pointer values
by compiled object code. Thus, according to one aspect of
the invention, a post-execution wrapper function, discussed
below in the section entitled ERROR CHECKING OF
COMPILED OBIJECT CODE, is preferably executed fol-
lowing execution of an associated compiled function that is
known to modify a pointer value in order to update the
appropriate entries in the pointer check table 200 with the
modified pointer information. In addition, a run-time pointer
checking subroutine, discussed below relative to FIGS. 11a
and 115, provides a supplemental mechanism at steps 1124
and 1128 for detecting and flagging a previously undetected
modification of a pointer value when the new pointer value
is subsequently used.

A pointer check table, such as the pointer check table 200
illustrated in FIG. 24, will include a plurality of rows, such
as rows 220, 222, 224, each associated with a different
pointer. Each row of the pointer check table 200 will include
a plurality of entries for storing information on the associ-
ated pointer. An entry 230 will store the address where the
associated pointer is stored in memory. Similarly, an entry
240 will store the contents of the associated pointer. An entry
250a will record the valid lower memory bound of the
associated pointer, while an entry 2505 will record the valid
upper memory bound. A status entry 260 will record one of
a number of predefined status codes, discussed further
below, for the associated pointer. Finally, a file/line number

15

20

25

30

40

45

50

55

60

65

8

entry 270 will record a pointer to the file name and line
number associated with the last modification of the pointer,
which is utilized to provide diagnostic information upon
error detection.

For illustrative purposes, the pointer check table 200
shown in FIG. 2a has been populated with the pointer
information associated with the pointers that are declared
and initialized upon the execution of lines 10 through 210 of
the sample source code, test file, shown in FIG. 2b. It is
noted that it is assumed that the sample source code, testfile,
is operating on a machine that allocates two bytes for each
integer variable and one byte for each character variable.

During execution of lines 10 through 40 of the source
code, testfile, shown in FIG. 2b, a structure, widget, of type
part and having an integer member, number, and a character
array member, name, is declared. A pointer, ptr_part, is
declared in line 50. During execution of line 60, the pointer,
ptr__part, is assigned to point at the address of the widget
structure. This pointer assignment in line 60 will cause the
pointer information for the pointer, ptr_ part, to be placed in
the pointer check table 200. The memory allocations that
result from execution of lines 10 through 60 are shown in
FIG. 2c.

As seen in FIG. 2¢, the pointer, ptr_part, has been
allocated an address of 2048, which is placed in the address
of pointer entry 230 of the pointer check table 200 for the
pointer, ptr_part. The pointer, ptr_ part, has been assigned
to point at the address of the structure, widget, i.e., an
address of 1000, which is placed in the contents of pointer
entry 240 for the pointer, ptr_ part. Since the pointer, ptr__
part, may validly be assigned to point anywhere within the
structure, widget, i.e., any address in the range 1000 through
1011, this information is placed in the valid memory bounds
entries 2504, 250b.

The status entry 260 in the pointer check table 200 is
preferably updated to indicate that the pointer, ptr_ part, is
pointing to a BOUNDED range, in a manner described
further below. The file/line number entry 270 preferably is
updated to indicate that the pointer, ptr_part, was last
updated by the source code, testfile, at line 60.

During execution of lines 70 and 80 of the source code,
testfile, shown in FIG. 2b, two variables are declared, an
integer variable, testint, and a character variable, testchar,
respectively. A pointer, ptr_ testint, is declared and assigned
in line 90 to point to the integer variable, testint. A pointer,
ptr__testchar, is declared and assigned in line 100 to point to
the character variable, testchar. The pointer assignments in
lines 90 and 100 will cause the pointer information for the
pointers, ptr_testint and ptr_ testchar, to be placed in the
pointer check table 200. The memory allocations that result
from execution of lines 70 through 100 are shown in FIG.
2d.

As seen in FIG. 24, the pointer, ptr_testint, has been
allocated an address of 2086, while the pointer, ptr__testchar,
has been allocated an address of 2090. This information is
placed in the address of pointer entry 230 of the pointer
check table 200 for each pointer, ptr_testint and pir_
testchar. The pointer, ptr__testint, has been assigned to point
at the variable, testint, i.e., an address of 1500, while the
pointer, ptr_testchar, has been assigned to point at the
variable, testchar, i.e., an address of 1502. This information
is placed in the contents of pointer entry 240 in the pointer
check table 200 for each pointer, ptr_testint and ptr__
testchar.

Since the pointer, ptr__testint, may point only at the two
byte integer variable, testint, i.e., within the address range of

5,590,329

9

1500 through 1501, this information is placed in the valid
memory bounds entries 250a, 2505 for the pointer, ptr__
testint. Similarly, the pointer, ptr__testchar, may point only at
the one byte character variable, testchar, i.e., the one byte
address 1502. Thus, this information is placed in the valid
memory bounds entries 250a, 2505 in the pointer check
table 200 for the pointer, ptr_ testchar.

The status entries 260 in the pointer check table 200 for
the pointers, ptr_testint and ptr testchar, are preferably
ppdated to indicate that the respective pointers are pointing
to BOUNDED ranges, in a manner described further below.
The file/line number entries 270 preferably are updated to
indicate that the pointers were last updated by the source
code, testfile, at lines 90 and 100, respectively.

The execution of lines 200 through 210 of the source
code, testfile, which allocates 35 bytes of memory using the
compiled library function, malloc, and then returns the value
of the starting address of the allocated memory to the
declared pointer, ptr__alloc, as well as the resultant memory
allocations illustrated in FIG. 2¢, will be discussed below in
the section entitted ERROR CHECKING OF COMPILED
OBJECT CODE.

During execution of line 300 of the source code, testfile,
shown in FIG. 2b, the pointer, ptr_ testchar, which was
previously assigned a value in line 100, as previously
discussed, is reassigned in line 300 to point to a member of
the widget structure. Thus, the information in the pointer
check table 200 for the pointer, ptr_testchar, must be
updated with the new pointer information associated with
the assignment. Thus, following execution of line 300 the
“contents of pointer” entry 240 for the pointer, ptr__testchar,
should be updated to indicate that the pointer now points to
the address of the structure member widget.name, i.e., 1002.

It is noted that if a first structure containing pointer
members is copied into a second structure, the pointer
information that has been recorded in the pointer check table
200 for the pointer members in the first structure should be
appropriately placed in the entries for the pointer members
in the second structure.

According to a feature of the invention, the above-
described pointer check table 200 is utilized each time a
pointer is dereferenced, i.e., when the memory pointed to by
the pointer is accessed, in order to ensure the validity of the
pointer value. For example, upon execution of line 310 of
the source code testfile, shown in FIG. 2b, the pointer,
ptr__testint, will be dereferenced so that the constant 12024
may be written in the address pointed to by the pointer,
ptr_testint. As discussed further below, just before the
memory location pointed to by the pointer is accessed, the
memory error detection system will test the validity of the
pointer contents to ensure that the pointer, ptr_ testint, is
pointing to a valid memory location, i.e., within the valid
bounds 1500 through 1501, as recorded in the valid bounds
entries 250a, 250b for the pointer, ptr_testint.

In a preferred embodiment, two separate pointer check
tables 200 are maintained, with one table recording infor-
mation about static pointers and the second table recording
information about automatic pointers. Since automatic
pointers are only known within the particular function in
which they are defined, it is more efficient to record the
associated pointer information in a separate table. Thus,
after execution of each function, the automatic pointer check
table 200 may be reinitialized.

The pointer check table 200 is preferably preloaded with
pointer information for two classes of pointers: static point-
ers that are initialized to point at static data and the argv

15

20

25

30

40

50

55

65

10

pointer argument that is passed to the main function. Since
the execution of these lines of source code would not
normally implicate the pointer table updating mechanism
described below, they are preferably automatically pre-
loaded into the pointer check table 200 prior to running the
internal pseudo-code.

READ-TIME ERROR CHECKING OPERATIONS

As the memory error detection code inserter 25 reads each
line of the parse tree, it implements a read-time error
checking process, illustrated in FIG. 3. The read-time error
checking process evaluates each line, or node, of the parse
tree in order to perform certain read-time error checking
tasks which will insert certain error checking commands and
additional information into the parse tree. Essentially, the
read-time error checking processes implemented by the
memory error detection code inserter 25 perform prelimi-
nary tasks which serve to initiate and facilitate the actual
error detection processes performed at run-time, discussed
below relative to FIGS. 8 through 13.

The read-time error checking process determines which,
if any, error checking subroutines should be performed for
the line of code being evaluated, as illustrated in FIG. 3. In
general, after entering the read-time error checking process
at step 300, wherein each line of the parse tree is read, a
read-time array dimension checking subroutine, discussed
below relative to FIG. 4, will be executed if the condition of
step 310 is satisfied. Similarly, a read-time pointer table
updating subroutine, discussed below relative to FIGS. Sa
and 5b, will be executed if the condition of step 320 is
satisfied. A read-time pointer checking subroutine, discussed
below relative to FIG. 6, will be executed if the condition of
step 330 is satisfied. Finally, an appropriate flag, discussed
below, will be set during step 337 if the condition of step 335
is satisfied.

In addition, once the memory error detection code inserter
25 has read and analyzed all of the lines of the parse tree as
detected during step 340, the read-time error checking
process will perform a data flow analysis, discussed further
below, during steps 350 and 360, which will reduce the
number of pointer checks that need to be performed at
run-time and allow certain read-time errors to be detected.

The read-time array dimension checking subroutine, illus-
trated in FIG. 4, will be entered at step 410 if the line of
source code being evaluated by the read-time error checking
process includes a reference to a declared array, as detected
during step 310 (FIG. 3).

The read-time array dimension checking subroutine will
determine if illegal subscripts, i.e., negative subscripts or
subscripts that exceed the declared size of the array, are
being utilized to reference an array. Since it is possible in
many programming languages to exceed the range of a
single dimension of a multi-dimension array, yet still fall
within the total range of the array, checks are performed
upon each dimension to ensure that its proper bounds are
maintained. It is noted that the maximum valid array sub-
script is typically one less than the declared size of the array
for that dimension, because the first valid subscript of an
array for many programming languages is O and not 1.

