
I�C� Prolog II� a Multi�threaded Prolog System

Damian Chu

Department of Computing
Imperial College of Science� Technology and Medicine

��� Queen�s Gate� London SW� �BZ
United Kingdom

email� dac�doc	ic	ac	uk

Abstract� This paper introduces IC
Prolog II � a new implementation of Prolog that is
particularly suited to distributed applications	 Unlike other work on distributed logic pro

gramming� we do not aim to improve the raw performance of a logic program nor do we
require multi
processor machines or specialised hardware	 Instead� our aim is to widen the
applicability of logic programming to encompass new classes of practical applications which
require the co
ordination of concurrently executing programs on separate workstations to
communicate over the network	

IC
Prolog II features multiple threads� a Parlog sub
system and high
level communication
primitives	 Multiple threads enables the concurrent execution of independent goals	 The Par

log sub
system allows local �ne
grained parallelism to be speci�ed	 In IC
Prolog II� Prolog
can call Parlog and vice
versa	 The combination of the two logic languages o
ers greater
expressive power than simply the sum of the two since di
erent components of the same
application may use either Parlog or Prolog or both	 The high
level communication primi

tives provide the means for independent IC
Prolog II processes on di
erent machines on a
network to communciate	 The result is a language well
suited for writing network
friendly
applications	

Keywords� Multiple Threads� Distributed Applications� Concurrency

� Introduction

In recent years� interest in distributed computing has risen very rapidly� We are realising that
centralised monolithic systems are costly� ine�cient and in�exible� Large mainframe computers
are now being replaced by networks of workstations� This trend is responsible for the emerging
importance of distributed applications� where programs executing on separate machines need to
communicate over the network� Moreover� when previously standalone applications are enhanced
with the ability of network communication� they can cooperate to solve problems that each would
�nd unsolvable on its own� This is the rationale behind the expanding �eld of Intelligent Cooper�
ative Information Systems�

Logic programming has been used successfully in many knowledge�based applications� However�
very little work has been done to address the issues in implementing distributed applications of the
type discussed above� Researchers in logic programming systems have generally concentrated their
e�orts on trying to exploit the inherent parallelism within a single logic program e�g�� Andorra
��	
� Aurora ���
� MUSE ��
� These systems generally require dedicated hardware or multi�processor
machines with either shared or distributed memory�Although they can o�er signi�cant performance
gains� they were not designed with distributed applications in mind� which generally involve the
concurrent execution of two or more programs� usually on di�erent machines�

IC�Prolog II �ICP for short
 ��
 is a new implementation of Prolog developed at Imperial College
which attempts to address this need� It contains features such as a multi�threading capability� a
Parlog sub�system� high level communication primitives and an object�oriented extension�� These
features open up new application areas to logic programming such as distributed knowledge�based
systems� cooperating expert systems and multi�agent systems�

� The object
oriented extension is not discussed in this paper	



� IC�Prolog II

IC�Prolog II will be one of the results of the IMAGINE project� The IMAGINE project is concerned
with building Multi�Agent Systems� in which a collection of semi�autonomous problem�solving
agents coordinate and cooperate to either solve joint problems or achieve their own goals� The
agents typically reside on separate computers connected by a network�

ICP was developed for prototyping Multi�Agent Systems using logic programming� From the
initial project speci�cation� it was clear that support for concurrency and communication was
important�

�Concurrency� is the ability to handle multiple problems simultaneously� As a simple example�
it is undesirable for a complex query to monopolise a database server while there may be simple
queries waiting to be processed� A single thread of control is insu�cient and we therefore needed
parallelism� Both �ne�grain and coarse�grain parallelism are supported in ICP through having a
Parlog sub�system and implementing multiple Prolog threads�

�Communication� refers to the ability to send and receive messages between threads and across
the network� exchanging data with other agents� We have a simple scheme called pipes for commu�
nication between local threads� Since TCP�IP is the most widely used communication protocol�
we implemented a Prolog interface to the TCP�IP protocol suite� This enabled communication
across a network and even interfacing with existing software possibly written in other languages�
but it was not still powerful enough to support the kind of agent communication we needed which
includes features like multi�casting and access control� We therefore added a more sophisticated
communication model called mailboxes which could provide these additional functionalities�

