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Abs~ract: Experience using and implementing the language

Poplar is described. The major conclusions are: Applicative

programming can be made more natural through the use of

built-in iterative operators and post-fix notation. Clever

evaluation strategies, such as lazy evaluation, can make

applicative programming more cotnputationally efficient.

Pattern matching can be performed in an applicative

framework. Many

Introduction

problems remain.

Will rea[ programmers ever wile applicative programs?

Applicative programming is a style that prohibits

assignment statements or other operations that have the

effect of changing the values of variables; it deals with the

prob!em of side-effects decisively by ruling them out

altogether. Pure LISP [McCarthy] is probably the best

known applicative language. The ~-calculus [Church] and

Kleene’s systems of recursion equations [Kleenel are

languages in the realm of logic that can be construed as

applicative languages. Many people have developed

applicative languages or advocated their use;e.g. [Strachey],
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[L.andin], [Friedman&Wise], [Milner], [Bur2e], [Backus].

The properties of applicative languages-easy to define

semantics, mathematical elegance-are appealing primarily

to meta-programmers. A meta-programmer, by analogy

with a meta-mathernatician, does not make his living by

programming, but rather by studying programming. Only

a few people suggest very forcefully that the applicative

style is good forprogramming per se. This paper attempts

to explore the question fLlrther.

Poplar is an experimental language for text and list

mfinipulation. It has been used for testing some ideas for

extending the powers of interactive text editors. It has

several aspects, but the one we shall emphasize here is the

use of the applicative style in more realistic situations than

arenol-mally considered. We designed Poplarto encourage

applicative programming, and tried to use it in that spirit.

A recipe for it might read: start with pure LISP, replace

atoms with decomposable strings, add SNOBOL pattern

matching, build-in ilmplicit iteration over lists, sprinkle with

untried ideas, add powerful primitives like sorting, fold into

an APLish, post-fix syntax, and bake until half done.

Poplu-w asdesigneda ndimplernented in1978 by the first

two authors [Morris&Schmidt] and has recently been

enhanced by the thircl [Wadler] vho had designed asimilar

language. lt has received moderate use: tberehave beena

few hundred pages of program written by about twenty
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professional programmers and computer scientists. They

had a good display-oriented text editor, but no text-

oriented language like SNOBOL [Griswold] or any UNIX

facility like AWK [Aho] or LEX [Lesk]. It has received

most of its use from people with a clerical task that is

regular eIIOLlgh to be tedious, but not recurrent enough to

justify a big progratnming effort in a more conventional

language. A typical comment has been: “In a couple of

hOUH I was able to learn Poplar and use it to solve a

problem that would have taken much longer otherwise.” A

few people wrote more serious programs: a report

generation system for software projects, a family budget

maintainer, a correspondence management system for

academic journal editors, a purchase order management

system. Large portions of some of these projects have been

written applicatively,

Basics of Poplar

Values and functions

Strings are primitive values and are written in quotes; e.g.

“A string” and ““, Concatenation of strings is denoted by

juxtaposition:

“aaa” “bbb” = “aaabbb”

As in SNOBOL, a number is simply a string of digits.

quotes can be omitted: “123” = 123. Addition

subtraction can be written as infix operations.

The

and

The special primitive value fail plays the role normally

played by Boolean values in Algol; conditional expressions

test their parameters for being fail or not, rather than true

or false:

if p then x else y = if p=fail then x else y

Non-primitive values are either lists or functions, Lists are

written like [“A”, “list”] and []. Lists may be subscripted:

~’A”, “B”]2 = “B”. ([n reality, subscription is written as

L/i rather than Lt) A negative subscript -i yields the list

with its first i elements removed. [“A”, “b”, “C”, “d’’]-2 =

[“c”, “d”]. Lists can be concatenated with the inf~

operator ‘,,’.

The familiar Cons(x, y) operation of LISP can be

accomplished with the idiom [x] ,, y which places x in a list

of length one and concatenates it with y.

Functions are denoted by lambda expressions except that

instead of ‘Ax.’ one writes ‘x:’. An expression like ([x,y]:

x + y) is an abbreviation for (z: Z1+ zJ. The application of

fhnctions to parameters is writtf n in post-fix notation using

the operator 6/’.

3+9 / (t: t t t) = 121212

There is a standard assignment statement ‘x ~ e;’ it is used

mostly for defining functions at the top level. The

precedence of “:” is such that one can conveniently use

post-fixed functions as a sort of assignment statement,

L/x: X+X = L/(x: X+X)

and is equivalent to (x ~ L; x+x).

