Ay o ey |
4
. L}

Research Report

IMPLEMENTING PROLOG
- compiling predicate logic programs
Yolume 2

by

David H D Warren

D.A.I. Research Report No. 40

Department of Artificial Intelligence
University of Edinburgh

‘3

IMPLEMENTING PROLOG
- compiling predicate logic programs

olume 2

by ,
David H D Warren

D.A.I. Research Report No. 40

May 1977

Volume 2 - Appendices

1.0

2.0

3.0

4.0

5.0

PLM_Registers, Data Areas and Data structures
PLM Instructions and Literals

Synopsis of the DECsystemlO

Timing Data for PLM Instructions on DEC10

Benchmark Tests

Page

46
49

50

Page 2

1.0 PLM REGISTERS, DATA AREAS AND DATA STRUCTURES

Here we summarise the state of the PLM during unification.
Recall that the machine is attempting to match the head of the current

clause against the current goal. A failure to wunify will cause

backtracking to the latest choice point where the parent goal will be

reconsidered.

Registers

\Y top of local stack = local frame for current clause
V1 top of global stack = global frame for current clause
X local frame for current goal

X1 global frame for current goal

\'AY local frame for latest choice point

Vvl globél frame for latest choice point

TR pushdown list pointer for the trail

PC current instruction

A arguments and continuation of current goal
B a skeleton involved in unification
Y the global frame corresponding to B

Other registers used in the DEC10 implementation

FL. failure label, but only when VV=V

T construct passed as argument to a unification routine
Bl construct passed as argument to a unification routine
c return address for a runtime foutine

R1 temporary results

R2 temborary results

Datd areas and environment layout

local stack

X parent goal’s local frame

global stack

environment © X% X1—F
of current]
goal
environment vy Vi1
of latest
choice point
environment vV~ VV¥ FL VI
of current X | A
clause V1! TR global
cells
local
cells
t !
, temporary
k tcells b
[F
Fields of an environment
A parent goal’s arguments and continuation

V1 global frame corresponding to this local frame

TR

FL

state of TR when parent goal was invoked

Page 3

reset
cell
addresses

TR

failure label, if any, for parent goal; ie. an alternative clause

local frame for the choice point prior to the parent goal

Representations for source and constructed terms

Source term (literal)
var(I)

local(I)

global(I)

void

[atom(I)]

[int(1)]

[£fn(1),...]

DEC10 form

P x 71

X1 I
[0 T e—+svoip: 0 |
[0 : e—f+fsaTOM T |
| 0 e—lsant: 1 |
| 0 | e—-|$SKEL' I

Constructed term (cell value) DECI0 form

undef

ref(L)
atom(I)
int (1)

mol(S,F)

saToM] T |

|$INT 1 I

Ft P Sl

Page 4

2.0 PLM INSTRUCTIONS AND LITERALS

2.1 Summary

literals
var(Il)
atom(I)
int(I)
fn(l)

unification
uvar(N, F,I)
uref(N,F,I)
uatom(N,I)
uint(N,I)
uskel(N,S)
uskeld(N,I)
uskelc(N,S)

control transfer
ifdone(L)
call(L)
try(L)
trylast(L)

-:fed tape"

enter
neck(I,J)
foot(N)
neckfoot (J,N)

extra instructions for clause

Page 5

local(I)
global(I)
void

uvarl (N, F,I)
urefl(N,F,I)
uatoml (N, I)

‘uintl (N, I)

uskell (N, S)

init(I1,J)
localinit(I,J)

cut(Il)
neckcut(I,J)
neckcutfoot(J,N)
fail

indexing

gsect
ssect(L,C)
ssectlast(L)
endssect

ugvar(I)

tryatom(I,C)
tryint(I,C)
tryskel(S,C)
trylastatom(I,C)
trylastint(I,C)
trylastskel(S,C)

switch(N)
case(L)

ifatom(I,L)
ifint(I,L)
iffn(I,L)

goto(L)
notlast

Page 6
2.2 var(1)
Use: An occurrence of a variable in a skeleton. I is the number of

the global variable.

Example: ‘var(2)” for:-

reverse(cons(X,L1),L2,L3) :- reverse(Ll,cons(X,L2),L3).
%%

Effect: Serves as a pointer to a construct which is the value of the
global variable.

DEC10 form:

WD i(Y) swhere i=I.

2.3 atom(I)

Use: An occurrence of an atom in a skeleton or goal is represented by
the address of a literal ‘“atom(I)’ where I identifies the atom.

Example: ‘latom(nil)]” for:-

sort(LO,L) :- gsort(LO,L,nil).
k%%

Effect: The address of the atom literal serves as a pointer to a
construct representing the atom.

DEC10 form:
WD label

label: XWD SATOM,i swhere i = functor number of atom.

¢

Page 7

2.4 int(1)

Use: An occurrence of an integer in a skeleton or goal is represented
by the address of a literal “int(I)” where I is the value of the
integer.
Example: ‘[int(29)]° for:-
leapyear(X) :- duration(february,X,29).
xk -

Effect: The address of the integer literal serves as a pointer to a
construct representing the integer.

DEC10 form:

WD label

label: XWD STHT,i ;where i=I.

2.5 fn(1)

Use: An occurrence of a skeleton term in a goal or in a non-mode “+°

position in the head of a clause is represented by the address of a
skeleton literal, which commences with a functor literal “fn(Il)’ where
I identifies the functor of the skeleton.

Example: “[fn(cons),var(0),var(2)]” for:-

reverse(cons(X,L1),L2,L3) :- reverse(Ll,cons(X,L2),L3).
fkkAfkkhnk

Effect: The address of the skeleton literal serves as the skeleton
component of the molecule which represents the subterm.

DECI0 form:
WD label

label: XWD $SKEL, i swhere i = skeleton’s functor number.
v syinner literals

Page 8

2.6 local(Il)

Use:
is the number of the local wvariable.

Example: “local(0)” for:-

reverse(cons(X,L1),L2,L3) :~ reverse(ll,cons(X,L2),L3).

* %

Effect: Serves as a pointer to a construct which is the value of
local variable.

DEC10 form:

WD i(X) swhere i=I+3.

2.7 global(1)

Use: An occurrence of a global variable as an argument of a goal.

is the number of the global variable.
Example: ‘“global(l)’ for:-

reverse(cons(X,L1),L2,L3) :- reverse(lLl,cons(X,L2),L3).
%%

Effect: Serves as a pointer to a construct which is the value of
global variable.

DEC10 form:

WD i(X1) swhere i=I.

An occurrence of a local variable as an argument of a goal.

the

the

Page 9
2.8 wvoid
Use: An occurrence of a void wvariable (ie.’ the variable occurs
nowhere else) as an argument of a goal.
Example: ‘void” for:-
employed(X) :- employs(Y,X).
*

Effect: Any instruction which attempts to unify against this outer
literal behaves as a (successful) no-operation.
DEC10 form:

WD label

label: XWD $VOID,0

Page 10
2.9 uvar(N,F,T)

Use: Argument N in the head of a clause is the first occurrence of a
variable of type F (local or global), number I. (A temporary variable
will have F=local.)

Example: ‘uvar(l,global,2)’ for:-

reverse(cons(X,L1),L2,L3) :~ reverse(Ll,cons(X,L2),L3).
*%

Effect: The outer literal representing argument N of the current goal
" is accessed via register A and the dereferenced result is assigned to
cell T in frame F of the current environmment, unless the result is a
local reference and F is global. In the latter case, a reference to
cell I in frame E is assigned to the incoming reference, and the
assignment is trailed if necessary.

DEC10 form:

MOVE T,@n{A) swhere n=N.

TLNN T,$1MA

JSP C,SUVAR

MOVEM T,i(reg) swhere i=I+3 and reg=V if F=local
sor i=1 and reg=V1 if F=global.

If N<9 and fastcode is not required, this is condensed to:=-

JSP C,routine
MOVEM T,i(reg)

routine: MOVE T,@n(A)
TLNN T,S1MA
JSP Cl1,...
JRST 0(C)

Page 11

2.10 wuvarl(N,F,I)

Use: Argument N of a skeleton at level 1 in the head of a clause is
the first occurrence of a variable of type F (local or global), number
I. The instruction is not needed if the skeleton is in a mode ‘=
position.

Example: ‘uvarl(l,local,0)” for:-

:-mode reverse(+,+,?).

reverse(cons(X,Ll),L2,L3) :- reverse(Ll,cons(X,L2),L3).
%%

Effect: The inner literal representing argument N of the matching
skeleton 1is accessed via register B and the dereferenced result is
assigned to cell I in frame F of the current environment. Note: if

the result is a reference, it must refer to a global cell, which will
therefore be at least as senior as the cell assigned.

DEC10 form:

MOVE T,@n(B) ;where n=N+1.

TLNN T,$1MA

JSP C,SUVARIL

MOVEM T,i(reg) swhere i=I+3 and reg=V if F=local
50T i=I and reg=Vl if F=global.

If N<5 and fastcode is not required, this is condensed to:-

JSP C,routine
MOVEM T,i(reg)

routine: MOVE T,@n(B)
TLNN T,S$1MA
JSP Cl,
JRST 0(C)

Page 12

2.11 uref(N,F,I)

Use: Argument N in the head of a clause is a subsequent occurrence of
a variable of type F (local or global), number I. (A temporary
variable will have F=local.)

