AN EVALUATION OF PROLOG AS A PROTOTYPING SYSTEM

Ute Leibrandt and Peter Schnupp
InterFace Computer GmbH
Oberfohringer Str. 24a

D - 8000 Minchen 81

F.R. Germany

summary

Some experience has been gathered with Prolog for specification and prototyping of
critical parts of interactive information systems. It is felt that this language is
the first viable prototype for a really BroaD-BAND formal specification tool allowing
immediate testing of the specified system. The main reason for this conclusion is the
total abstraction from control flow in Prolog which frees one from the traditional
program paradigms {e.g. STRUCTURED, FUNCTIONAL oOr OBJECT-ORIENTED) and design
strategies (ToP down or BoTTOM up). However, although already quite usable for most
specification and prototyping problems there is still room for further development of
the language and its implementation. Most notably, there is a need for better tracing
and debugging features, a more adaptable CONSULTING mechanism, and a virtual terminal
model supporting the definition of FORM TERMINALS needed in many business programming
tasks.

1. nqua

Prolog, although originally conceived for artificial intelligence applications, can
be used as a formal specification language for software systems because its underly-
ing semantics provide for a very high degree of abstraction. Its computational model
is that of a RESOLUTION THEOREM PROVER [KOWALSKI] working on a DATA BAse. This data
base consists of two parts. The first one is a set of cLAuses, i.e. logical facts and
rules. It corresponds roughly to the program text of a conventional programming lan-
guage and may be read in (consuLTep) from files, built up at runtime (ASSERTED) by
the running program, or created interactively by the user. The second data base com-
ponent is the intermediate data maintained by the Prolog interpreter trying to
resolve a current GoaL. This data dbeys essentially a stack regime leading to a
remarkably simple ABSTRACT STACK MACHINE [KOMOROWSKI J.

425

The current 6oAL is a logical statement entered by the user during the man-system-
dialogue. The Prolog interpreter tries to prove this goal statement by searching for
clauses in the data base which match the goal statement. If the goal contains
variables to be proven they are instantiated to constants or logical functions that
the variables stand for. This process is called UNIFICATION. If Prolog succeeds with
this UNIFICATION AND RESOLUTION it answers YEs and prints the variable unifications,
if any. Otherwise it answers No. This does not imply the falseness of the logical
statement goal entered but rather its unprovability given the facts and rules present
in the data basa. If Prolog is considered as a specification language for commercial
applications, this LoeIicAL computational model may be seen under another aspect: it
implements a highly adaptable query language over an essentially rational data base
containing not only facts but also logical rules to derive new facts from those
already known.

2. The Prolog Procedure Model

Considering Prolog a LOGICAL AND RELATIONAL DATA BASE LANGUAGE, does not explain its
remarkable usefulness for specification and prototyping of application programs to be
later realized in a conventional procedural language. This is accomplished by a quite
natural, procedural concept introduced into this (essentially nonprocedural) Llan-
guage. A procedure is composed of clauses with the same name and ARITY (i.e. number
of arguments). To understand the flow of control in Prolog, the procedure can be
visualized as a box with four ports (cf. Fig.1).

goal
CALL EXIT
—— | procedure —
subgoal 1 subgoal 2
— | procedure —» | procedure —>
FAIL REDO
- | «*— - -+ | -—

Fig.1: Box MODEL of Prolog procedures

426

Entering the box (PROCEDURE) from the CALL port implies that the Prolog interpreter
is called to resolve a component clause by satisfying subgoals in the body of that
clause. It implies nothing about the result of the call. Subgoals (sub-"procedures")
are to be understood as embedded boxes.

Exiting the box through the EXIT port indicates a succesful resolution of the goal
procedure.

Entering the box through the REDO port indicates that a later goal has failed and
that the system is backtracking in an attempt to find alternatives to previous solu-
tions.

The procedure FAILS, i.e. leaves through the FAIL port, if no resolution succeeds or
after all possible resolutions have been found by backtracking.

For any invocation there is always one CALL and one FAIL although there may be
arbitrarily many passes through EXITs and REDOs.

