SOFTWARE REVIEWS

Four C Language Interpreters

Run/C version 2.02 and Run/C
Professional version 1.03 by
Lifeboat Associates ($120 and
$250, respectively), C-terp ver-
sion 2.22 by Gimpel Software
($298), and Instant-C wversion
2.20 by Rational Systems
($495) are four C interpreters for MS-
DOS machines. The packages are de-
signed o accomplish the same general
tasks, but the approaches they take and
how they interface with the user are all
distinct.

Run/C and Run/C Professional are es-
sentially the same program. The major
difference between them & that the
Run/C Professional package includes the
ability to load external object libraries
and code. Because they differ only inthis
respect and because their interfaces,
much of the content of their manuals, and
their benchmark results are identical,
throughout most of this review [will use
one term, Run/C, to refer to both of these
interpreters.

All four software packages are classi-
fied as interpreters. Instant-C can also
produce a sitand-alone executable file.
However, only Run/C executes programs
in a mode similar to most BASIC inter-
preters—interpreting each line of source
code on a line-by-line basis without pro-
ducing any intermediate code. This situa-
tionaccounts for the relatively slow speed
of Run/C in the benchmark tests. The
other interpreters feature a compile
mode, in which the source code is com-
piled internally into an intermediate code
and then is run from this compiled form.

Instant-C and Run/C allow you to op-
erate in a direct mode, which is similar to
BASIC. This means that you can enter
any valid C expression, including calls to
library functions, while in the inter-
preter, and the result will be evaluated
and displayed on the console.

Hardware and Software
Requirements

The four interpreters are designed to run
on the IBM PC, XT, AT, and compati-

John Unger

An overview of

Run/C, Run/C Professional, C-terp,

and Instant-C

bles and require at least one 360K-byte
floppy disk drive for loading their soft-
ware. All four packages run on MS5-DOS
2.0 or higher.

Each of the interpreters requires a lot
of free memory. C-terp requires 256K
bytes of RAM, Run/C requires a mini-
mum of 320K bytes, and Instant-C needs
at least 512K bytes. None of the inter-
preters uses overlays. This means the en-
tire interpreter, editor, library, and other
required modules are all part of one exe-
cutable file and load into memory at run
time. Access o the variousparts of the in-
terpreters is fast, but your computer must
have sufficient memory for the operating
system, the interpreter, and your pro-
gram. The maximum size of the source
code you can load into any of the four
packages is usually limited only by the
amount of RAM you have. Run/C can
handle a maximum of 640K bytes of
RAM, C-terp can handle up to 16 mega-
bytes of virtual memory (you activate this
memory option by a command when you
start the program), and Instant-C can
manage a maximum of 1 megabyte of
nonextended RAM, or an additional 64K
bytes of expanded Lotus/Intel/M icrosoft
(LIM) memory.

All four interpreters use C syntax that
is compatible with the Kernighan and
Ritchie definition of the language. You
can set up Run/C Professional, Instant-C,
and C-terp to use libraries specific to
either Microsoft or Lattice C compilers.
C-terp also comes in versions that are
compatible with Manx Aztiec C, Com-
puter Innovations' C-86, and Mark Wil-
liams' C.

None of the interpreters is copy-pro-
tected. All four user's manuals urge you
to make backup copies of the distribution
disks immediately. I had no problems

copying any of the programs to
a hard disk.

Overview of the Interpreters
The authors of Run/C strived to
make their C interpreter look
like the environment familiar to
users of Microsoft BASIC interpreters.
Most of the commands closely follow
those used in BASICA and GV -BASIC.
The in-memory full-screen editor has
many of the features and uses the same
keystrokes as the popular WordStar
editor.

C-terp moves further away from famil-
iar patterns and provides an integrated
environment of a menu-driven command
level, a powerful screen-oriented editor
with line numbers, and a debugger.

Instant-C is the most sophisticated of
the four packages. It provides all the fea-
tures of the other interpreters plus a few
extras. Imstant-C lives up its name as
far as speed of program compilation and
execution is concerned; it was by far the
fastest in the benchmark tests.