Example: ‘uref(2,local,0)’ for:-

reverse(nil,L,L).
*

Effect: The outer literal representing argument N of the current goal
is accessed via register A and the dereferenced result is unified with
the dereferenced value of cell I in frame F of the current
environment.

DEC10 form:
MCVE B,@n(A) swhere n=N. .
MOVE Bl,i(reg) ;where i,reg are as for “uvar’.
JSP C,SUREF

If N<5 this is condensed to:-

MOVE Bl,i(reg)
JSP C,routine

routine: MOVE B,@n(A)

PR IRY

Page 13

2.12 urefl{(N,F,I)

Use: Argument N of a skeleton at level 1 in the head of a clause is a
subsequent occurrence of a variable of type F (local or global),
number I. The instruction is not needed if the skeleton is in a mode

-’ ’

- position.
Example: ‘urefi(0,global,0)” for:-

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(Ll,L2,L3).
%

Effect: The inner literal representing argument N of the matching
skeleton 1is accessed via register B and the dereferenced result is
unified with the dereferenced value of cell I in frame F of the
current environment.

DEC10 form:
MOVE T,@n(B) swhere n=N+1.
MOVE Bl,i(reg) swhere i,reg are as for “uvar’.
JSP C,SUREFI

If N<3 this is condensed to:-

MOVE Bl,i(reg)
JSP C,routine

routine: MOVE T,@n(B)

+ e

Page 14

2.13 wuatom(N,I)

Use: Argument N in the head of a clause is an atom, identified by I.

Example: ‘uatom(l,september)” for:-

month(9,september) .
kkkhuhkkk

Effect: The outer literal representing argument N of the current goal

is accessed via register A and the dereferenced result is unified with
atom I.

DEC10 form:

MOVE T,@n(A) " ;where n=N.
JSP C, SUATOM
XWD SATOM,i swhere i = functor number of atom.

SUATOM: TLNN T,$1MAS
JRST ...
CAME T,0(C)
JRST $FAIL
JRST 1(C)

If N<8 this is condensed to:-

JSP C,routine
XWD SATOM,i

routine: MOVE T,@n(A)
TLNN T, $1MAS
JSP Cl1,...
CAME T,0(C)
JRST SFAIL
JRST 1(C)

Page 15

2.14 uatoml(N,I)

Use: Argument N of a skeleton at level 1 in the head of clause 1is
an atom, identified by I.

Example: “uvatoml (1,nil)’" for:-

singleton(cons(X,nil)).
*k %

Effect: The inner literal representing argument N of the matching
skeleton 1is accessed via register 2 and the dereferenced result is

unified with atom I.

DEC10 form:

MOVE T,@n(B) swhere n=N-1.
JSP C,SUATOM
XUD SATOM,i :where i = functor number of atom.

If N<5 this is condensed to:-

JSP C,routine
XWD SATOM, i

routine: MOVE T,@n(B)

¢ s .

Page 16
2,15 uint(N,1)

Use: Argument N in the head of a clause is an integer, value I.
Example: ‘uint(0,9)° for:-
month(9,september) .
*
Effect: The outer literal representing argument N of the current goal
is accessed via register A and the dereferenced result is unified with
integer I.

DEC10 form:

MOVE T,@n(A) ;where n=N.
JSP C,SUATOM
XWD SINT,i swhere i = value of the integer.

If N<8 this is condensed to:-

JSP C,routine
XWD SINT,i

routine: MOVE T,@n(A)
TLNN T, $1MAS
JSP Cl,...
CAME T, 0(C)
JRST SFAIL
JRST 1(C)

Page 17

2,16 uintl(N,I)

‘Use: Argument N of a skeleton at level 1 in the head of a clause 1is
an integer, value I.

Example: “uintl(l,2)” for:-

differentiate{square(X),X,*(X,2)).

=

Effect: The imnner literal representing argument N of the matching
skeleton 1is accessed via register B and the dereferenced result is
unified with nteger I.

DEC10 form:

MOVE T,Cn(B) swhere n=N+1.
JSP C,SUATGM
XWD SINT,i swhere 1 = value of the integer.

If N<5 this is condensed to:-

JSP C,routine
XWD SINT,i

routine: MOVE T,@n(B)

. e

Page 18
2.17 wuskel(N,S)

Use: Argument N in the head of a_clause is a skeleton term for which
S is the address of a corresponding skeleton literal. (Not used for a
mode ‘+° or mode -’ position.)

Example: ‘uskel(2,[fn(cons),var(0),var(2)]) for:-

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1l,L2,L3).
kkkkkkhhhk

Effect: The outer literal representing argument N of the current goal
is accessed via register A and dereferenced. If the result is a -
reference, a molecule is assigned to the cell referenced, the
assignment is trailed if necessary and register Y is set to “undef’.
The molecule is constructed from S and the address of the current
global frame given by register V1. If the result of the dereferencing
is not a reference, a failure occurs unless the result is a molecule
with the same functor as S. In the latter case register B.-is set to
the address of the skeleton part of the matching molecule and register
Y to the address of its (global) frame.

DEC10 form:

MOVE B,@n(A) swhere n=N.

JSP C,SUSK
WD address jof literal S.
SUSK: HLRZ Y,B ;load type of B into Y.

CAIGE Y,S$MOLS ;if B isn’t a molecule
JRST @table(Y) s switch on Y.

MOVE R1,0(B) sload functor of B. .
CAME R1,@0(C) ;if different from functor of S
JRST S$FAIL s then fail.

JRST 1(C) sreturn to in-line code.

If N<5 this is condensed to:-

JSP C,routine
WD address

routine: MOVE B,@n(A)

LR

Page 19

2.18 wuskell(N,S)

B

- Use: Argument N of a skeleton at level 1 in the head of a clause is

another skeleton term for which S is the address of a corresponding
skeleton literal.

Example: “uskell (0, [fn(int),var(0)])" for:-

expr(cons(int(N),S),S,N).
fkkkkk

Effect: The inner literal representing argument N of the matching
skeleton 1is accessed via register B and the dereferenced result is
unified with the molecule formed from S and the global frame address
in register Y.

DECIO form:

MOVE T,@n(B) swhere n=N+1.
JSP C,$USK1
WD address sof literal S.

SUSKl: HLRZ RI,T
CAIGE R1,$MOLS
JRST @table(R1)
MOVE R2,@0(C)
CAME R2,0(T)
JRST $FAIL

If N<3 this is condensed to:-

JSP C,routine
WD address

routine: MOVE T,@n(B)

e

2.19 uskeld(N,I)
Use:

position has mode “+°.

Examgle:

s-mode concatenate(+,+,-).

Argument N in the head of a clause is a skeleton term, and

: Page 20

this

I identifies the functor of the skeleton term.

“uskeld(0,cons)’ for:-

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1,L2,L3).

*kkk

Effect:
literal

cf.

“uskel’. The result of dereferencing the matching
is guaranteed to be a non-reference.

outer .
A failure occurs unless

it is a molecule with functor as indicated by I. Register B is set to
the address of the skeleton part of the molecule and register Y to the

address of the (global) frame.

DEC10 form:

MOVE B,@n(A)
JSP C,SUSKD
XWD $SKEL, i
SUSKD: HLRZ Y,B
CAIGE Y, S$MOLS
JRST @table(Y)
MOVE R1,0(B)
CAME R1,0(C)
JRST S$FAIL
JRST 1(C)
If N<5 this is condensed to:-
JSP C,routine
XWD $SKEL,i

routine: MOVE B,@n(A)

swhere n=N,.
scf. £n(I).

sload type of B into Y.
3if B isn’t a molecule

3y switch on Y.

sload functor of B.

3if different from fn(I)
;3 then fail.

sreturn to in-line code.

Page 21
2.20 uskelc(N,S)

Use: Argument N in the head of a clause is a skeleton term, and this
~position has mode “-". S is the address of a corresponding skeleton
literal.

Example: “uskelc(2,[fn(cons),var(0),var(l)])” for:-

:-mode concatenate(+,+,-).

concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(Ll,L2,L3).
kkhkkikhik

Effect: cf, ‘uskel”. The result of dereferencing the matching outer
literal 1is guaranteed to be a reference. A molecule formed from S
with global frame address from V1 is assigned to the cell referenced
and the assignment is trailed if necessary.

DECI0 form:

MOVE B,@n(A) swhere n=N.
JSP C,S$USKC
WD address ;of literal S.
$USKC: JUMPE B,UNDO 3if B=undef goto UNDO.
CONTINUE: CAILE B,SMAXREF ;if B is not a
reference
JRST 1(C) s then it“s a void so return.
SKIPN R1,0(B) 3if B is fully dereferenced
JRST ASSIGN s then goto ASSIGN.
ves - j;else continue dereferencing.
UNDO: MOVEI B,@-2(C) sundo initial dereference step.
ASSIGN: ... sproceed with assignment.
If N<8 this is condensed to:- -
JSP C,routine s;call special subroutine.
WD address saddress of skeleton literal S.
routine: SKIPE B,@n(A) sderef.arg.N into B _unless undef

JRST CONTINUE ;s goto CONTINUE.
MOVEI B,@n(A) sload addr.of undef cell into B.
JRST ASSIGN sgoto ASSIGN

Page 22
2,21 init(1,J)

Use: The instuction is used (a) following a “uskel’ or ‘uskelc’, or
(b) preceding a ‘uskell’ which is an argument of a ‘uskeld’
instruction, or (c¢) preceding a “neck’. I to J-1 inclusive are the
numbers of global variables having their first occurrences in,
respectively, (a) the level 1 skeleton or (b) the level 2 skeleton or
(c) the body of the clause concerned. The instuction is omitted if
there are no such variables (ie. 1=J).