Equality Assertions

To make programs readable there is a checked comment

facility. Any function definition can be decorated with a

set of assertions which constitute a test evaluation of the

function. For example, given the fhnction

x: [x,x]/Cone/Reverse

one can adci equality assertions to produce
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x: = “foo”

[x,x]/Cone = “foofoo”

/Reverse = “oofoof’

which says: Ifthe input is “foo” the valueof [x,x]/Cone

}till be “foofoo” and the final value will be “oofoof”.

This idea has worked out well: it is much easier to grasp

what a program is doing if a well-chosen exalnple is

interleaved with it. The fact that the example is machine-

checked makes it more credible than a normal comment,

In practice, one needs mechanical aids to generate examples

because of all the details (e.g., How many spaces are in “

“?) which escape the reader, but not the checker.

Post-fix syntax and built-in iteration

Since applicative programming has been employed mostly

by meta-programmers rather than programmers many of

the syntactic creature comforts, like for-loops, are absent

from applicative languages, The applicative style usually

requires the use of many recursive function definitions, one

for every loop. To remedy this situation Poplar supplies

several built-in iterative operators. String concatenation

and the arithmetic operations extend to lists of strings.

Three iterative functional are infix operators: LISP’s

Maplist, APL’s reduction operator, and an operator similar

to the p operator of recursive fMction theory. Like

function application these three operators are written with

the function second rather than first,

[a, b, c]//f = [a/f, b/f, c/fl (Maplist)

[a, b, c]///f = [[a,b]/f, c]/f (Reduce)

x%f = if x/f then (x/f)%f else x (p-operator)

A sequence of numbers can be generated by the notation

4-- 7 = [4, .5, 6, 7]

A list of eqilal length of lists may be transposed,

[[a, b, c], [d, e, fj]/Transpose = [[a, d], [b, e], [c, fl]

Transpose is important because it allows one to generalize a

non-unary fhnction, f, to work on lists via

[Listl, List2]/Transpose//f

the idiom

The combination of built-in iterators and post-fix notation

was very successful; succinct applicative programs to do

complicated things could be written easily without using

recursion. Furthermore, writing such programs became a

simple, natural process, rather than a challenge to the

intellect.

As an example, consider the key-word-in-context problem

discussed by [Parnas]: given a list of book titles like

Green Sleeves

Time Was Lost

generate an alphabetized list, useful for looking up specific

key words:

<Green> Sleeves

Time Was <LosD

Green <Sleeves>

<Time> Was Lost

Time <Was> Lost

The procedure is as follows:

Break the text up into lines.

Break each line up into words.

For each line:

Generate a list of pairs, one for each word,

consisting of the word, and a reconstruction

of the line with brackets around the woi-d.

Merge all these lists into one big one,

Sort the list by the words.

Discard the words.

Concatenate all the lines to form tie final text.
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Figure 1 shows the Poplar program to do this, and Figure 2

shows the same program decorated with equality

assertions. The major steps correspond to the informal

steps above. The character ‘~’ stands for carriage-return.

The functions Lines and Words are patterns, to be

discussed later, that split text into lines and words,

respectively. Append concatenates pairs of lists; Cone

concatenates pairs of strings, The phrase “//2” is a

shorthand” for “//(x:x2)”. Besides using a non-trivial

recursion, the function G makes heavy uses of the implicit

iteration of concatenation. The subexpression (“ “ w.,)

puts a space at the beginning of eLLchword before they are

concatenated by Cone. The subexpression (wl “ “ (w.l/G))

prefixes the current word WI to every string in the list that

the recursive call of G returns.

Figure 1. A Poplar Program for Key-Word-in-Context

KWIC ~ (S:

s/Lines

//Words

//(WList: [WList, WList/G]/Transpose)

///Append

/sort

//2

///Cone);

G ● (w: if w/isnull then n else

[ “<” WI “>” (“ “ w.l///Conc

>, (WI “ “ (wI/G)));

Notice that the informal description

consists of quite imperative statements

“J”)]

of this procedure

while the program

itself is entirely applicative! This is the advantage of post-

fix syntax. The key to this is that at any point in the

program there is only one thing being dealt with, and it

plays the role normally played by the state of the machine

in an impemtive program. Many programs have been

written in this style, often interactively. The system allows

one to type something like “/F” as a command, and

function F is applied to the last thing printed out, and then

the result is printed. A transcript is kept, and the user may

edit this transcript to produce a program.

