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Abstract

In 1986 I proposed a new principle of executing Horn Clause programs

with low overhead on multiple processors. This method does  not

involve the sharing of memory or the copying of computation state

between processors.  Under certain conditions, the method has the

remarkable property of executing a given program in the minimum

time theoretically required.  Such optimal operation is not always

possible, but performance of the implemented system is such as to

render it of practical use.  This paper describes the experience of

implementing the method on a network of processors and of executing

programs according to the method. This paper is more a retrospective

than a tutorial, and so readers are referred to previous papers for

introductory material and technical details.

History of the DelPhi Principle

After a departmental seminar in 1986 in which the distinguished visiting speaker

(Professor D. H.D. Warren) described the state-of-the-art in parallel (multiprocessor)

Prolog machines (Cf [7]), some colleagues (Hiyan Alshawi, Roger Needham, David

Wheeler) and I came to the conclusion that current work was neglecting or palliating

the memory and communications contention problems that naturally arise when

executing Prolog on such machines.  We considered that even the extreme case of

random search of the proof tree resulting from the Horn clause program and goal

clause – if conducted quickly enough – might in certain circumstances be more

efficient than the sophisticated and intricate methods being investigated at that time

(e.g. sharing and cacheing of variable bindings, load balancing by arbitration among

processors, shared memory computer architecture). The idea behind random  search is



to randomly enumerate paths through a proof tree and test them for success or failure.

This is extremely easy to implement, so the question then became how this might be

done efficiently and completely, and whether there might exist a natural way of

accomplishing this by means of multiple processors.  For example, the enumeration

task can be distributed, and individual tests may proceed independently on distinct

processors.

Following from this discussion, I devised the DelPhi principle [2,4,5], which

states that the construction of computation state for each path (from the topmost goal

node to a given terminal node) of a OR-only proof tree should be computed by a

single processor associated with the path. Given multiple  processors, the way to

deploy them according to this principle is to enumerate all paths of the proof tree, and

to associate each path with a processor.  A path is represented by an oracle, a list of

the nodes along a path.  An oracle always begins with the root node of the tree, and

terminates with either a success or failure node.  The important thing about an oracle

is that it is compact and context-free (contains no computation state such as variable

bindings).  For example, the complete OR-only binary tree of depth n has 2n oracles,

which are all binary strings of length n bits.  Because a path of an OR-only tree

contains no decisions and does not require state from ‘across’ the tree, a given

processor in possession of the program is in principle capable of computing the path

(choosing clauses as directed by the oracle and performing a series of unifications)

without further inter-processor communications until the oracle is exhausted.  A tree

containing AND nodes may be converted to an OR-only forest by standard methods.

Assuming the two subpaths of a binary AND-node are to be executed in sequence, the

execution may be determined by an oracle string of the length of the sum of the

lengths of the two subpaths.  In practice, the forest is not constructed, but is tracked as

execution proceeds (see Figs. 1,4 in [2]) using a stack.

In practice, the number of oracles will outnumber the number of available

processors, and it is necessary to adopt an execution strategy that enumerates and

allocates oracles in ‘rounds’, using information from each round to adjust the

enumeration strategy.  In principle, if on the first round an oracle terminated by a

success node is executed, then the system will have found a solution in the minimum

number of steps.  Because the overhead required to enumerate and distribute oracles is

very small (as they are context-free bit-strings), finding the solution in a minimum

number of steps approximates to finding the solution in the minimum amount of time.

Whether a successful oracle is allocated in an early ‘round’ depends on the ratio

between the number of distinct paths and the number of available processors, and also

on a random variable determined by the location of the goal in the proof tree.



Because in practice there are more paths than processors, strategies are an

important part of any implementation, and are discussed in general in  [5] and in detail

in [6], but will not be further considered here.  The strategies discussed in [5] require

a limited amount of interprocessor communication, but improved strategies developed

in [6] introduce load balancing together with limited backtracking without the need

for interprocessor communication.  The interesting point remains that even without

such strategies, the simple DelPhi principle can give a practical and efficient

implementation.  The reason is that the outcome of an oracle test gives information

about the shape and extent of the proof tree, and thus can influence the enumeration of

oracles.  For example, if an oracle is found to fail, there is no need to enumerate the

oracles that extend it.  This is not heuristic, but fact. The basic DelPhi implementation

makes use of several such facts even before (heuristic) strategies are considered.

The DelPhi machine, so named because of the famous Oracle of Delphi,  was

predicted to have the following three characteristics.

(i)  The best performance  would be observed for highly nondeterministic programs of

the type encountered by AI researchers.  For more deterministic programs (such

as matrix multiplication), no speedup would be observed as more processors were

added.  This is because deterministic problems are AND-heavy, making it

necessary to search the major part (if not all) of the proof tree before the solution

may be found.  In the DelPhi context, this results in oracle strings of a length

related to the number of nodes (leaves plus internal nodes) of the proof tree.