For example, if there is the data base:

reports_to(white, jones). %1
reports_to(mcdonald, jones) . %2
reports_to(nixon,smith). %

the question

? reports_to(X, smith).

is resolved step by step:
CALL reports_to(X, smith). % compare with fact 1
REDO : reports_to(X, smith). % compare with fact 2
REDO : reports_to(X, smith). % compare with fact 3

EXIT : reports_to(nixon, smith). % the comparison with

%4 fact 3 was successful

This procedure box may be readily interpreted as a function in a functional program-
ming model.

Therefore, it should not be too surprising that Prolog can be used not only for
specification but also for prototyping of dialog applications working on a data base.
The usefulness of Prolog surpasses the limits of this particular class of appli-
cations. The reason ‘is that the Prolog language model and interpreter provide for two
very important and quite unique abstractions.

427

3. Abstractijons in the Prolog Computational Model

The first important abstraction in a Prolog specification (or, we might say a PROGRAM
PROTOTYPE, in view of the executability of this specification) is its abstraction
from flow of control. As the algorithm to be used for interpretation is always con-
fined to the Prolog interpreter only (the resolution and backtracking strategy of the
theorem prover) there is no provision for the usual control constructs, e.g. if-then-
else, while or go-to, in the language. The only mechanisms to be employed for in-

fluencing the course of computation are

- the sequence of notation of clauses or of the consultation of files, essentially
determining the order of alternative choices for backtracking;

- a language element called cutr, signifying the fixation of the unification and
resolution choices in the Prolog PROCEDURE currently under evaluation and, .hence,
CUTTING SHORT the Prolog backtracking;

- recursion as the standard looping mechanism.

Nonetheless, it should be noted that the Prolog backtracking strategy allows a quite
natural notation for iteration too: backtracking a sequence of predicates located
between the always successful (pseudo-)predicate REPEAT and the always unsuccessful

FAIL causes a ping—pong movement of evaluation and backtracking between them.

The second important abstraction in Prolog is that of data flow. A Prolog procedure
is always a logical predicate. As the semantics of a predicate knows nothing about
INPUT or OUTPUT arguments, the same is true for the formal parameters of a Prolog
procedure. Depending on the actual unification of the arguments X and Y when it is
called (resolved) a Prolog predicate P(X,Y) may be used to test for the existence of
the logical relation P between the constant terms X and Y. It may be a rule for the

computation of X from Y or vice-versa, or even a generator of all possible X-Y-pairs.

For example, the below defined predicate APPEND

append([J, L , L).
append([X|L1] , L2 , [XIL3]):
append(L1 , L2 , L3). e:lnct<3

may be used to coMPuTE the list Lx which results from appending list [a,b] and list
[c,d]

?- append([a,bl , [c,dl , Lx).

428

Lx = [a,b,c,d]

or APPEND may be used to generate all possible lists which may have generated the
list [a,b,c,dl.

?- append(Lx , Ly , [a,b,c,d]).

Lx =[] Ly = [a,b,c,d] ;
Lx = [a] Ly = [b,c,d] ;
Lx = [a,b] Ly = [c,d] ;

Lx = [a,b,c] Ly = [d] ;

Lx = [a,b,c,d] Ly =[] ;

If the user wants to avoid such a sometimes IRRITATING sometimes WANTED ambiguity (as
shown in this predicate APPEND example), he will define his tasks more carefully.

This is an extremely useful property for prototyping because it leads to a great con-
ciseness in the logical building blocks to be defined for a given modeling task.

‘. ical .

Prolog was used in several specification and prototyping tasks, most notably for the
development of a personal data base system called LEPORELLO and a dedicated data
management system to be used for the CONCEPT MODELING method introduced by Ortner and
Wedekind [ORTNER]. The most difficult specification problem and hence the most im-
portant system aspects to be modeled with a prototype was the user dialog interface
for LEPORELLO and the basic data structures and their manipulation in the case of the
data management system. Therefore, there was a marked difference in the specification
and prototyping strategy, a top-down approach for LEPORELLO versus a bottom-up one
for the concept constructor.