During step 410, the array dimension checking subroutine
of FIG. 4 will obtain the maximum declared size for each
dimension of the array from the internal symbol table 75. If
a subscript reference is variable, the value of the subscript
reference is unknown at read-time and cannot be evaluated
until the reference is evaluated at run-time. Thus, a test is

5,590,329

11

initially performed at step 420 to determine whether the
subscript reference for a dimension of the array is a constant
or a variable.

If it is determined during step 420 that the subscript
reference is a constant, the constant value which appears in
the line of code will be compared against the maximum
value for this dimension during step 430. If it is determined
during step 430 that the constant reference exceeds the
declared maximum value for this dimension or is a negative
value, an error message will be generated in step 435, and
the process will be exited at step 440.

If it is determined during step 430 that the constant
subscript reference is valid, program control will proceed to
step 450 for a determination of whether there are additional
dimensions of this array to be tested, i.e., for multi-dimen-
sion arrays. If it is determined during step 450 that there are
additional dimensions to be tested, program control will
return to step 420 for testing of the remaining dimensions,
in the manner described above. If it is determined during
step 450 that there are no remaining dimensions to be tested,
program control will return to the read-time error checking
process at step 320 (FIG. 3).

If it is determined during step 420 (FIG. 4) that the array
reference is variable, a dimchk command node is preferably
inserted into the parse tree during step 425, together with the
maximum allowed size for the respective dimension which
has been retrieved from the internal symbol table 75 during
step 410. The dimchk command node will be evaluated at
run-time to determine if the dimension reference is within
the valid range for this dimension of the array.

Once the dimchk command node has been inserted into
the parse tree, program control will proceed to step 450 for
a determination of whether there are additional dimensions
of this array to be tested, in the manner described above.
Once all of the array dimensions have been tested, program
control will return to the read-time error checking process at
step 320 (FIG. 3).

The read-time pointer table updating subroutine, illus-
trated in FIGS. 5a and 5b, will be entered at step 505 if the
line of source code being evaluated by the read-time error
checking process assigns a value to a pointer, as detected by
the read-time error checking process during step 320 (FIG.
3). Each time a pointer is assigned a value, the read-time
pointer table updating subroutine will insert the necessary
commands and information into the parse tree so that the
pointer check table 200 will be properly updated at run-time
with the new information for the respective pointer.

Once the read-time pointer table updating subroutine is
entered, a tblupd command node will be inserted in the parse
tree during step 505, which when evaluated at run-time will
initiate an update of the pointer check table 200. In order to
facilitate the run-time table update, additional information
that can be obtained at read-time, i.e., a characterization of
the type of the pointer expression being assigned to the
pointer, will be placed in the tblupd command node.

Thus, the pointer expression being assigned to the pointer
is analyzed during step 510 and then tested against a number
of conditions during steps 515 through 560, until a type
match is obtained.

A test is performed during step 515 to determine if the
pointer is being assigned the address of an identified variable
or function. If it is determined during step 515 that the
pointer is being assigned the address of an identified variable
or function, a pointer to the appropriate eniry in the internal
symbol table 75 for the identified variable or function is
placed in the tblupd node during step 518. At run-time, the

10

15

20

25

30

35

40

45

50

55

60

65

12

entry in the internal symbol table 75 will be accessed to
obtain the necessary pointer information. Thereafter, pro-
gram conirol will return to the read-time error checking
process at step 330 (FIG. 3).

If it is determined during step 515 (FIG. 5a) that the
pointer is not being assigned the address of an identified
variable or function, program control will proceed to step
520.

A test is performed during step 520 to determine if the
pointer is being assigned the contents of a second pointer. If
it is determined during step 520 that the pointer is being
assigned the contents of a second pointer, program control
will proceed to step 522. In this case, it is impossible to
determine at read time what the second pointer will be
pointing at during run-time and what the valid range of the
second pointer will be.

At run-time, however, the address of the second pointer
will be on the top of the interpreter stack 60. Thus, during
step 522, a readintstk command is placed in the tblupd node,
which when evaluated at run-time will cause the address of
the second pointer to be retrieved from the interpreter stack
60 for further processing. Thereafter, program control will
return to the read-time error checking process at step 330
(FIG. 3).

If it is determined during step 520 (FIG. 5q) that the
pointer is not being assigned the contents of a second
pointer, program control will proceed to step 525.

A test is performed during step 525 to determine if the
pointer is being assigned a string. If it is determined during
step 525 that the pointer is being assigned a string, the
information which will be needed to populate the appropri-
ate row of the pointer check table 200 for the pointer being
assigned, i.e., the address and size of the string, are known
at read-time. Thus, during step 527 the address and size of
the string are place in the tblupd node. Thereafter, program
control will return to the read-time error checking process at
step 330 (FIG. 3).

If it is determined during step 525 (FIG. 5a) that the
pointer is not being assigned a string, program control will
proceed to step 530.

A test is performed during step 530 to determine if the
pointer is being assigned an illegal value. If it is determined
during step 530 that the pointer is being assigned an illegal
value, i.e., a constant null or negative value, an indication of
the ILLEGAL status is placed in the tblupd node during step
532. Since a pointer may permissibly store an illegal value,
an error message is not generated here. However, as will be
discussed further below, if the pointer is dereferenced at
run-time while it still contains the illegal value, an error
message will be generated at that time. Following execution
of step 532, program control will return to the read-time
error checking process at step 330 (FIG. 3).

If it is determined during step 530 (FIG. 5q) that the
pointer is not being assigned an illegal value, program
contro} will proceed to step 535.

A test is performed during step 535 to determine if the
pointer is being assigned the address of a structure member.
If it is determined during step 535 that the pointer is being
assigned the address of a structure member, the size of the
structure member will be known at read-time. However, the
address of the structure member will remain unknown until
run-time, at which time the address of the structure member
will be at the top of the interpreter stack 60.

Thus, during step 537, the size of the structure member
and a readintstk command are placed in the tblupd node.

5,590,329

13

When the readintstk command is evaluated at run-time, the
address of the structure member will be retrieved from the
interpreter stack 60. Following execution of step 537, pro-
gram .control will return to the read-time error checking
process at step 330 (FIG. 3).

If it is determined during step 535 (FIG. Sq) that the
pointer is not being assigned the address of a structure
member, program control will proceed to step 540 (FIG. 5b).

A test is performed during step 540 to determine if the
pointer is being assigned by a complex expression, €.g.,
p="*(test ? expl: exp2), where expl and exp2 are pointer
expressions that evaluate to the address of a pointer. This
special test condition has been implemented in order to
perform error checking on this common programming tech-
nique for implementing if, then, else routines. Since the
indirection operator, *, will be performed on either expl or
exp2, depending on whether the test condition is true or
false, it is unknown at read-time which of the two expres-
sions will determine the characteristics of the new pointer.

In a preferred embodiment, an instruction, such as a
savptr command, is placed in each of the two instruction
streams, only one of which is executed at run-time. The
savptr command instructs the evaluator 35 to place the
pointer information for the pointer associated with the
executed instruction stream in the pointer save stack 65, for
subsequent access by the evaluator 35. The pointer infor-
mation retrieved from the pointer save stack 65 can then be
retrieved by the evaluator 35 at run-time for placement in the
pointer check table 200, in a manner described further
below.

Thus, if it is determined during step 540 that the pointer
is being assigned by a conditional expression in the form
*(test ? expl: exp2) then a savptr command is generated
during step 542 for placement in each of the instruction
streams associated with the two expressions, expl and exp2.
In addition, a second instruction, such as a rdptrstk com-
mand, is placed in the tblupd node, which, when evaluated,
will cause the evaluator 35 to retrieve the contents of the
pointer save stack 65. Following execution of step 542,
program control will return to the read-time error checking
process at step 330 (FIG. 3).

If it is determined during step 540 (FIG. 5b) that the
pointer is not being assigned by such a complex expression,
program control will proceed to step 545.

A test is performed during step 545 to determine if the
pointer is being assigned implicitly upon the passing of one
or more pointer arguments to an interpreted function. When
a program calls an interpreted function, the arguments of the
called function, as set forth in the call statement, i.e., the
actuals, are implicitly assigned to the respective automatic
variables within the declared function, i.e., the formals.

When a function is called, the evaluator 35 pushes the
arguments of the called function onto a stack frame within
the -hardware stack 67 that is allocated for the calling
function. Thereafter, a new stack frame is created by the
evaluator 35 for the called function by updating the stack
frame pointer. It is noted that the stack frame utilized by the
called function will have different stack addresses than the
stack addresses of the calling function’s stack frame.

The entries in the pointer check table 200 for the formal
parameters that are pointers are preferably created by copy-
ing the entries in the pointer check table 200 for the actual
pointer parameters that were passed into the function. Thus,
it is preferred that the pointer information from the pointer
check table 200 for the passed actual parameters that are
pointers be placed in the pointer save stack 65. In this

10

15

20

25

30

35

40

45

50

55

60

65

14

manner, the evaluator 35 can create the appropriate entries
in the pointer check table 200 at run-time for the formal
parameters that are pointers by copying the pointer infor-
mation that has been placed in the pointer save stack 65.

Thus, if it is determined during step 545 that the pointer
is being assigned implicitly upon the passing of pointer
arguments to an interpreted function, program control will
proceed to step 547. A savptr command will be placed in the
parse tree prior to the function call for each pointer argu-
ment. In a preferred embodiment, the savptr command
includes a pointer to the called interpreted function that will
be receiving the passed pointer arguments. The pointer to the
function will serve as an identifier to ensure the validity of
the information that is placed in the pointer save stack 65. In
addition, a rdptrstk command will be inserted into the tblupd
node.