All four packages are designed to exe-
cute C source code only from within the
confines of their individ ual interpreters to
produce the desired output What good
are they, then? I think that there are two
principal roles they might play: as a tool
for learning how to program in C or asa
tool for quickly writing portable C pro-
grams that you will later compile into ex-
ecutable programs. The least expensive
package, Run/C, is especially good if
you're a beginner in C and are familiar
with the screen layout and operation of
GW-BASIC or BASICA.

All four packages' user's manuals pro-
vide good descriptions of how to get the
Programs running on your computer and
take you step by stepthrough a simple ex-
ample program. Each manual provides

Coniied

John Unger (P.O. Box 95, Hamilion, V4
22068) is a geophysicist for the U. 5. gov-
ernment who uses the C language to write
software for earthquake research.

JUNE I3ET7 « BY TE 245

SOFTWARE REVIEWS

AUN/C version 2.03
RUM/C Professional version 1.03

C-terp version 2.22

Instant-C version 2.20

Type
Company

Computer

Documentation

Price

C language nterpreters

Lifeboat Associates

55 South Broadway
Tamytown, NY 10591

(914) 3321875
Two 5%a-inch floppy disks

IBM PC, XT, AT, or compatible
with atleast one 360K-byte floppy
disk drive and 320K byles

of RAM running DOS 2.0

or higher

530page user's manual

Run/C: $120
Run/C Professionalk $250

C langquage nterpreter

Gmpe Software

2207 Hogarth Lane
Collegevile, PA 19426
(215) 5B4-4261

Two SVa-nch floppy disks

IBM PC, XT. AT, or compalible
with atleastone 360K-byte floppy
disk drive and 256K byles
ofRAM running DOS 2.0

or higher

148-page user smanual

$246

C language increrrental compiler

Rational Systems
P.O. Box 480
MNatick, MA Q1760
(617) 6536194

Three 5Vs-inch floppy disks
IBMPC, XT, AT, or compalible
with at least one 360K-byte floppy
disk crive and 512K bytes

of RAM running DOS 2.0

or higher

520-pageuser’'s manual

$495

you with a listing of the files on the distri-
bution disks and describes the ones you
will need to run the interpreter. All the
manuals have tables of contents and in-
dexes to help you locate specific subjects.

The amount and usefulness of the
documentation supplied with the inter-
preters vary considerably. Run/C has the
best manual of the lot. Nearly 400 of the
manual's 530 pages contain descriptions
and meaningful examples of how to use
all the 115 library functions ncluded
with the interpreter. This is in sharp con-
trast to C-terp's 66 functions, which are
described without examples in 50 pages
of its user's manual. Instant-C's manual
contains almost 300 pages of terse de-
scriptions of its extensive collection of
162 library functions and has only a few
shortexamples.

Although complete at 430 pages, the
Instant-C manual is difficult to use and
confusing, mostly because it is difficult
o locate specific information on the in-
terpreter's commands and functions, de-
spite the manual’s index Instani-C is a
large, sophisticated program with no on-
screen help. Fortunately, a well-written
chapter in the manual that contains anex-
ample showing how to create, edit, and
debug a program helps to overcome some
of these difficulties. Anyone starting out

with Instant-C should read this chapter
first

The Run/C Interpreter

When you start Run/C, you are greeted
by a familiar-looking screen layout that
mimics that of Microsoft BASIC: 10
highlighted boxes appear across the bot-

46 BY TE +« JUNE I9%7

tom of the screen to show the commands
that are assigned to the function keys.
Run/C's editor also has easily accessible
help screens that are just a keystroke or
two away.

You use the LOAD command to get an
existing file from your disk. The FILES
commandallows youtosee the files in the
default directory. These and similar
BASIC-like commands make it easy for
someone who has used BASIC w get
started with Run/C. Run/C's debugging
aids consist of the TRON and TRACE com-
mands, along with the ability to DUMF the
values of variables after halting the pro-
gram with Control-C or Control-Break.
The DUMP command displays these values
on the computer's screen; a correspond-
ing LODUMP command dumps the values to
a printer.