Example: The three different cases are illustrated by the wuse of
“init(1,2)” for each of:-

(a) concatenate(cons(X,L1),L2,cons(X,L3)) :- concatenate(L1l,L2,L3).
_ *

(b) :-mode lookup(?,+,?).
lookup(X,tree(_,pair(X,Y),_),Y).
%

(c) member(X,L) :- concatenate(Ll,cons(X,L2),L).
%
Effect: The cells for the global variables I through J-1 are
initialised to ‘undef’. _
DEC10 form:

SETZM n(V1) ;for each n from 1
PR 5 to J-1

If J-I > 2 this is condensed fo:-

MOVEI R1,j (V1) swhere j=J.
JSP C,routine

routine: SETZM -i(R1l) swhere i=I.
SETZM 1-i(R1)
SETZM -1(R1)
JRST 0(C)

Page 23

2.22 localinit(1,J)

Use: Precedes a “neck” instruction. The local variables which have
their first occurrences within the body of the clause are numbered
from I to J-1 inclusive. The instructicn is omitted if there are no
such wvariables (ie. I=J). Note if both an “init” and a “localinit”’
precede a “neck’ instruction, the order of the two is not important.

Example: ‘localinit(l,2)” for:-

member(X,L) :- concatenate(Ll,cons(X,L2},L).
*

Effect: The cells for the 1local variables I through J-1 are
initialised to “undef”’.
DEC10 form:

SETZM n(V) sfor each n from I+3
.o s to J+2

If J-I > 2 this is condensed to:-

MOVEI R1,j(V) swhere j=J+3.
JSP C,routine

routine: SETZM -i(R1) swhere i=I+3.
SETZM 1-i(R1)
SETZM -1(R1)
JRST 0(C)

Page 24
2.23 ifdone(L)

Use: Precedes the instructions for the arguments of a 1level 1

’

skeleton (not occurring in a mode “+° or mode "-’ position). L is the
address following the last argument instruction.

Example: ‘“ifdore(labell)” for (cf. Section $$):-

member(X,cons(X,L)).
%

Effect: If register Y contains “undef’, indicating that the skeleton

o

has matched against a reference, control is transferred to label L,
thereby skipping the argument instructions.

DEClQ fornm:

JUMPE Y,label ;where label=L.

2.24 call(l)

Use: Corresponds to the predicate of a goal in the body of a clause.
L is the address of the procedure code for the predicate.

Example: 'call(feverse)' for:-

reverse{cons(X,L1),L2,L3) :- reverse(Ll,cons(X,L2),L3).

LT
Effect: The address of the outer literals and continuation which
follows the ‘call’ instruction is assigned to register A and control

is transferred to L.

DEC10 form:

JSP A,label ;where label=L.

Page 25

2.25 try(L)

. Use: (a) In unindexed procedure code, each clause in the procedure is
represented by an instruction “try(L)’ where ‘L’ is the address of the

clause’s code. These instructions are ordered as the corresponding
clauses in the source program.
(b) The “try’ instruction is also used in indexed procedure code.

Effect: The address of the following instruction is stored in the FL
field of the current environment and control is transferred to "L”.

(In our DECI(Q implementation, the address is saved in register FL and
is only stored in the FL field if and when the “neck’ instruction is
reached.)

DEC10 form:

JSP FL,label swhere label=L.

2.26 trylast(L)

Use: (a) In unindexed procedure code, it replaces the “try(L)’
instruction for the last clause in the procedure.
(b) The instruction is also used in indexed procedure code.

Effect: Registers VV and VYl are reset to the values they held at the
time the current goal was invoked. Control is transferred to ‘L.

DEC10 form:
HLRZ VV,0(V) . 3VV:=VV field of current env.

HLRZ VV1,2(VV) 3VV1:=V1 field of the VV env.
JRST label . swhere label=L.

Page 26

2.27 enter

Use: The first instruction in the procedure code for a predicate. It
is executed immediately after a “call’ instruction.

Effect: The instruction is responsible for initialising the control
information in a new environment. The VV,X,A,V1,TR fields in the
local frame are set from the VV,X,A,V]1,TR registers. Registers VV and
VV1 are then set to the values of registers V and V1 respectively.

DEC10 form:
JSP C,SENTER

SENTER: HRLZM VV,0(V) 3sVV field set.
HRLI A, (X)
MOVEM A, 1(V) ;X,A fields set.
HLRZM TR, R1
HRLI RI1,(V1)
MOVEM R1,2(V) 3V1,TR fields set.
MOVEI VV, (V) ;VVe=v,
MOVEI VV1, (V1) sVVLI:=Vl.
MOVEM TR, STRO ;save TR in location S$STRO.
JRST 0(C) sreturn.

by the sizes of (the non-temporary part of) the local frame and of the
to ensure a

global

frame

respectively.

Both

2.28 neck(1,J)
Use: Precedes the body of a non-unit clause having I local variables
(excluding temporaries) and J global variables.
Example: “neck(l,1)” for:-

rterm{T,N,N,wd (Atom)) :~ flagatom(T,Atom).

%

Effect: Registers X and X1 are set from registers V and
respectively. The contents of registers V and V1 are then incremented

stacks are checked

- sufficient margin of free space.

DEC1Q form:

SNECK:

JSP C,$NECK
WD i(V)
WD j (V1)

HRRM FL, 0(V)
MOVEI X, (V)
MOVEI X1, (V1)
MOVEI V,@0(C)
MOVEI V1,@1(C)
CAMLE V, $VMAX
JSP R1,..

CAMLE V1, $VIMAX
JSP R1,...

JRST 2(C)

If J=0 this is condensed to:-

$NECK1:

JSP C,$NECK1
WD i(V)

HRRM FL, 0(V)
MOVEI X, (V)
MOVEI V,@0(C)
CAMLE V, $SVMAX
JSP R1,...
JRST 1(C)

swhere i=I+3.
swhere j=J.

;jset FL field in local frame.

s Xe=V,

sX1:=V1,

s Ve=V4i,

sV1ie=VI1+j.

3if insufficient local freespace
3y call subroutine.

3if insufficient global freespace
3 call subroutine.

sreturn to in-line code.

If J=0 and I<5 this is further condensed to:-

routine:

JSP C,routine

HRRM FL, 0(V)
MOVEI X, (V)
MOVEI V,i(V)
CAMLE V, $VMAX
JSP R1,...
JRST 0(C)

swhere 1=14-3.

Page 28

2.29 foot(N)

Use: At the end of a non-unit clause for a predicate of arity N.

Example: “foot(3)" for:-

concatenate(cons(X,L1l),L2,cons(X,L3)) :-~ concatenate(Ll,L2,L3).
*

Effect: If the register VV indicates a point on the local stack
earlier than register X, V 1is assigned the contents of X. Thus a
determinate exit from the current procedure results in all the local
storage used during the process being recovered. A, X and X1 are
reset from the corresponding field in the parent local frame pointed
to by X, and control is transferred to the parent’s continuation.

DECI0 form:

JSP C,$FOOT

WD n(A) ;where n=N.
SFOOT: CAILE X, (VV) ;if X>VV
MOVEI V, (X) ; then V:=X.
MOVE A, 1(V) sreset A from parent.
HLRZM A,X sreset X from parent.
HLRZ X1,2(X) sreset X1 from parent.
JRST @0 (C) sgoto parent’s continuation.

If N<9 this is condensed to:-
JRST routine

routine: CAILE X, (VV)
MOVEI V, (X)
MOVE A, 1(X)
HLRZM A, X
HLRZ X1,2(X)
JRST n(A) ;where n=N.

Page, 29

S

Ka . ‘

2.30 neckfoot(J,N) to ' "ﬁ;

Use: The last ~instruction for ‘a unit clause. It replaces a
Theck(0,J)° followed by a 'fooqﬂN)' where ‘J’ is the number of global
variables and N is the arity of the predicate of the clause. (Note
that a unit claiise has no non-temporary local variables.)

Example: ’neckicbt(0,3)f for:-

concatenate(nil,L,L).
*

fiffect: The instruction combines the effect of the ‘neck’ and ‘foot’
instructions it replaces. However considerable computatién is saved;
registers A, X and X1 do not have to be modified. "Registers V1 and
(if a non-determinate exit) V are incremented to take account of the
new global and 1local frames, and control is transferred to the
parent’s continuation. ’

DEC10 form:

MOVEI V1,j(Vl) swhere j=J.

JSP C,SNKFT :
WD n{A) -3where n=N.

SNKFT: CAILE V,(VV) + 3if V>VV (de. determinate exit)
"JRST BELOW s then skip to BELOW.
HRRM FL,0(V) . ;set FL field in local frame.
MOVEI V,3(V) sVi=V+3,
CAMLE V, SVMAX ;if insufficient local freespace
JSP R1,... ;3 call subrdutine.

