PRODUCT DESCRIPTION

C-LANGUAGE

DEVELOPMENT TOOLS

G. MICHAEL VOSE

Editar's vote: The following is @ BYTE product description,
it is not a review. We provide an advance look at these rew
praducts because we feel they are significart. We plan to pro-
vide complete reviews in sulfrsequent issues.

BASEMENTS AND GARAGES may have been the
birthplace of the techrology that has evolved into
the modern microcomputer, but researchers at one
of the world's largest corporations created the C pro-
gramming larguage. In the eighties, C has evolved
into the software developmrent tool of choice for
many serious programmers. Bell Labs’ UNIX-driven

LLUSTRATED BY RICHARD SO_DBERS

language has beer adapted for use with other oper-
atng systems ard used to create a multitude of
sigmiticant personal computer programs, including
VisiCorp's VisiOn. Microsoft Windows, and the
outline processar. MaxThink.

Cfalls irto the mid-level language category—higher
thar €2l jcentral processirg unit) register- and
memory-manipulatire. low-level assembly languages
out lower than machine-isolating, high-level lar-

[continued)
G Michael Viose 15 BYTE's senier technical editor for themes.
He can fe confacted at POB 372, Hancock, NH 03449

DECEMBER 1984 « BY TE

e

120

SAFE &]
PREPRDGCESSCHR COMPILERS, f———— F&SS 1
EROFILER

guages |ike Pascal and j er designed to uncover
Ada. Mid-level lan- : run-time errors. It is not
guages provide easy a production compiler;
access to memaory and it is simply a develop-
the CPU while retaining | ment tool designed to
the control and data b | increase programmer
structures of classic productivity (while
high-level langlages. | decreasging the pro-
This access enables bit grammer’s frustration
shifting and manipula- level).
tion using a rich set of Safe C adds a source-
operators for incre- to-SOUrce preprocess-
menting, decrement- ng pass to the normal
ing. and performing . C compile cycle [see
Boaolean operations, T e LR ;.___\ LINKER figure i). Safe C inserts

While C grew in | checkout code into the
popuarity. many pro- original source tile and

grammers agonized
over its complexity and
the lack of debugging

Figure |: Adding a preprocessing pass fg a typical
C comprle cucle,

then compiles the re-
sulting fille. The check-
out code swells the

teols like the monitors

for tracking errors in assembly-language programs,
utilities that enable you to set breakpoints in the
code and use single-step execution. Qutside of the
UNIX realm, where C debugging facilities are part
of the operating system (which is itself written in C),
programmers faced a barren landscape.

In microcomputerdom, however, where entrepre-
neurial fervor thrives, vacuums do not exist for long.
Recent months have brought forth a number of new
C-language development tools and debugging aids,
Many of these tools were created specifically for the
microcomputer programmer

In this product description [T look at three of these
products: the Safe C Compiler and Profiler from
Catalytix Corporation of Cambridge. Massachusetts:
the \nstant-C interpreter from Raticnal Systems Inc,
of Newton. Massachusetts; and the C Source Debug-
ger from Mark Wiliams Company of Chicago.

SAFE C COMPILER/PROFILER
Cne of the more significant proolems a C program-
mer faces is run-time error detection. Running a C
program in the early stages of its life cycle resembles
a Cessna pilot trying to land a 747 —he might know
how to fly but isn't sure which are the right controls.

Unlike Pascal compilers. C compilers do not pro-
vide extensive run-time errar checks during compila-
tion. C compilers cannot check for array indexing
errors. divide-by-zero, and similar run-time errors. C
programmers have no tool to verify the correctness
of argument data types passed to functions or to
detect the existence of a stray pointer. Dangling
POIMLCTS Can cause system crashes on many micro-
computer implementations of C.

The Safe C Compiler! rofiler is a checkout compit-

By Te = DECEMBLER 1994

original source in size
oy a facter of two or three,

As the compiler compiles the modified source file.
the checkout code prompts the generation of error
messages for every possinle run-time errar en-
countered, Multiple errors eenerate a stream of errar
messages. Safe C error messages are warnings
only—the compiled code is executable, and the pro-
grammer must decide whether to heed the warnings
generated.