(ii)  For nondeterministic problems, as the number of processors is increased, the

machine would exhibit speedups until a certain point (that is, until no more or-

parallelism is possible), but that the execution time should then not increase

significantly as more processors are added without limit.  I call this property

‘monotonic execution’ for lack of a better term (monotonic parallel time

complexity is not what is being discussed here).  This characteristic is

unjustifiably neglected in the logic programming community.  Most shared-

memory systems do not exhibit monotonic execution because performance begins

to decrease as processors are added beyond the bandwidth contention limit.

Monotonic execution is a priority when considering a future in which the number

of available processors is large (i.e. 10n for n > 3) and unknown.  Monotonic

execution is essential for ‘MIP-mopping’: efficient utilisation of otherwise

unused processor cycles on networks of thousands of distributed workstations.

Monotonic execution is possible for the DelPhi machine because the processors

are passive recipients of oracle strings. Processors do not  need to communicate



between themselves or solicit work, vices which increase network demand (or

shared-memory contention) by (at least) the square of the number of processors.  

(iii)  Given that oracles are compact and context-free, and that the speed of

computation does not depend significantly on interprocessor communication, it is

feasible to use a relatively ‘low tech’ implementation based on distributed

workstations connected by an Ethernet.  This requires no special hardware, and

allows harmonious integration with other network users.  Furthermore, because

the processing of an oracle string is an atomic operation, it can be abandoned and

restarted on another processor if the processor it was first assigned to crashes

during execution.  This robustness property is also important when considering

‘MIP mopping’.

The DelPhi machine was intended to offer an ordinary Prolog top-level, and to

conceal all the details of parallelism implementation from the user. Therefore, the

principal groundrule was to support ordinary Prolog, without the use of programmer-

supplied annotations.  It was also considered necessary to retain the full non-

determinism of Prolog, as this is a characteristic that renders it useful to AI-style

programming.  It was also considered important to retain extralogical primitives such

as the ‘cut’, even if their use limits the parallelism that can be exploited by the system.

Input/output primitives were not to be supplied.

After a number of interpreted uniprocessor simulators  (which I implemented in

Prolog as it happens), Hiyan Alshawi [1] implemented a DelPhi model in Prolog on a

network of five Sun workstations connected by an Ethernet.  Oracles were represented

as lists of integers, and were transmitted to processors by user-language-level I/O

streams.   Despite the efficiency limitations engendered by the need for the entire

system to be implemented in Prolog, this system did demonstrate speedups related to

the number of processors made available. 

Or-Parallel Implementation

In 1987 it was decided to proceed with a compiler-based implementation on a

network of 20 VAXstation-2000’s running Ultrix and connected by an Ethernet.  A

number of refinements were made to the DelPhi model concerning the shortening of

oracle strings when certain deterministic motifs appear in programs, and concerning

the treatment of extralogical primitives such as the ‘cut’.  I devised new WAM

instructions for choosing clauses based on the input oracle, and modified the SB-

Prolog compiler and runtime-system accordingly. Oracles were represented  as blocks

of binary data.  Carole Klein wrote routines that interfaced the SB-Prolog runtime-



system to the Unix socket I/O level, organised the system on a client-server model,

and made it usable by the summer of 1989.  Details of the implementation and an

investigation of various execution strategies are given in [6].

The system behaved as predicted, with the appropriate speedups, monotonicity,

and robustness.  Given that the predictions were considered idealistically optimistic,

everyone was surprised by the extent to which the actual performance was more

favourable than expected.  Typical system behaviour is illustrated in the following

graph, showing performance of the system on the nondeterministic 8-Queens

problem:
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All timings in this paper are ‘wall clock’ times from start of goal to output of final

solution, and include all setup costs and logging of results in ASCII files.  Although

not all researchers take such overheads into account, it is best to include them as they

are unavoidable in any real system.

The concept of ‘monotonicity’ employed here is not the same as the mathematical

textbook definition:  I judge the above data to exhibit monotonicity (up to the known

extent of the data) notwithstanding the presence of small fluctuations, notably the

‘blip’ at 14 processors.  I interpret these as random fluctuations in system load and

network congestion (the network is shared with about a hundred other users).  They

are not due to systematic increases in computation overhead, and thus are not

comparable to the synchronisation and contention overheads obtained in shared

memory systems.

