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Advanced diagnostics: a P A S C A L  
interactive system 

by NEIL H WHITE and GEORGE M HAYLETT 

Abstract: Monitoring and controlling the execution o f  PASCAL 
programming ean he a d(fficult task. Work carried out as part 
o[an Alvey pro]cot aims to simpl([~v this. The paper outlines the 
design philosophy and objectives o[" an advanced interactive 
diagnosties system. The results are only obtainedJrom the initial 
steps o[ implementation. Research is still continuing to improve 
the system. 
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A 
n advanced interactive diagnostics system is suit- 
able for high-level programming languages but 
the particular implementation described here is 

designed to monitor  and control the execution of PASCAL 
programs. The PASCAL Interactive Diagnostics System 
(PIDS) is currently being implemented on a Perq 1 
computer  running a variant of the Unix operating system. 
The project is within the Alvey programme.* 

The term diagnostics has been adopted in recognition 
of the higher level of problem orientation that the system 
enjoys over traditional debuggers, and as an indication 
that the subject area has advanced considerably since the 
days of the octal dump and program trace. This diagnos- 
tics system, although still in its early stages, goes far 
beyond the common traditional diagnostic provisions 
and includes the facilities to display any linked data 
structurc at any level of resolution. It can also control the 
program's  speed of execution even to the extent of 
running the program backwards to home in on a parti- 
cular point of interest. Finally, several separate instances 
of this system may be set up working in parallel with each 
other. Each such instance would monitor  a particular 
aspect of the program being tested. It can be argued that a 
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high-level language system is incomplete without a diag- 
nostic system that communicates with the user in terms, as 
far as possible, of his or her own algorithms. 

Despite the increasing availability of debugging sy- 
stems on many currently popular  operating systems, sdb 1 
under Unix for example, their use is still restricted to a 
small number of users. In some circumstances this is 
attributable to the limited functionality of the debugging 
system, or the difficulty experienced by the user when 
using such a system, Yet, given the higher level of 
sophistication available in many such systems, addressing 
some of the inadequacies of their forerunners, they still do 
not enjoy widespread use. 

In general, a failed program's  output may not provide 
the programmer with sufficient insight into the cause of 
the problem or the specific area of concern. In such cases, 
a frequently adopted strategy is what might be termed 
'wolves and fences'. The metaphorical fences are erected 
by the programmer in an attempt to isolate the wolves, or 
bugs, in specific areas of the code. This strategy most often 
manifests itself in the form of inserted print statements, 
where certain variable values might be displayed. This is 
obviously time consuming - -  requiring an edit, recompil- 
ation and link and based on some intuitive insight that 
may initially be flawed. 

Clearly the process involved requires interrogation of 
data and some monitoring of program control flow --  
tasks ideally suited to a diagnostics system. It is important 
that the system performs such functions unobtrusively, 
and easily so that the user can extract the required 
information. The method of the system's display is 
another key issue. 

Problem orientation 

The term 'problem orientation'  was introduced in an 
earlier paper 2 as a concept to explain the need for an 
advanced diagnostics system. Problem orientation is a 
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very crude measure of how well-suited a particular level of 
description is to the problem being solved by a computer  
program. For example, a certain high-level language may 
be well-suited to the problem of accessing a certain kind of 
database. The algorithms created by the programmer are 
then particularly easy to translate into program state- 
ments and data representations. The resulting machine 
code is unlikely to reflect these algorithms - the 
programmer's view of the solution --- as elegantly as the 
high-level language does. The process of programming 
algorithms is two-fold. First, the programmer translates 
the algorithms into a programming language. Second, a 
compiler translates this program into a machine code 
version which is subsequently executed. This process can 
be viewed on a line of problem orientation as shown in 
Figure 1. 

The task of programming is represented by the path 
from A to B. The difficulty of this task is represented by the 
distance from A to B. If the language used was less 
suitable it would have a lower problem orientation for the 
task in hand and the distance would correspondingly 
increase. One could imagine different stages of the 
compilation process producing several representations of 
the program through some intermediate language into 
assembly language and finally into machine code. Clearly, 
each such representation is further from the 
programmer's algorithms and it would be successively 
more difficult for the programmer to translate the al- 
gorithms into these representations. The reason for this 
apparently obvious discussion is to consider what hap- 
pens when a fault occurs while the program is running. 
The fault manifests itself at the lowest problem orient- 
ation level. The fault might announce itself as: 

Illegal memory access at @ 239AF 

The programmer, on the other hand, would much prefer 
something along the lines of: 

