
BIT 20 (1980), 163- 174

AN INTERACTIVE PROGRAMMING

SYSTEM FOR PASCAL

JERKER WILANDER

Abstract.
Interactive program development tools are being increasingly recognized as helpful in

the construction of programs. This paper describes an integrated incremental program
development system for Pascal called Pathcal. Pathcal contains facilities for creation,
editing, debugging and testing of procedures and programs. The system facilities are all
Pascal procedures or variables and because of this allows the programmer to program the
system in itself.

Keywords: Incremental programming, programming systems, debugging, Pascal.

Introduction.

Program development is today commonly supported by an interactive time-
sharing system. A more advanced type of interactive program development tool is
an incremental system- The basic programming cycle in an incremental system is
not the execution of a program but rather a statement or a declaration. This

property together with the ever present "database" of values and declarations
constitutes an incremental system.

The incremental system is the foundation of the next generation of
programming support, the "programming environment". A programming
environment contains all the tools in one integrated system and it should support
the terminal by e.g. allowing edi t ingof incorrect statements. It should provide the
facilities that the operating system monitor usually provides, to allow
programmabili ty of all facilities. In a sense the programming environment could
be viewed as a programming language oriented monitor which is incrementally
extensible. The most important example of this kind of system is I N T E R L I S P
[13, but APL [2] has also gone a long way in this direction. For a more
conventional looking language, EL1, the ECL system [3,4] could be mentioned.
The IBM PL/I checkout compiler [5] is an example of a commercial system for a
conventional language that comes close to being an incremental system. For
teaching purposes in computer science, a Pascal like system called Basis has been
developed [6]. The basis language is a small subset of Pascal. In that system one is

Received Dec. 5, 1979. Revised April 11, 1980.
This work was supported by The National Swedish Board of Technical Development (STU) under

contract dnr. 78-4167.

164 JERKER WILANDER

permitted to enter declarations, set variables, call procedures and edit procedures.
The MENTOR system [-7] contains many facilities for editing, and program
manipulation. That system does not contain any facilities for program execution.

This paper describes a programming system for Pascal [8] called Pathcal. The
Pathcal systems is an attempt to provide a significant subset of the facilities
provided in INTERLISP for a compiler oriented language.

The programming system Pathcal.
The goal of the Pathcal project has not been to develop another programming
language, but to create, within the framework of the chosen language, an
interactive programming environment. The project was intended to produce
experience and ideas on how to construct an interactive programming system for
the Algol family of progr~imming languages. The experiences gained are giving
more knowledge about what tools are useful in interactive programming and how
they should be implemented. There are additional facilities in the system but these
are not yet fully developed or tested and will not be described here.

A programming environment contains several subsystems such as an editor, a
debug system and a pretty printer. In Pathcal these are tightly coupled, to allow
invocation of one subsystem from another. All subsystems are Pascal procedures,
although some may have privileges that are not allowed in standard Pascal.

It is possible to use the Pathcal system in a manner similar to conventional
programming. One may enter the program from the terminal, compile it and
execute it. In addition, there is a set of facilities in Pathcal which are not normally
available in conventional systems.

Incremental execution.

Incremental execution gives the programmer the opportunity to use statements
of the language and get them executed directly. A secondary effect of this is that
the system becomes fairly easy to learn. One may try most facilities in the system
and the language without having to write whole programs.

One language system.
Pathcal has only Pascal as command language for the subsystems. This is true

except in the screen oriented text-editor, which is controlled by the cursor control
keys, rubout etc. The one-language system idea is also apparent in that error
messages are given in terms of the programming language. This means that it is
possible to obtain the code of the incorrect statement, expression or declaration.

One advantage with this approach is that one can write loops over commands
without learning an additional syntax.

Incremental program development.

With Pathcal, procedures can be developed one at a time to form programs. It is
thus possible to construct and test modules of the program one at a time and later

INTERACTIVE P R O G R A M M I N G SYSTEM FOR PASCAL 165

combine them into a system. One may edit and test single procedures in an existing
program. It is possible to test procedures that contain calls to procedures not yet
defined. The program may be developed "top down", "bottom up" or the most
critical portion first according to the preference of the programmer.

Model of the terminal-session.

Pathcal maintains a model of the terminal session and stores information about
earlier interactions and their results. There are procedures in the system for re-
execution and editing of previously given statements. One may also compare the
results from a test example before and after editing a procedure.

Continuation after errors.