The error conditions detected oy Safe C include

® out-of-bounds array indexes

® grithmetic overfllow and division by zero

* overfow in standard string routines

* mismatch of actual and formal function
pdrameters

* misuse of standard I (inputioutput] routines

® indirection through and stack corruption by stray
pointers

The compiler also reports standard syntax errors.

Frobably the most important function the Safe C
Compiler provides s detecting mismatches in func-
tion parameters. C's main strength derives from its
modularity. Ideally. C programmers write their pro-
grams as small. individual units that are later linked
together, The potential for error amaong the inter-
acting parts is high. mostly due to the passing of
arguments of the wrong data type.

The Safe C Profiler is a dynamic software develop-
rent tool that provides botk function and statement
execution counts. When a programmer needs to
know where a program spends most of its time, the
Frofiler provides a count of the times a funaion is
called and, within functions, the number of times a

[conlinied on page 182}

C DEVELOPMENT TOOLS

icontinued from page 120)

statement executes. The Profiler even
generates a histogram showing the
percentage of time the program ex-
ecutes a function or statement.

By revealing which parts of a pro-
gram execute most often, the Safe C
Profiler points the programmer to the
code where optimization yields the
greatest results. For example. in a
function where multiple if . . . else
tests are made, the test executed most
often should appear first for optimal
performance. The Profiler identifies
this code for proper alignment by the
programmer. This process is analo-
gous to a delivery service analyzing
all its truck deliveries to ensure that
the truck doesn't backtrack when
delivering goods.

The Safe C Profiler also profiles
code that does not get executed.
Often this exposes subtle errors, such
as using a single = instead of the

equivalence operator == This errcr.
syntactically and lexically correct,
could be hard to find unless you
could show that a certain test was
never being made—an indication that
a bug existed. Profiling identifies code
that hasn't been tested by repeated
program execution. giving the testing
phase of program development a new
dimension.

Using these tools is similar to using
a standard compiler. Catalytix's prod-
ucts are tailored to existing compilers
s0 that the appearance of both is the
same. If you work with the Lattice
compiler, for example, the Safe C
products designed to work with this
compiler look identical to it

The Safe C Compiler/Profiler is
available for the IBM Personal Com-
puter (PC), its compatibles, and com-
puters from at least 17 other manufac-
turers, Prices range all the way from
5400 for an MS-DOS version to 54000

for minicomputer versions.

Catalytix will shortly announce a C
interpreter and an Englishto-C/IC-to-
English translator, products BYTE will
preview.

INSTANT-C
The value of interaction with program-
ming languages is evident in the re-
cent consumer release of an inter-
preted Pascal |see "Macintosh Pascal”
in the June BYTE. page 136) and the
success of Turbo Pascal. a fast com-
piler that provides the illusion of in-
terpretation for small programs.
Several attempts at writing an inter-
preter for C have failed within the
university community, but at least two
commercial attempts appear headed
for success, One is the Catalytix prod-
uct mentioned earlier; the second is
Rational Systems' Instant-C. which
runs on Intel 8086-/8088-based com-

leantinued)

382 BYTE » DECEMABER 1984

C DEVELOPMENT TOOLS

Early buyers of
[nstant-C help finance
its development.

puters under MS-DOS or CP/M-86 and
costs 5500,

Instant-C supports all standard C
features except initialization. param-
eterized #defines, declaration in com-
pound fields, and an assembly-lan-
guage interface.

Envisioned primarily as a language-
development tool Instant-C features
a compiler, an interpreter, a fullscreen
editor. a linker/lpader. a library of C
functions. a source debugger, a UNIX-
like lint utility (that checks for the
number of arguments passed to a
function and for external variable
declarations). and a source-code
formatter.

Although Instant-C has been adver-
tised since midsummer. as of this writ-
ing (October) the product is still under
development. A potential buyer
receives an explanation of this situa-
tion; if he decides to buy. he getsthe
latest version (in my case version 0.88)
with the promise of subsequent ver-
sions as they become available. This
means that early buyers of the prod-
uct help to finance its development.
The people at Rational Systems
deserve credit for being honest with
their customers about this unusual
marketing technique.

