
EiC

1

Contents

EiC is designed to be a production tool, it is not to be viewed as a toy, and is certainly
one of the most complete, freely-available C interpreters built to-date. It is suitable as:
an aid in teaching C, for fast prototyping of new programs and as a research tool — as it
allows the user to quickly interface and experiment with user supplied, standard ISO C
and POSIX.1 functions via immediate statements, which are statements that are executed
immediately.

EiC can be run in several different modes: (1) interactively, (2) non-interactively (3)
in scripting mode and (4) it can be embedded in other systems.

0.1 Interactive mode

In interactive mode, the user enters commands, or immediate commands, at the EiC
prompt. Each immediate instruction produces a type, even if the type is void; as for
example, C statements, declarations etc. All resulting type values are displayed:

EiC 1> 3*55.5;
166.5

EiC 2> "hello, world!";
hello, world!

EiC 3> int i;
(void)

EiC 4> for(i=0;i<10;i++);
(void)

EiC 5> i;
10

EiC 6> struct {int a; double b[3];} ab = { 5,{0,1,2}};
(void)

EiC 7> ab;
{5,Array}

2

EiC 8> ab.a = 3;
3

EiC 9> ab.b[2];
2

EiC 10> #include <stdio.h>
(void)

EiC 11> printf("hello\n");
hello

6

0.2 EiC is pointer safe

EiC is also pointer safe. This means EiC catches most types of array bound violations;
for example (for brevity, some output has been deleted):

EiC 1> int a[10], *p, i;
EiC 2> a[10];
READ: attempted beyond allowed access area

EiC 3> p = &a[5];
EiC 4> p[-5];
EiC 5> p[-6];
READ: attempted before allowed access area

EiC 6> p[4];
EiC 7> p[5];
READ: attempted beyond allowed access area

EiC 8> *(p+100);
READ: attempted beyond allowed access area

EiC 9> p = malloc(5*sizeof(int));
EiC 10> *(p+100);
READ: attempted beyond allowed access area

EiC 11> for(i=0;i<100;i++) *p++ = i;
WRITE: attempted beyond allowed access area

To detect array bound violations as efficiently as possible, EiC does not concern it self
with the values held or produced by pointers, it only worries about address values when
they are either referenced or dereferenced:

3

EiC 1> int a, *p;
EiC 2> p = &a;
EiC 3> p+10; // okay, no problems
EiC 4> *(p+10); // but just try to read or write to the address
READ: attempted beyond allowed access area

0.3 Running EiC non-interactively

EiC can also be run non-interactively or in batch mode, where it is possible to run C
programs in a typical interpreter style. It can also handle programs that accept command
line arguments, as seen from the toy example in main2.c:

#include <stdio.h>
int main(int argc, char **argv)
{

while(argc--)
printf("%s\n",*argv++);

return 0;
}

The first parameter, argc, holds the number of argument strings passed to the program
and is always at least one. The second parameter, argv, is an array of unspecified size of
pointers to the input strings, which the first one will be the name of the program being
executed:

% eic main2.c 123 hello -Dworld this.and.that
main2.c
123
hello
-Dworld
this.and.that

0.4 EiC’s scripting language

In non-interactive mode, EiC runs generally like a typical interpreter, accepting input
from a complete C program. However, EiC is also a scripting language. Below is an
example of an EiC script, called hello.eic:

#!/usr/local/bin/eic -f

4

#include <stdio.h>

printf(" ******* Hello from EiC’s script mode. ******\n");

The -f command-line switch, informs EiC to run in script mode. In script mode, EiC
will treat all lines beginning with ‘#’ and which cannot be interpreted as a preproces-
sor directive as a comment. To run the above script and assuming that it’s executable
(chmod +x hello.eic):

% hello.eic
******* Hello from EiC’s script mode. ******

%

Another example of a more extensive EiC script is given in script1.eic:

1 #!/usr/local/bin/eic -f

2 #include <stdio.h>

3

4 // example of control of flow

5 int i;

6 int isqr(int x) { return x*x; }

7 for(i=0;i<4;i++)

8 printf("%d^2 = %d\n",i,isqr(i));

9 switch(i) {

10 case 4: printf(" good\n\n"); break;

11 default: printf(" bad\n\n");

12 }

13 // example of some file stuff;

14 // read in some tools

15 #include "tools/nxtString.c"

16 FILE *fp = fopen(_Argv[0],"r");

17 char *p;

18 while((p=nxtString(fp)))

19 printf("%s ",p);

20 fclose(fp);

21 printf("\n\n");

22 // further example of using command line args

23 if(_Argc) { // this is always true

24 int k=0;

25 printf("Processing command line arguments\n");

26 for(k=0;k<_Argc;k++) {

5

27 printf("%s\n",_Argv[k]);

28 }

29 } else

30 printf("OOPS, an internal error has occurred\n");

An EiC shell script is interpreted from the top to the bottom. First the code is
compiled to bytecode, in its entirety, and then run. After this, control will be parsed
to the main function if it exists. However, it is not illegal to have a script that does not
include the definition of a main function. If the EiC directive :exit, which is the directive
that terminates an EiC interactive session, is present, it will cause the interpretation of
the script to halt at the position :exit is encounted, and nothing will have happened
other than having the code up to :exit operator compiled and parsed – but it will not
have been executed. Generally, the code for a function is not executed until it is called,
see line 8. Command line arguments are passed into to the global variables Argc and
Argv, see lines 16 and 23 to 30. For example:

% script1.eic abc 123 -DHELP

Implies that:

_Argc = 4, _Argv[0] = "sript1.eic"