The pointer ' l ink '  in the record ' index.node'  has been used at line 
100 but does not point at an existing data item 

The translation from the low-level symptom into a 

Human High-level Machine 
descri pt ion language language 

A programming B compilation C 

Problem or ientat ion 

Figure 1. Line of problem orientation 

high-level description is performed by a diagnostics 
system which operates almost in reverse to a compiler. 
Depending upon the sophistication of the diagnostics 
system, a translation will occur up to some point along 
the line B to C in Figure 1. in other words, a simple 
diagnostics system will provide a description of the 
program in terms of some language with a lower problem 
orientation than the high-level programming language 
originally used. The programmer now has to make the 
effort of delving beyond the point B of Figure 1. This is 
exactly the effort that was supposed to be avoided in the 
first place by using that programming language. 

It can be argued that the task of a compiler is to give the 
illusion of working with a machine that 'understands'  a 
high-level language. This is only half of the story and, 
without a diagnostics system which is capable of travers- 
ing the full path from C back to B, this illusion can be 
cruelly shattered. The diagnostics system described here 
has this ideal as its minimum aim. By inference and 
prompting from the user, it is intended that, when 
requested, it may be possible to do even better than that. 
By providing representations created with a knowledge of 
the programmer's use of the programming language's 
basic data types the system attempts to go some way 
along the route from B to A. These various levels of a 
diagnostic assistance are illustrated in Figure 2. 

User  interface 

The nature of the user's interaction with the system must 
feature strongly in any design philosophy. The Perq 1 has 
a high resolution (758 x 1024 pixel) bit-mapped display, a 
puck/tablet and a window management system. 

PIDS works in one of two modes at any one time: 
display or control, in display mode, interrogation of data 
can be performed, both as a static enquiry by the user, or 
as a continual display, provided by the P1DS, as the 

Human High- level Machine 

description language language 

I 
A programming B compilation C 

Simple diagnost ics 
4 

Minimum diagnostics 

PIDS 

Problem or ientat ion 

Figure 2. Levels o[ diagnostic assistance 
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program runs. All interrogation of data is most obviously 
done in source language terms - -  the user should not be 
exposed to a new set of syntactic conventions unique to 
the diagnostic system. Full advantage must be taken of the 
ability to display data graphically, with windowing and 
zoom techniques, under puck control, being employed for 
large objects or structures. In control mode, the program 
execution can be influenced and effected. 

Static menus, showing the available command for the 
applicable mode, will be continually displayed. This 
avoids the tedium of nested levels of pop-up menus and 
the need to remember in which menu each command lives. 

Interrogation of data 

At any point in a program's execution, the user may wish 
to examine the state of particular extant variables. In 
order to provide such a facility the overhead to PIDS 
might be high, since full compiler symbol table inform- 
ation is required, not simply to locate a data object's core 
address, but also to reflect PASCAL'S strong typing. 

A data object in PASCAL need not have a name 
associated with it. PASCAL heap objects are created 
dynamically and anonymously. They are accessed only 
via pointers. PIDS must provide both an easy method of 
data interrogation for individual items on the heap, and 
also appreciate the structure or shape these objects form 
when linked together. 

PIDS is based on a PASCAL Run-Time Diagnostics 
System 3. PRTDS solved this naming problem by auto- 
matically assigning a unique name to each newly created 
heap object. The simplest form of unique name is an 
ascending integer, which also confers the advantage of 
automatically showing the chronological ordering of the 
heap objects. This strategy has worked well in the past and 
is adopted by PIDS. 

The major use of heap objects in PASCAL is to create 
linked structures, where an object contains pointers to 
other heap objects. In this way, linked lists and trees can 
be created, manipulated and modified. 

Algorithms for the 'pretty-printing' of lists and trees are 
well known, yet some prior knowledge of the nature of the 
structure is required. Furthermore, the display of some 
more complex structures does not necessarily evolve into 
a combination of tree and list displays. Indeed, often the 
user has a very personal visualization of the structures 
involved. 

PIDS associates with each object type definition a 
'display tag', denoting whether any structures formed of 
such elements are classed as lists, trees or something more 
complex. 

The tag is initially set according to P1DS idea of what 
representation is required. The assumptions PIDS makes 
in forming such a judgement are based on the symbol 
table information associated with the objects definition. 