When an error occurs during test execution, the program will not abort. Instead
it is interrupted, with the procedure and variable environments retained. During
this interrupt, editing of procedures or use of any other Pascal statement is
permitted. If a procedure is edited during an interrupt, the new version will be
used in the future. It is particularly useful to be able to continue after an error in
the case of interactive programs. One single error in the program or the type-in
might then require a major effort when restarting the program, if it is not possible
to repair the error and continue execution.

Structure editor.

With a structure editor, program editing is performed in terms of the
programming language. One manipulates the program in procedures and
statements instead of lines and characters. A typical structure editor operation is
the insertion of the code of one procedure into another. An advantage with a
structure editor is that only those parts that really are affected by the edit are
changed, which means that breakpoints and similar structure above the ordinary
code may remain intact. With structure editing it is natural to include

programmability of the editor.

An application of the Pathcai system.

To make the system description more concrete, we will follow the development
of a small Pascal procedure.

The specification of the problem is:
Write a procedure HISTOGRAM that prints a histogram on the terminal. The

procedure has three parameters.

1. A: MEASURE; MEASURE is an array of measurement values of type real.

2. LEN: INTEGER; LEN is the length of A (actual length).

3. W I D T H : I N T E G E R ; This is the desired width of the histogram.

166 JERKER WtLANDER

The program should find a suitable scaling factor to adjust to the width of the
screen.

Before each interaction the Pathcal system prints a number followed by a
prompt character. The prompt characters differ according to the situation.
Greater than ()) indicates the top level (i.e. the level the user usually is connected
to), colon (:) indicates a breakpoint or an error interrupt. The number is
incremented after each interaction. When using procedures in Pathcal that use the
session model, i.e. that refer to earlier interactions, the number is given as an
argument.

The problem will be solved through three routines, which will be developed
successively. The first procedure only prints one line of the histogram. The second
calculates the scale factor for the histogram while the third is the main procedure
that calls the other two. The third procedure (HISTOGRAM) makes a pass
through the measurements data and calls the printing routine for each item.

First declare the type of the array.
1) TYPE MEASURE=ARRAY (1.60) OF REAL;

M E A S U R E

All statements have a value even in those cases when they do not have one in
Pascal. Here the value is the name of the declared type.

Define the procedure that prints one line of the histogram.
2) PROCEDURE PRINTLINE(W :INTEGER);

VAR I : INTEGER;
BEGIN

FOR 1 := 1 TO W DO WRITE('* ') ;WRITTEN
END;
P R I N T L I N E

Test printline once to verify that it works. One line with 15 asterisks should get
printed.

3) PRINTLINE(15);

N I L
After the asterisks a NIL was written which is the value of the procedure. All

procedures have a value, which is the value of the last statement executed. A
statement has as value the value of the last expression executed. In this case it is a
write statement, which happens to return NIL.

Define the function that calculates the maximum value in an array.
4) FUNC;FION MAXVAL(VAR B:MEASURE;N:INTEGER):REAL;

VAR I : INTEGER;
MAX : REAL;

BEGIN
MAX := BI l l ;
FOR I := 2 TO N .DO

INTERACTIVE PROGRAMMING SYSTEM FOR PASCAL 167

IF MAX < B [I] THEN MAX := B[-I];
MAXVAL := MAX
END;

M A X V A L

Now the function MAXVAL will be tested. One of its actual parameters is not
declared, and because of this the program execution will be interrupted after an
error message when the error is encountered.

5) MAXVAL(A,60);
Identifier not declared.
A

The primary problem in a situation like this is to find out where the execution
stopped. The backtrace procedure (BT) prints the names of the currently active
procedures. The list is written in calling order with the most recently called
procedure first.

6: BT
M A X V A L
S YSBLO CK
The active procedures are MAXVAL and SYSBLOCK. MAXVAL was called

in interaction 5 and SYSBLOCK is the always present "procedure" that
surrounds all other procedures. In more complicated cases this list is longer. The
Pathcal system builds the stack frame for the procedure before checking the actual
parameters. Another procedure called BTV will display all variables and their
current values.

To correct the error, a declaration for A should be inserted. After that, A may
be given a value. The present problem is that this declaration should be inserted in
SYSBLOCK but MAXVAL has already been entered. Of course, A could be
declared in this position (MAXVAL) but with the disadvantage that the
declaration and the value would disappear upon exit from MAXVAL.

The procedure stackset moves the execution environment to the desired
position. When all necessary commands have been executed in this new
environment, execution may be resumed at the original point.

7: STACKSET (SYSBLOCK);
S Y S B L O C K

Notice that the prompt character changes to !. This demonstrates that the
execution environment has been moved from the standard environment.