‘When the savptr commands are subsequently evatuated at
run-time, the pointer information for the passed actual
parameters that are pointers is placed in the pointer save
stack 65. Thereafter, evaluation of the rdptrstk command at
run-time will cause the evaluator 35 to retrieve the contents
of the pointer save stack 65, for placement in the pointer
check table 200. Following execution of step 547, program
control will return to the read-time error checking process at
step 330 (FIG. 3).

If it is determined during step 545 (FIG. 5b) that the
pointer is not being assigned implicitly upon the passing of
pointer arguments to an interpreted function, program con-
trol will proceed to step 550.

A test is performed during step 550 to determine if the
pointer is being assigned a value returned from an inter-
preted function. Since little, if any, information will be
known about the value to be returned from the function at
read-time, instructions are placed in the parse tree which will
push the pointer information for the returned pointers into
the pointer save stack 65 at run-time. Thus, the evaluator 35
can subsequently retrieve the pointer information associated
with the returned pointers from the pointer save stack 65 at
run-time for placement in the pointer check table 200.

Thus, if it is determined during step 550 that the pointer
is being assigned a value returned from a function, a savptr
command is generated during step 552 for each returned
pointer in response to the return call in the called function.
In addition, a rdptrstk command is placed in the tblupd node.
In a preferred embodiment, the savptr command includes a
pointer to the interpreted function that is returning the
pointer information. The pointer to the function will serve as
an identifier to ensure the validity of the information that is
placed in the pointer save stack 65. Thereafter, program
control will return to the read-time error checking process at
step 330 (FIG. 3).

‘When the savptr commands are subsequently evaluated at
run-time, the pointer information associated with the point-
ers being returned from the function is placed in the pointer
save stack 65. Thereafter, evaluation of the rdptrstk com-
mand at run-time will cause the evaluator 35 to retrieve the
contents of the pointer save stack 65, for placement in the
pointer check table 200.

It is noted that it is improper for a function to return
pointers to automatic variables. Thus, an error should be
generated in this event.

If it is determined during step 550 (FIG. 5b) that the
pointer is not being assigned a value returned from a
function, program control will proceed to step 560.

If program execution reaches step 560, the pointer expres-
sion being assigned to the pointer cannot be characterized

5,590,329

15

according to one of the above-established tests. Thus, noth-
ing can be ascertained at read-time about the pointer being
assigned and an indication of the UNKNOWN status is
placed in the tblupd node during step 560. Following the
execution of step 560, program control will return to the
read-time error checking process at step 330 (FIG. 3).

The read-time pointer checking subroutine, illustrated in
FIG. 6, will be entered at step 615 if the line of source code
being evaluated by the read-time error checking process
~ contains at least one dereferencing of a pointer, as detected
during step 330 (FIG. 3). Each time a pointer is derefer-
enced, the read-time pointer checking subroutine will insert
the necessary pointer checking commands into the parse tree
so that the pointer check table 200 will be accessed at
run-time to test the validity of the dereferenced pointer.

When the read-time pointer checking subroutine is
entered at step 615, a ptrchk command node will be inserted
for the pointer being dereferenced into the parse tree during
step 615. Since the value of the pointer being dereferenced
will be the top-most item on the interpreter stack 60 after the
pointer value has been computed and before the computed
value is utilized to address memory, the ptrchk command
node should be placed just before the memory addressing
instruction.

When the ptrchk command node is evaluated at run-time,
the run-time pointer checking subroutine, discussed below
relative to FIGS. 11a and 115, will be initiated to determine
if the value retrieved from the interpreter stack 60 is within
the valid range of the pointer as indicated in the valid
memory bounds entries 2504, 2505 of the pointer check
table 200 for the respective pointer.

A test is then performed during step 620 to determine if
there are any additional pointer dereferences in the line of
the parse tree being evaluated. If it is determined during step
620 that there are additional pointer dereferences in the line
of the parse tree being evaluated, then program control will
return to step 615 for further processing. Once it is deter-
mined during step 620 that all of the pointer dereferences in
the line of the parse tree being evaluated have been pro-
cessed, program control will return to the read-time error
checking process at step 335 (FIG. 3).

A test is performed during step 335 to determine if the line
of source code being evaluated by the read-time error
checking process contains a call to a function. If it is
determined during step 335 that the line of source code being
evaluated does contain a call to a function, all of the memory
that may be accessed by the function is identified during step
337, i.e., all global variables and all variables passed to the
function. In addition, if the function does have access to any
memory, an allocation access flag is set in the entry in the
internal symbol table 75 corresponding to the compiled
function. The setting of this allocation access flag will
initiate an initialization bit vector maintenance subroutine
each time the associated function is called at run-time, as
discussed below relative to FIG. 12b.

If it is determined during step 335 that the line of source
code being evaluated does not contain a call to a function,
then program control will proceed to step 340.

During step 340, the read-time error checking process
performs a test to determine if there are additional nodes of
the parse tree which still need to be read and analyzed. If it
is determined during step 340 that there are additional nodes
of the parse tree to be analyzed, program control will return
to step 300, and proceed in the manner described above. If,
however, it is determined during step 340 that there are no
remaining nodes of the parse tree to be analyzed, program
control will proceed to step 350.

10

15

25

30

35

40

45

50

55

60

65

16

During step 350, a data flow analysis is performed by the
memory error detection code inserter 25 on the modified
parse tree, which includes the error checking commands and
additional information that have been inserted into the parse
tree. The data flow analysis minimizes the number of pointer
checks that have to be performed at run-time by eliminating
duplicative, i.e., overlapping, pointer checks from the parse
tree and allows certain read-time errors to be detected. For
a discussion of a suitable data flow analysis algorithm, see
William Landi & Barbara G Ryder, “Aliasing With and
Without Pointers: A Problem Taxonomy,” Center for Com-
puter Aids For Industrial Productivity, Technical Report
CAIP-TR-125, Rutgers University, (Sep. 25, 1990); William
Landi & Barbara G. Ryder, “A Safe Approximate Algorithm
for Interprocedural Pointer Aliasing,” SIGPLAN Notices,
July 1992, pp. 235-248, each incorporated herein by refer-
ence.

The data flow analysis of an illustrative source code file,
sample, shown in FIG. 14gq, is briefly discussed below. The
data flow analysis analyzes the modified parse tree and
identifies each time a pointer is assigned a new value or is
dereferenced. It is noted that a tblupd command node has
previously been placed in the parse tree for each pointer
assignment, and a ptrchk command node has previously
been inserted in the parse tree each time a pointer has been
dereferenced.

The source code, sample, illustrated in FIG. 144, declares
and initializes a pointer, ptr_part, that points to a structure,
widget. The data flow analysis establishes a flow set for each
pointer appearing in the source code being evaluated, such
as the flow set illustrated in FIG. 14b for the pointer,
ptr__part, created during execution of the source code,
sample.

A new flow set will be established for a given pointer each
time the associated pointer is assigned a new value. In a
preferred embodiment, the flow set will be marked “DEF
ILL”, i.e., defined, each time the associated pointer is
assigned a legal value, and will be marked “DEF ILL” each
time the associated pointer is assigned an illegal value.
Similarly, the flow set will be marked “USED” each time the
associated pointer is dereferenced.

Lines 10 through 50 of the source code, sample, shown in
FIG. 144, declare a structure, widget. Line 60 declares a
pointer, ptr__part, that points to the widget structure and line
70 initializes, i.e., defines, the pointer to point to the start of
the widget structure. The data flow analysis of line 70 will
cause the first flow set for the pointer, ptr_part, shown in
FIG. 14b, to be marked “DEF”, thereby indicating that the
pointer has been assigned a non-zero value.

The pointer, ptr_ part, is dereferenced in each of lines 80
through 100 in order to assign values to the three members
of the widget structure. Thus, the data flow analysis of each
of the lines 80 through 100 will cause the first flow set in
FIG. 14b to be marked “USED?”, thereby indicating that the
pointer has been dereferenced.

The pointer, ptr__part, is then assigned a new value in line
50, thereby causing a new flow set for ptr_part to be
established. Thus, the data flow analysis of line 150 will
cause the second flow set in FIG. 14b to be marked “DEF
ILL,” thereby indicating that the pointer has been assigned
an illegal value.

The pointer, ptr__part, is then dereferenced in line 160 in
order to assign a value to the number member of the widget
structure. Thus, the data flow analysis of line 160 will cause
the second flow set in FIG. 14b to be marked “USED”,
thereby indicating that the pointer has been dereferenced. As

5,590,329

17

discussed below, the analysis of this second flow set will
cause a read-time error to be generated, because an illegal
pointer is being dereferenced at the time line 160 is
executed.

Once the flow sets have been established for the entire
parse tree, each flow set is analyzed in order to minimize the
number of pointer checks that have to be performed at
run-time. Since by definition, a given pointer will maintain
the same value for the duration of each flow set, only one
pointer check with an expanded offset to accommodate each
individual pointer check needs to be performed for each set.

For example, the first flow set for the pointer, ptr_ part,
includes three dereferences of the pointer. Thus, while the
pointer is storing the value assigned in line 70, it will be
dereferenced three times. Normally, without using data flow
analysis, three separate pointer checks would have to be
performed. However, the data flow analysis will replace the
three individual pointer checks in the parse tree with a single
pointer check to test the validity of each of the three pointer
dereferences.

A preferred embodiment of the invention provides a
compiled code flow analysis routine to ensure the accuracy
of the above data flow analysis where the flow set for a given
pointer includes the calling of a compiled function among a
series of pointer dereferences. If the compiled function has
access to the pointer associated with the flow set, the
compiled function could modify the value of the pointer
without the interpreter 15 being aware.

Thus, if the compiled function has access to the pointer,
the compiled code flow analysis routine preferably performs
a test following execution of the compiled function at
run-time to determine if the pointer value associated with the
flow set has been modified during the execution of the
compiled function. If the compiled function has modified the
pointer value, an additional pointer check must be reex-
ecuted for those pointer dereferences that occur in the flow
set following the call to the compiled function. If the
compiled function has not modified the pointer value, no
additional pointer checks need be performed.