This paper describes the main features of ICP� In Section �� we introduce the notion of multiple
threads and sketch how they are implemented in ICP� We show how they can communicate and give
a simple example of the bene�ts they can bring to server�based applications� Section � provides an
overview of the Parlog sub�system in ICP that allows us to express the highly�parallel components
of an application� Section � takes a more detailed look at the communication facilities o�ered by
ICP since these are at the heart of a distributed application� In Section �� we give a full example
of a distributed application showing how we might program a simple airline reservations system
using ICP� We point out related work in Section � and �nally give our conclusions in Section ��

� Multiple Threads

Traditional Prolog systems have only one thread of control and concurrent execution is therefore
not possible� A number of Prolog systems such as Prolog II ��
� NU�Prolog ���
 and SICStus Prolog
��
 get around the single thread restriction by implementing some form of co�routining whereby
calls can be delayed until speci�ed arguments are instantiated� However� this data�driven approach
is not appropriate for the cases where no variables are shared between the co�routines� This is a
common case in client�server applications where client transactions to be executed on the server
are totally independent of each other�

A more general solution is to allow multiple threads� Each thread is a distinct WAM�like ���

Prolog engine� Havingmultiple threads allows independent programs to run concurrently in pseudo�
parallel� Pseudo�parallel execution was a feature of both the original IC�PROLOG in ���� ��
 and
Epilog ���
� We di�er from both those systems since our threads do not share the same data area�
We considered using Unix process forking to implement multiple threads� however this would have
been very expensive in terms of performance� In our implementation� all the threads execute within
a single Unix process so we needed to do our own scheduling� Each thread contains its own stack
area� its own set of WAM registers and some housekeeping information� The structure of a thread
is shown in Figure ��

The two link pointers are used to chain all the threads together in a double link list� The
status �ag indicates whether the thread is currently runnable and the two channels record where
the current input and output of the thread is� The stack area includes space for the usual WAM
stacks i�e�� the heap� the evaluation stack and the trail� The code space however is shared by all
the threads�



�

�

�

� backward link

input channel

output channel

forward link

WAM registers

status

stack area

Fig� �� Structure of a Thread

In ICP� we implemented primitives to fork a new thread� to suspend a thread and to resume a
suspended thread� At any time� only one thread is running� A thread may suspend by explicitly call�
ing the suspend primitive or more usually� because of the non�availability of input data�messages�
When the current thread suspends� the next runnable thread in the chain is resumed and becomes
the current thread� To prevent a single thread from monopolising the resources� a time�slice mech�
anism was implemented� When a time slice occurs �currently every tenth of a second
� the current
thread remains in the runnable state but temporarily stops executing to allow other runnable
threads to execute�

Since each thread has it own stack areas� this implies that the variables of a thread are private�
Uni�cation within a thread cannot bind variables in other threads� Communication between threads
is achieved through explicit message passing only� The primitives which read messages will suspend
if no data is available� thus allowing the data�driven style of co�routining to be programmed�

In ICP� the primitive to create new threads is fork��� the single argument being the goal to
be executed in the new thread� Operationally� the fork�� primitive always succeeds immediately
regardless of the success or failure of the forked goal� From the point of view of the current thread�
fork�� behaves as if it is the goal true�

The query

� �� fork�producer�� fork�consumer��

creates two new threads which run concurrently� The system will automatically time�share
between the two threads� This behaviour is very di�erent from normal Prolog evaluation which
does not start the second goal until the �rst has succeeded�

��� Inter�Thread Communication

In our example� the producer must communicate what it produces to the consumer� Communication
between threads is via asynchronous message passing� though there are many forms that this can
take� For local threads created within the same Unix process� the most direct way is to use pipes��

A pipe is a uni�directional communication channel and is implemented using a memory bu�er� It
has two ends called ports� One end is the output port and the other is the input port� Data written
to the output port can be read from the input port� Since ports are accessible by all threads� if
we can arrange for the producer to write to the output port� and the consumer to read from the
input port� then inter�thread communication is achieved�

� These are not the same as Unix pipes	



A pipe is created using the pipe�� primitive� This returns in its two arguments the identi�ers
for the output port and the input port� So we could run our example as