8! VAR A:MEASURE;
A

A top level declaration like this is never inserted into the program text, but only
in the current execution of the procedure. To achieve the latter, the source has to

168 JERKER WILANDER

be edited. In this case the procedure should not be edited because the declaration
should be inserted into SYSBLOCK.

9! FOR I := 1 TO 60 DO A[I] := 0.5,I; (, Initialize A ,)

30.0

This statement is not included in the program either. Instead if is executed and
the array A is initialized. Correction of errors during execution can create
inconsistencies. These can occur when the user changes declarations on variables
whose values alre~tdy have been used. This problem is in practice not very serious,
because the main reason the user at all continues the execution is to find more
errors. Changed declarations are indicated by the system.

Return to the original execution.
10! OK;
Resume execution at the point of error, but now with all declarations inserted.

The execution should now proceed correctly.
11 : RETTO;

30.0

At last, the result appears which was requested in interaction no. 5.

12) A[17] := 45;
45.0

Change input data to MAXVAL for another test.
Instead of rewriting all of the statement maxval(a,60) one may refer to an earlier

interaction and execute that code. This facility is useful in cases where a lot of
typing has to be performed, e.g. interaction 9.

13) REDO(5);
45.0

Define the procedure HISTOGRAM.

14) PROCEDURE HISTOGRAM(VAR A: MEASURE;
LEN, WIDTH: INTEGER);

VAR MAX: REAL;

I : INTEGER;
BEGIN

MA~(:= MAXVAL(A,LEN);
FOR I := 1 TO LEN DO

P R I N T L I N E (R O U N D (A [I] / M A X , W I D T H + 0.5))
END;

H I S T O G R A M

Test all procedures together.

INTERACTIVE P R O G R A M M I N G SYSTEM FOR PASCAL 169

15) HISTOGRAM (A,5,10)

N I L

Change input and redo the test.

16> A[5-1:= 100;
100.0
Re-execute interaction 15 which is two back from the current interaction.

17) REDO(-2);

N I L
At this point the procedure has been tested in an elementary way and now

further test data could be applied. Test data may easily b'e modified to- construct a
relatively complete test.

The HISTOGRAM module now contains three separate procedures. If this is
considered inappropriate, they may be combined into a single procedure using the
structure-editor. The insert procedure performs this combination.

The insert procedure knows how procedures are inserted into other procedures.

18> INSERT (HISTOGRAM,MAXVAL);
I t d S T O G R A M

19> INSERT(HISTOGRAM,PRINTLINE);
H I S T O G R A M
We now want to verify that the insertion worked as expected, and that the

module has the correct structure. The pretty print procedure gives an indented
printout of the procedure text. The parts of the printout that are marked ~n~
where n is a number are abbreviations of the actual code in that position. They are
only abbreviations in the sense that "behind" them the actual code could be
found. This facility makes it easy to view the procedure at different levels of
abstraction.

1 7 0 JERKER WILANDER

20) PP(HISTOGRAM);
PROCEDURE HISTOGRAM(VAR A: MEASURE;

LEN, WIDTH: INTEGER);
VAR

MAX:REAL;
I :INTEGER;

FUNCTION MAXVAL(VAR B:MEASURE; N:INTEGER):REAL;
VAR ~1~

BEGIN ~2~;
FOR I := 2 TO N DO ~3~ ;
~4~ END;

PROCEDURE PRINTLINE(W:INTEGER);
VAR 1~5~

BEGIN
FOR I := 1 TO W DO WRITE('*');
WRITELN

END;
BEGIN MAX := ~.6~ ;

FOR I := I TO LEN DO ~7~
END;

The "'print depth" of the pretty print is restricted by how deep the nesting and
how long the sequence of statements and expressions are. The print level is
program settable.

Redo the test to verify that the edit gave a functionally correct procedure.

21) REDO(15);

NIL
Find out what happened in interaction no. 5.
22) HISTORY(5);

5. MAXVAL(A,60);
Value= 30.0

This example shows how an incremental system with the set of powerful tools
found in Pathcal gives an extremely convenient programming environment.

Only simple usage of the debugging, editing, pretty-print and session support
tools have been demonstrated. This relatively small set of utility functions are the
most important building blocks of Pathcal. Among the things not described are
breakpoints and the text editor of the system.

INTERACTIVE PROGRAMMING SYSTEM FOR PASCAL 171

Description of the system.
Pathcal works as if one executed the program statement by statement and

declaration by declaration, though with the difference that one is not required to
obey a strict ordering between statements and declarations.