In addition to minimizing the number of pointer checks
that have to be performed at run-time, the above-described
data flow analysis allows certain errors to be detected at
read-time. Thus, following completion of the data flow
analysis in step 350, a test will be performed during step 360
to determine if the data flow analysis indicates that an
uninitialized or illegal pointer is being dereferenced.

The memory error of dereferencing an uninitialized
pointer occurs where a flow set indicates that a pointer is
dereferenced before it has been assigned, i.e., if the flow set
has been marked “USED” before it is marked “DEF’.
Similarly, the memory error of dereferencing an illegal
pointer occurs where a flow set has been marked “DEF ILL”
and is then marked “USED,” without any intervening
assignments, such as in the second flow set illustrated in
FIG. 14b.

If it is determined during step 360 that an illegal or
uninitialized pointer is being dereferenced, an error message
is generated during step 370, before the process is exited at
step 380.

If, however, it is determined during step 360 that an illegal
or uninitialized pointer is not being dereferenced, the read-
time error checking process will be exited at step 380.

Upon completion of the read-time error checking process
and associated subroutines, discussed above relative to
FIGS. 3 through 6, each line of the parse tree has been
analyzed and the appropriate error checking commands and

10

15

20

25

30

35

40

45

50

55

60

65

18

information have been inserted into the parse tree. The
inserted error checking commands and additional informa-
tion will be evaluated at run-time to initiate and facilitate
run-time error checking.

ERROR CHECKING OF COMPILED OBJECT
CODE

According to another feature of the invention, it is also
desired to perform similar error checking on compiled object
code that will be executed at run-time by the evaluator 35.
In a preferred embodiment, error checking of the compiled
object code is implemented by running interpreted wrapper
functions, described below, before and/or after the run-time
execution of associated compiled functions, as necessary, to
simulate the error checking processes that were performed
on the interpreted source code at read-time.

Preferably, wrapper functions are provided, as necessary,
for all compiled library functions. In addition, wrapper
functions can be created for any user-defined compiled
functions that require the monitoring and/or evaluation of
pointer values, in accordance with the teachings herein. The
manner in which wrapper functions are executed upon the
calling of an associated compiled function at run-time is
discussed below, relative to FIG. 12a.

A wrapper library 70, accessible by the evaluator 35, is
preferably provided, as shown in FIG. 1. The wrapper
library 70 preferably maintains a pre-execution wrapper
function for each compiled function that dereferences a
pointer during the execution of the compiled code. The
pre-execution wrapper function should initiate a pointer
check of any pointer that will be dereferenced during
execution of the compiled code, in the same manner that
pointer checks are implemented for dereferencing of point-
ers in interpreted functions.

The pre-execution wrapper function is preferably
executed just prior to the execution of the associated com-
piled function, thereby ensuring that the pointer is not
dereferenced unless it points to a valid value. The pre-
execution wrapper function for a given function preferably
also performs array dimension checking, as discussed
herein, on any passed arguments that include array refer-
ences. Similarly, if an argument passed to a given compiled
function has pre-defined valid ranges, the associated pre-
execution wrapper function can test the validity of the
passed arguments against the known ranges.

It is noted that for certain compiled functions, the asso-
ciated pre-execution wrapper function may need to store a
pointer argument or other information that is passed to the
compiled function on the first execution of the compiled
function, as subsequent calls to the same function may only
pass a code indicating that the same information from the
previous execution should be utilized.

In addition, the wrapper library 70 preferably maintains a
post-execution wrapper function for each compiled function
that creates a pointer during the execution of the compiled
code, as well as for each compiled function that returns a
value that is subsequently assigned to a pointer upon return
to the calling function. The post-execution wrapper func-
tions are preferably executed after the compiled function
returns, but before the calling function resumes execution.

If a compiled function creates a pointer during execution,
the post-execution wrapper function should add the pointer
information for the created pointer to the pointer check table
200, in the same manner as table entries are updated for
pointers created by interpreted code.

5,590,329

19

Similarly, if the compiled function returns a value to the
calling function that will be subsequently assigned to a
pointer in the calling function, the appropriate pointer infor-
mation must be added to the pointer check table 200. In this
instance, the pointer information for the value being
returned must be placed in the pointer save stack 65, in the
same manner as the read-time pointer table updating sub-
routine handled values being returned from interpreted func-
tions during step 552 (FIG. 5b). Thereafter, the information
may be retrieved from the pointer save stack 65 by the
evaluator 35, for placement in the pointer check table 200.

For example, pointers are frequently assigned values that
are returned from compiled memory allocation functions,
such as the malloc function commonly found in function
libraries of the C programming language. The post-execu-
tion wrapper function for the malloc function will preferably
place the starting address of the allocated region and the
valid range of the region, which may be derived from the
starting address and size information, in the pointer save
stack 65. In this manner, when a pointer in the calling
function is then assigned the return value, the appropriate
row in the pointer check table 200 may be updated with the
relevant pointer information. The starting address is placed
in the contents of pointer entry 240 and the valid range entry
250 is populated with the range information calculated by
the post-execution wrapper function. Preferably, an ALLO-
CATED status indication is placed in the status entry 260.

According to a preferred embodiment of the invention,
however, additional pointer information will be maintained
for pointers that point to allocated memory space. When
lines 200 and 210 of the illustrative source code testfile,
shown in FIG. 2b, are executed, it will result in a block of
35 bytes being allocated, with the starting address of the
allocated block being assigned to the pointer ptr_ alloc.
Upon returning from the malloc function, the row in the
pointer check table 200 for the pointer ptr_alloc will be
updated to reflect the new pointer information. The pointer
address entry 230 and the contents of pointer entry 240 will
be populated with the appropriate information. The status
entry 260 will be populated to indicate that the pointer points
to ALLOCATED memory space.

In the preferred embodiment, the post-execution wrapper
function for the malloc function will also create a memory
allocation structure 280, as illustrated in FIG. 2e. As shown
in FIG. 24, the lower memory bound entry 250a for the
pointer ptr_alloc will include a pointer to the memory
allocation structure 280.

The memory allocation structure 280 will include a lower
bound member 282, an upper bound member 284, a chain
list member 286, an initialization bit vector 288 and a status
member 290. The valid lower and upper bounds of the
allocation are stored in members 282 and 284, respectively.

The chain list member 286 includes a list of all pointers
that currently point to the associated block of allocated
memory. Each time a pointer to allocated memory is copied
to another pointer, the status entry 260 in the pointer check
table 200 for the second pointer will also be marked as
ALLOCATED, and will contain a pointer to the same
memory allocation structure 280 in the valid lower memory
bound entry 250a. In addition, the new pointer is added to
the list in the chain list member 286.

Similarly, if a pointer that points to allocated memory is
reassigned to point at a new block of allocated memory, the
pointer is preferably removed from the list in the chain list
member 286 for the previous allocation, before being added
to the chain list member 286 for the new allocation. As

15

20

25

30

35

55

60

65

20

discussed further below, this feature of the invention allows
memory leaks to be detected automatically.

Accordingly, the information recorded in the chain list
member 286 of the memory allocation structure 280 indi-
cates only those pointers that currently point to the associ-
ated allocated memory.

The initialization bit vector 288 contained in the memory
allocation structure 280, as shown in FIG. 2e, consists of a
bit for each byte of allocated memory and maintains the
initialization status of each byte of the associated memory.
In a preferred embodiment, when every byte in the region of
allocated memory has been initialized, the initialization bit
vector 288 is discarded and a flag is set to indicate the
initialized status of the entire region. As discussed further
below, each time a pointer is used to read allocated memory,
the initialization bit vector 288 is evaluated to ensure that the
respective bytes of allocated memory have been initialized.
In addition, as discussed further below, a mechanism is
provided for updating the appropriate bits of the initializa-
tion bit vector 288 upon detection of an initialization of
allocated memory by either compiled or interpreted code.

In a preferred embodiment, the post-execution wrapper
function associated with memory allocation functions, such
as malloc, preferably pre-marks each four byte region of the
memory that has been allocated by the function with a
known pre-defined value that is unlikely to be encountered
in most programming applications. This pre-marked value
facilitates the detection of the initialization of the memory
region.

It has been found that the hexadecimal value FFFA 5A5A
will not normally be encountered in a programming envi-
ronment for two reasons. First, if this value is used as a
floating point value, a floating point trap error will be
generated because the value is defined as not a number
(NAN) in the Institute for Electrical and Electronic Engi-
neers (IEEE) floating point standard. Second, if a program-
mer attempted to use this value as a pointer, segmentation or
memory fault errors would be generated on most machines.

In addition to pre-marking all dynamically allocated
memory with the hexadecimal value FFFA 5AS5A, it is also
preferred that the memory locations associated with all
uninitialized automatic variables are similarly marked at
run-time. In addition, it is noted that all uninitalized static
variables are set to 0 at run-time by the linker 40.

Due to the slow operating speeds normally associated
with memory allocation functions, such as malloc, many
programmers will often allocate one large block of memory,
and then break the large block into smaller pieces, as needed,
with each smaller piece of allocated memory being acces-
sible by at least one pointer. However, according to the

pointer table updating processes outlined above, the valid

range for each pointer would normally be recorded in the
pointer check table 200 as the entire large block of memory.

Thus, the pointer check table 200 should indicate that the
proper range for a pointer that is intended to point to only a
smaller piece of the larger allocation. Accordingly, a user
can preferably access the entries in the pointer check table
200 in order to record the smaller range.

According to a further feature of the invention, the
deallocation of allocated memory, i.e., by calling the free
library function, is also monitored by a memory deallocation
monitoring subroutine illustrated in FIG. 7. When a call is
made to a memory deallocation function, the argument of
the deallocation function is typically one of the pointers that
point to the allocated memory space. A common program-
ming error is to deallocate memory using one pointer, and

5,590,329

21

then attempt to access the same memory space with a
separate pointer that had been defined to point to the same
space.