Figure 2. The Program Annotated with Equality Assertions

KWIC @ (S: = “Green Sleeves~Time Was Lost~”

s/Lines = ~’Green Sleeves”, “Time Was Lost”]

//Words = [[’’Green”, “Sleeves”],

[“Time”, “Was”, “Lost”]]

//(WList: ~List, WList/G]/Transpose)

=[[[’’Green”, “<Green> SleevesJ”],

[“Sleeves”, “Green <Sleeves> ~’’]],

[[’’Time”, “<Time> Was Lost~”],

[“Was”, “Time <Was> Lost)”],

[“Lost”, “Time Was <Lost> ~’’]]]

///Append =[[’’Green”, “<Green> S1eeves~”],

[“Sleeves”, “Green <Sleeves>~”],

[“Time”, “ <Time> Was LostJ”],

[“Was”, “ Time <Was> Lost~”],

[“Lost”, “Time Was <Lost>~”]]

/Sort =[[’’Green”, “<Green> Sleeves)”],

[“Lost”, “Time Was <Lost>~”],

[“Sleeves”, “Green <Sleeves>~”],

[“Time”, “<Time> Was Lost)”],

[“Was”, “Time <Was> Lost~”]]

//2 = [“<Green> Sleeves~”,

“Time Was <Lost> ~”,

“Green <Sleeves>)”,

“<Time> Was Lost~”,

“Time <Was> LOst~”]

///Cone = “<Green> Sleeves

Time Was <Lost>

Green <Sleeves>

<Time> Was Lost

Time <Was> Lost
,,
);

G ~ (w:= [“Time”, “Was”, “Lint”]

if w/isnull then g else

[ “<” WI “>” (“ “ w-l///Cone) “ J“]

>> (Wl “ “ (w-l/G = [“<Was> Lostj”,

“Was <Lost>)”]) )

= ~’<Time> Was Lost~”,

“Time <Was> Lost~”,

“Time Was <Lost> ~’’]);
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This program is rather inscrutable, but we believe that

translating it to a more conventional notation makes it

worse. In Figure 3 the program appears written in an

Algol/LISP style of syntax, i.e., changed to a prefix

notation with all the maplist and reduce operations explicit.

To make the nesting tolerable, we introduced many

assignment statements; imagine how the program would

look if we eliminated them by back-substituting! Of course

the assignment statements give one the opportunity to

int~ociuce a mnemonic identifier to describe the

intermediate result. Thus the opaqueness of the program is

due to the style of expression rather than W syntax of the

language.

Figure 3. The KWIC Program Written in Algol/LISP

procedure KWIC(S)

begin

ListofLines ~ Lines(s);

ChoppedLines ~ maplist(Listofhes, Words);

ListofListsofPairs ~ maplist(ChoppedLines,

AWList.T’ranspose(WList, G(WList)));

ListofPairs ● reduce(ListofListsofPairs, Append);

OrderedList ~ Sort(ListofPairs);

ListotStrings + maplist(OrderedList, Xx.x2);

return reduce(ListofStrings, Cone)

end

procedure G(w)

begin

if isnull(w) then return [];

Fint ~ “<” W1 “>”

reduce(maplist(w.l, Ax. “ “ x), Cone) “~”;

Rest + maplist(G(wl), Ax. W1 “ “ x);

return Cons(First, Rest)

end

Problems with the syntax

Poplar’s users and potential users had mixed feelings about

th~ syntax, Even aspects we consider successful were not

un%ersally appreciated. No one was ever sure what the

precedence rules were or should be.

Postfm syntax, even if one likes it, has problems: for

functions that were binary, one has an urge to place one of

the arguments after the function name. This syntactic style

has evolved in Smalltalk [Kay]. If one wrote a function-

producing function like F ~ (x: y: x+ y), a call of the

function, Y/(X/F), did not look right. It was not obvious

how to indent programs; in something like

~ugeExpressionl, HugeExpression2] /TinyFunction, the

function name would get lost.

Instead of providing if-then-else expressions (as this paper

suggests) we used two binary operations > and I with the

following definitions:

x > y = if x= fail then fail else y

x I y = if x= fail then y else x

This allows one to write things like (BigExpression ] u)

rather than tie more cumbersome

t @ BigExpression; if t= fail then L1 else t

The conventional if p then x else y could almost be

achieved by (p > x I y). In retrospect, this syntax caused

more confusion than it was worth.