Prolog proved itself most suitable in both cases, despite differences in the dif-
ficulties encountered. The bottom-up specification could be constructed in a very
smooth way. Especially helpful was the fast implementation of test frames for each
component, made possible by Prolog. A test driver to generate, in sequence, the test
Cases considered sufficient requires typically, twenty to thirty lines in Prolog. It
can be written routinely in about fifteen minutes. Futhermore these test cases can be
quite usable later on as a specification of the test drivers for the final implemen-
tation. The testing of one or a few procedures at a time is supported in a very con-
venient way by the built-in debug features. These provide, essentially, a selective
or total tracing of the flow of control through the ports of the procedure box model.

429

The top-down specification and modeling of LEPORELLO seemed less smooth. Partly, this
may be ascribed to the fact that LEPORELLO was our first attempt at using Prolog and
suffered from a lack of experience in the use and a less than optimal exploitation of
all its features. On the other hand, it is felt that the problems encountered were
due to the top-down approach as well.

Firstly, specifying and modeling the deeper levels of the system it got increasingly
more difficult to keep the specification crisp and consistent and avoid an ever
growing collection of ad-hoc procedures usable at one and only one place. This ex—
perience certainly shows not a fault of Prolog but rather a virtue. It makes evident
that an exact specification is needed even for the lowest system Llevel to get the
prototype running. These problems are usually glanced over as trivial in a conven-
tional specification. Yet they are encountered later during the detail design or even
the realization, leading either to a system difficult to modularize and maintain or
to expensive specification changes at a late time in systems development.

The second difficulty encountered with the top-down approach, however, seems to be
less a problem of Prolog and more one of its debugging facilities as currently
defined and implemented. For a specification constructed top-down typically much
larger cHuNKs of the system have to be tried in one test run making it difficult to
analyze and understand from the trace protocol the flow of control through the vari-
ous procedures and the unification history. Nevertheltess, Prolog can be judged a
quite useful prototyping tool for top-down system specifications as well.

5. Conseauences of Practical Experiences

The debugging package we used first made it difficult to Limit the trace output
significantly for error diagnosis. The debugger performed a single step walkthrough.
It stopped at the named port (i.e. CALL, REDO, EXIT, FAIL) but nevertheless delivered
all steps of flow of control. There existed no practical means to extract specific
information regarding particular goals, variables, etc., other than awaiting
patiently the arrival of the relevant information.

Therefore we installed a SCREEN-ORIENTED debugger. The screen-oriented debugger
divides the screen in four windows. There is the debugger status Line, the debugger
display area, the debugger command line and the user i/o area.

The debugger performs the following tasks [LEIBRANDTI.
help Print information about all available commands. Enter <return> to

leave this command and to reenter the debugger.

abort Return to the interpreter level. Switch off debugging.

break Cause the current execution to be suspended and a new copy of the
IF/Prolog interpreter to be made available to you. The current
database is kept. When you exit from the NEw-coPY interpreter by
typing the end-of-file character, your previous program will be
resumed [CLOCKSINI.

cont / <return> Continue execution.

call Call current subgoal.

ba;k Backtrack.

repeat Repeat the last subgoal.

skip Skip the next subgoal.

leap : Displays the calls and results of the executed goals at the current

Llevel. Deeper debugging is LEAPT OVER.

creep Displays every command that is executed.

spyonly Watch spy points only.

spyon / spyoff Enable / disable watching of spy points.

spy Call the spy point editor.
parent Show parent goal, i.e. the 1st predecessor goal.
nodebug Exit debugging mode and continue execution.

At the next step we provided out Prolog interpreter with an exception handler. The
exception handling mechanism is used by all built-in predicates and it can be used of

by the user's predicates in the exactly same way.

Similar to a debugger who watches the running program and stops execution at speci-
fied spypoints to give the control to the user, the exception handler watches the in-
terpretation of the Prolog program and causes an exception ot the specified EXCEPTION

GoaL to give the execution to the exception handling program.