A pre-execution wrapper function is preferably initiated
during steps 705 through 735 of the memory deallocation
monitoring subroutine before the associated compiled
memory deallocation function is called and executed during
step 737. The pre-execution wrapper function will prevent
subsequent errors from being encountered when attempting
to access freed memory. The memory deallocation monitor-
ing subroutine will initially locate the row in the pointer
check table 200 during step 705 for the pointer argument that
was passed to the deallocation function.

A test is performed during step 710 to determine if the
status entry 260 indicates that the pointer has a FREED
status. If it is determined during step 710 that the status is
FREED, an error is generated during step 715 because the
allocated memory that was pointed to by the pointer has
already been freed. Thereafter, the subroutine is exited at
step 740.

A test is performed during step 720 by the memory
deallocation monitoring subroutine to determine if the status
entry 260 has an ALLLOCATED or UNKNOWN status. If it
is determined during step 720 that the status is not ALLO-
CATED or UNKNOWN, an error message is generated
during step 725 because these are the only valid status codes
for allocated memory. Thereafter, the subroutine is exited at
step 740.

If it is determined during step 720 that the status is
ALLOCATED or UNKNOWN, the memory deallocation
monitoring subroutine will access the memory allocation
structure 280 pointed to by the pointer in the lower bound
entry 250a during step 725 and set the status member 290 to
indicate a status of FREED.

Thereafter, during step 730, the memory deallocation
monitoring subroutine will access the chain list member 286
in the memory allocation structure 280, shown in FIG. 2e,
and retrieve the list of all the pointers that point to the
allocated space.

The appropriate row in the pointer check table 200 will be
accessed during step 735 for each pointer indicated in the list
retrieved during the previous step to mark their status entry
260 as FREED.

In addition, following execution of the compiled memory
deallocation function during step 737, a post-execution
wrapper function preferably sets the actual contents of each
listed pointer to a null value during step 739. In this manner,
if a subsequent attempt is made to dereference one of these
pointers having a null value, an error will be generated.
Thereafter, the subroutine is exited at step 740.

1t is noted that an implicit memory deallocation occurs
‘when static pointers point to memory space created for a
local variable in an interpreted function. When the inter-
preted function returns, the allocated space will be auto-
matically deallocated by the interpreter 15. Thus, since the
static pointer points to invalid memory space following
return from the function, it is preferred that the value of the
static pointer be set to null and that the row in the pointer
check table 200 for the static pointer is preferably updated
to indicate a contents of 0. This may be implemented by
executing the memory deallocation monitoring subroutine
of FIG. 7 upon returning from an interpreted function that
assigned the address of local variable to a static pointer.

RUN-TIME ERROR CHECKING OPERATIONS

As the evaluator 35 evaluates each node of the internal
pseudo-code at run-time, it implements a run-time error

10

15

20

25

35

45

50

55

60

65

22

checking process, illustrated in FIG. 8, to determine if the
node contains a command that will implicate an error
checking routine. The run-time error checking process
evaluates each node of the internal pseudo-code and imple-
ments run-time error checking tasks in response to certain
error checking commands and additional information that
were inserted into the parse tree by the read-time error
checking process, discussed above relative to FIG. 3.

The run-time error checking process determines if the
node being evaluated includes one of five commands that
implicate run-time error checking routines, as illustrated in
FIG. 8. If an error checking command is detected, the
run-time error checking process will initiate the appropriate
response, as shown in FIG. 8.

After entering the run-time error checking process at step
800, wherein each node of the internal pseudo-code is
evaluated, a run-time array dimension checking subroutine,
discussed below relative to FIG. 9, will be executed if a
dimchk command is encountered, as detected during step
810.

The run-time array dimension checking subroutine will
determine if an array is being referenced at run-time with an
illegal subscript. During step 910, the variable array sub-
script is calculated, based on run-time conditions. Thereaf-
ter, during step 920, a test is performed to determine if the
calculated subscript reference is negative or exceeds the
valid maximum dimension. It is noted that the valid maxi-
mum dimension was calculated at read-time and included
with the dimchk command.

If it is determined during step 920 that the calculated
subscript reference is an illegal value, a test is performed
during step 924 to determine if the maximum valid dimen-
sion is 1. If it is determined during step 924 that the
maximum valid dimension is 1, the pointer checking facili-
ties disclosed herein are utilized during step 928 to deter-
mine if the structure as a whole is within the valid range. The
test performed during step 924 facilitates a common pro-
gramming technique of ending a structure declaration with
an array having a single element and then dynamically
choosing how long the array will be at run-time. It is noted
that when the structure is allocated, additional space is
allocated for additional members of the array.

If it is determined during step 924 that the maximum valid
dimension is not 1, the error is not the result of this common
programming technique, and an error message is generated
during step 930. Following execution of step 930, or if it is
determined during step 920 that the calculated subscript
reference is a legal value, process control returns to the
run-time error checking process at step 800 (FIG. 8).

The run-time error checking process will perform a test at
step 820 to determine if the node of internal pseudo-code
being evaluated includes a savptr command. As discussed
above, savptr commands have been inserted into the inter-
preted source code, such that when evaluated at run-time,
each savptr command will cause the pointer information
from the appropriate row in the pointer check table 200 to be
copied into the pointer save stack 65.

Thus, if it is determined during step 820 that the node
includes a savptr command, the evaluator 35 will retrieve the
address of the pointer being copied from the top of the
interpreter stack 60 during step 825. Thereafter, the evalu-
ator 35 will locate the appropriate row of the pointer check
table 200 using the address retrieved from the interpreter
stack 60 and copy the pointer information from the row of
the pointer check table 200 into the pointer save stack 65. In
addition, if the savptr command includes a pointer to a

5,590,329

23

function, as discussed above, the pointer to the function is
also placed in the pointer save stack 65.

As discussed above, the pointer information may be
subsequently retrieved from the pointer save stack 65 by the
evaluator 35 for placement in the pointer check table 200
during steps 1060 through 1080 of the run-time pointer table
opdating subroutine, as shown in FIG. 10¢ and discussed
below. Following execution of step 825, program control
returns to step 800, and proceeds in the manner described
above.

The run-time pointer table updating subroutine, illustrated
in FIGS. 10a through 10c, will be entered at step 1002 if the
node of internal pseudo-code being evaluated by the run-
time error checking process includes a thlupd command, as
detected during step 830 (FIG. 8).

The characteristic information included in the node of the
tblupd command is evaluated in step 1002 (FIG. 10q), and
then tested against a number of test conditions during steps
1004 through 1090, until a match is obtained. It is noted that
the address of the pointer being assigned is obtained from
the interpreter stack 60 at run-time. It is the address of the
pointer that is utilized to locate and identify the appropriaie
row in the pointer check table 200 that should be updated
with the pointer information for the pointer being assigned.

A test is performed during step 1004 to determine if the
node contains a pointer to an entry in the internal symbol
table 75, i.e., where the pointer is being assigned the address
of an identified variable or function. If it is determined
during step 1004 that the node does contain a pointer to an
entry in the internal symbol table 75, the pointer will be
utilized to access the appropriate entry of the internal
symbol table 75 during step 1006 to retrieve the address of
the identified variable or function, as well as the size of the
identified variable or function, if available.

During step 1008, a test is performed to determine if the
size information was available in the internal symbol table
75. If it is determined during step 1008 that the size
information is not available in the internal symbol table 75,
the status flag will be set to UNKNOWN during step 1010.

If it is determined that the size information is available in
the internal symbol table 75, a test is performed during step
1014 to determine if the pointer is pointing to a variable or
a function. If it is determined during step 1014 that the
pointer is pointing to a function, the status flag will be set to
PFUNC during step 1016. Since the valid range for a pointer
to a function is only the start address of the function, because
a function may only be initiated from the beginning, then the
valid range is set during step 1017 to the starting address
retrieved from the internal symbol table during step 1006.

If it is determined during step 1014 that the pointer is
pointing to a variable, the status flag will be set to
BOUNDED during step 1018. The valid range for the
pointer will be calculated during step 1019, using the
address and size information retrieved from the internal
symbol table 75. During step 1020 the information that has
been defined for the pointer being assigned during the
execution of steps 1006 through 1019 is added to the
appropriate row of the pointer check table 200 that has been
established for the pointer being assigned. Thereafter, pro-
gram control will return to the run-time error checking

. process at step 800 (FIG. 8).

If it is determined during step 1004 (FIG. 10a) that the
node does not contain a pointer to an entry in the internal
symbol table 75, program control will proceed to step 1022.

A test is performed during step 1022 to determine if the
node contains only a readintstk command, which will have

10

15

20

25

30

35

50

55

60

65

24

been placed in the parse tree at read-time if the pointer is
being assigned the contents of a second pointer. If it is
determined during step 1022 that the node does contain only
a readintstk command, the evaluator 35 will preferably
access the interpreter stack 60 to retrieve the address of the
second pointer being copied. Thereafter, during step 1026,
the evaluator 35 will utilize the address retrieved from the
interpreter stack 60 during step 1024 to locate the row in the
pointer check table 200 for the second pointer. The infor-
mation that is retrieved from the pointer check table 200 for
the second pointer is then copied into the row for the pointer
being assigned. Thereafter, program control will return to
the run-time error checking process at step 800 (FIG. 8).

If it is determined during step 1022 (FIG. 10a) that the
node does not contain a readintstk command, program
control will proceed to step 1030 (FIG. 10b).

A test is performed during step 1030 to determine if the
node contains the address and size of a string which is being
assigned to the pointer. If it is determined during step 1030
that the node does contain the address and size of the string,
the evaluator 35 will calculate the valid range for the pointer
during step 1032, based on the address and size information.
After setting the status flag to BOUNDED during step 1034,
the information that has been defined for the pointer being
assigned during the execution of steps 1032 and 1034 is
entered during step 1036 into the appropriate row of the
pointer check table 200 for the pointer being assigned.
Thereafter, program control will return to the run-time error
checking process at step 800 (FIG. 8).