A better set of operators

Although the buiit-in iterators were successful in general,

we now have a better idea of what they should be. The

maplist operator had the feature that if a value in the

output list was fail it was omitted. This was handy, but

occasionally it tended to bury errors one would like to

discover. There should be a separate operator to

accomplish this, perhaps Split defined as follows:

[1, p]/Split = [sheep, goats]

where sheep is the list of items on list 1 for which p is true

(i.e. not fail) and goats is a list of all the others.
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The reduce operator /// was confusing to use when the Clever Evaluation is essential

function was not associative. The following definition
The KWIC program is inefficient by contemporary

would have been more useful:

[x,y,z]///F = [X, [y, [Z, U]/F]/F ]/F
standards. Every line seems to create a large new structure

which the following line consumes. Great improvements in

It processes the list from right to left and includes the this algorithm’s performance can be made by a little

empty list in the enumeration. This would allow us easily cleverness in the evaluation strategy. We recently changed

to solve the bothersome problem of eliminating adjacent the implementation to use the lazy evaluation strategy

repetitions from a list. described in [Henderson&Morris] so these multi-pass

operations are merged. The essence of the technique is that
[1,1,3,4,1,2,2]

nothing is evaluated until it absolutely must be. Under this
///([x,y]: if (-y/isnull and x= Yl) then Y else [x],,Y)

regime lists often behave like streams because their tails
= [1,3,4,1,2]

remain unevaluated until they are needed. In the case of

Of course, this redUCe would have not have worked for KWIC the first operator that forces evaluation is Sort which

functions like Plus and Cone which didn’t expect to see the demands that it receive a list of lists each of whose tirst

null list as an argument; but such ftmctions could be components is a fully evaluated string. This causes the

extended to take lists of parameters as a matter of course Append operation to be completed, but the second

making their use with reduce unnecessary. component of each pair remains unevaluated until the finaJ

reduction using Cone. Thus, in principle, this program

The general iteration operator, %, was not very useful. requires only enough space to create a list of all the

Perhaps we should have built in the list iterator described individual words and does not require space proportional to

by [Burge] which is something like its output which approximates the square of the input.

Lit fghax=if ~x)thena eIsegx(Litfgha Notice that the revised definition of the reduce operator

(hx)) works much better under lazy evaluation. For example, the

beginning of the value of L///Append can emerge before
The need was felt for ways other than the sequence

L has been completely traversed.
operator to generate lists from whole cloth. For example,

the following function might be useful:

[a, fl/GenList = if a= fail then U else

[a] ,, ([a/f, fl/GenList)

An infix functional composition operator, e.g.

fog == (x: x/f/g)

would have been used frequently

Since lists are never fully evalu-.ted one can even deal with

“infinite” lis~. The Fibonacci numbers may be described

by the recursively defined list Fib.

Fib + [1,1] ,, (Fib + Fib.l)

Suppose one want to find the first Fibonacci number that is

divisible by 3. He can say [Fib, div3]/Search where Search

can be defined in terms of Split the obvious way. This will

not involve computing any more elements than a more

37



conventional program would. In general, any while loop

could be written in this way:

s ~ a; while P(s) do s ~ F(s)

can be simulated by

[[a, F]/GenList, P]/Search

Our implementation of lazy evaluation has not been a

complete success for reasons which we shall discuss latter,

but it has allowed us to be hopeful that this style of

programming may someday be more practical.

Pattern Mitching

There are two aspects to the design of pattern matching:

the parsing of strings and the post-processing of successful

parses. We devoted most of our effort to the second of

these, on the theory that a great deal is known about the

first.

In essence, the matching sub-language is the language of

regular expressions, A primitive pattern is either a string or

the ellipsis ‘.,.’ which matches anything (like SNOBOL’S

ARB). Larger patterns may be constructed from smaller

ones by using four combination rules: if P and Q are

patterns, then so are the following

PQ concatenation

PIQ alternation

P~=PIPP]PPP etc. iteration

p?=(p l””) optional

The Kleene star pattern P* can be written as P~?. Every

pattern is enclosed in braces ‘{}’. Since patterns can be

assigned to variables it is possible to create recursive

patterns. For example,

E ~ {digit~ I “(” E “+” E “)”}

A simple parsing algorithm causes problems

Rather than use a general parsing algorithm like [EarIey]’s

we chose an ad hoc matching algorithm of the no-back-up

variety. We felt it would be a lot of work to implement a

general parsing algorithm that would run as fast as an ad

hoc one, Furthermore, it was not clear what to do with

multiple parses. Some of the advantage of having a

formally correct parser would be lost if the programmer

had to understand the matching algorithm in order to

decide which parse would come out first. Nevertheless, in

retrospect, we feel that a better algorithm is called for

because even the implementor found he made mistakes in

writing patterns. For example, he would occasionally write

something like {(’’a” I “an”) “ “ Noun} even though the

manual stated that this would not work because the

matcher would not back up to try the “an” alternative after

matching the “a” in a string like “an owl”.