_Argv[1] = "abc" _Argv[2] = "123"

_Argv[3] = "-DHELP" _Argv[4] = NULL

0.5 Embedding or linking to EiC

To Link against EiC you first need to build the source distribution. Then linking to
EiC from aother programs is done by linking against the EiC libraries (libeic and
libstdClib) in EiC/lib. In the directory EiC/main/examples there is an example pro-
gram called embedEiC.c that links to EiC. Build and run it from the EiC/main/examples
directory by entering (assuming EiC has been installed in /usr/local/EiC):

% gcc embedEiC.c -L/usr/local/EiC/lib -leic -lstdClib -lm
% a.out

For communicating commands to EiC from another program there are two functions
supplied:

int EiC_run(int argc, char **argv);

and

6

void EiC_parseString(char *command, ...);

The EiC run function is used to run C source files. The EiC parseString function is
used to pass C or preprocessor commands to EiC via a string, such as:

EiC_parseString("#include <stdio.h>");
EiC_parseString("int a = 10,i;");
EiC_parseString("for(i=0;i<a;i++)"

" printf(\"%%d\\n\",i);");

At present the main facility for sharing data between EiC and other applications is via
the address operator @:

int a @ dddd;

The above defines a to be an integer and is stored at address dddd, which must be an
integral constant. The constant address dddd is not simply an address conjured up. Its
purpose is to enable access to data, or even functions, defined in compiled code.

When applied to function definitions, the limitation at this stage is that the function
must take void arguments and return void:

void foo(void) @ dddd;

The above defines foo to be a builtin function located at address dddd. For example:

int foo[5] = {1,2,3,4,5};

void fooey(void) {printf("fooey called\n");}

....

EiC_parseString("int foo[5] @ %ld;", (long)foo);

EiC_parseString("void fooey(void) @ %ld;", (long)fooey);

Further, int foo[5] @ 1256; defines foo to be an array of 5 ints mapped at the
specified virtual address and the usual pointer safety rules apply; that is, foo[5]; will be
caught as an illegal operation.

Also, you can pass in data to EiC via setting variables and you can get EiC to output
data to a file. In a future release of EiC, more facilities are expected to be added for
sharing data between EiC and its embedding system.

With respect to EiC run, to run the file ”myfile.c” and pass it the command line
arguments ”hello” and ”world”, the following sequence of commands would be used.

char *argv[] = {"myfile.c", "hello", "world"};
int argc = sizeof(argv)/sizeof(char*);
EiC_run(argc, argv);

7

0.6 EiC modules

In a nutshell, EiC modules are related groups of EiC/C functions, which get interpreter’d
by EiC or builtin to EiC. Therefore, there are basically two types of EiC modules. In-
terpreter’d code modules and builtin modules (compiled code). It is also possible for
compiled code to make calls (callbacks) to interpreter’d code.

One of the nice features of an EiC module, is that once you have a module built
you can add it to another EiC distribution by simply copying it into the ‘EiC/module’
directory and to remove a module you simply remove it from the ‘EiC/module’ directory
– easy as that.

0.7 EiC vs C

Because EiC can be run interactively, it differs from C in several ways. In this section I
will outline what is currently missing from EiC and how EiC differs from ISO C.

Although, EiC can parse almost all of the C programming language, right up front it
is best to mention what is currently lacking or different:

1. EiC is pointer safe. It detects many classes of memory read and write violations.
Also, to help in interfacing compiled library code to EiC, EiC uses the optional
pointer-qualifiers safe and unsafe.

2. Structure bit fields are not supported.

3. While structures and unions can be returned from and passed by value to functions,
it is illegal in EiC to pass a structure or a union to a variadic function (that is, a
function that takes a variable number of arguments):

EiC 1> struct stag {int x; double y[5];} ss;
EiC 2> void foo(const char *fmt, ...);
EiC 3> foo("",ss);
Error: passing a struct/union to variadic function \T{foo}

4. The C concept of linkage is not supported. This is because, EiC does not export
identifiers to a linker – as does a true C compiler. EiC works from the concept of
a single translation unit. However, EiC does support the concept of file scope; that
is, static extern variables declared in a file are not visible outside that file.

5. EiC does not parse preprocessor numbers, which aren’t valid numeric constants;
for example, 155.6.8, which is an extended floating point constants, will cause an
error.

8

6. EiC supports both standard C like comments /* ... */ and C++ style comments.
Also, when EiC is run in script mode, it treats all lines that start with ‘#’ and which
can’t be interpreted as a preprocessor directive as a comment.

7. There are no default type specifiers for function return values. In EiC it is illegal
to not explicitly state the return type of a function:

foo() { ... } /* error: missing return type */
int foo() { ... } /* correct, return type specified */

8. In addition to function definitions and declarations with an empty parameter list,
EiC only supports prototype declarations and definitions:

int foo(); /* Empty parameter list allowed */
int f(value) int value { ... } /* Illegal: old style C */
int f(int); /* Allowed, prototype declaration */
int f(int value); /*Allowed, full prototype declaration */

9. EiC does not support trigraph sequences, wide characters or wide strings: nor does
it support the standard header <locale.h>.

10. EiC’s preprocessor lacks the #line directive.

11. For convenience, EiC allows the #include directive to have an extra form, which
permits the parsing of a token-sequence in the form #include filename; that is,
without enclosing double quotes or angled brackets.

12. Besides parsing preprocessor directives or C statements, EiC also parses its own
internal house keeping language. House keeping commands are communicated to
EiC via lines that begin with a colon.

9