To use Instant-C. you load the inter-
preter and can subsequently enter
and execute any valid C-anguage
code. You can call library functions or
user-written functions stored on disk.
Typing a function's name, including
arguments where they are necessary.
calls the function. The interpreter can-
not use compiled code but must have

source files for interpretation.

The most obvious use of the inter-
preter for execution of individual
commands or library functions is for
instructing the novice C programmer.

Experienced programmers will use
a different scheme. From the inter-
preter, typing ed filename places you
in the editor to create a new function
or edit an existing function. The full-
screen editor offers reasonable func-
tionality and an attractive display
area. On the |BM PC. the editor uses
the cursor. insert/delete, and page-
move keys.

Within the editor. you write C
source code in the normal manner.
When you execute the editor's exit
command. the source code is partially
compiled and. if there are no errors,
you return to the interpreter. Calling
the name of the function just written
executes the code, providing an im-

|continued)

384 BYTE + DECEMBER 1984

igé

BE¥Y TE « DECEMBER 1934

C DEVELOPMENT TOOLS

mediate way to wverify logical
correcness.

Checkirg of syrtax errors is handled
by a compiler pass made wher. exit-
ing the editor. If errors are discovered,
ar, error message appears on the top
lire of the screer and the cursor
drops back within the source code to
the location of the error. Ermors are
uncovered one at a time untl] the
source file is syntactically clean.

When 1 examined Instart-C. the
debuggirg facilities were just being
defined and implemernted. The
debugeirg commards include

back—show all the functions
called to a breakpoint

go—resume after breakpoint

local—erter a function for local
execution

trace—set breakpoirt furctions

untrace—turn off tracing

reset—turn off breakpoints

These facilities implement well-krowr,
debuggirg techrigques.

Ratioral Systems said it expects to
complete and ship version. |.0 of
Instant-C by November 15. The pro-
gram requires 256K bytes of memory.
but 384K bytes is recommended for
developing programs of any length.

C SOURCE DEBUGGER

mark Williams Company. purveyor of
the UNIX-like Coherent operating
system, introduced its MWC-86 C
compiler and ar accompanying C
Source Debugger on September 1.
The products work together and sell
as a package for 5495 In this descrip-
tion, I'll look only at the debugger.

The C Source Debugger (called by
the company. in typical UNIX fashion,
dbe) can debug your C programs in
C instead of in machine language. dbc
doesnot add code to your programs
and erables you to view the source
code as you debug dbe car provide

® 3 trace of the execution of any
statement with or without
breakpoints

* 5 display of the valie of variables
ard expressions during program
execution

® sirple-step execution of code

® separate windows for source, pro-
gram output, history, ard evaluation
of expressiors

e exploration of the stack

These features make use of a simple
user interface that relies heavily on
furction keys and page-move keys,

Using dbc resembles using an as-
sembly-language mornitor. Instead of
looking at representations of the com-
puter’s memary and central-processor
registers, you look at C source code
ard a variety of wirdows that show
program output and evaluation of
variables ard expressions, You can ex-
ecute the rode with or without break-
points, backtrace through the code,
single-step through the program. and
track the changing of variables ard
expressions. You car also record a
ristory of your debuggirg sessiors.
available in the separate history
window,

The programmer records errors and
chanees that reed to be made to the
source code. You car make changes
to the source within the debugger,
permitting a way to test different
strategies for solving a problem: how-
ever, the changes canrot be saved.

You can set breakpoints {tracepoints
in the lexicon of dbe) to halt execu-
tion when a line of code executes or
wher. the value of an expression
changes. Programmers car toegle
tracepoints on and off. You can ex-
eclte programs with tracepoints
through to the end with tracepoints
overridden, but a trace history is listed
in the histary file

The program window displays the
output of your program as if it were
executirg without dbc . This window
is saved anrd restored when the pro-
grammer switches betweer windows.

Tre underlying theory behind dbe
is analogous to building a car's engire
block out of clear plastic so that
mechanics car. watch the internal
engine parts function. If something
goes wrong, the mechanic can spot
it and then later go inside the ergine
tc make repairs.

The C Source Debugger. like the
MWC-86 C Compiler. requires 256K
bytes of memory. A