Consider the following PASCAL type definitions: 

type node = record 
left, right :~node; 
key : integer 
end; 

link = record 
next, last :link; 
key : integer 
end; 

In the node definition, left and right would be construed as 
branches within a tree, whilst next and last within links 
imply a doubly linked list structure. If PIDS cannot make 
an evaluation based on the object's type name or 
component names, it will assume some default display tag. 
The user has the opportunity to fine tune the name 
triggers associated with each display tag, and the ability to 
reassign the display tag if PIDS gets it wrong. 

In the case of more complex structures, the algorithms 
involved necessarily become more complex. Even given 
PIDS ability to display such structures, using adapted 
standard algorithms, problems still exist in reconciling the 
PIDS representation and the user's visualization. Where 
significant deviations exist, the user should have the 
opportunity to influence the PIDS representation by 
applying further constraints upon the display construc- 
tion, over and above those imposed by the algorithm. 

In displaying a nominated heap structure, PIDS first 
builds up as full a representation as possible, subject to 
certain system constraints. This display is then fully 
shown in the available window, at the scale required for it 
to fit. Using zoom, windowing and clipping techniques the 
user may then browse around the structure, expanding or 
contracting the view and panning in any direction. 

Monitoring of control flow 

The user must have the opportunity of monitoring the 
control flow of a program. Traditional techniques have 
involved the ability to set breakpoints, single stepping 
through the source code and the supply of profiling 
information. More recent advances in diagnostic techni- 
ques include the ability to set conditional breakpoints and 
the trapping of exceptions. 

These techniques, though included in PIDS, are essenti- 
ally postmortem in nature and the strategy adopted not 
unlike the 'wolves and fences' approach (though with 
significant time savings), the object of the exercise being to 
isolate the point at which the error occurred. 

A more natural approach would be to zoom-in on the 
'wolf' dynamically, as the program continues to run. 
PIDS will later incorporate a ' throttle '  control directly 
affecting the speed of program execution, with the ability 
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Figure 3. Display of PIDS operating in control mode 

to run the program backwards i.e. undo instructions. 
Obviously, the program will give only the appearance of 
being ' in reverse' and the problems associated with 
providing such a facility are related to the sheer weight of 
information required. It is proposed that two techniques 
be employed: 

• Full ' dumping '  of all program state information at 
strategic points in the program's  execution, either by 
user or PIDS control. 

• After each dump, maintenance of a list of 'change 
vectors '  will be employed, one for each flow of control 
change or overwriting of a store or register value. These 
can then be examined together with the machine code 
to ' undo '  a program statement. 

The overheads may be high, both in terms of execution 
speed and store requirements, but these are not seen as 
mitigating against the advantages that would be 
conferred. 

Multiple invocations 

It was stated earlier that PIDS should be unobtrusive, 
impinging as little as possible the thought processes of the 
user concerned with debugging. Thus, the user should 

have the ability to examine source code, observe and effect 
the control flow of the running program, whilst monitor- 
ing various aspects of the behaviour. 

In a window management environment this is most 
obviously achieved by dedicating a particular window to 
a particular task. Thus, the PIDS philosophy encapsu- 
lates the ability to invoke a 'mas ter '  PIDS, concerned 
with program control flow, and thereafter spawning child 
Pl DS dedicated to other aspects of the debugging process. 
Examples of such windows are given below. 

Figure 3 shows a display of PIDS operating in control 
mode. The top right portion of the display indicates the 
commands associated with each puck button. The user 
may select an item currently displayed and either ' expand '  
or 'collapse'  the information. In this way the chosen 
section of the program may be displayed in more detail or 
an overview of a greater portion of the program may be 
provided. 

Figures 4 and 5 show a display of a complex data 
structure within PIDS operating in 'display mode' .  
Display mode operates either upon heap objects or stack 
objects that is, data created both dynamically and 
statically. The black rectangle in Figure 4 is a two- 
dimensional ' t humb bar '  representing how much of the 
current structure is currently displayed at the present 
scale. The scale is affected by the ' expand '  and 'compress '  
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f7q, ure 4. Display ~[' complex data strueture within PIDS operating in 'display mode' 

Execution continued after breBk 8t line 7. 
Break points Bt Z1e, Z47. 
Dumps et Zel, ZSO. 
Monitorin9 varisble: 

settestt rec.velue integer 

I NOT ACCESSED I 

Figure 5. Another display o[eomplex data structure within PIDS operating in 'display mode ' 
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puck buttons. The square is also movable within the 
structure. 

Conclusion 

As yet there is not a working example available to 
demonstrate PIDS. Since work is still continuing with 
PIDS, further results will be published in a later issue. 
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