The troublesome ell@sis

The ellipsis pattern, which was very handy to LMe in

practice, raises some problems we don’t know how to solve,

even with a fully general parser, because it gives rise to a

considerable amount of ambiguity, The pattern {,.. “x” ...}

can match the string “bxbxb” in two different ways. We

chose the shortest-match-first approach so that the string

would parse into “b”, “x” and “bxb”. However, in more

complex situations things do not work out well no matter

what rule one adopts. Consider the following description

of text in which spaces and carriage-returns are used to

describe the two-level that appears in the KWIC example.

{( (.-. “ “)7? ... “J” )j-}

There are many possible parses of the string

“AAA BBB~CCC DDDj”

and we cannot think of any consistent rule which will
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produce the parse one wants. It seems clear that in this

context one intends ellipsis to mean “any characters other

than space and carriage-return.”. SNOBOL has an

expression, break(” ) “), that means precisely that; and now

we appreciate it! In practice, this difficulty has been

surmountable; we use a two-step process described below:

break up the text at all carriage-returns, then break the sub-

pieces at spaces.

Applicative

How can

operation?

post-processing is workable

one make pattern matching an applicative

Specifically how does the language make the

results of parsing available to post-processors without using

side effects? For exam pie, the SNOBOL pattern

P = ARB . X “;” ARB . Y “;”

assigns the parts of the string which fall before the

semicolons to the variables X and Y as a side effect of the

matching process. This is unsatisfactory because a reader

who sees only the name P in a matching operation cannot

easily discover what variables, if any, will be changed.

The basic idea in Poplar is that a pattern is a function

which can be applied to a string; the result can be fail or

something derived from the string by a set of pattern

composition rules. As the default, the matcher simply re-

concatenates the pieces matched so that

“aa;bbc;’’/{... “;” ... “;”} = “aa;bbc;”

However, by decorating the pattern appropriately one can

arrange for different things to happen: Suffixing a

component with # causes whatever it

discarded.

“aa;bbc;’’/{... (“; ”#) ... (“; ’’#)}

matches to be

= “aabbc”

One can replace pieces by suffixing the phrase “>

newpiece”

“aa;bbc;’’/{... (“;” > “X”) ... “;”} = “aaXbbc;!’

‘One can make lists out of the pieces by inserting brackets

and commas in the pattern

“aa;bbc;”/{ [... “;” , ... “;”] } = ~’aa; ”, “bbc;”]

Conceptually, it is best to think of a two-phase process: first

the string is parsed, then one computes the result from the

parse tree using the various signals attached to the pattern.

Although it can be syntactically confusing to intertwine

these two processes, it overcomes the fact that any division

of the two phases can lead to them becoming inconsistent,

Experience suggests a slightly different design for post-

processing patterns might be better. First, one is always

writing # after string constants to indicate that they should

be discarded; the default should be the other way around.

Second, including names for the interesting sub-pieces

witiin the pattern has great mnemonic value. Once there

are more than two or three interesting parts of a pattern

one begins to lose track of the order. The design

alternative we now favor was the one chosen by [Wadler]:

introduce Pascal records into the language and allow the

result of a match to be a record. For example, the value of

a match using

{x:: ... “;” Y:: ,,, “;”)

would be a record with components X and Y. This retains

the applicative nature of pattern matching while regaining

the virtues of SNOBOL’S conditional value assignment

notation.
A more significant probt’em is associated with iterated

patterns like {Pi_}. A SNOBOL programmer can not use

the equivalent pattern, ARBNO(P), if he wants to do

anything with the result of the parse. If he wants to apply

the procedure F to each substring P matched he must write

an explicit loop that chops off a prefix of the string

matching P, applies F, and starts over. This is too bad:

there is a nice construct that can describe iterated.
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structures, but one must resort to traditional programming

to actually process them.

The first solution to this problem is to introduce a new

operator ‘ ~‘ that parses things just like ~ but produces a list

of the items matched rather than re-concatenating them.