If it is determined during step 1030 (FIG. 10b) that the
node does not contain the address and size of a string,
program control will proceed to step 1038.

A test is performed during step 1038 to determine if the
node contains an ILLEGAL status indication because the
pointer is being assigned an illegal value. If it is determined
during step 1038 that the node does contain an ILLEGAL
status indication, the status fiag is set to ILLEGAL during
step 1040. The information that has been defined for the
pointer is added to the appropriate row of the pointer check
table 200 during step 1042. Thereafter, program control will
return to the run-time error checking process at step 800
(FIG. 8).

If it is determined during step 1038 (FIG. 10b) that the
node does not contain an ILLEGAL status indication, pro-
gram control will proceed to step 1044,

A test is performed during step 1044 to determine if the
node contains a readintstk command, together with the size
of a structure member. If it is determined during step 1044
that the node does contain a readintstk command together
with the size of the structure member, the evaluator 35 will
retrieve the address of the structure member being assigned
during step 1046. It is noted that the readintstk command has
been positioned in the interpreted source code during read-
time such that it will be evaluated at a time when the address
of the structure member will be at the top of the interpreter
stack 60.

The evaluator 35 will calculate the valid range for the
pointer during step 1048, based on the size and retrieved
address information, and then set the status flag to
BOUNDED during step 1050. The information that has been
defined for the pointer being assigned is added during step
1052 to the appropriate row of the pointer check table 200.
Thereafter, program control will return to the run-time error
checking process at step 800 (FIG. 8).

If it is determined during step 1044 (FIG. 10b) that the
node does not contain a readintstk command together with

5,590,329

25

the size of the structure member, program control will
proceed to step 1060 (FIG. 10c).

A test is performed during step 1060 to determine if the
node contains a rdptrstk command. If it is determined during
step 1060 that the node contains a rdptrstk command, the
evaluator 35 will retrieve the contents of the pointer save
stack 65 during step 1064. As discussed above, whenever a
rdptrstk command is detected, an associated savptr com-
mand will have already been evaluated during step 825
(FIG. 8), which placed the appropriate pointer information
that is needed to update the pointer check table 200 in the
pointer save stack 65.

A test is performed during step 1066 to determine if the
pointer save stack 65 includes a pointer to a function. This
test is implemented to allow the performance of error
checking tasks on software programs that consist of inter-
preted source code and compiled library functions. It is
noted that a pointer to a function is included with the savptr
command at read-time if the pointer save stack 65 is being
utilized to pass pointer information into a called function,
i.e., during steps 545 and 547, or to return pointer informa-
tion from a called function, i.e., during steps 550 and 552.
The pointer to the function identifies the function that should
receive the pointer information from the pointer save stack
65 in the case of passing pointer information to a called
function, or identifies the function that has placed the pointer
information in the pointer save stack 65 in the case of
returning pointer information to the calling function.

If it is determined during step 1066 that the pointer save
stack 65 does not include a pointer to a function, the validity
of the pointer information in the pointer save stack 65 need
not be tested and program control will proceed to step 1080,
described below.

If it is determined during step 1066 that the pointer save
stack 65 does include a pointer to a function, the validity of
the pointer to the function must be tested. A test is performed
during step 1068 to determine if the pointer save stack 65 is
being utilized to pass pointer information into a called
function or to return pointer information from a called
function.

If it is determined during step 1068 that the pointer save
stack 65 is being utilized to pass pointer information into the
called function, a test is performed during step 1070 to
ensure that the passed pointer information has been placed
into the pointer save stack 65 by the calling function for
retrieval by the called function by determining if the
retrieved pointer to the function equals the address of the
function currently being executed. If it is determined during
step 1070 that the retrieved pointer to the function does not
equal the address of the function currently being executed,
then the pointer information from the pointer save stack 65
should not be placed in the pointer check table 200, and
program control should return to the run-time error checking
process at step 800 (FIG. 8).

If it is determined during step 1070 that the retrieved
pointer to the function does equal the address of the function
currently being executed, then the pointer information from
the pointer save stack 65 shouid be placed in the pointer
check table 200 during step 1080. Thereafter, program
control should return to the run-time error checking process
at step 800 (FIG. 8).

If it is determined during step 1068 that the pointer save
stack 65 is being utilized to return pointer information to the
calling function, a test is performed during step 1074 to
ensure the pointer information has been placed into the
pointer save stack 65 by the called function for retrieval by

20

25

30

40

50

55

60

65

26

the calling function by determining if the retrieved pointer to
the function equals the address of the function that has just
completed execution, i.e., the address of the called function.

If it is determined during step 1074 that the retrieved
pointer to the function does not equal the address of the
function that has just completed execution, then the pointer
information from the pointer save stack 65 should not be
placed in the pointer check table 200, and program control
should return to the run-time error checking process at step
800 (FIG. 8).

If it is determined during step 1074 that the retrieved
pointer to the function does equal the address of the function
that has just completed execution, then the pointer informa-
tion from the pointer save stack 65 should be placed in the
pointer check table 200 during step 1080. Thereafter, pro-
gram control should return to the run-time error checking
process at step 800 (FIG. 8).

The pointer check table 200 will be updated during step
1080 with the pointer information that was retrieved from
the pointer save stack 65 during step 1064. Thereafter,
program control will return to the run-time error checking
process at step 800 (FIG. 8).

If it is determined during step 1060 (FIG. 10c¢) that the
node does not contain a rdptrstk command, program control
will proceed to step 1090.

A test is performed during step 1090 to determine if the
node contains an UNKNOWN status indication. If it is
determined during step 1090 that the node contains an
UNKNOWN status indication, the evaluator 35 will set the
status flag to UNKNOWN during step 1092 before the
information that has been defined for the pointer being
assigned is added during step 1094 to the appropriate row of
the pointer check table 200. Thereafter, program control will
return to the run-time error checking process at step 800
(FIG. 8).

If it is determined during step 1090 (FIG. 10c) that the
node does not contain an UNKNOWN status indication,
program control will proceed to step 1096.

If program execution reaches step 1096, the tblupd node
cannot be characterized according to any of the above-
established tests. Thus, an error message is generated during
step 1096 before the run-time pointer table updating process
is exited at step 1098.

The run-time pointer checking subroutine, illustrated in
FIGS. 11a and 115, will be entered at step 1104 if the node
of internal pseudo-code being evaluated by the run-time
error checking process includes a ptrchk command, as
detected during step 840 (FIG. 8). As discussed above, the
pointer checking subroutine will test the validity of each
pointer that is being dereferenced.

The evaluator 35 will access the interpreter stack 60 to
retrieve the address of the pointer being checked during step
1104. As noted above, the ptrchk command has been posi-
tioned in the parse tree such that when it is evaluated at
run-time the address of the pointer being checked will be at
the top of the interpreter stack 60. During step 1108, the
evaluator 35 will utilize the pointer address retrieved from
the interpreter stack 60 during step 1104 to locate the row in
the pointer check table 200 for the pointer being checked.

A test is performed during step 1112 to determine if the
status entry 260 in the pointer check table 200 has been set
to PFUNC for the pointer being checked. If it is determined
during step 1112 that the status is set to PFUNC, the address
of the function will be retrieved from the internal symbol
table 75 during step 1116. During step 1120 the “contents of

5,590,329

27

pointer” entry 240 in the pointer check table 200 will be
rewritten with the address that has been retrieved from the
internal symbol table 75. This routine is implemented to
ensure that the most recent version of the function that has
been loaded into the interpreter 15 is executed. Thereafter,
program control will proceed to step 1124.

A test is preferably performed during step 1124 to deter-
mine if the value recorded in the “contents of pointer” entry
240 in the pointer check table 200 equals the actual contents
of the pointer. This preferred embodiment provides a supple-
mental mechanism to the wrapper function implementation
described above for detecting modifications of pointers that
have been performed by compiled code without the knowl-
edge of the evaluator 35. Since the evaluator 35 was
unaware of the previous modification, the pointer check
table 200 was not properly updated.

If it is determined during step 1124 that these values are
unequal, a previously undetected modification of this pointer
has occurred. It is assumed that this modification has been
validly performed by compiled code. Thus, during step
1128, the status flag for the pointer being checked is set to
UNKNOWN and no additional checking is performed. In
this manmer, spurious warnings about valid pointer modifi-
cations by compiled code are prevented. Thereafter, program
control will return to the run-time error checking process at
step 800 (FIG. 8).

If it is determined during step 1124 that the recorded
contents equal the actual contents of the pointer, program
control will proceed to step 1132.

A test is performed during step 1132 to determine if the
status entry 260 of the pointer check table 200 has been set
to ILLEGAL for the pointer being checked. If it is deter-
mined during step 1132 that the status has been set to
ILLEGAL, an error has occurred now that the constant null
or negative pointer is being dereferenced. Accordingly,
program control will proceed to a diagnostic subroutine,
discussed below relative to FIG. 13.

If it is determined during step 1132 that the status entry
260 has not been set to ILLEGAL, program control will
proceed to step 1140 (FIG. 115).

A test is performed during step 1140 (FIG. 11b) to
determine if the status entry 260 of the pointer check table
200 has been set to FREED for the pointer being checked.
If it is determined during step 1140 that the status has been
set to FREED, a freed memory access error has occurred,
i.e., memory that has been deallocated is now improperly
being accessed. Accordingly, program control will proceed
to a diagnostic subroutine, discussed below relative to FIG.
13.

If it is determined during step 1140 that the status entry
260 has not been set to FREED, program control will
proceed to step 1148.

A test is performed during step 1148 to determine if the
status entry 260 of the pointer check table 200 has been set
to BOUNDED for the pointer being checked. If it is deter-
mined during step 1148 that the status has been set to
BOUNDED, a test is performed during step 1152 to deter-
mine if the actual contents of the pointer being checked is
within the valid range as set forth in the valid memory
bounds entries 250a, 2505 of the pointer check table 200 for
the pointer being checked. If it is determined during step
1152 that the retrieved pointer value was within the valid
range, program control will return to the run-time error
checking process at step 800 (FIG. 8).