BELOW: . CAMLE V1,$VIMAX ;if insufficient global freespace

-~ JSP Rl,... ; call subroutine. o

JRST @0 (C) ;goto parent’s continuation.

If J=0 this is condensed to:-—

CAIG V, (VV) ;if V =< VV (ie. non-determinate)

jSP C, SNKFTO ;. then call subroutine SNKFTQ
JRST n(A) . 3. else goto parent’s continuation.

SNKFTO: HRRM EL,0(V) :
.+ MOVEI V,3(V) ‘ =
* CAMLE V, $VMAX '
JSP'R1,...
JRST @0(C) , _ =

If J=0 and N<9 this is further condensed to:- ‘ .
JRST roufiqe
routine: CAIG V,(VV)

JSP C, SNKFTO
JRST n(A)

Page 30

2.31 cut(Il)

Use: Corresponds to an occurrence c¢f the cut symbol. I is the number
of local wvariables (excluding temporaries) in the clause, as for the
instruction “neck(I1,J)”.

Example: “cut(2)’ for:-

compile(S,C) :- translate(S,C),!,assemble(C).

s
-

- Effect: Any remaining local frames created since the environment of

the current clause are discarded by resetting register V to point at
the end of the current local frame. Registers VV and VV1 are reset to
the backtrack environment of the parent. The portion of the trail
created since the parent goal is '"tidied up" by discarding references
to variables if they don”t belong to enviromments before the backtrack
environment.

DEC10 form:

MOVEI V,i(V) ;Vi=V+i where i=I+3.
JSP C,SCUT
$CUT: CAILE X, (VV) ;if no alternatives to cut
JRST 0(C) ; then return.
HLRZ VV,0(X) sreset VV from parent.
HLRZ VVI1,2(VV) ;reset VVI from parent.
HRRE P, 2(X) ;sP:= 1h of TR for parent.
ADD P, STRTOP sP:= rh of TR for parent.
CAIN P, (TR) ;if no change to TR
JRST 0(C) ; then return.
MOVEIL P1, (TR) sPl:=rh of TR for parent.
MOVEI R1, (TR) ;
SUBI R1, (P) ;R1l:=delta=increase in trail size.
HRLI RI1,(R1) ;reset TR to its original value:-
SUB TR,R1 3 TR:=TR-(delta,delta).
CYCLE: MOVE R1,1(P) ;load one of the new trail entries.
CAIL R1,(VV) ;3if refers after VV
JRST CONTINUE ;3 then continue with next entry.
CAIGE R1,(V1) ;if refers after V1 (ie. is local)
CAIGE RI1,(VV1) ;or before VVI
PUSH TR, (R1) ; then restore it to trail.
CONTINUE: CAIE Pl,1(P) 3if more trail entries to consider
AOJA P, CYCLE ; then P:=P+1, goto CYCLE.
JRST 0(C) ;jreturn.

If I<10 this is condensed to:-
JSP C,routine

routine: MOVEI V,i(V)
JRST S$CUT

Page 31

2.32 neckecut(1,J)

Use: Corresponds to a cut symbol which is the first "goal'" in the
body of a non-unit clause. It replaces a “neck(I,J)” followed by a
‘cut(I)” where I and “J° are the numbers of local and global
variables respectively.

Example: “neckcut(0,0)” for:-

divide(X,0,Y) :-!, error(’division by 07).
fkk

Effect: The instruction combines the effects of the corresponding
“neck” and ‘“cut’ instructions in a straightforward way.

DEC10 form:
JSP C,S$NCUT
WD (V) swhere i=I+3.
WD j(V1) swhere j=J.

If J=0 this is condensed to:-

JSP C,SNCUTI
WD i(V)

If J=0 and I<5 this is further condensed to:-
JSP C,routine
routine: MOVEI X, (V)

MOVEI V,i(V) swhere i=I+3.
JRST ...

Pége 32

2.33 neckcutfoot(J,N)

Use: Corresponds to a cut symbol which is the only "goal" in the body
of a clause. It replaces instructions ‘neck(0,J)” followed by
‘cut(0)’ followed by ‘foot(N)” where “J° is the number of global
variables and N is the arity of the predicate of the clause.

Example: “neckcutfoot(0,2)” for:-

factorial(0,1):-!.
Kk

Effect: Combines the effect of the three instructions it replaces.
As with “neckfoot’, considerable computation is saved since registers
A, X and X1 do not have to be modified. Register V1 is incremented to
take account of the new global frame, registers VV and VVI are reset
to their states prior to invoking the parent goal and trail entries
are discarded where possible. Finally control is transferred to the
parent’s continuation.

DEC10 form:

MOVET V1,j (V1) swhere j=J.
JSP C,SNCTF)
WD n(A) swhere n=N.

SNCTF: CAMLE V1,$VIMAX ;if insufficient local freespace
JSP R1,... ;s call subroutine.
CAILE V, (VV) ;3if V>VV (already determinate)
JRST @0 (C) ; then goto parent’s continuation.
SNCTFQ: HLRZ VV,0(V) sreset VV,
HLRZ VV1,2(VV) sreset VVI1.
. H
5
5
H

perform rest of cut.

JRST @0 (C) goto parent’s continuation.

If J=0 this is condensed to:-

CAIG V, (VV) ;3if V =< VV (not already determinate)
JSP C,SNCTFO ; then call subroutine $NCTFO.
JRST n(A) ;goto parent’s continuation.

Page 33
2.34 fail

Use: Corresponds to a goal “fail” in the body of a clause. This goal
is defined to be unsolvable and instigates (deep) backtracking.

Example: “fail” for:-

unknown(X) :~- known(X),!,fail.
g

Effect: Registers V, V1, A, X and X1 are reset to the values they had
prior to the most recent goal which is non-determinate (ie. one for
which there are still further choices available). Register TR is also
restored to its earlier value by popping entries off the trail and
resetting the cells referenced to ‘undef’. Finally control is
transferred to the clause which is the next choice for the earlier
goal.

DECI0Q formf

JRST SEFAIL

SEFAIL: MOVEI V,(VV) 3Ve=VV
MOVEI V1, (VVl) 3V1:=VVl
HRRZ FL,0(V) ;FL:=next clause for earlier goal.
MOVE A, 1(V) sreset A
HLRZM A,X sreset X
HLRZ X1,2(X) sreset X1
HRRE R1,2(V) sRl1:=1h of earlier TR.
ADD R1,S$TRTOP sR1:=rh of earlier TR.
CAIN R1,(TR) 3if no change to TR
JRST EXIT 5 then goto EXIT.

CYCLE: POP TR,R2 spop an entry off the trail.
SETZM (R2) * 3set cell refd. to ‘undef’.
CAIE R1,(TR) 3if more trail entries to consider

. JRST CYCLE 3 then goto CYCLE.

EXIT: MOVEM TR, STRO ssave TR in location STRO
JRST @FL ;goto next clause.

Note in passing that a failure in a wunification instruction causes
control to be transferred to a routine $FAIL which instigates shallow
backtracking:-

SFAIL: CAIE V,(VV) if V = VV (no other choices)

]
JRST SEFAIL 3 then deep backtracking.
CAMN TR, $TRO 3if no trail entries from this unifn.,
JRST @FL s then goto next clause.
CYCLE1l: POP TR,R2 ;pop an entry off the trail.
SETZM (R2) ;set the cell refd. to “undef”.
CAME TR, $TRO ;1f more trail entries to consider
JRST CYCLEIL 3 then goto CYCLEL.

JRST @FL ;goto next clause.

Page 34

2.35 gsect ,

Use: Precedes a general section of clauses having a variable at
position 0 in the head.

Effect: The outer literal representing argument O of the current goal
is accessed via register A and the dereferenced result is assigned to

cell 0 in the current local frame.

DEC10 form:

JSP C,$GS

$GS: MOVE B,@0(A) 3B := arg. 0
HLRZM B,Y 3Y ¢= type of arg. 0
CAIG Y, SSKEL ;if arg. 0 is not a molecule
JRST @table(Y) s then switch on type.
MOVEM B, 3(V) slocal cell 0 := arg. O
JRST 0(C) sreturn.

In practice the code is optimised by

(1) coalescing the code for ‘enter’ immediately followed by ‘gsect’,
(2) “ssect’ initialises local cell 0 as a side effect so that “gsect’
doesn’t have to be called if no clauses in the special section are
entered,

(3) “endssect’ performs the work of “gsect’ if the matching term is a
reference so “gsect’ only needs to handle the non-reference case.

Page 35

2.36 ssect(L,C)

Use: Precedes a special section of clauses having a non-variable at
position 0 in the head. L is the address of the reference code for
the section and C is the address of the section which follows.

Effect: 1If the dereferenced value of argument 0 in the current goal
is a reference, control is transferred to L. Otherwise register FL is

set to C and control passes to the non-reference code which follows
the “ssect’ instruction.

DECI0 form:
JSP C,S$SS

WD refcode swhere refcode=L
WD nextsection ;where nextsection=C

$SS: MOVE B,3(V) 3B := arg.0 from local cell 0
HLRZM B, Y sY = type of arg. O
JUMPE Y, @0 (C) 3if arg.0 is a ref goto refcode.
MOVE FL,1(C) FL := nextsection
MOVEM B, R2 R2 := arg. O
f

H

H
CAIL Y, $MOLS 3if arg.0 is a molecule
MOVE R2,0(B) 3 then R2 := functor of arg.0
JRST 2(C) sjreturn to non-reference code.