Then the operation F can be applied to each element on

the list using Maplist. Thus one says

string/{P~}//F

A second answer is given by a very general method for

processing the outcome of a pattern match: attach a’

fhnctionto apattern element andapply ittothe result of

matching that element. One says

and the result ofasuccessful match would becornputedby

apply ing Fto each of the sub-strings which matched P and

concatenating the results. This method is applicable in

more general cases. typified 5Y the recursive patterns.

Without functional attachment such patterns are not useful

if one wants to process the recursive structure, For

example, to parse an expression andcornpute its value one

can write.

E + {digit! I [ “(” # E , “ + “# E “)” # ] \ phls}

which is succinct if nothing else. Functional attachment

was used extensively to build powerful patterns which

simultaneously matched and transformed their input.

Multi-pass parsing is conceptually easiefi but needs help

Experience has shown that the create-a-list-and-process-it

method is usually easier to use than the function

attachment method, It seems simpler to comprehend

because it is less intricate. In general, the APL style of

processing aggregates seems just as appealing for parsing as

for list processing. Let us now consider the problem of

writing the two patterns Lines and Words that appeared in

the KWIC example. Lines is relatively easy

Lines @ {(... “~’’#)~}

Notice that the carriage-returns are discarded. Words is

harder because one has to get the piece immediately

following the last space and cope with the case in which

there are no spaces.

Words ~ {(,..# Letter~)~ ...JY3

where Letter is a pattern matching any letter.

If lazy evaluation methods were extended to pattern

matching this method would compete with a left-to-right

parser. Unfortunately, we found that the semantics we

choose for pattern matching are not quite right for lazy

evaluation. For example, the value of

s/{P$ “z”#}

is fail if S does not end with “Z”. Thus one cannot begin

to process a long file of P’s for fear that the file will not end

in “Z”.

Because “breaking up” text is a very common operation

and our pattern-matching language doesn’t seem to do it

very gracefully, we contemplate adding it as a primitive.

S / breakup{Separators}

is defined as returning two lists, The first is the list of

separated objects, and the second is the list of separators.

For example:

“12,4,78’’/breakup, ”},”} = [[’’12”, “4”, “78”1, ~’,”, “>”11

“a12c3’’/breakup{ digit} =[[’’a’’,’’’’,’’c”, ““], [“1”, “2”, “3”]]

“abed’’/breakup {digit} = [[’’abed”], u]

Lines @ s: (s/breakup {“J’’})1

Words ~ s: (s/breakup -0ettert})2
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Notice that breakup always succeeds so it is amenable to

lazy evaluation.

Implementation Notes

An interpreter for Poplar was implemented on the Alto

Whacker], using the language Mesa [Mitchell]. It is

organized so that there is no distinction made between

expressions and values. What one normally thinks of as a

value is simply an expression that the evaluator will not

reduce any further. An expression is represented by a Node

and may be one of a variety of different types:

A string, an empty list, or fail

A list node with pointers to the first element and the

rest of the list

A specific operator with one or two associated

operands; e.g., Plus with a pointer to each

summand, or Maplist with a pointer to the

function and a pointer to the list.

A A-expression

A closure: a pointer to an environment list of

variable-value pairs and a pointer to an

expression

The evaluator is a simplifier: passed an expression, it

returns a new expression, which is a simplified version of

the first. After normal evaluation, an expression will be in

one of the following three forms:

A string or fhil.

A closure of a A-expression.

A list composed of the a50ve ~nd (recursively) lists.

To convert the evaluator to be lazy in the manner described

in [Henderson&Morris] we made two changes:

Arguments of a function are not evaluated until

needed.

Components of a list structure are not evaluated

until needed.

In each of these cases the expression is put in a closure wi$

the current environment. An outcome of this rule is that

the final result of evaluation may be a list node whose

components are closures (the suspensions of

[Friedman&Wise]). “Needed’ means that the value is to be

printed or treated as the subject of a pattern match.

We did not make the concatenation of strings or pattern

matching lazy, but have chosen a “half-lazy” representation

of strings. Both arguments of a concatenation are fully

evaluated; but, if the resulting string is more than 100

characters long, the result is represented as a node with

pointers to the two strings. Thus, in general, a string is

represented by a binary tree of such nodes. The terminal

nodes point at pieces of files which are paged in as needed.

Immediately before printing or pattern matching, this tree

is converted to be right-linear;i .e. each left son is a terminal

node. This scheme was arrived at after some

experimentation and seems to work well most of the time,

Garbage Collection

We implemented a scan/mark garbage collector for both

Nodes and strings. Temporary string storage was

compacted, and files were closed if garbage collection

revealed that no string pointed to them. We set up strict

programming conventions to avoid collection-related bugs.

