
systems

Advanced diagnostics: a P A S C A L
interactive system

by NEIL H WHITE and GEORGE M HAYLETT

Abstract: Monitoring and controlling the execution o f PASCAL
programming ean he a d(fficult task. Work carried out as part
o[an Alvey pro]cot aims to simpl([~v this. The paper outlines the
design philosophy and objectives o[" an advanced interactive
diagnosties system. The results are only obtainedJrom the initial
steps o[implementation. Research is still continuing to improve
the system.

Keywordsv data processing, programming languages, diagnostics,
PASCAl. programmhTg.

A
n advanced interactive diagnostics system is suit-
able for high-level programming languages but
the particular implementation described here is

designed to monitor and control the execution of PASCAL
programs. The PASCAL Interactive Diagnostics System
(PIDS) is currently being implemented on a Perq 1
computer running a variant of the Unix operating system.
The project is within the Alvey programme.*

The term diagnostics has been adopted in recognition
of the higher level of problem orientation that the system
enjoys over traditional debuggers, and as an indication
that the subject area has advanced considerably since the
days of the octal dump and program trace. This diagnos-
tics system, although still in its early stages, goes far
beyond the common traditional diagnostic provisions
and includes the facilities to display any linked data
structurc at any level of resolution. It can also control the
program's speed of execution even to the extent of
running the program backwards to home in on a parti-
cular point of interest. Finally, several separate instances
of this system may be set up working in parallel with each
other. Each such instance would monitor a particular
aspect of the program being tested. It can be argued that a

Computer Science Department, University of Kcele, Keele, Staffs. ST5
5BG, UK.
*Alvey pr~)iect SE/06g

high-level language system is incomplete without a diag-
nostic system that communicates with the user in terms, as
far as possible, of his or her own algorithms.

Despite the increasing availability of debugging sy-
stems on many currently popular operating systems, sdb 1
under Unix for example, their use is still restricted to a
small number of users. In some circumstances this is
attributable to the limited functionality of the debugging
system, or the difficulty experienced by the user when
using such a system, Yet, given the higher level of
sophistication available in many such systems, addressing
some of the inadequacies of their forerunners, they still do
not enjoy widespread use.

In general, a failed program's output may not provide
the programmer with sufficient insight into the cause of
the problem or the specific area of concern. In such cases,
a frequently adopted strategy is what might be termed
'wolves and fences'. The metaphorical fences are erected
by the programmer in an attempt to isolate the wolves, or
bugs, in specific areas of the code. This strategy most often
manifests itself in the form of inserted print statements,
where certain variable values might be displayed. This is
obviously time consuming - - requiring an edit, recompil-
ation and link and based on some intuitive insight that
may initially be flawed.

Clearly the process involved requires interrogation of
data and some monitoring of program control flow --
tasks ideally suited to a diagnostics system. It is important
that the system performs such functions unobtrusively,
and easily so that the user can extract the required
information. The method of the system's display is
another key issue.

Problem orientation

The term 'problem orientation' was introduced in an
earlier paper 2 as a concept to explain the need for an
advanced diagnostics system. Problem orientation is a

vol 29 no 2 m a r c h 1987 0950 5849/g7/020075~)6503.(X) ~2 1987 Butterworth & Co (Publishers) Ltd. 75

very crude measure of how well-suited a particular level of
description is to the problem being solved by a computer
program. For example, a certain high-level language may
be well-suited to the problem of accessing a certain kind of
database. The algorithms created by the programmer are
then particularly easy to translate into program state-
ments and data representations. The resulting machine
code is unlikely to reflect these algorithms - the
programmer's view of the solution --- as elegantly as the
high-level language does. The process of programming
algorithms is two-fold. First, the programmer translates
the algorithms into a programming language. Second, a
compiler translates this program into a machine code
version which is subsequently executed. This process can
be viewed on a line of problem orientation as shown in
Figure 1.

The task of programming is represented by the path
from A to B. The difficulty of this task is represented by the
distance from A to B. If the language used was less
suitable it would have a lower problem orientation for the
task in hand and the distance would correspondingly
increase. One could imagine different stages of the
compilation process producing several representations of
the program through some intermediate language into
assembly language and finally into machine code. Clearly,
each such representation is further from the
programmer's algorithms and it would be successively
more difficult for the programmer to translate the al-
gorithms into these representations. The reason for this
apparently obvious discussion is to consider what hap-
pens when a fault occurs while the program is running.
The fault manifests itself at the lowest problem orient-
ation level. The fault might announce itself as:

Illegal memory access at @ 239AF

The programmer, on the other hand, would much prefer
something along the lines of:

The pointer ' l ink ' in the record ' index.node' has been used at line
100 but does not point at an existing data item

The translation from the low-level symptom into a

Human High-level Machine
descri pt ion language language

A programming B compilation C

Problem or ientat ion

Figure 1. Line of problem orientation

high-level description is performed by a diagnostics
system which operates almost in reverse to a compiler.
Depending upon the sophistication of the diagnostics
system, a translation will occur up to some point along
the line B to C in Figure 1. in other words, a simple
diagnostics system will provide a description of the
program in terms of some language with a lower problem
orientation than the high-level programming language
originally used. The programmer now has to make the
effort of delving beyond the point B of Figure 1. This is
exactly the effort that was supposed to be avoided in the
first place by using that programming language.