The above is an optimisation, used only if it is not the first section
in the procedure. ‘enter’ immediately followed by “ssect’ is treated
as a special case. Register R2 is set to the address of the atom,
integer -or functor literal for argument 0. If argument 0 is a
referénce, this is trailed once and for all to avoid repeated
"trailing" for each of the clauses in the section. '

Page 36

2.37 ssectlast(L)

Use: Precedes a special section which is the 1last section of a
procedure. L is the address of the reference code for the section.
Effect: 1If the dereferenced value of argument 0 in the current goal
is a reference, control is transferred to L. Otherwise registers VV

and VV]1 are reset to the values they held at the time the current goal

was invoked and control passes to the reference code which follows the
‘ssectlast’

DEC10 form:

$SS1:

2.38

Use:

Effect:

JSP C,$SS1
WD refcode

MOVE B,3(V)
HLRZM B,Y
JUMPE Y, @0 (C)
HLRZ VV,0(V)
HLRZ VVL1,2(VV)
MOVEM B, R2
CAIL Y, $MOLS
MOVE R2,0(B)
JRST 1(C)

‘endssect

The reference passed as argument 0 1is

instruction.) ‘

;where refcode=L

3B := arg.0 from local cell 0.

3Y := type of arg.0

;if arg.0 is a ref. goto refcode.
sVV := VV field of current env.

3VV1 := V1 field of the VV env.
sR2 := arg.0

;if arg.0 is a molecule

s then R2 := functor of arg.0.

sreturn to non-reference code.

Terminates the reference code at the end of a special section.

recovered from the

trail and stored in local cell 0. The following “gsect’ instruction is

skipped.

DEC10 form:

$ENDRC:

JSP C,$ENDRC

POP TR,RI
MOVEM TR, $TRO
S0S 2(V)
SETZM (R1)
MOVEM R1,3(V)
JRST 1(C)

spop last trail entry into RIl.
sTRO := TR.

scorrect TR field of current env.
;set cell referenced to undef.
;local cell 0 := the reference.
sreturn, skipping one instruction.

Page 37

2.39 switch(N)

.

Use: Precedes the non-reference code in a special section if there is
a sufficient number of clauses in the section (currently 5 or more). N
is the number of ‘case’ instructions which follow and is a power of 2
chosen depending on the number of clauses in the section.

Effect: A key, determined by the principal functor of argument (0 of
the current goal, is "anded" with N-1 to give a value M. Control is

then transferred to the (M+l)th. ‘case’- instruction.

DEC10 form:

MOVEI RI1, (R2) ;R1 := key

ANDI Rl,n-1 sR1 := key/(N-1)

JRST. @GNEXT (R1) ;goto case (R1)
NEXT:

2.40 case(L)

Use: A “switch(N)“ instructicn is followed by N “case’” instructions.

The parameter L 1is the address of the code for the subset of the
section”s clauses corresponding to that case. .

Effect: Control is transferred to address L by the preceding “switch’
instruction.

DEC10 form:-

WD label swhere label=L.

Page 38

«

2,41 ifaton
Use: In the non-reference code of a special section, the clause(s)
for the atom identified by I is indicated by address L.

Effect: If argument 0 of the current goal is atom I, control is
transferred to address L.

DECI10 form:

CAMN R2,atom swhere atom = addr. of atom I literal.
JRST label swhere label=L.

2,42 ifint(I,L)

: In the non-reference code of a special section, the clause(s)

Use
for integer I is indicated by address L.

Effect: If argument 0 of the current goal is integer I, control is
transferred to address L.

DEC1I0 form:

CAMN R2,int swhere int = integer I literal
JRST label swhere label=L.

2.43 iffn(1,L)

Use:

In the non~-reference code of a special

Page 39

section, the clause(s)

for the functor identified by I is indicated by address L.

Effect:
functor I,

registers

If the principal functor of argument 0 of the current goal is
B and Y are ser according to this molecule and

control is transferred to address L.

DEC10 form:

Note that in the actual implementation, registers B and Y are

CAMN R2,functor

JRST label

swhere functor = addr of fn I literal.
swhere label=L.

set by

“ssect’ or else by the following preceding the CAMN:-

$RLDSK:

DEREF:

JSP C, $RLDSK

MOVE B,@0 (A)
HLRZ Y,B
CAIL Y,MOLS
JRST-0(C)
JUMPE Y,DEREF
MOVEI B,Q0 (A)
HRLI B, (X1)
MOVEIL Y, (X1)
JRST 0(C)

MOVE B,0(B)
HLRZ Y,B
JUMPE Y, DEREF
JRST 0(C)

3B := argz.0

sY := type of arg.0

3if arg.0 is a molecule

3 then return.

sif arg.0 is a ref. goto DEREF.
3B := skel. literal in the goal.
31h. of B := X1.)

3Y = X1.

sreturn.

3B := deref B.

3Y := type of B.

sif B is a ref. goto DEREF.
sreturn

Page 40

2.44 goto(L)

Use: (1) Following a sequence of “if’ instructions or a sequence of
“try’ dinstructions in a special section, L is the address of the
following section.

Effect: Control is transferred to address L.

DEC10 form:

JRST label swhere label=L.

2.45 notlast

Use: If there is more than one clause for a particular functor in a

special section, the ‘try’ instructions are preceded by a “notlast’
instruction.

Effect: Registers VV and VV]1 are reset from V and V1 respectively to
indicate the current environment.

DEC10 form:

JSP C,$NLAST

SNLAST: MOVEI VV, (V) ;VV:e=
~ MOVEI VVI, (V1) ;VV1:=V1
MOVEM TR, STRO ;TRO:=TR

JRST 0(C) ;return

Page 41

2.46 ugvar(l)‘

Use: 1If argument 0 of the head of a clause is a global variable (and
the procedure code is to be indexed), this term is represented by
“ugvar(1)‘ where I is the number of the global variable.

Effect: The construct which has been assigned to local cell 0 (by the
corresponding “gsect’ instruction) is also assigned to global cell I
unless the construct is a local reference. 1In the latter case global
cell I is initialised to undef and a reference to global cell I is
assigned to the local reference. This assignment is trailed if
necessary. .

DEC10 form:

JSP C,S$GTERL

MOVEM T,i(V1)
SGTERL: MOVE T,3(V)
CAIG T,MAXREF
CAIGE T,@0(C)
JRST 0{C)
MOVEI R1,@0(C)
SETZM (R1)
MOVEM R1, (T)
CAIGE T, (VV)
PUSH TR,T
JRST 1(C)

;global cell I :=T

T := local cell 0O

if T not a reference

;or T < global cell I

3 then return.

3Rl := addr. of global cell I
;global cell I := undef

;cell T := Rl

3if T < VV

3 then push T onto the trail
sreturn, skipping 1 instr.

Page 42

2.47 tryatom(I,C)

Use: In the reference code of a special section, a clause with atom I
as argument 0 of the head 1is represented by the instruction
“tryatom(I,C)°. C is the address of the clause’s code.

Effect: The atom is assigned to the matching reference and the

assignment is trailed. Register FL 1is set to the address of the
following instruction and control is transferred to C.

DECI0 form:

JSP C,SRVAT
XWD clause,atom jclause=C,atom= aton I.

SRVAT: MOVEI FL, 1(C) ;FL := next PLM instr.
MOVE R1,0(C) sR1 := (clause,atom)
HLRZM R1,C 3C := clause.
MOVE R1,0(R1l) ;R1 := atom.
MOVEM R1,@0(TR) j;trailed ref. := atom.
JRST 0(C) sgoto clause.

Note that the matching reference has already been trailed by ’ssect’.

2.48 tryint(1,C)

Exactly analagous to ‘tryatom’. The DECI0 form uses routine $RVAT
also.

Page 43

2.49 tryskel(S,C)

.

Use: In the reference code of a special secticn, a clause with a
skeleton as argument O in the head is represented by “tryskel(S,C)". S
is the address of the skeleton literal and C of the clause’s code.

Effect: A molecule is formed from S with current global frame address
from register V1 and assigned to the matching reference. The
assignment is trailed. Register Y is set to “under” and register FL
to the address of the following instruction. Control is transferred
to C.

DEC10 fecrm:

JSP C,S$RVSK
XWD clause,skeleton j;clause=C,skeleton=S.

SRVSK: MOVET Y,0 3Y = undef.
MOVEI FL, 1(C) ;FL := next PLM instr.
MOVE R1,0(C) 3Rl := (clause,skeleton).
HLRZM R1,C 3C 1= clause.
HRLI R1, (V1) sR1 := (V1,skeleton).
MOVEM R1,@0(TR) ;trailed ref. := (Vl,skel.). .
JRST 0(C) sgoto clause. ’

Note that the matching reference has already been trailed by “ssect”.

Page 44

2.50 trylastatom(I,C)

Use: 1If the final clause in a procedure has atom I as argument 0 of
its head, the clause 1is represented 1in the reference code by the
instruction ‘trylastatom(1,C)’, where C is the address of the clause’s
code. No “endssect’ is needed at the end of the section.

Effect: The atom is assigned to the matching reference but .the
assignment need not be trailed. Registers VV and VVl are reset to
indicate the previous backtrack point. Control is transferred to C.