The aspect of Run/C that I found most
bothersome was its rather slow execution
speed. You can't do much about this, ex-
cept to use the program on a faster micro-
computer. Run/C also has sluggish disk
[/O that makes the interpreter a bit te-
dious when loading large files from or
saving them to disk. Beginners may not
become as frustrated with Run/C's slow
speed as [did, but [think it's fair o say
that the slow execution of source code
will render Run/C unfit for use by experi-
enced programmers. [Editor’s note: The
latest version of Run/C Professional is
1.11. This new version offers support of
the Microsoft C 4.0 compiler’s features. |

C-erp
C-terp first appears on the screen as a
menu, giving you a choice of 14 opera-

tions. Most choices are obvious, such as
LOAD, COMPILE, EDIT, or RUN. To choose
a command, you need only type its first
letter, which is highlighted on the menu.
A normal sequence would be toload a file
with C source code from disk, edit it to
make changes or just to preview the code,
and then compile and run the program.
Each of these operations takes just one
keystroke, with the exception of typing in
the name of the file.

The screen-oriented editor is fast and
has most of the features that program-
mers have come to expect from editors,
including block moves and copies, butit
lacks macro commands and auxiliary
buffers. An Al-H keystroke combination
instantly displays a helpful menu of editor
commands on the screen. You use line
numbers for the editor, and they act as a
handy reference for the debugper and
error messages. The line numbers are not
saved as part of the file.

C-terp allows you to set breakpoints
anywhere in your source code by use of a
breakpt() function. This function
SErves as an entry point into the debug-
ger. In the debug mode, you can display
or change the value of any active variable
and then continue execution of the pro-
gram. A split-screen feature shows the
source code in the top half of the screen,
with the debugger commands and their
results in the lower half. Youcan also flip
back and forth to a screen showing the
program's output or browse through the
source code without ever leaving the
debugger.

A major shortcoming of C-terp is its
lack of a built-in library of mathematical

SOFTWARE REVIEWS

functions, such as sine, tangent, or
square roots. Normally, C is not looked
upon as a language for writing scientifi-
cally oriented software, but I have used it
for this purp se and routinely write sci-
entificprograms in C rather thanin FOR-
TRAN. You can overcome this lack of
mathematical functions if you have ac-
cess to C source code for the math func-
tions you need, and you can include this
code with your program.

Another alternative is o use an object
code math library that is compatible with
C-terp. If you already use a C compiler,
this solution is easy because C-terp
comes in versions that are compatible
with Manx AztecC, Lattice C, Computer
Innovations' C-86, Microsoft C, and
Mark Williams' C. With the Microsoft-
compatible version of C-terp that[tested,
I was able o create a version of C-terp
that used all the Microsoft compiler's li-
brary functions. This feature allows you
to use the interpreter to test programs that
you can later generate into executable
files with your compiler. [Editor's note:
The latest version of C-terp is 2.308. It
now supports the keyw rd far for large
memory-model addressing, as well as
ANST extensions to the C language, such
as function protoryping. |

Instant-C

Instant-C is unique among the inter pret-
ers in that it gives you the capability to
create stand-alone executable files. How-
ever, the executable module produced in-
cludes the entire Instant-C library code
{(which s larger than 32K bytes), along
with all the storage allocated by Instant-C
to your source code during the debugging
session, unless you follow special
procedures.

Instant-C has a variety of debugging
aids and offers elaborate control over exe-
cution of your program. As with C-terp,
you can set breakpoints anywhere in the
source code with a __{ }; function, and
you can examine and change variables
once the debuggeris entered.

This inter preter was dif ficult for me to
understand and use, compared to the
others. First, mostofthe user's manual is
hard to read; for example, it informs you
that you can edit a funcrion (e.g.,
main() only after you have loaded the
file into memory. However, this vital bit
of information lurks in a section entitled
“Style Differences,” which follows the
introductory section on the editor. Fur-
thermore, the description of the #load
command is located in yet another sec-
tion entitled “*The Instant-C Work
space.”