It can be argued that the task of a compiler is to give the
illusion of working with a machine that 'understands' a
high-level language. This is only half of the story and,
without a diagnostics system which is capable of travers-
ing the full path from C back to B, this illusion can be
cruelly shattered. The diagnostics system described here
has this ideal as its minimum aim. By inference and
prompting from the user, it is intended that, when
requested, it may be possible to do even better than that.
By providing representations created with a knowledge of
the programmer's use of the programming language's
basic data types the system attempts to go some way
along the route from B to A. These various levels of a
diagnostic assistance are illustrated in Figure 2.

User interface

The nature of the user's interaction with the system must
feature strongly in any design philosophy. The Perq 1 has
a high resolution (758 x 1024 pixel) bit-mapped display, a
puck/tablet and a window management system.

PIDS works in one of two modes at any one time:
display or control, in display mode, interrogation of data
can be performed, both as a static enquiry by the user, or
as a continual display, provided by the P1DS, as the

Human High- level Machine

description language language

I
A programming B compilation C

Simple diagnost ics
4

Minimum diagnostics

PIDS

Problem or ientat ion

Figure 2. Levels o[diagnostic assistance

76 i n f o r m a t i o n a n d so f tware t e c h n o l o g y

systems

program runs. All interrogation of data is most obviously
done in source language terms - - the user should not be
exposed to a new set of syntactic conventions unique to
the diagnostic system. Full advantage must be taken of the
ability to display data graphically, with windowing and
zoom techniques, under puck control, being employed for
large objects or structures. In control mode, the program
execution can be influenced and effected.

Static menus, showing the available command for the
applicable mode, will be continually displayed. This
avoids the tedium of nested levels of pop-up menus and
the need to remember in which menu each command lives.

Interrogation of data

At any point in a program's execution, the user may wish
to examine the state of particular extant variables. In
order to provide such a facility the overhead to PIDS
might be high, since full compiler symbol table inform-
ation is required, not simply to locate a data object's core
address, but also to reflect PASCAL'S strong typing.

A data object in PASCAL need not have a name
associated with it. PASCAL heap objects are created
dynamically and anonymously. They are accessed only
via pointers. PIDS must provide both an easy method of
data interrogation for individual items on the heap, and
also appreciate the structure or shape these objects form
when linked together.

PIDS is based on a PASCAL Run-Time Diagnostics
System 3. PRTDS solved this naming problem by auto-
matically assigning a unique name to each newly created
heap object. The simplest form of unique name is an
ascending integer, which also confers the advantage of
automatically showing the chronological ordering of the
heap objects. This strategy has worked well in the past and
is adopted by PIDS.

The major use of heap objects in PASCAL is to create
linked structures, where an object contains pointers to
other heap objects. In this way, linked lists and trees can
be created, manipulated and modified.

Algorithms for the 'pretty-printing' of lists and trees are
well known, yet some prior knowledge of the nature of the
structure is required. Furthermore, the display of some
more complex structures does not necessarily evolve into
a combination of tree and list displays. Indeed, often the
user has a very personal visualization of the structures
involved.

PIDS associates with each object type definition a
'display tag', denoting whether any structures formed of
such elements are classed as lists, trees or something more
complex.

The tag is initially set according to P1DS idea of what
representation is required. The assumptions PIDS makes
in forming such a judgement are based on the symbol
table information associated with the objects definition.

Consider the following PASCAL type definitions:

type node = record
left, right :~node;
key : integer
end;

link = record
next, last :link;
key : integer
end;

In the node definition, left and right would be construed as
branches within a tree, whilst next and last within links
imply a doubly linked list structure. If PIDS cannot make
an evaluation based on the object's type name or
component names, it will assume some default display tag.
The user has the opportunity to fine tune the name
triggers associated with each display tag, and the ability to
reassign the display tag if PIDS gets it wrong.

In the case of more complex structures, the algorithms
involved necessarily become more complex. Even given
PIDS ability to display such structures, using adapted
standard algorithms, problems still exist in reconciling the
PIDS representation and the user's visualization. Where
significant deviations exist, the user should have the
opportunity to influence the PIDS representation by
applying further constraints upon the display construc-
tion, over and above those imposed by the algorithm.

In displaying a nominated heap structure, PIDS first
builds up as full a representation as possible, subject to
certain system constraints. This display is then fully
shown in the available window, at the scale required for it
to fit. Using zoom, windowing and clipping techniques the
user may then browse around the structure, expanding or
contracting the view and panning in any direction.

Monitoring of control flow

The user must have the opportunity of monitoring the
control flow of a program. Traditional techniques have
involved the ability to set breakpoints, single stepping
through the source code and the supply of profiling
information. More recent advances in diagnostic techni-
ques include the ability to set conditional breakpoints and
the trapping of exceptions.