431

The exception handling program may be written by the user. If there is no exception

handting program the specified EXCEPTION GOAL simply causes fail.
For example:
The wrong use of_ the built-in predicate Are

?- arg(4,date(year,month,day) ,Arg).

causes an exception message:

EXCEPTION: arg(4,date(year,month,day)) : out_of_range

The message may be trapped by the programmer - and even the result NO may be
trapped - with the exception handling program, e.g.:

exception(out_of_range,arg()) :- true.

P e P e

6. Deficienci f C log Impl .

If we consider our Prolog system as typical (it implements approximately the language
as described in the QuAsi-sTANDARD of Clocksin and Mellish's textbook [CLOCKSIND it
is a workable prototyping tool but not yet a perfect one. Especially worthwhile for
this field of application would be a further development of language and system in
the following directions.

A shortcoming is the very indiscriminate CONSULTING and RECONSULTING mechanism.
Essentially, coNsuLTING a file appends all facts and rules in it to the current data
base, while RECONSULTING first erases all procedures with the same name already in
the data base before it consults the new procedures. CONSULTING in Prolog is a fea-
ture which bears strong resemblance to modularization in conventional programming
languages. This resemblance has the unfortunate side-effect of misleading the novice
user to treat the consulted files as modules. Prolog, however does not maintain the
strict modularity, because it treats the data base as a heap. As a consequence if
used for prototyping, a file is often RECONSULTED after editing to correct some error
found during the debugging session. This is impossible if the definition clauses of
some procedure are distributed over more than one consult file. RECONSULTING Prolog
would then change all clauses corresponding to the one selected, without regard to
the MoDULE in which it appears to be located. Clearly, a means to Limit the scope of
the changes would be desirable, particularly if one intends to adopt the object-
oriented paradigm with its object and methods modularization.

432

Lastly, the character stream oriented i/o model of Prolog makes it difficult to model
virtual terminals which are more sophisticated than a simple teletype or line prin-
ter. To model the behaviour of the user interface of typical commercial applications
a virtual form terminal would be a great help. It should allow one to bind one or
more formats to a record describing its appearance on a video screen. The pseudo
predicate representing this form terminal would then display the already unified
record terms according to the format selected and unify its variable terms with the
values input by the user.

7. Conclusion

Despite the shortcomings discussed in the last section Prolog is even in its present
form a very satisfying tool for prototyping because it allows to execute and test a
formal specification in the framework of a rigid semantic model, a RESOLUTION THEOREM
PROVER.

The user of Prolog can formulate his model in the same RELATIONAL manner in which he
perceives it, because the underlying model of Prolog allows the problem to be ex-
pressed at a higher Llevel of abstraction, independent of the machine oriented,
procedural aspects which abound in conventional languages. He describes the
relationships of objects (Prolog facts) and the means of making interferences (Prolog
rules) from the given set of described relationships. Fortunately, it reveals to the
user virtually instantly fundamental logic errors in the user's model. It turns out
that in most cases there are more different kinds of errors than the user who tests
his specification for the first time with a computer could imagine. Thus Prolog ap-
pears to provide a better alternative to the TRANSFORMATIONAL school of software de-
velopment which starts with untested formal specifications and later on attempts to
prove that the programs are CORRECT with respect to this formal (but nevertheless
probably faulty) specification. Therefore, from our experience we conclude that

formal specification without concurrent prototyping should be considered dangerous.

References

CLocksIN, W. F., aND C. S. MELLISH:
p . . Log.
Berlin - Heidelberg — New York: Springer-Verlag 1981.

KoMoRowsKI, H. J.:
An Abstract PROLOG Machine.
Proc. European Conf. on Integrated Interactive Computing Systems (ECICS 82),
Stresa September 1982, 149 p. (1982).

KowaLskl, R.:

Algorithm = logic + control.
CAM. 22 424 p. (July 1979).

LEIBRANDT, U., L. BERNHARD, P. FOLKJAER, AND W. GELDMACHER:
IF/Prolog User's Manual.

Miinchen: InterFace Computer 1983.

ORTNER, E.:
A | . K ktion he fiir_den D bankent ;.
Darmstadt: Toche-Mittler 1983.

433