Second, the program itself is distinctly
user-unfriendly and has no on-screen
help; you must rely on the manual and

o e e =]

your memory. After the program is in-
voked, the only thing that appears on the
screen is a # prompt, not a menuw. Instant-
C has a total of 65 valid commands that
you can enter from the interpreter mode.
This gives you a great deal of control over
editing, testing, and debugging your
code, but it also gives you a great number
of keywords to remember.

The program is particularly powerful
for debugging and provides the program-
mer with a good set of took for unravel-
ing problems. However, Instant-C's true
forte is the speed at which it executes C
programs; it is clearly in a class by itself
in this category. Instant-C also includes
the largest library of built-in functions for
programmers to take advantage of. For
example, it has a number of commands
for displaying memory in hexadecimal,
octal, or decimal format. The math li-
brary provides exotic transcendental
functions, such as hyperbolic cosine. A
setjmp function is provided, as well as
interrupt support to invoke MS-DOS
functions.

Performance Evaluation

Because both C-terp and Instant-C com-
pile the complete source code into an in-
ternal form before executing the pro-
gram, I expected to see large differences
in execution time between them and
Run/C, which operates as a true inter-
preter. Clearly, as shown in the bench-
mark results in table 1, Instant-C is the
fastest of the four, with C-terp in second
place. Bun/C was the slowest in all the
benchmarks. Run/C and Run/C Profes-
sional performed virtually identically in
the tests. To give youan idea of how the C
interpreters compare to a standard C
compiler, I have included the results of
the benchmarks run on version 4.0 of the
Microsoft C compiler. I ran the bench-
mark programs as functions called from
within a main{) function The main{)

function included code to start a system
timer, run the benchmark program, and
then read and display the elapsed time.

However, the times shown in table 1
aren't the only factors to consider when
choosing an interpreter. Programmers
spend much of their time editing and de-
bugging source code that they have cre-
ated, usually only the end user gets the
benefits of fast execution. The speed with
which a programmer can produce C lan-
guage code that executes flawlessly is
clearly the important benchmark to con-
sider if you choose to operate in an inter-
pretive environment. On the other hand,
the speed with which you can learn C
syntax and instructions and begin to write
real C source code is a key benchmark
measurement for someone trying to learn
the intricacies of the C language. In this
sense, Instant-C is not as clear a winner,
nor i5 Run/C as clear a loser, as the
benchmark times would indicate.

As an attempt o compare the four in-
terpreters in a fair way, I used the scenar-
10 in which you finish entering a program
using the interpreter's editor and then
proceed to debug and run the source
code. First, I took a simple C program
(see listing 1) that ran identically on the
four interpreters. I then introduced two
types of common errors into the source
code. Table 2 gives an explanation of the
error types used. I will refer to code in the
program by line number and © error
types by their code names, for example,
52 for syntax errornumber 2.

Forerror 51, Run/C prints out an error
code, the offending line number, and the
message Variable or funetion fahr
not found. The compile-time errors 52
and 53 frequently are not obvious to com-
pilers or interpreters until a line or so
later or, in the case of a missing left
brace, until the end of the program.
Run/C did not handle error 52 well at all,

comtined

Table 1: Benchmark times for the interpreters and the Microsoft C compiler
(for reference). Timesare inhours:minutes:seconds. The Sieve test measures
how long it takes to run ten iterations of BYTE s Sieve of Eratosthenes
prime-number benchmark on an array of 8190 numbers. Sort tests each
compiler's handling of pointers during a sorting operation. Fib tests the
efficiency of each compiler's recursion while computing a Fibonacci series.
Floar measures the time it takes to do 140, 000 floating-point multiplication

and division operations. Fileio exercises the [/0 functions of the compiler by

reading and writing to a 63,000-byte disk file. An [BM PC with 512K bytes
of RAM was used for the benchmark tests.