These techniques, though included in PIDS, are essenti-
ally postmortem in nature and the strategy adopted not
unlike the 'wolves and fences' approach (though with
significant time savings), the object of the exercise being to
isolate the point at which the error occurred.

A more natural approach would be to zoom-in on the
'wolf' dynamically, as the program continues to run.
PIDS will later incorporate a ' throttle ' control directly
affecting the speed of program execution, with the ability

vol 29 no 2 march 1987 77

select

I
Exec II He,lp Chi Id

!v ' ' . . :llq . ,

'=!iiii 1 I,! ~, zij~,,!,i,,',,,,~,,,~
@(Iili{[!ii@[i~i((~! ~(~i i{ii, ,, ~" i i,,~ r

Heap Wr i t e I

expand co I lapse

I End S t a t u s ,,r, v ,.,] v<~ v

ii%', l:[,!~,'!i[iii!; i! iE!; i i ii!;!iiii!]!~!!i E!I];If q !J I!!iI~,i{t!llll! tl]I!II;l~ I :!il!t$1h fiililtlj! IIilIIlI~[II~|HI 111~,

I I I I I i ' I i :] i i l l ilil:l]' I i'll'i] i]iii I':N~lilil!i}~Ig~liL!~l!il!!lJii):
,"%111' lh~it' ~lr,,,! I ,r,,ll '1 i, ,] ,i,ii,l, il N,, iII#LIiiitiiiUN,ilIiiNiI,INIil NUJi ,INmN|IiMJ|I|JN tl

Expl • i n Lava 1 Sour c e For mat

LOADER VARS

PREDEFINED

USER
test .pas
plus.pas

test
i n i t
process
com are
set~est

s o u r c e f i l e
s o u r c e f i l e

9o
dummy
ch
i
truth
rec

pro9ram module
p r o c e d u r e
p r o c e d u r e
funct ion returns boolean
procedure parmms force
~nteger
a r r a y of c h a r
c h a r
i n t e 9 e r
boolean
record of

name : string;
val = I n t e g e r ;
v e r s i o n : i n t e $ e r

e n d ;

Figure 3. Display of PIDS operating in control mode

to run the program backwards i.e. undo instructions.
Obviously, the program will give only the appearance of
being ' in reverse' and the problems associated with
providing such a facility are related to the sheer weight of
information required. It is proposed that two techniques
be employed:

• Full ' dumping ' of all program state information at
strategic points in the program's execution, either by
user or PIDS control.

• After each dump, maintenance of a list of 'change
vectors ' will be employed, one for each flow of control
change or overwriting of a store or register value. These
can then be examined together with the machine code
to ' undo ' a program statement.

The overheads may be high, both in terms of execution
speed and store requirements, but these are not seen as
mitigating against the advantages that would be
conferred.

Multiple invocations

It was stated earlier that PIDS should be unobtrusive,
impinging as little as possible the thought processes of the
user concerned with debugging. Thus, the user should

have the ability to examine source code, observe and effect
the control flow of the running program, whilst monitor-
ing various aspects of the behaviour.

In a window management environment this is most
obviously achieved by dedicating a particular window to
a particular task. Thus, the PIDS philosophy encapsu-
lates the ability to invoke a 'mas ter ' PIDS, concerned
with program control flow, and thereafter spawning child
Pl DS dedicated to other aspects of the debugging process.
Examples of such windows are given below.

Figure 3 shows a display of PIDS operating in control
mode. The top right portion of the display indicates the
commands associated with each puck button. The user
may select an item currently displayed and either ' expand '
or 'collapse' the information. In this way the chosen
section of the program may be displayed in more detail or
an overview of a greater portion of the program may be
provided.

Figures 4 and 5 show a display of a complex data
structure within PIDS operating in 'display mode' .
Display mode operates either upon heap objects or stack
objects that is, data created both dynamically and
statically. The black rectangle in Figure 4 is a two-
dimensional ' t humb bar ' representing how much of the
current structure is currently displayed at the present
scale. The scale is affected by the ' expand ' and 'compress '

78 information and software technology

systems

LI-J ~ - I F ~ ~_J L_I L.J

f7q, ure 4. Display ~[' complex data strueture within PIDS operating in 'display mode'

Execution continued after breBk 8t line 7.
Break points Bt Z1e, Z47.
Dumps et Zel, ZSO.
Monitorin9 varisble:

settestt rec.velue integer

I NOT ACCESSED I

Figure 5. Another display o[eomplex data structure within PIDS operating in 'display mode '

vol 29 no 2 m a r c h 1987 79

systems

puck buttons. The square is also movable within the
structure.

Conclusion

As yet there is not a working example available to
demonstrate PIDS. Since work is still continuing with
PIDS, further results will be published in a later issue.

References

1 Bourne, S R The Unix System Addison-Wesley (1982)
2 White, N H and Bennett K H 'Run-time diagnostics in

PASCAL' Software-Practice and Experience (April 1985)
pp 359 367 Wiley

3 White, N H and Bennett K H 'A PASCAL run-time
diagnostics system' Software Practice and Experience
(November 1985) pp 1041-1056 Wiley []

80 information and software technology