We made it our policy that each procedure would register

the address of any local variable of type Node; it did not

have to register parameters because they were the caller’s

responsibility. Registered locations were kept in a stack

which grew and shrank in parallel with the Mesa run-time

stack. When garbage collection was necessary, only those

nodes accessible from registered locations were saved. We

Used the scan/mark algorithm instead of reference counts

because it gave us explicit control over the memory, and no

programming errors ever caused us to lose memory since

we explicitly confirmed its use every time a garbage
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collection happened. If a procedure failed to register a

value, the subsequent garbage collection would destroy the

values about to be used. BLlgs of this sort were not too

hard to find since the collector gave nodes on the free list a

special type, and subsequent access usually checked the

node’s type.

Luzy evaluation: surprises and problems

As expected, lazy evaluation required a larger constant

overhead than normal evaluation. A lot of time is spent

savi~g contexts in the form of closures and re-establishing

them. We guessed that this would cause a slowdown by a

factor of three in those computations where one must

eventually evaluate everything completely. Happily, it

appears that the factor was nearer to two.

Another problem is that the saved closures can tie LIp a lot

of space. To avoid this one can scan the expression part of

a closure to determine what variables are free in it, and

include only these in the environment list for the closure.

We don’t know whether this would be worth the bother.

There was an unpleasant surprise in the lazy evaluator

design. It sometimes requires twice as deep an evaluation

stack as the normal evaluator. Consider

Factorial ~ ([x, fl: if x = O then f else [x-l, ~x]/Factorial)

One’s intuition suggests that this is efficient because the

recursive call can be replaced by a simple jump, an

optimization that most compilers and some interpreters

detect. Unfortunately, under lazy evaluation this program

is somewhat less efficient. The problem is that the

expression Fx at each level remains unevaluated. Thus

when the evaluator gets to the call at which x = O it begins

to work on the expression f to produce a number. At this

level f is bound to a closure whose expression is Nx and

whose environment binds x to 1 and f to a closure whose

expression is Px etc. In other words, to come LIP with a

numerical value for f the evaluator is going to get into a

recursion precisely as deep as the one we thought we were

avoiding! This second recursion is not in general avoidable

because one doesn’t know that * is associative and one is

also required to overwrite all those closures with “the

numerical values on the way back. Furthermore, if the

evaluator cannot avoid the recursion in the first place we

will need twice as much stack as under a normal evaluator.

In practice, this problem is not devastating because Poplar

encourages a programming style with no recursion in it

whatsoe~er. One should write

Factoria12 @ (x: I--x///Times)

which is shorter, clearer and as efficient under lazy

evaluation as Factorial is under normal evaluation, even if

we defined l--x by a recursive procedure,

A way of avoiding some of these difficulties has been

suggested by [Turner]. His implementation avoids closures

and environment lists entirely by translating the expression

into combinators. However, some hand simulations

indicate that the size of his combinator expressions may

grow large in the same situations that generate many

closures under our implementation. His implementation

avoids checking each value to see if it is evaluated. It also

solves the problem of deeper nesting by expanding the

functions in-line the first time they are called.

A more fundamental problem is that lazy evaluation is not

as powerfLd a method of improving performance as one

might imagine. Consider the following function:

AveragePayroll +- (Payroll:

Payroll/breakup {“J’’} //Entry/Salaries:

[Salaries///Plus, Salaries/Length]/Divide)

Evaluation of Salaries///Plus does not require the entire



list Salaries to exist at any one time. Nor does evaluation the pattern-matching language so that it works on lists.

of Salaries/Length. But since both are to be calculated the Now we are required to say what it is about the pattern

entire list Salaries will materialize. Evaluating one forces “matching language that makes it so nice other than that it is

the list into existence, and it cannot be garbage collected “just like regular expressions”. One thing tiat makes it

because the other still needs it. There is no mechanism to powerful is that it is basically a second order language like

synchronize the evaluation. In general, this problem may [Backus]’s in that expressions in the language tend to

occur whenever a list is generated that needs to be traversed denote functions mther than values. For example, “x y“ in

by two different functions, Another example is the conventional language assumes that x and y denote

[List, P]/Split/[PL, NPL]: [PL///Plus, NPL///Plus]
strings and the value is another string; in the pattern

matching language x and y are functions and the result is

Problems of this type will often be associated with the another fLmction.

reduction operator because it reduces a list to a single

value, making greater space savings possible. Writing a few
Poplar should have a powerful compiler

special functions to handle reduction might solve some of

these problems, For example, consider reduce: If we are really going to write programs as profligate as the