Microsoft C 4.0 Instant-C 2.20 C-lerp 2.22 Run/C 2.03
Siewe 11 40 5837 528:33
Sort 20 1:10 46:27 3:53:26
Ab 1:16 3-49 3:04:52 15:15:28
Float 1:33 8109 16:29 5158
Fleio 720 10:49 2310 12158

JUNEIZET7 » BYTE 247

SOFTWARE REVIEWS

I

program [s running.

Table 2: Type and location of the errors that were introduced into the
program in listing 1. The first three, §1, 52, and 53, are simple syntax errors.
The latter rwo, L1 and L2, are errors that can be detected only while the

referencing in the rext.

Error code Typeof error Location in Esting 1
s misspelled variable name fohr for fabr—line 11
52 missing ; end af ine 11
S3 migsing { and } lines10and 13
L1 nteger instead of

floating-paint division line 11
L2 nteger instead af

floating-point ormat

in printf statement line 12

Listing 1: A simple program that demonstrates how the three interpreters
handle syntax and run-time errors. The lines have been numbered for

1 #define IPPER 300.0 Jrupper 1imit of Fahrenhelit degrees #;
#define LOWER 0.0 /% lover 1imit of Fahrenhelt degrees #;
3 #define 5TEP 20.0 J* step to increment Fahr degrees #)
F
5 mainf)
6 |
7 float fahr, celsius;
8 print £{" N\ t\ tFAHRENHEIT CELSIUS\ n'\n");
g for {fahr = LOVER; fahr <= UPPER; fahr += STEP)
10 i
11 eelsiusg = (5.0/9.0) # (fahr-32.0);
12 printf{" Y\ tY t€4.0F N t Y t36.1F\ n", fahr, celsius);
13]
14 |

and it produced the message Required
1value not found. 83 produced the mes-
sage ¥¥Error: unmatched bracesks
with the line number of where the last left
and right braces were found. The only
way tountangle run-time bugs like L1 and
L2 is with a debugger or by sprinkling
calls to the printf function throughout
the source code to examine the values of
variables. Withthe L1 error, the program
compiled well and listed the values of
fahr correctly, but the output of the vari-
able celsius was all 0.0s. For L2, the
output of both variables was 0. Run/C has
two ways of debugging run-time errors:
You can turn on a TRACE command tog-
gle, or you can interrupt the program
with a Control-C. This will interrupt
Run/C and print the menu Continue,
dump, ldump; interactive, help or
end {C/D/L/T/H/E) ? on the screen. The
dump option lists all the variables and
their values from three different areas:
automatic variables declared in the func-
tion where the break occurred, automatic
variables from the calling function, or all
global and static variables. Prior to run-
ning the program, you can turn on the
TRACE toggle, which prnints out the cur-

248 BYTE + JUNE 1987

rent values of all the variables each time
they are referred to as the program runs.
Run/C also has a TRON/TROF command
pair, which is similar o BASIC, to trace
program logic and aid in debugging.
These error messages and debugging aids
areadequate, but a cut below what C-terp
and Instant-C offer.

Both C-terp and Instant-C handled
syntax errors easily and in a similar man-
ner. For the 51 error, C-terp prints an
error code and the message Undeclared
identifier. Hitting any key puts you
back into the screen-oriented editor with
the cursor at the first letter of the word
that caused the error.

C-terp handles both the 52 and 53
errorsvery well. Forthe 82 error, it gives
the message Expecting ';' and places
the editor cursor at the first character in
the line following the omitted ;. For the
S3error, it gives the message expecting
"identifier' for a missing left brace
and the message expecting '} for a
missing right brace . As with Run/C, the
L1 error compiled but produced 0.0s for
the variable celsius: [obtained similar
results for L2. This was a good place to
try C-terp's breakpt(}; function, so [

inserted it within the for loop after line
12. The effect of having this function in
the loop was that execution stopped just
after the printf function wascalled, and
the program automatically exited to the
debugper screen.