DEC10 form:

JSP C,SRVATI1
XWD clause,atom jclause=C, atom = atom I.

SRVATI: HLRZ VV,0(V) ;3VV := VV field of current env.
HLRZ VV1,2(VV) ;VVL := V1 field of the VV env.
MOVE R1,0(C) sR1 := (clause,atom).
HLRZM R1,C 3C := clause.
MOVE R1,0(R1) 3R1 := atom.
MOVEM RI,@0(TR) j;trailed ref. := atom.
JRST 0(C) ;goto clause.

Note that the matching reference has already been trailed by ‘ssect’.

2.51 trylastint(1,C)

Exactly analogous to ‘trylastatom’. The DEC10 form uses routine $RVATI
also.

Fage 45

2.52 trylastskel(S,C)

.

. Use: 1If the final clause in a procedure has a skeleton as argument 0
of its head, the «clause is represented in the reference code by an
instruction “trylastskel(S,C)’, where S is the address of the skeleton
literal and C is the address of the clause’s code. No “endssect’ is
needed at the end of the section.

Effect: A molecule is formed from S with the ' current global frame
address from register V1 and assigned to the matching reference. The
assignment need not be trailed. Register Y is set to ‘undef’.
Registers VV and VV1I are reset to indicate the previous backtrack
point. Countrol is then transferired to C.

DECIQ form:
JSP C,SRVSK1
XWD clause,skeleton j;clause=C,skeleton=S.

SRVSKl: MOVEI Y,0

3Y = undef.
HLRZ VV,0(V) H
3

V :=VV field of current env.
V1 := V1l field of the VV env.

Y
\Y
HLRZ VV1,2(VV) \'
Ri := (clause,skelzton).
c
R
t
g

MOVE R1,0(C)
HLRZM R1,C
HRLI R1, (V1)
MOVEM RI1, @0 (TR)
JRST 0(C)

b
3C := clause.

sR1 := (V1,skeleton).

strailed ref. := (Vl,skeleton).
;goto clause.

Note that the matching reference has already been trailed by ‘ssect’.

Page 46

3.0 SYNOPSIS OF THE DEC SYSTEM 10

The machine has 36 bit words which can accommodate two 18 bit
addresses. Addresses (0 to 15 refer to fast registers which are used
as accunmulators and (for 1 to 15 only) as index registers. Signed
integers are represented as "2s complement" bit patterns. The

instruction format is:-

0 9 1314 18 36
[cobE 1A Il X [¥ [
where CODE = instruction code,
A = accumulator address,
I = indirection bit,
X = index register address,
Y = main address.

An instruction with I=1 is written symbolically in the form:-

CODE A, @Y (X)
If I=0 the “@" is omitted. If A=0 it can be omitted along with the
comma. If X=0 it can be omitted along with the brackets. If Y=0 it

can be omitted.

A fundamental mechanism is the "effective address calculation"

which is the first step in the execution of each and every
instruction. It computes an effective address E depending on I, X and
Y. If X is nonzero, the contents of index register X is added to Y to
produce a modified address M (modulo 2 to the power 18). If 1I=0 then
simply E=M. If 1I=1, the addressing is indirect and E is derived by
treating the I, X and Y fields of the word stored at M in exactly the
same way. The process continues until a referenced location has I=0
and then E is calculated according to the X and Y fields of this

location.

Page 47

Two “instructions, PUSH and POP, access pushdown lists which are
stored in main memory. A pushdcwn list is referenced via a pushdown
list pointer held in an accumulator. The right half of this word is
the addrese of the current last item in the list. The left half
(normally) ccountains the negative quantity M-L where M is the maximum

size of the list and L is the current size.

The instructions veferred to in this paper are summarised below.
In all cases A 1is the accumulator address and E is the effective

address computed as above. We write:-

x) for "the contents of lccaticen X",

X.L for "the left half of location X"

X.R for "the right half of location X",

(X,Y) for "the word with left half X and right half YV,
sign X for "-1 if the top bit of X is 1 or 0 otherwise",
Y:=X for "location Y is assigned the value X".

skip for "skip the next instruction"
Instruction Effect
MOVE A, E A:=(E)
MOVEIL A,E A:=E
MOVEM A, C E:=(A)
SETZM E E:=0
ADD ALE A:=(A)+(E)
SUB A,E A:=(A)-(E)
SUBI A,E A:=(A)-E
AOS E E:=(E)+1
SOS E E:=(E)-1
HLRZ A,E A:=(0,(E.L))
HRRZ A, E A:=(0, (E.R))
HLRZM A, E E:=(0,(A.L))
HRLZM A, E E:=((A.R),0)
HRLI A,E A.L:=E
HRRM A, E E.R:=(A.R)
HRRE A, E A:=(sign (E.R), E.R)
CAIE A,E if (A) = (0,E) then skip
CAIN A,E if (A) = (0,E) then skip
CAME A,E if (A) = (E) then skip
CAMN A, E if (A) = (E) then skip
CAIG A,E if (A) > (0,E) then skiE

CAILE A,E if (A) =< (0,E) then skip
CAIGE A,E if (A) >= (0,E) then skip
CAMLE A, E if (A) =< (E) then skip

Page 48

SKIPE A, E if A = 0 then A:=(E), if (E)=0 then skip
SKIPN A, E if A =0 then A:=(E), if (E)=0 then $skip
TLNN A, E if (A.L)/e = 0 then skip
JRST E goto E
JSP ALE A:=(flags,address c¢f next instruction), goto E
JUMPE A, E if (A)=0 then goto E
AOJA A,E A:=(A)+1, goto E
PUSH A, E A:=(A)+(1,1); (A.R):=(E);

if (A.L)=0 then interrupt
POP A,E E:=((A.R)); A:=(A)-(1,1);

if (A.L)=0 then interrupt
WD E a non-executable address word with CODE=0
XWD X,Y a non-executable data word containing (X,Y)

Constant Symbols

$VOID=1

SSKEL=2

SATOM=4

SINT=5

SMOLS=16
SMAXREF=777777base8
S1MA=777764base8
S$1MAS=777766base8

B

Page 49

4.0 TIMING DATA FOR PLM INSTRUCTIONS ON DECIO

The times given below are the minimum times to complete the PLM
instruction successfully. Cases where a failure to match occurs are
not counted. Certain infrequent but faster special cases are alsoc

discounted (for example matching against a void).

The times relate to a KI10 processor and have beenrn calculated
from the data given on pages D-4 and D-5 of [DEC 1974]. An extra 1.02
microseconds has been allowed for each indirection and 0.89

microseconds for a control transfer or test instruction. All other

factors (such as indexing) have been ignored.

Instruction microsecs. Remarks

uvar,uvarl 4.85 v. atom, integer or molecule

uref,urefl 15.88 undef v. molecule '

uatom,uatoml,

uint,uintl §.68 v. atom or integer

uskel 12,22 v. molecule

uskell 26.49 + 28.26 per argument
v. molecule, with mol. v. ref. for each arg.

uskeld 11.20 v.molecule

uskelc 15.60 v. reference

init,localinit .95 per cell initialised

ifdone 1.45

call 1.34

try 1.34

trylast 3.75

enter 9.67

neck 12.77 general case

foot 7.55

neckfoot 2.74 no globals, determinate exit

cut 14.32 + 9.24 per trail entry examined
general case, assumes each trail entry retained

neckcut 15.53 + 9.24 per trail entry examined
no globals

neckcutfoot 12.10 + 9.24 per trail entry examined
no globals

fail 13.14 + 5.85 per trail entry examined

"shallow" fail 6.08 + 6.066 per trail entry examined

5.0 . BENCHMARK TESTS

Procedure Data
nreverse 1list30
gsort list50
deriv timesl0
dividel0
loglo
ops8
serialise palin25
dbquery -
Procedure Data
nreverse 1list30
gsort 1ist50
deriv timeslQ
dividel0
loglO
ops8
serialise palin25
dbquery -

Times in milliseconds

Prolog~-10 Lisp

53.7 34.6
75.0 43.8
3.00 5.21
2.94 7.71
1.92 2.19
2,24 2.94
40.2 19.76
185 -
Time ratios
Prolog-10 Lisp
1 .64
1 .58
1 1.7
1 2.6
1 1.1
1 1.3
1 .49
1 -

Pop-2
203
134

11.2
15.9
8.56

5.25

300

Pop-2
3.8
1.8
3.7
5.4
4.5

2.3

1.6

Page 50

Prolog-# Prolog-10I
1156 1160
1272 1344
86.4 76.2
90.6 84.4
61.6 49.2
61.2 63.7
711 602
9870 8888

Prolog-M Prolog-101

22
17‘
29
31
32
27
18

54

22
18
25
29
26
28,
15

48

The above table, giving average figures for actual CPU time on a

DECsystem-10 (KI processor), compares compiled Prolog (our

implementation, "Prolog-10"), compiled Lisp (Stanford with the NOUUO

option), compiled Pop-2 and interpreted Prolog (both the Marseille

Page 51

Fortran implementation, '"Proleg-!M", and our implementaticn in Prolog,
"Proloé—lOI"). The data was obtained by timing (via 'control-T") a
large number of iterations of eacli test. The figures include garbaée
collection times for Lisp and Pop-2. No garbage collection was needed
for Prolog since the stack mechanism recovers storage afrer» each

iteration. Test iterations were achieved in the following ways:-

Prolog

tests(N) :- read(),from(l,N,I),test,fail.
tests(N) :- read(_),test.

from(I,I,I):~!.
from(L.,N,I) :-- N1l is (L+N)/2, from(L,N1,I).
from(L,N,I) := L1 is (L+N)/2+1, from(L1,N,1).