If, however, it is determined during step 1152 that the
retrieved pointer value was not within the valid range, a

15

20

25

30

35

45

50

55

60

65

28

memory access error has occurred. Accordingly, program
control will proceed to a diagnostic subroutine, discussed
below relative to FIG. 13.

If it is determined during step 1148 that the status entry
260 has not been set to BOUNDED, program control will
proceed to step 1160.

A test is performed during step 1160 to determine if the
status entry 260 of the pointer check table 200 has been set
to ALLOCATED for the pointer being checked. If it is
determined during step 1160 that the status has been set to
ALLOCATED, a test is performed during step 1162 to
determine if the contents of the pointer is within the valid
range for the allocated memory, as defined by the lower and
upper bound entries 282, 284 of the associated memory
allocation structure 280, illustrated in FIG. 2e.

If it is determined during step 1162 that the contents of the
pointer is not within the valid range for the allocated
memory, a memory error has occurred. Accordingly, pro-
gram control will proceed to a diagnostic subroutine, dis-
cussed below relative to FIG. 13.

If it is determined during step 1162 that the contents of the
pointer is within the valid range for the allocated memory,
a test is performed during step 1164 to determine if the
pointer is being dereferenced to READ or WRITE to the
allocated memory. If it is determined during step 1164 that
the pointer is being dereferenced to WRITE to allocated
memory, the appropriate bits of the initialization bit vector
288, described above, will be updated to indicate the new
initialized status of the corresponding bytes of allocated
memory during step 1168. Thereafter, program control will
return to the run-time error checking process at step 800
(FIG. 8).

If it is determined during step 1164 that the pointer ‘is
being dereferenced to READ allocated memory, the appro-
priate bits of the initialization bit vector 288 are accessed to
determine if the corresponding bytes of allocated memory
have been initialized. A test is performed during step 1174
to determine if the allocated bytes being READ have been
initialized. If it is determined during step 1174 that these
bytes have not been initialized, a memory access error has
occurred. Accordingly, program control will proceed to a
diagnostic subroutine, discussed below relative to FIG. 13.

If it is determined during step 1174 that the bytes have
been initialized, program control will return to the run-time
error checking process at step 800 (FIG. 8).

If it is determined during step 1160 that the status has not
been set to ALLOCATED, then program control will pro-
ceed to step 1176. If program execution reaches step 1176,
the information recorded in the status entry 260 cannot be
characterized according to any of the above-established
tests. Thus, an error message is generated during step 1176
before the run-time pointer checking process is exited.

A compiled function error checking process, illustrated in
FIG. 124, will be entered at step 1202 if the node of internal
pseudo-code being evaluated by the run-time error checking
process includes a call command for a compiled function, as
detected during step 850 (FIG. 8). The compiled function
error checking process provides a mechanism for initiating
wrapper functions that may be associated with a given
compiled function, as well as initiating an initialization bit
vector maintenance subroutine, illustrated in FIG. 125, if the
compiled function that is called has access to allocated
regions of memory, as discussed further below.

A test is performed by the compiled function error check-
ing process at step 1202 to determine if the called compiled
function has an associated pre-execution wrapper function.

5,590,329

29

If it is determined during step 1202 that the called compiled
function does have an associated pre-execution wrapper
function, the pre-execution wrapper function is executed
during step 1204 in order to perform any necessary pointer
checks and other functions, as described above. The pre-
execution wrapper function is passed the same arguments as
the associated compiled object code function. Thereafter,
program control will proceed to step 1205.

If it is determined during step 1202 that the called
compiled function does not have an associated pre-execution
wrapper function, program control will proceed to step
1205. A test is performed during step 1205 to determine if
the allocation access flag has been set in the entry in the
internal symbol table 75 corresponding to the called com-
piled function. The allocation access flag was set at read-
time during step 337 if the function has access to any
allocated memory.

If it is determined during step 1205 that the allocation
access flag has been set, an initialization bit vector mainte-
nance subroutine, illustrated in FIG. 12b, will be executed
during step 1207. The initialization bit vector maintenance
subroutine, which will be entered at step 1210, provides a
mechanism for detecting initializations of allocated memory
by a compiled function, which would normally not be
detected by the interpreter 15. It is noted that initializations
of allocated memory by an interpreted function will be
detected during execution of steps 1164 and 1168 of the
pointer checking subroutine illustrated in FIG. 11b. In this
manner, the initialization bit vector 288 will properly record
the initialization status of each corresponding byte of allo-
cated memory, regardless of whether the initialization was
performed by compiled or interpreted code.

As discussed above, a preferred embodiment of the inven-
tion pre-marks all uninitialized automatic variables and
allocated memory regions with a known four byte hexadeci-
mal word, such as FFFA 5ASA, in order to facilitate the
detection of memory initializations.

During step 1210, the evaluator 35 analyzes each bit of
the initialization bit vector 288 that corresponds to an
allocated byte that may be accessed by the compiled func-
tion, in order to identify all of the corresponding bytes that
are uninitialized at the time the compiled function is called.

The evaluator 35 will then perform a cyclic redundancy
check (CRC) checksum during step 1220 on all of the
uninitialized bytes that may be accessed by the compiled
code. During step 1225 the compiled function is called with
the proper arguments and executed. Following execution of
the compiled code, program control will return to step 1230,
wherein a second CRC checksum is performed on all of the
bytes that were accessible by the compiled code and unini-
tialized before execution of the compiled code.

A test is performed during step 1235 to determine if the
value of any byte has changed by testing if the results of the
CRC checksum that was performed during step 1220 equals
the results of the CRC checksum that was performed during
step 230. If it is determined during step 1235, that the two
checksum values are unequal, then program control will
proceed to step 1240.

During step 1240, a uvser-defined flag is analyzed to
determine if the entire block of allocated memory should be
marked as initialized or if only those bytes within the block
that have been initialized should be marked as initialized.
Preferably, the user-defined flag may be set by the user at the
start of each software debugging session. The user-defined
flag allows the user to prevent spurious generation of errors
that result from a compiled function initializing memory

10

20

25

30

35

45

50

55

60

65

30

with the known pre-marked hexadecimal value, i.e., initial-
izing memory to the hexadecimal value FFFA SA5A.

A test is performed during step 1245 to determine if the
user-defined flag has been set to indicate that the entire block
of allocated memory should be marked with an initialized
status, even where only a single byte may have been
initialized by the compiled code, or, alternatively, if only
those bytes that are determined to be initialized should be
marked with an initialized status. If it is determined during
step 1245 that the user has specified that the entire block of
allocated memory be marked as initialized, then each bit in
the initialization bit vector 288 is updated during step 1250
to indicate the initialized status.

If it is determined during step 1245 that the user has
specified that only those bytes that are actually initialized
should be marked with an initialized status, then program
control will proceed to step 1255. During step 1255, each
four byte block in the allocated region that has a contents
other than FFFA SASA is identified, i.e., those bytes that no
longer have the known pre-marked value. Thereafter, the
corresponding bits in the initialization bit vector 288 are
updated to indicate the initialized status during step 1258.

In an alternate embodiment, all of the bytes of uninitial-
ized memory that the compiled function may access are
saved prior to executing the compiled code during step 1225.
In this manner, if it is determined during step 1235 that the
compiled code has initialized allocated memory, then the
initialized bytes may be identified during step 1255 by
comparing the current contents of the uninitialized and
accessible bytes to the values stored prior to execution of the
compiled object code. In this embodiment, it is unnecessary
to pre-mark allocated memory regions with known values,
i.e., the hexadecimal word FFFA SASA.

Following execution of step 1250 or 1258, or if it is
determined during step 1235 that the compiled code did not
initialize any bytes of allocated memory, program control

will return to the compiled function error checking process
at step 1265 (FIG. 12qa).

If it is determined during step 1205 (FIG. 12a) that the
allocation flag has not been set, the called compiled function
cannot access any allocated memory, and there is no need to
run the initialization bit vector maintenance subroutine.
Thus, if the flag has not been set, the compiled object code
will be called with the proper arguments and executed
during step 1260. After the compiled object code has been
executed, it will return to the compiled function error
checking process at step 1265 (FIG. 12a).

A test is performed by the compiled function error check-
ing process at step 1265 to determine if the called compiled
function has an associated post-execution wrapper function.
If it is determined during step 1265 that the called compiled
function does have an associated post-execution wrapper
function, the post-execution wrapper function will be
executed during step 1270 with the values returned by the
associated compiled object code function. The post-execu-
tion wrapper function will perform any necessary pointer
table updating tasks for returned or created pointers, as well
as any other tasks that may be necessary, as described above.
Thereafter, program control will return to the run-time error
checking process at step 800 (FIG. 8).

If an error is detected during execution of the pointer
check subroutine, illustrated in FIGS. 11g and 115, i.e., upon
failure of the test conditions of steps 1132, 1140, 1152, 1162
or 1174, program control will proceed to the diagnostic
subroutine illustrated in FIG. 13.

When the diagnostic subroutine is entered at step 1310, an
error message is generated which includes diagnostic infor-

5,590,329

31

mation, i.e., an indication of the type of memory access error
and the line number in which the pointer was last modified,
as retrieved from the file/line number entry 270 of the
pointer check table 200. Thereafter, the programmer is
provided with access to the read-time facilities, discussed
above, during step 1320, in order to correct the detected
error. Upon the programmer’s correction of the error, pro-
gram control will return to the run-time error checking
process at step 800 (FIG. 8).

IDENTIFYING MEMORY LEAKS AND THE
SOURCE OF UNDETECTED POINTER
MODIFICATIONS

According to a further feature of the invention, memory
leaks, i.e., memory spaces that have been allocated but are
no longer accessible, may be detected automatically, or upon
user initiation of a memory leak detection algorithm.
Memory leaks typically result when a pointer that points to
a first block of allocated memory is reassigned to point to a
second block of allocated memory, without deallocating the
first block. As is well-known, memory leaks result in the
cumulative degradation of overall performance. '

As discussed above, upon the allocation of a block of
memory by a memory allocation function, an associated
memory allocation structure 280, illustrated in FIG. 2e, is
preferably created by the associated post-execution wrapper
function. The memory allocation structure 280 records cer-
tain information, described above, about the allocated
memory, including, e.g., a list in the chain list member 286
of all the pointers currently pointing to the associated block
of allocated memory.