When declarations are entered into Pathcal they are accumulated to a special
block (in the sense of Algol) called the system block. The statements entered are
executed immediately. Executable statements are not accumulated to form some
kind of main program. The difference between declarations and statements is less
accentuated in Pathcal than in Pascal: both are executed. Statements give the

result that variables get values or values get printed, and declarations that a
specific procedure or variable may be used in the future. Variable values are saved
on a stack, which is maintained by the system and which works in the same
manner as a conventional stack for a block structured language.

In the system block there are several different declarations, including all
procedures, types and variables the user has entered. It contains all subsystems
needed for usage of the system e.g. history, edit, and break procedures.

To allow smooth editing (mainly structure editing) the data-type code has been
added to Pathcal. Code is a data type for program text in structure form.
Variables of type code have as value Pascal statements, procedures, variable
declarations etc. This data type makes it possible to manipulate program code
from a Pascal program. For example, one is allowed to move code from one
procedure to another or collect code from different interactions to form new

procedures.
Some of the Pathcal system procedures do not strictly obey the rules of Pascal

for procedures. They sometimes allow a variable number of arguments (like
READ and WRITE) and sometimes the arguments have a special status (like PP).
This latter difference is similar to the procedure parameter of Pascal. Both of these
changes are important, but the necessary syntactic modifications of the surface
language are small.

The system block includes all user programs, procedures and other
declarations. When interacting with the system one is normally connected to the
system block. Interaction occurs also in other situations, primarily in the debug
package (at a breakpoint or after an error). During a break it is possible, in the
same manner as in the system block, to enter new declarations and to assign
values etc. The main difference is that declarations are not entered into the system
block but into the presently active block, which is the block of the last called
procedure.

Conventional techniques compared with Pathcal.
In a conventional interactive programming environment there is little

programming support. There is an editor, a compiler and a debugger. In this
section a brief comparison with existing interactive systems, in particular the PL/I
checkout compiler, will be presented.

172 JERKER WILANDER

The working cycle in conventional interactive program development is edit,
compile and execute. In Pathcal the program is defined and tested piecewise. An
expected working habit when using Pathcal is to build a database of procedures
and later combine them into programs. The PL/I checkout compiler system does
not allow partial programs to exist and does not support incremental definition of
the program.

Traditional editing is performed using a text editor that knows nothing about
the programming language we work with. The editor in Pathcal on the other
hand recognizes Pascal symbols, statements and overall program structure.

Usually the compiler is a black box. However, the translator in Pathcal stops
when a syntactic error is encountered and permits the programmer to edit the
source and resume the translation until another error occurs. This means that
there will not be a cascade of error messages because of one single error. After
each error one may correct the source of the error, and the corrected program is
the object of the parser from then on. The PL/I checkout compiler uses an
intermediate form between the Pathcal technique and conventional techniques.
This compiler uses a, technique for error correction which tries to correct
misspellings and other errors. If the programmer accepts the attempted correction
no further editing is needed. If an error is encountered, for which the compiler
cannot suggest a correct change, one must exit from the compiler, enter the text
editor and after editing restart the compiler from the beginning.

In most interactive debugging systems, values of variables can be read and set.
However, it is usually neither possible to call procedures in the program nor to
enter new declarations. In Pathcal all operations are allowed in a breakpoint or
error break, of course including resuming the program execution. It is possible to

call any procedure, create new declarations and edit the running program. In the
PL/I checkout compiler statements may be added or deleted from the code of the
running program, and statements may be executed in "direct mode". No
declarations may be entered or deleted in direct mode.

Support of program testing is only rarely found. Those aids that are available
are mainly test-data-generators and statement frequency counting programs.
Testing in Pathcal allows interactive or programmed comparison of the results.
Verification of testing in Pathcat may be enhanced by special test procedures
attached to statements in the code. These test procedures are executed when the
statements, t.o which the specific procedure is attached, are reached. The test
procedures could be viewed as a programmed precondition. This approach
encourages the building of test libraries and wrif~ers for the programs.

There are some disadvantages with the approach used in the Pathcal system.
Most of these disadvantages are considered to be manageable. The most serious

difficulties are:

INTERACTIVE PROGRAMMING SYSTEM FOR PASCAL 173

1. The Pathcal system assumes that the program, after development or
maintenance, is to be moved into a production environment. This is also
the case of the PL/I checkout compiler. This raises the issue of
compatibility between the Pathcal system and its production compiler.

2. In a compute bound program efficiency might be critical even when testing
the program. This might be remedied partly by specialized compilers
within the framework of Pathcal.