Quite a different performance is shown for a deterministic problem: multiplication

of matrices.  The following graph shows performance on two problems: multiplication

of two 20×20 matrices (the lower datapoints depicted as dots) and two 40×40 matrices



(the upper datapoints depicted as triangles):
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For a deterministic problem of this type there is no overt advantage arising from the

use of Or-parallelism, and no speedup is seen when the number of processors is

increased.  However, there are two key observations to make.  First, there is a

relatively stable execution speed independent of the number of processors used, and

therefore clear evidence of monotonic execution.  Second, supposing an average

execution time of 15s for the 20×20 matrix and given the complexity of matrix

multiplication (n3), execution times of about 120s would be predicted for the 40×40

matrix if there were no advantage in using multiple processors.  However, the

advantage in this case is demonstrated by the relatively small increase in computation

time (i.e. less than a factor of 23) when the problem size is doubled.  This is because

processing relatively longer oracle strings (which is done without interprocessor

communication and therefore without interruption) better pays back the cost of oracle

management, and because the number of oracles to processed is related to the number

of elements in the result matrix (i.e. a factor of n2).

And/Or Parallel Implementation

Given that deterministic programs are not speeded up by adding more processors to

the Or-parallel system, it was decided to attempt an And/Or-parallel implementation

to determine whether any of the advantages of the DelPhi approach could be applied

to deterministic problems in which communication across the proof tree can be used

to establish consistent solution sets.  Karen Wrench (now Bradshaw) devised and

implemented a two-stroke computation cycle, also on a client-server model, in which

partial solutions are generated by DelPhi-like oracle testing and sent to ‘answer



servers’  where they are compared to form the solution.  It was known at the outset

that such a system had built-in performance limitations of the type found in shared-

memory systems, but the purpose of the investigation was to determine the feasibility

of a distributed and/or-parallel implementation and  its characteristic behaviour. The

performance on nondeterministic programs was comparable to the Or-parallel

implementation for both speedup and monotonicity: the extra overhead introduced by

the And/Or-parallel implementation was negligible. The performance graph for the  8-

Queens problem illustrates this (in all the following graphs, the curve shown is the

mean of ten observations, and thus exhibits the unrealistic smoothness of the mean):
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For deterministic problems, the most favourable performance was seen on the

Discrete Fourier Transform (DFT), in which a random order-64 complex polynomial

is evaluated at the powers of its 64th roots of unity according to the recursive

Danielson-Lanczos decomposition (see [3] for how to do this in Prolog):
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However, no convincing speedups were demonstrated for other deterministic

programs such as sorting and graph colouring. For example, the  following graph

shows performance on Quicksorting random 1000-element lists:
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We suspect that the granularity of the problem is the deciding factor:  the distributed

element of computation in sorting and map colouring (simple comparisons) is too

fine-grained to be expect to cover the cost of distribution, but the distributed element

of computation in the DFT (basically following one path through a D-L

decomposition) is sufficiently large.  Also, graph problems in particular seem to be

sensitive to the disposition of processors for reasons that are not entirely understood.

Discussion

It is tempting to criticise the DelPhi method on the questions of ‘fairness’ of load

balancing and recomputation overhead.  However, careful consideration shows these

criticisms to be based on misleading intuitions about how time is spent in a distributed

network of processors.  The primary criterion of performance is the time taken for the

whole system to execute the program.  Questions of ‘fairness’ of processor load are

secondary and irrelevant if they do not engage with the criterion for minimum

execution time. Without analysing the program in advance, it is impossible to

determine whether a given load balancing strategy is useful or fair, and under real

conditions it is not obvious that a balanced or ‘fair’ load gives the fastest performance.

The run-time load balancing strategies reported in [6,7] are heuristic and offer

improvements in certain cases, although they must be put into perspective as additions

to the simple DelPhi model.



Likewise, the criticism that recomputation leads to inefficiencies fails to

appreciate that the reason for multiple processors in the DelPhi model is to quickly

follow multiple paths that have subpaths in common. The critic might propose an

‘efficient’ alternative to DelPhi that arranges that unique subpaths are executed only

once (or at least minimised) by means of task switching and sharing of variable

bindings, but this is a false economy based on an intuition of what is more appropriate

for sequential monoprocessors.  Using the DelPhi model, common subpaths are

followed by distinct processors because it is more efficient to use a unit amount of

time to perform calculation than it is to perform communication. On a distributed

multiprocessor the overheads of communication, synchronisation, and sharing

program state (data structure) required to ensure minimal recomputation far exceed

the amalgamated overhead of the DelPhi model.

Current Status

An improved distributed or-parallel system is currently being used on an experimental

basis on the laboratory’s local area network, where a 50-processor (DECstation

3000’s) system is being implemented and tested by Paul Barham as part of a final

year undergraduate project.  This implementation has identified and remedied

shortcomings in the Klein implementation concerning the interface to network

communication routines..  By using more and faster processors it is hoped to observe

system behaviour in a larger environment, thus gaining a more realistic assessment of

the potential of DelPhi for ‘MIP-mopping’. Also, it is necessary to have a better

theoretical grasp of what the DelPhi principle makes possible, and what its limitations

are.  It is clear that the expectations of system behaviour engendered by the new

implementation have outgrown the broadband network, and an alternative is required.

A more comprehensive performance evaluation with standard benchmarks is needed,

and it is hoped to undertake this in the coming year.
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