Lisp

(DEFPROP TESTE (LAMBDA (N)
(PROG (I RESULT)
(READ)
(SETQ I 0)

LAB (SETQ RESULT TEST)
(COND (LESSP T N) (GO LAB))
(READ)

(RETURN KESULT)))

EXPR)

POE~2

FUNCTION TESTS N;

~VARS I RESULT;
ERASE (ITEMREAD ())
FORALL 1 1 1 N;

TEST -> RESULT
CLOSE;
ERASE (ITEMREAD ());
RESULT
END

The dummy '"reads'" serve to interrupt the execution of each test so
that "control-T" timings can be taken. The Prolog form of each
benchmark test is listed below, together with the Lisp and Pop-2

versions selected for comparison. Note that in the Prolog examples a
more convenient syntactic form is used for lists. Thus “[]° stands

for the empty 1list and “[X,..L]" denotes a list whose head is X and

Page 52

. tail is L. A list of two elements “a’ followed by “b" 1is written

“la,b]l”. Apart from the syntax, such lists are treated no differently
from other terms. The timing data would be exactly the same if, say,

‘nil’ and “cons(X,L)’ were used.

.

Page 53

5.1 reverse

;

list30 = [1,%,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18.19, 20,
‘ 21,22,23,24,25,26,27,28,29,30]

Prolog : nreverse{list30,X)
———l2 L=tV

:=-mode nreverse(4,-).

:=node concatenate(+,+,-).

nreverse([X,..L0},L) := nreverse(LO,Ll), concatenate(Ll, [X],L).
nreverse([),.[1).

concatenate([X,..L1],L2,[X,..L3]) :- concatenate(Ll,L2,L3).
concatenate([],L,L).

Lisp : (NREVERSE list30)

(DEFPROP NREVERSE (LAMBDA (L)
(COND ((NULL L) NIL)
(T (CONCATENATE (NREVERSE (CDR L)) (CONS (CAR L) NIL)))))
EXPR)

(DEFPROP CONCATENATE (LAMBDA (L1 L2)
(COND ((NULL L1) L2)
(T (CONS (CAR L!) (CONCATENATE (CDR L! L2)))))
EXPR)

Pop-2 : NREVERSE(list30)

FUNCTION NREVERSE LIST;
IF NULL(LIST) THEN NIL
ELSE CONCATENATE (NREVERSE(TL(LIST)),HD(LIST): :NIL)
CLOSE

END;

S

FUNCTION CONCATENATE LIST1 LIST2;
IF NULL(LIST1)} THEN LIST2
ELSE HD(LIST¥1)::CONCATENATE(TL(LTIST1),LIST2)
CLOSE

END;

5.2 sort

list50 = [27,74,17,33,94,18,46,83,65, 2,
32,53,28,85,99,47,28,82, 6,11,
55,29,39,81,90,37,10, 0,66,51,

7,21,85,27,31,63,75, 4,95,99,
. 11,28,61,74,18,92,40,53,59, 8]

Prolog : gsort(list50,X,[])
2ro’og Zisto.

:-mode qgsort(+,-,+).
t-mode partition(+,+,-,-).

gsort([X,..L),R,R0) :-
partition(L,X,L1,L2),
gsort(L2,R1,R0),
gsort(L1,R,[X,..R1]).

gsort([1,R,R).

partition([X,..L],Y,[X,..L1],L2) := X =< Y, !,
partition(L,Y,L1,L2).

partition([X,..L],Y,L1,[X,..L2]) :~
partition(L,Y,L1,L2),

partition([],_ ,[],[]).

Lisp : (QSORT 1ist50 NIL)

(DEFPROP QSORT (LAMBDA (L R)
(COND ((NULL L) R)
(T ((LAMBDA (P)
(QSORT (CAR P) (CONS (CAR L) (QSORT (CDR P) R))))
(PARTITION (CDR L) (CAR L))))))
EXPR)

(DEFPROP PARTITION (LAMBDA (L X)
(COND ((NULL L) (CONS NIL NIL))
(T ((LAMBDA (P)
(COND ((LESSP (CAR L) X)
(CONS (CONS (CAR L) (CAR P)) (CDR P)))
(T (CONS (CAR P) (CONS (CAR L) (CDR P))))))
(PARTITION (CDR L) X)))))
EXPR)

Page 54

Page =

POE-Z : QSORT(&&EEEQ)

FUNCTION QSORY LIST;
VARS Y Z Q QGV QQW QQS;
03
L2:TF NULL(LIST) OR NULL(TL(LIST)) THEN GOTO SPLIT CLOSE;
NIL->QQS: NIL->Y; NIL=->Z;
HD(LIST)->Qqi;
LI:HD(LIST)=->QQV; TL(LIST)->LIST;
IF QQW>QQV THEN QQV::QQ5->QQS
ELSEIF QQW<QQV THEN QGV::Z->Z
ELSE QQV::Y=->Y
CLOSE; .
- IF NULL(LIST) THEN Z;Y;1; QQS->LIST; GOTO L2 ELSE GOTO L1 CLOSE;
SPLIT: ->Q; IF Q=0 THEN LIST LEXIT
->Y;)
IF Q=1 THEN ->Z; LIST<>Y;2; Z->LIST; GOTO L2 CLOSE;
Y<>LIST->LIST;
GOTG SPLIT
END;

-
o

5.3 deriv

timesl0 = ((((((((x*x)*x)*x)*x) #x) *x) *x) *x) *x

dividelO = (((C(({((x/x)/x)/x)/x)/x)/x) /%) /%) /x

logl0 = log(log(log(log(log(log(log(log(log(log(x))))))))))
ops8 = (x+1)*(x724+2)*(x~34+3)

Prolog : d(expr,x,Y)

t-mode d(+,+,-).
:=-op(300,xfy,~).

d(U+V,X,DU+DV) :=!, d(U,X,DU),d(V,X,DV).

d(U-V, X,DU-DV) :=!, d(U,X,DU),d(V,X,DV).
d(U*V, X, DU*V4U*DV) :=!, d(U,X,DU),d(V,X,DV).

d(U/V,X, (DUSV=U*DV) /V~2) :=!, d(U,X,DU),d(V,X,DV).
d(U™N,X,DU*N*U~N1) :-!, integer(N), N1 is N-1, d(U,X,DU).
d(-U,X,-DU) :=!, d(U,X,DU).

d(exp(U),X,exp(U)*DU) :-!, d(U,X,DU).

d(log(U),X,DU/U) :-!, d(U,X,DU).

d(X,X,1):-1!.

d(C,X,0).

Lisp : (DERIV expr (QUOTE X))

(DEFPROP DERIV (LAMBDA (E X)
(COND ((ATOM E) (COND ((EQ E X) 1) (T 0)))

Page 56

((OR (EQ (CAR E) (QUOTE PLUS)) (EQ (CAR E) (QUOTE DIFFERENCE)))

(LIST (CAR E) (DERIV (CADR E) X) (DERIV (CADDR E) X)))

((EQ (CAR E) (QUOTE TIMES))
(LIST (QUOTE PLUS)
(LIST (CAR E) (CADDR E) (DERIV (CADR E) X))
(LIST (CAR E) (CADR E) (DERIV (CADDR E) X))))
((EQ (CAR E) (QUOTE QUOTIENT))
(LIST (CAR E)
(LIST (QUOTE DIFFERENCE)

(LIST (QUOTE TIMES) (CADDR E) (DERIV (CADR E) X))
(LIST (QUOTE TIMES) (CADR E) (DERIV (CADDR E) X)))

(LIST (QUOTE TIMES) (CADDR E) (CADDR E))))
((AND (EQ (CAR E) (QUOTE EXPT)) (NUMBERP (CADDR E)))
(LIST (QUOTE TIMES)
(LIST (QUOTE TIMES) (CADDR E)
(LIST (CAR E) (CADR E) (SUBl (CADDR E))))
(DERIV (CADR E) X)))
((EQ (CAR E) (QUOTE MINUS))
(LIST (CAR E) (DERIV (CADR E) X)))
((EQ (CAR E) (QUOTE EXP))
(LIST (QUOTE TIMES) E (DERIV (CADR E) X)))
((EQ (CAR E) (QUOTE LOG))

(LIST (QUOTE QUOTIENT) (DERIV (CADR E) X) (CADR E)))

(T NIL)))
EXPR)

Pop-2 : DERIV(expr,X)

Page 57

VARS SUML SUM2 DESTSUM OPERATION 4 ++;

RECORDENS ("SUM", [0 0])=>SUML~->SUM2=->DESTSLNi-->N0ONOP +j
VARS DIFC1 DIFC2 DESTDIFC OPERATION 4 ~=;

RECORDENS ("DIFC", [0 0])=>DIFCI=>DIFC2~>DESTDIFC~>NONOP =3
VARS PRODL PROD2 DESTPROD OPERATION 3 *:%;

RECORDENS ("PROD", [0 0])=>PROD1->PRCD2=->DESTPROD=->NONOP *%;
VARS QUOT1 QUOT2 DESTQUOT OPERATION 3 ///;