As indicated above, each time a new pointer is assigned
to point to the allocated memory, the new pointer is added
to the chain list. Similarly, each time a pointer that previ-
ously pointed to a first block of allocated memory is reas-
signed to point to a second block of allocated memory, the
pointer is preferably removed from the chain list associated
with the first block before it is added to the chain list
associated with the second block.

Accordingly, the information recorded in the chain Iist
member 286 of the memory allocation structure 280 indi-
cates only those pointers that currently point to the associ-
ated block of allocated memory. Thus, if the contents of the
chain list member 286 are empty, there are no longer any
pointers pointing to the allocated memory which may be
utilized to access the allocated memory. Thus, a memory
leak has occurred and an error message should be generated.

As discussed above, the run-time pointer checking sub-
routine, illustrated in FIGS. 114 and 115, provides a supple-
mental mechanism at steps 1124 and 1128 for detecting
when a pointer has been modified by compiled code without
the knowledge of the evaluator 35. Since the evaluator 35
was unaware of the previous modification by the compiled
code, the pointer check table 200 was not properly updated
at the time of the modification. The supplemental mecha-
nism sets the status flag for the pointer being checked to
UNKNOWN and performs no additional pointer checking.
Although this routine prevents spurious warnings about
valid pointer modifications by compiled code, it would be
preferred to detect each modification by the compiled code
so that the modified value can be placed in the pointer check
table 200.

Thus, a mechanism is preferably provided to allow a user
to search the status entries 260 of each row of the pointer
check table 200, in order to identify all pointers having an

10

15

20

30

35

40

50

55

60

65

32

UNKNOWN status. For each pointer having an
UNKNOWN status, a diagnostic message is generated
which identifies the respective pointer, together with the
information from the file/line number entry 270. The line
number information will indicate the last time the pointer
was updated. The programmer can then utilize the diagnostic
information to identify the compiled function that has modi-
fied the pointer value without the interpreter’s knowledge.
Thereafter, a post-execution wrapper function may be writ-
ten for the compiled code, in the manner described above,
which will add the new pointer information to the pointer
check table 200 following execution of the compiled func-
tion, in order to prevent the further occurrence of the
UNKNOWN status.

During program development, programmers frequently
wish to reset the interpreter 15 by initiating a reset com-
mand, such as a CIN reset command. As is well-known, this
command instructs the interpreter 15 to return to the same
status that it was in upon completion of the read-time
processing. Effectively, this results in all data being reini-
tialized to their original values, as well as “BSS” data being
assigned to 0.

Preferably, the pointer check table 200 is returned to the
same status upon execution of a CIN reset command that the
pointer check table 200 was in upon completion of read-time
processing as well. Thus, the pointer check table 200 should
be reinitialized and then reloaded with any initializations
that were preloaded into the pointer check table 200 prior to
running any internal pseudo-code, as discussed above, i.c.,
for static pointers that are initialized to point at other static
data and for the argv pointer argument that is passed into the
main function.

It is to be understood that the embodiments and variations
shown and described herein are illustrative of the principles
of this invention only and that various modifications may be
implemented by those skilled in the art without departing
from the scope and spirit of the invention.
We claim:
1. A method of generating executable code for a program
from source code for the program, the executable code
including pointer checking code which checks memory
references made by dereferencing pointers, the method
comprising the steps of:
performing an analysis based on the source code to
identify certain memory references which are made by
dereferencing pointers and which need not be checked;
and .

responding to the analysis by generating the executable
code without pointer checking code that checks the
certain memory references.

2. The method of claim 1, wherein the step of performing
comprises the step of eliminating overlapping pointer
checks.

3. The method of claim 2, wherein each of the derefer-
encing pointers is associated with one of a plurality of flow
sets, wherein the step of responding comprises the step of
establishing a single pointer check for each flow set having
one or more pointer dereferences.

4. A method of generating executable code for a program
from source code for the program, the executable code
including pointer checking code which checks memory
references made by dereferencing pointers, the method
comprising the steps of:

performing an analysis based on the source code to

identify certain memory references which are made by
dereferencing pointers and which need not be checked;
and

5,590,329

33

responding to the analysis by generating the executable
code without pointer checking code that checks the
certain memory references, wherein the program is
executed by a software generation system, and wherein
the program comprises one or more library functions,
said software generation system maintaining pointer
information on each of said dereferencing pointers, the
method further comprising the steps of:
establishing a flow set for each of said dereferencing
pointers; and
performing an analysis routine on each line of the source
code, said analysis routine comprising the steps of:
(i) establishing a new flow set each time said software
generation system detects an assignment of a new
value to one of the dereferencing pointers in said line
of the source code; and
(ii) marking the current flow set associated with a
dereferenced pointer with an indication that said
dereferenced pointer has been dereferenced in said
line of the source code; and

performing a single pointer check for each of said flow
sets having one or more pointer dereferences, said
pointer check having an expanded offset for each of
said identified flow sets having a plurality of pointer
dereferences.

5. The method of claim 4, further including the step of

evaluating the flow sets at read-time following completion

of said analysis to detect the dereferencing of an unitialized
dereferencing pointer by determining if a flow set indicates
that a dereferencing pointer has been dereferenced before it
has been assigned a legal value.

6. The method of claim 4, wherein the analysis routine
further includes the step of marking each current flow set
with an indication that said line of the source code includes
a call to one of said library functions.

7. The method of claim 6, further including the steps of:

evaluating said flow sets at read-time following comple-
tion of said analysis routine; and

initiating a compiled code flow analysis routine at run-
time if a flow set associated with a dereferencing
pointer includes the calling of one of said library
functions among a plurality of pointer dereferences and
if said library function can access said pointer associ-
ated with said flow set, said compiled code flow analy-
sis routine comprising the steps of:

performing a test following execution of said library
function at run-time to determine if a pointer value
associated with said flow set has been modified by said
library function; and

performing an additional pointer check for those pointer
dereferences that are in said flow set following said call
to said library function only if said pointer value
associated with said dereferenced pointer has been
modified by said library function.

8. The method of claim 6, wherein said library function

includes one or more dereferencing pointers, said software
generation system maintaining pointer information on each
of said pointers, said pointer information including the valid
memory range of said associated pointer, said method fur-
ther comprising the steps of:

executing said library function; and
detecting the dereferencing of an invalid pointer by said
library function, wherein the step of detecting com-
prises the steps of:
(a) associating a wrapper function with said library
function, said wrapper function retrieving said

15

20

25

30

35

45

50

55

65

34

pointer information associated with each of said
pointers that are dereferenced by said library func-
tion and determining if said memory space pointed to
by the actual contents of each of said dereferenced
pointers is within said valid memory range retrieved
from said associated pointer information; and

(b) executing said wrapper function prior to executing
said associated library function.

9. The method of claim 6, wherein said library function
includes one or more dereferencing pointers, said software
generation system maintaining pointer information on each
of said pointers, said method comprising the steps of:

executing said library function; and

updating pointer information associated with a pointer
that is created during said step of executing, wherein
the step of updating comprises the steps of:

(a) associating a wrapper function with said library
function, said wrapper function storing said pointer
information associated with said pointer created by
said library function; and

(b) executing said wrapper function following execu-
tion of said associated library function.

10. The method of claim 6 further comprising the steps of:

executing said library function;

returning a pointer value from said library function to said
source code;

assigning said pointer value to one of the dereferencing

pointers; and

updating pointer information associated with said pointer

value, wherein the step of updating comprises the steps

of:

(i) associating a wrapper function with said library
function, said wrapper function storing said pointer
information associated with said returned pointer
value in a memory location;

(ii) executing said wrapper function following execu-
tion of said associated library function; and

(iif) retrieving said pointer information from said
memory location for placement in a pointer check
table upon said assignment of said returned pointer -
value to said dereferencing pointer.

11. A method of generating executable code for a program
from source code for the program, the executable code
including pointer checking code which checks memory
references made by dereferencing pointers, each of which is
associated with one of a plurality of flow sets, the method
comprising the steps of:

performing an analysis based on the source code to

identify certain memory references which are made by
dereferencing pointers and which need not be checked,
wherein the step of performing comprises the step of
eliminating overlapping pointer checks; and
responding to the analysis by generating the executable

code without pointer checking code that checks the
certain memory references, wherein the step of

responding comprises the step of establishing a single
pointer check for each flow set having one or more
pointer dereferences and wherein the step of establish-
ing a single pointer check comprises the step of estab-
lishing, for each of the flow sets having a plurality of

pointer dereferences, a pointer check having an
expanded offset.

12. A method of generating executable code for a program
from source code for the program, the executable code
including pointer checking code which checks memory
references made by dereferencing pointers, the method
comprising the steps of:

5,590,329

35

performing an analysis based on the source code to
identify certain memory references which are made by
dereferencing pointers and which need not be checked,;
and

responding to the analysis by generating the executable
code without pointer checking code that checks the
certain memory references, wherein the program com-
prises a complex expression and is executed by a
software generation system, said complex expression

containing a plurality of instruction streams, each of 10

said instruction streams having a pointer expression,
said software generation system maintaining pointer
information on each of said dereferencing pointers, said
method further comprising the steps of:

allocating a memory location for temporary storage of 15

pointer information;

36

placing a command in each of said instruction streams,
only one of said instruction streams being executed by
said software generation system at run-time, said com- |
mand causing said software generation system to
retrieve the pointer information associated with the
pointer expression in said executed instruction stream
and to place said retrieved pointer information in said
temporary memory location; and

retrieving said pointer information from said temporary

memory location upon said pointer’s dereferencing of
said complex expression at run-time.