Implementation.
A fundamental idea when constructing Pathcal was that all subsystems should

use a single internal notation. This internal notation should be "weakly
consistent" in the sense that only syntactically correct programs are stored.
Semantic correctness is verified only at runtime. This limitation means that we
always have well-formed data structures to manipulate internally, which in itself
increases the security and the simplicity of the system. The semantic checks are
performed during runtime to allow a high level of incrementality. Without this
restriction it is difficult to allow procedures and functions to be defined
successively. Naturally one may perform full compilation of a program if it is
desired but this seems unnatural in an incremental environment. The internal
notation of a Pascal expression is the corresponding parse tree. Comments and
break points are associated to this internal notation via hash links. The interpreter
simulates the Pascal stack and variable look-up mechanism by symbolic search of
the stack for names. The effici6ncy of the current interpreter is fairly low, partly
because the symbol table and data representation has not been optimized and
because the system is written in Lisp. In spite of this the Pathcal system only
required approximately 75~o of the cpu time required by the standard compiler
[9] and editor to complete the example given above. This performance gain is due
to the incremental system, which has no overhead in program startup time and
requires fewer compilations. One edit and rerun of the program required'30~o less
time in Pathcal. A single run of the program required 30~o more time with
Pathcal. The loop in the HISTOGRAM procedure was approcimately 25 times
slower in Pathcal than with the compiled system. It is possible to construct cases
where Pathcal performs worse, but the system is not intended to be used for
productions runs.

Conslnsions.
To-day interactive incremental program development is available only for users

of Lisp and APL. This type of program development has been described by E.
Sandewall [10].

The experiences with Pathcal show that it is both possible and reasonable to
build an incremental programming system for Pascal. Most ideas included in the

174 JERKER WILANDER

system are adjustments of the facilities in Interlisp. Lisp has advantages over
'~syntax oriented" languages in its simplicity of representation. Code and data
have the same internal representation, and one never needs to use a parser after
manipulation of code. In APL there is no canonical representation and
thus it is necessary to '~unparse" the function before editing it and afterwards
parse it again. Lisp has fewer data types than Pascal, which allows a more efficient
implementation of dynamic type checking. INTERLISP provides a set of
command languages for the editor, break-package etc. This implies that the usage
of a new utility system requires learning a new syntax. The command languages of
INTERLISP are mostly fairly simple to learn, but as soon as one wants to
perform a more complicated operation or if one wishes to combine several
commands the system becomes more difficult to use. In Pathcal the command
language is part of the programming language and thus it is natural to combine
commands into user defined commands. The all-inclusive system block, where test
data and declarations are kept, has been a very successful technique. This gives
convenient testing of single procedures and a good environment for the extension
of the system, both by the user and the system implementor.

Acknowledgements.

Kenth Ericson, Jim Goodwin, Gunilla L6nnemark and Erik Sandewall have
been most helpful in preparing this report or in the construction of the system.

R E F E R E N C E S

1. W. Teitelman, Imerlisp Rejerence Manual, Xerox Palo Alto Research Center., Oct, 1978.

2. Dec system It), APLSF Programmer's reference Manual. DEC-10-LPLSA-A.D, 1976.
3. ECL Programmer's Manual, Center for Research in computing Technology. Harward University,

Cambridge Mass., Dec. 1974.

4. R. M. Balzer, Language-independent Programmer's Interim'e, Information Sciences Institute,
University of Southern California. ISI/RR-73-15 March 1974.

5. OS PL/I Checkout Compiler, CMS Users Guide. IBM 1976. SC33-0047/2.
6. R. P. van de Riet, Basis an interactive system.Jot the introductol T course in jJ~fbrmatics. IF1P 77,

Gilchrist B. (Ed.), North Holland 1977.

7. G. Huet, G, Kahn, P. Maurice, Eneironment de programmation Pascal. Manuel d'utilisation sous
SIRIS 7/8, IRIA Nov 1977.

& K. Jensen, N. Wirth, Pascal User Manual and Report. Lecture Notes in Computer Science (18).
Springer Verlag. 1977.

9. E. Kiscki, H.-H~ Nagel, Pascal ,for the DEC-system I0, Mineilung NR. 37, IFI-HH-M-37/76.
Institut ffir lnformatik der Universit~it Hamburg, Nov 1976,

10. E, Sandewall, Programming in the interactive enciromnent.--The Lisp experience. Computing
Surveys, March 1978.

INFORMATICS LABORATORY
DEPARTMENT OF MATHEMATICS
LINKOPING UNIVERSITY
S~581 83 LINKOPING
SWEDEN