RECORDENS ("QUOT", [0 0])=->QUOT1->QUCT2->DESTQUOT->NONOP ///;
VARS POWRI POWR2 DESTPOWR OPERATION 2 ~~;

RECORDFNS (""POWR", [0 0])=>POWR1->POWR2~>DESTPOWR->NONOF ~™;
VARS MINUS1 DESTHINUS MINUS;

RECORDFNS ("MINUS", [0])=>MINUS1~->DESTMINUS->NMINUS;

VARS EXPF1 DESTEXPF EXPF;

RECORDFNS ("EXPF", [0])=>EXPF1->DESTEXPF~>EXPF ;

VARS LOGFl DESTLOGF LOGF;

RECORDFNS ("LOGF", [0])=>LOGF 1=>DESTLOGF~>LOGF ;

FUNCTION DERIV E X;
IF E.ISNUMBER THEN 0
ELSEIF E.ISWORD THEN IF E=X THEN 1 ELSE 0 CLOSE
ELSEIF E.DATAWORD="SUM" THEN DERIV(SUML(E) ,X)+DERIV(SUM2(E),X)
ELSEIF E.DATAWORD="DIFC" THEN DERIV(DIFCL(E) ,X)==DERIV(DIFC2(E),X)
ELSEIF E.DATAWORD="PROD" THEN
DERIV(PROD1(E) ,X)**PROD2(E)++PRCD1I(E)Y**DERIV(PROD2(E) ,X)
ELSEIF E.DATAWORD="QUOT" THEN
(DERIV(QUOTL(E) ,X)**QUOT2(E)-—QUOTIL (E)**DERIV(QUOT2(E) ,X))
/1/QUOT2(E)~~2.
ELSEIF E.DATAWORD="POWR'" AND POWR2(E).ISNUMBER THEN
DERIV (POWRI (E) ,X) **POWR2 (E) *%POWR]L (E) ™" (POWRZ(E)~1)
ELSEIF E.DATAWORD="MINUS" THEN MINUS(DEKIV(MINUS1(E),X))
ELSEIF E.DATAWORD="EXPF'" THEN E**DERIV(EXPF1{E),X)
ELSEIF E.DATAWORD="LOGF" THEN DERIV(LOGF1(E),X)///LOGF1(E)
ELSE "ERROR"
CLOSE
END;

Page 58
5.4 serialise

palin25 = "ABLE WAS 1 ERE i 547 ELBA"
ie. a list of 25 numbers representing the character codes.
Result = {2,3,6,4,1,9,2,8,1,5,1,4,7,4,1,5,1,8,2,9,1,4,6,3,2]

Prolog : serialise(palin25,X)

t=mode seriaiise(+,-).
t-mode pairlists(+,-,-).
:-mode arrange(+,-).
i-mode split(+,+,—,~).
:-mode before(+,+).
:~mode numbered (+,+,-).

serialise(L,R) :-
pairlists(L,R,A),
arrange(A,T),
nunbered(T, 1,N).

pairlists([X,..L],[Y,..R],[pair(X,Y),..A]l) ¢~ pairlists(L,R,A).
pairlists((] »[1,01).

arrange([X,..L],tree(T1,X,T2)) :-
split(L,X,L1,L2),
arrange(L1,T1l),
arrange(L2,T2).

arrange([],void) .

split([X,..L],X,L1,L2) :=!, split(L,X,L1,L2).
splitr([X,..L],Y,[X,..L1],L2) :- before(X,Y¥),!, split(L,Y,L1,L2).
split([X,..L],Y,L],[X,..L2]) :- before(¥Y,X),!, split(L,Y,L1,L2).
split([],_,[1,01).

before(pair(X1,Yl),pair(X2,Y2)) :- X1<X2.

numbered(tree(Tl,pair(X,N1),T2),NO,N) :=-
numbered(T1,NO,N1),
N2 is N1+1,
numbered (T2,N2,N) .

numbered(void ,N,N).

Lisp : (SERIALISE palin25)

(DEFPROP SERIALISE (LAMBDA (L)
(PROG (R)
(SETQ R (DUPLICATE L))
(NUMBERTREE 1 (ARRANGE (CELLS R)))
(RETURN R)))
EXPR) '

(DEFPROP DUPLICATE (LAMBDA (L)
(COND ((NULL L) NIL)
(T (CONS (CAR L) (DUPLICATE (CDR L)}))))

Page 59

EXPR)

(BEFPROP CELLS (LAL"QA (L3
(COND ((NULL L) NIL)
(T \CONg L (\JAAJIS (DR L))))))
EXPR)

(DEFPROP ARRANGE {LAMBDA (3.)
(COND ((NULL L) QIL)
(T (CONS (CONS (CAR L) {(MIDDLEPART (CAAR L) (CDR L)))
A (CCHS (ARRANGE (LOWERPART (CAAR L) (CDR L)))

(ARRANGE (UPPERPART (CAAR L) (CDR L))\)))))
EXPR)

(DEFPRCP MIDDLEPART (LAMBDA (X L)
(COND ((NULL L) NIL)
((EQ (CAAR L) X) (CONS (CAR L) (MIDDLEPART X (CDR L))))
(T (MiDDLEPART X (CDR L)))}))
EXPR)

(JLVPRUV LOWERPART (LAMBDA (X L)
(COND ((NULL L) NIL)
((LESSP {CAAR L) X) (CONS (CAR L) {(LOWERPART X (CDR L))
(T {LOWERPART X (CDR L)))))
EXPR)

(DEFPROP UFPERFPART (LAMPDA (X L)
(COND ((NULL L) NIL)
((GRLATERF (CALR L) X) (CONS (CAR L) (UPPERPART X (CDR L))))
(T {UPPERPART X (CDR L)))))

EXPR)

()EFPDOP NUMBERTREE (LAMBDA (N TREFR)
ND ((NULL TREE) N)
(l (NUMBERTREE
(NUMBERLIST
(NUMBERTREE N
(CADR TREL)})
(CAR TREE))
{CDDR TREE)))))
EXPR)

(DEFPROP NUMBEXLIST (LAMBDA (N LO)
(PROG (L)
(SETQ L LO)
LOOP (RPLACA (CAR L) N)
(SETQ L {CDR L))
(COND ((NOT (NULL L)) (GO 1.OOP)))
(RETURN (ADBI N))))
EXPR)

5.5 query

The solutions to a database query to find countries of similar
population density are

{indonesia, 223, pakistan, 219]

[uk, 650, w_germany, 645]
[italy, 477, philippines,461l]
[france, 246, china, 244]
{ethiopia, 77, mexico, 76]

Prolog : query([Cl,D1,C2,D27})

query([Cl,D1,C2,D2]):-
density(Cl,DIl),
density(C2,D2),
D1>D2,
20*D1<21*D2.

density(C,D) :- pop(C,P), area(C,A), D is (P*100)/A.

/% populations in 100003s, areas in 1000s of sq. miles. */
pop(china, 8250). area(china, 3380).
‘pop(india, 5863). area(india, 1139).
pop(ussr, 2521). area(ussr, 8708).
pop(usa, 2119). area(usa, 3609).
pop(indonesia, 1276). - area(indonesia, 570) .
pop(japan, 1097). area(japan, 148).
pop(brazil, 1042). area(brazil, 3288).
pop(bangladesh, 750). area(bangladesh, 55).
pop(pakistan, 682). area(pakistan, 311).
pop(w_germany, 620). area(w_germany, 96) .
pop(nigeria, 613). area(nigeria, 373).
pop(mexico, 581). area(mexico, 764) .
pop(uk, 559). area(uk, 86).
pop(italy, 554). area(italy, 116).
pop(france, 525). area(france, 213).
pep(philippines, 415). area(philippines, 90).
pop(thailand, 410) . area(thailand, 200) .
pop(turkey, 383). area(turkey, 296) .
pop(egypt, 364). area(egypt, 386) .
pop(spain, 352). area(spain, 190).
pop(poland, 337). area(poland, 121).
pop(s korea, 335). area(s korea, - 37).
pop(iran, 320). area(iran, 628) .
pop(ethiopia, 272). area(ethiopia, 350).

pop(argentina, 251). area(argentina, 1080).

Page 6(

Page Gl

Pop-2 : QUERY(R)

[N i5 the number of times rha tecot i to he iferated‘ The strircs
COUNTRY, POPULATICON, AREA are initialised with rha zpnropriate data.!
b}

VARS COUNTRY PULATION AREA,

FUSCTION DENSITY f; SUBSCK(L,POPULATION) *100/SUBSCR(IL, AREA) UND;

FUMNCTION QUERY Nj
VARu T Cl1 €2 D1 Dy

FRASE(ITEMREAD) 73

N4+1=>N;

FORALL T 1 1 N:
1F I=N THEN ERASE(ITEMREAD()) CLOSLE;
FORALL C1 1 1 25;

DENSITY(£1)=->D1;
FORALL C2 1 1 25;
SENSITY(C2)->DZ;
IF D1>D2 ARD 20%D1<21
THEN PR([7 SURSCR(
- R(

%2 AND I=N

31, CRUNTRY)Y , D1,
22, COUNTRY) , D2 Z1)5 NL(L)
CLOSY

CLOSE

CLOSE
CLOSE

ERD