In C-terp's debugger environment, the
top two-thirds of the screen contains a
listing of the program’s source code
where the breakpt(); function is set.
The bottom part of the screen displays a
menu of commands for displaying vari-
ables, tracing, or stepping through code.
You can select the appropriate command
by typing its first letter. For example, hit-
ting the D) key selects the Display option
and causes the debugper to print the
prompt expression:, to which you can
respond with the name of any valid vari-
able and press Return. The current value
of that variable is then displayed.

Instant-C makes it virtually impossible
for you to leave the editor without com-
piling your source code function in its
most recently edited form. The compiler
handles all syntax errors logically and
with somewhat more chatty messages
than the other interpreters. For example,
error 51 resultsinthemessage I 'm sorry
but I don't know the word ''fohr''’
and the cursor was placed at the first
character in fahr. For error 52, it dis-
plays the messape Missing semicolon
{;) before '"'printf'' and the cursor
was placed at the first character in
printf. 53 produces the message I'm
sorry, but I don't know the word
"t{" for amissing left brace and Miss-
ingeclosing brace (}); possible un-
terminated remark for a missing right
brace. As with Run/C and C-terp, errors
L1 and L2 generated 0.0s for the output.

You can track down run-time errors
such as L1 and L2 with a variety of de-
bugging tools. Instant-C's special __{ };
function serves as a breakpoint to halt
program execution and is similar to C-
terp's breakpt(); function. When you
break out of arunning program in Instant-
C, the frapment of source code surround-
ing the _ (); appears ina window atthe
top half of the screen, and you are back in
the command mode with a # prompt in
the bottom half. From this prompt, you
can issue special commands to view and
change variable values and list the source
code or reenter the editor mode and view
the source code. But you cannot browse
through the source code, as is possible in
C-terp's split-screen debugger, nor do
wou have any on-screen aids w help you
choose commands.

Technical Support
The support [have received from Life-
boat Associates, Gimpel Software, and

Confl e

SOFTWARE REVIEWS

Rational Systems has been excellent. All
my questions have been answered quick-
ly, accurately, and, in many cases, by the
person who actually wrote the program.
None of the companies has a toll-free
number for technical help, but, instead of
that convenience, you get a much more
important one: no long waits or being told
that someone will call you back. It is sim-
ply courteous, quick service. This situa-
tion may change as the number of users
for the software grows, but I hope not.

Rational Systems has a service for In-
stant-C that ['ve never seen before with
any other software ['ve used. It includes a
stamped, self-addressed envelope with
the documentation for you to use to send
back bug reports or questions. Also, Ra-
tional Systems offers a money-back guar-
antee for the first 31 days you own the
software.

Which to Choose?

Without a doubt, the best C interpreter [
can imagine would combine features
found in all four software packages re-
viewed here. First, it would have the
documentation and editor of Run/C. Sec-
ond, it would present you with an easily
accessed menu-driven environment and
an easy-to-use symbolic debugger like C-
terp's. Third, it would havethespeed, so-
phisticated features , and extensive library
of Instant-C.

Of the four interpreters, C-terp comes
closest to this ideal right now. [ts only
major shortcomings are the lack of an in-
program math-function library and the
terseness of some of its documentation.

Run/C is an excellent package for be-
gimning C programmers. [would recom-
mend it particularly to those who are fa-
miliar with BASIC and who won't be put
of fby the slow execution speed. Run/C's
low cost makes it especially enticing.
Run/C Professional, with its ability to
load external object libraries and code,
adds more power to the basic Run/C
package but does not improve on its exe-
cution speed.

The performance of [nstant-C is excel-
lent. However, the problems [had under-
standing how the software worked and its
awkward documentation detract from the
usefulness of the package. [cannot rec-
ommend [nstant-C to beginning pro-
grammers, but experienced C program-
mers would appreciate and utilize its
sophisticated features and power.

A big plus for C-terp and Instant-C is
their ability tocreate versions of the inter-
preter that are completely compatible
with the libraries of popular C compilers.
In the case of Run/C Professional, you at
least have the option to load and include
different object libraries with the pro-
grams you are creating. W

250 BYTE *» JUNE 1987