KWIC example, lazy evaluation is not powerful enough to
L/([fl, f2, f3]/reduce) = [L///fl, L///f2, L///f3].

recover all the efficiency that is needed. The approach

Although its use is not completely natural, one could demonstrated by [Darlington&Burstall] is more promising

contemplate a compiler generating it. and is being studied by the third author who claims that for

any function written in a lazy programming style, there is

an equivalent and equally efficient program that may be
Reflections

written in the normal style. One can imagine a pre-

Lists and Strings should be unlj7ed processor that at compile time performs a source-to-source

transformation that converts a lazy program to its non-lazy
It never occurred to us at first to unify the concepts of

equivalent. This would avoid the problems discussed
strings and lists; we thought of strings as LISP atoms.

above. Furthermore, the compile-time analysis could be
However, it became clear that this division forced the

used to detect type errors that are especially difficult to
language into two pieces as in SNOBOL: the pattern sub-

cope with when things happen in an order the programmer
language and the general list-processing language, The

doesn’t expect.
shortcomings of this became clear when someone wanted to

precede a parsing operation by a lexical analysis that

produced a list of strings. The pattern language could not Deep problems about applicative programming

be used on the list! This mistake was avoided in LISP70
A more serious bar to applicative programming is “typified

~esler],
by the following problem: S~ppose one wishes to process

We now contemplate an alternate design in which the base
all the elements of a list, some of which may cause

data type is character, and a string is just a list all of whose

elements are characters. The puzzle is how to generalize
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exceptional conditions; One writes If the machine is clever it is probably harder to understand,

L // (x: if OK(x) then newwal(x)

else (Exceptions ~ Cons(x, Exceptions); x))

The problem is that one wants to use a “side channel” to

convey some information which is ancillary to the, main

computation. In general, if a process has multiple output

streams which receive data at very different, unpredictable

rates it is difficult to retain an applicative approach.

Beyond this technical problem there are basic, long-

especially if it employs various ad hoc heuristics, based

upon expectations of what sort of programs people write.

How does one arrange meaningful checkpoints? Even if

one’s computation has no bugs and is non-interactive the

order in which things are done can be relevant. When

one’s computation takes a long time he would like to save

intermediate states that have meaning to the programmer.

For example, in a correspondence management system we

found it desirable to produce a letter and record the fact

standing “philosophical” questions with applicative that it had been sent as an atomic action. Typically one

languages which our experience has brought to the surface: might request the system to send many letters and expect

How should interaction with a user be carried out? In our

environment it is the norm to write programs that interact

with a person through a keyboard, screen, and pointing

device. To describe such things applicatively one can

describe each program as a function that maps each “input”

into its output response, or better an input stream into an

output stream as [Friedman&Wise] have done. This model

doesn’t fit very well with making random changes to a two-

dimensional display, however,

that one or two requests would cause trouble for ,reasons

ranging from hardware errors, to software errors, to

improper requests. Also, one occasionally wanted to

interrupt the process to do something else with the

machine. Since there is no interdependence between these

requests and because the operation takes a non-trivial

amount of time one would like all but the troublesome

requests to be completed. We attempted to solve this

problem through the use of explicit writes on files-a

highly non-applicative operation, If one attempted to

How does one debug a program with a surprising evaluation describe the operation as a whole, surrendering control of

order? Our attempts to debug programs submitted to the what happens to the system, any mishap forces one to start

lazy implementation have been quite entertaining. The over entirely.

~nly thing in our experience to resemble it was debugging a
‘, To summarize, the potential practical benefit of an
multi-programming system, but in this case virtually every

applicative language is that its implementation has much
parameter to a procedure represents a new process. It was

more running room in which to be clever since the order in
difficult to predict when something was going to happen;

which operations are performed is constrained only by the
the best strategy seems to be to print out well-defined

data flow. Examples of such cleverness are lazy evaluation,
intermediate results, clearly labelled.

compile-time loop integration, and parallel processing. On

How does one predict performance? Never mind that lazy the other hand, computing is an activity which goes on in

evaluation, or any other clever strategy, will make the time and space. In situations where one cares about the

program perform better than it would have time and space aspects of an operation as mUCh as the

otherwise-ultimately one depends upon his understanding qualitative result, applicative programming is less

of the machine to design things so that they run reasonably: applicable(!). Furthermore, the personal, interactive mode
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of computing tends to increase the frequency of these

situations.
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