� �� pipe�Out�In�� � create a pipe

fork�producer�Out��� � producer writes to output port

fork�consumer�In��� � consumer reads from input port

The producer program would use the write pipe�� primitive to send data to the consumer�
which would read it using the read pipe�� primitive�� These message passing primitives are non�
backtrackable which implies a commit�on�write semantics� Variables may be sent in messages� but
they act only as placeholders since the receiver of the message will create a variable in its own data
area� The corresponding variables in the sending and receiving threads are in no way linked� i�e��
there is no distributed uni�cation�

��� Writing Server Programs

A server program is usually a tail�recursive loop which services one client request per iteration� A
typical iterative server could be written in ICP as follows �

server�In� �� � parameter specifies where to read from

read	pipe�In� Req�� � read next request

service�Req�� � service the request

server�In�� � recurse

In an iterative server� the requests are serviced sequentially� This can create bottlenecks as some
requests may take a long time to service� A concurrent server avoids this problem by allowing the
requests to be serviced concurrently� This style of server could not be programmed in traditional
Prolog systems since it requires multiple threads� In ICP� we can code it like this �

server�In� �� � parameter specifies where to read from

read	pipe�In� Req�� � read next request

fork�service�Req��� � create a new thread to service the request

server�In�� � recurse

During each iteration of the loop� the server reads one request and forks a program to service
that request� Since the server does not need to wait for the forked program to complete� it can
go on to read the next request� If there are no more requests� the server suspends until data is
available�

� Parlog

Multiple threads allows a limited form of parallelism�The parallelism is coarse�grained and message
passing is explicit� For highly parallel applications� the overhead of creating a large number of short�
lived threads is signi�cant� Parlog is a much more suitable language for describing �ne�grained
parallelism�

Parlog���
 belongs to the family of Committed Choice Non�Deterministic logic languages� Parlog
allows two forms of parallelism � stream AND�parallelism and committed OR�parallelism� Stream
AND�parallelism is the concurrent evaluation of goals which share variables� with the value being
implicitly communicated incrementally between the goals� Goals which do not share variables are
trivially subsumed by stream AND�parallelism�CommittedOR�parallelism is the concurrent search
for candidate clauses to match a goal� When a match is found� the clause commits and the other
choices are discarded� An important di�erence between Parlog and Prolog in that because of the
restriction of Committed Choice� Parlog programs do not backtrack�

Prolog and Parlog are complementary languages� Parlog�s �ne grain parallelism appeals to
highly parallel applications which cannot be coded in standard Prolog� or could not be implemented

� Messages can also be read using the look pipe
� primitive which does not remove the message from the
communication channel	



e�ciently using the much coarser ICP threads� On the other hand� Prolog�s backtracking search
capabilities to �nd all solutions cannot be emulated by a Parlog program� To make the best use
of both languages� Parlog is included in ICP as a separate thread� Communication between Parlog
and Prolog is done in the same way as other inter�thread communications i�e�� via message passing�
Prolog can call Parlog by using the parlog�� primitive� This passes a message to the Parlog
thread to execute a goal� If solutions are required by Prolog� they can be explicitly communicated
back using the pipe mechanism discussed previously� Similarly� Parlog can call Prolog using the
prolog�� primitive� There are variations of this primitive to get single solution or get all solutions
from Prolog and to control whether they should be generated eagerly or lazily�

ICP provides a very loose coupling between Prolog and Parlog� We have not attempted to
combine them into a single language� In fact� the Parlog sub�system in ICP is implemented by
making minor changes to the original standalone Parallel Parlog system ���
 to convert it into
a thread� Within ICP� we are thus able to make use of Parlog�s Don�t Care Non�Determinism
and Prolog�s Don�t Know Non�Determinism within the same application� There have been other
proposals for combining these two types of non�determinisms� Clark and Gregory�s scheme ��
 o�ers
a very powerful hybrid language but requires substantial changes to the uni�cation algorithm�
thus severely a�ecting performance� Naish�s PNU�Prolog ���
 is essentially a preprocessor for NU�
Prolog� It uses coroutines and therefore cannot express applications which require true time�sharing
between goals�

� Communication Primitives

For distributed applications� communication facilities are very important� Threads can communi�
cate using pipes if they are running in the same ICP process� However� communication between
ICP processes �possibly on di�erent machines
 or between ICP and other processes must be done
in a di�erent way�

The most widely�used protocol on computer networks is the TCP�IP protocol suite� By de�ning
an interface from ICP to the TCP�IP system calls� we can use ICP primitives to communicate across
the world�wide network�

��� TCP�IP Primitives

Communication protocols can be divided into connectionless and connection�oriented protocols� In
connectionless protocols� each message is sent individually and therefore must include the destina�
tion address� There is also no guarantee that a sequence of messages sent to the same address will
arrive in the order in which they were sent� In connection�oriented protocols� a link must �rst be
established between the two parties� Thereafter� no destination address need be speci�ed in any
message since it is implicit in the link� Furthermore� messages sent from one party to the other is
guaranteed to be received in the same order that they were sent�

TCP�IP provides both connectionless and connection�oriented protocols� Both styles of protocol
may be used in ICP� though connection�oriented protocol is preferred since it is order preserving
and is more reliable� Connectionless protocol is used when interfacing to existing software which
use this protocol or when writing applications which require multiplexing�

Below we will give a �avour of how TCP�IP primitives are used in ICP� There are many �ner
details to network communication and users of ICP should consult the manual ��
 along with books
on network programming ���
�

Connectionless Communication

First we will consider connectionless communication since it is simpler� A network address consists
of two parts � a machine number and a port number� The channel of communication is called a
socket which is analogous to a stream identi�er for �le I�O� For two programs to communicate� we
�rst create a socket and assign a port number to it� We do this using the following primitive

tcp	connectionless��Port� �Socket�



We use the pre�x notation ��� to denote an input argument and ��� to denote an output
argument� A machine number was not needed because it defaults to the machine on which we
are running�

The other program running on a di�erent machine executes the same primitive� When both
sides have created a socket� we can send messages using

tcp	sendto��Socket� �Message� �Port� �Machine�

specifying the message to be sent and the destination network address� To receive messages� we
use the primitive

tcp	recvfrom��Socket� �Message� �Port� �Machine�

This will return the message and the sender�s network address� The primitive will suspend until
a message arrives�� Finally� we close the socket using

tcp	close��Socket�

Figure � shows the primitive calls used in a typical connectionless communication�� There are
many options which can be set such as specifying a timeout value for a primitive so that it fails
after a speci�ed time instead of being suspended forever� However� the basic primitives described
above are su�cient to program simple communications�

�

�

�

�

�

�������������

�

X X X X X Xz
�

�

tcp connectionless�P��S��

blocks until data

tcp recvfrom�S��Msg�P��M��

received from client

process request

tcp sendto�S��Reply�P��M��

tcp close�S��

ClientServer

tcp connectionless�P��S��

tcp sendto�S��Msg�P��M��

tcp close�S��

tcp recvfrom�S��Reply�P��M��

data�request�

data�reply�

Fig� �� TCP�IP Primitive Calls in Connectionless Communication

Connection�Oriented Communication

TCP is based on the client�server model of communication� In this model a server program is
started �rst which after initialising� waits for clients to connect to it� When a client program
contacts the server to establish a link� it wakes up to allow communication to take place� When
the session is over� the server goes back to waiting for the next client�

To code this in ICP� the server program creates a socket and waits for connections using
tcp accept�� as follow �

tcp	server��Port� �Socket��

tcp	accept��Socket� �NewSocket�

� We can optionally specify a timeout value after which the suspended primitive fails if no message is
received within that time	

� adapted from a �gure in ����



The call to tcp accept�� will suspend until a connection request from a client is received
whereupon a new socket will be created speci�cally for that connection�

On the client side� we create a socket and initiate a connection at the same time using

tcp	client��Port� �Machine� �Socket�

specifying the address of the server program to connect to� This primitive suspends until the
connection is accepted�

Once the connection is set up� messages can be sent using

tcp	send��Socket� �Message�

Note that the server needs to use the NewSocket number returned by tcp accept�� instead of
the original socket which is used exclusively for new connection requests� To receive messages� we
use

tcp	recv��Socket� �Message�

and at the end we use tcp close�� as before�

Again� there are many more options and variations to the basic primitives available� Those
described above are the most important ones�

Figure � shows the primitive calls used in a typical connection communication��

�

tcp close�S��

tcp send�S��Reply�

�

�

�

��

�

��������

�

�

�

�

X X X X X X Xz

tcp send�S��Msg�

tcp client�P��M��S��

tcp server�P��S��

tcp accept�S��S��

blocks until connection

received from client

tcp recv�S��Msg�

tcp recv�S��Reply�

tcp close�S��

Server Client

process request

data�request�

data�reply�

connection establishment

Fig� �� TCP�IP Primitive Calls in Connection Communication

With multiple threads in ICP� it is possible to fork a thread to handle each connection and
thus be free to accept new connections concurrently� Here is the concurrent server example again�
this time using TCP instead of pipes�

concurrent	server�Port� ��

tcp	server�Port� Socket�� � where to listen for connections

multi	serve�Socket��

multi	serve�Socket� ��

tcp	accept�Socket� New�� � got a new connection

fork�service�New��� � create new thread to service it

multi	serve�Socket�� � look for more connections

	 adapted from a �gure in ����



Communication with Foreign Processes

The TCP�IP protocol is widely used by many applications written in other programming languages
such as C� By having the ICP interface to TCP�IP� it is possible to write Prolog code which
communicate directly with these external programs�packages� For example� we have written a
simple ICP program which sends email by interfacing with the standard Unix mail daemon�

��� Mailbox Primitives

In TCP� every communication channel set up between a server and a client is a separate network
connection� The system overheads of creating sockets and setting up connections over the network
become signi�cant if the conversations are short and there are many such conversations� For ex�
ample� if a thread on one machine is interacting with ten threads on another machine� there will
be ten network connections between the two machines� Furthermore� TCP primitives are resticted
to one�to�one communication�

An alternative communication model is the mailbox model proposed by V� Benjumea� In the
mailbox model� the instrument of communication is a mailbox� A mailbox is simply a repository for
messages� Mailboxes may be created freely by any thread since they are very cheap to implement�
There is only one network connection between each pair of machines regardless of the number of
mailboxes created� Messages can be sent to and removed from a mailbox� Instead of having to
create two sockets to communicate� we now need to create only one mailbox� For two threads to
communicate� all they need is to share the mailbox identi�er� The sender places a message in the
mailbox� and the receiver removes it� A mailbox can store multiple messages� Messages are kept
in arrival order so that it naturally simulates connection�oriented communication�

In ICP� a mailbox is created using

mbx	create��Id�

This returns an identi�er naming the newly created mailbox� Mailbox identi�ers are globally
unique in the network� so the exact same identi�er may be used by any thread from any machine�
To send and receive messages to�from mailboxes� we use

mbx	send��Id� �Message�

mbx	recv��Id� �Message�

A name may be associated with a mailbox identi�er using

mbx	bind��Id� �Name�

This registers the name with an external name�server program so that other threads or ICP
processes may obtain the identi�er by querying the name�server using the primitive

mbx	getid��Name� �Id�

A link may be established between two mailboxes� When a message is sent to the �rst mailbox
in a link� the message is automatically forwarded to the second mailbox� Note that the link is
uni�directional only � messages sent directly to the second mailbox will not by forwarded to the
�rst� The second mailbox remains an ordinary mailbox while the �rst becomes a linked mailbox�
Linked mailboxes do not store any messages� Mailboxes are linked together by specifying the two
mailbox identi�ers in the primitive �

mbx	link��From� �To�

A mailbox may be linked to multiple mailboxes simultaneously� In this case� messages sent to
the linked mailbox will cause a copy of the message to be forwarded to each and every link� This
is how we can con�gure one�to�many communication� Note that there is a distinction between the
case where multiple receivers each receive copies of all messages �i�e�� multi�casting
� and the case
where one and only one of the multiple receivers receive each message� In the former case� we can
use linked mailboxes but in the latter case� one mailbox is su�cient�

Many�to�one communication can also be con�gured by linking multiple mailboxes to the same
mailbox� Indeed� any arbitrary communication topology may be built up using links�

Finally� to destroy a mailbox� we use the primitive



mbx	close��Id�

There are many other advanced features of mailboxes such as permission control� timeouts�
polling and non�destructive reads which are described in the ICP manual ��
�

� An Airline Reservations Example

To illustrate use of the language� we will develop a small airline reservations system as an example�
This will make use of multiple threads� TCP�IP communication� mailboxes and Prolog�s dynamic
database�

To simplify the example� we will not concern ourselves with dates and times of �ights� or the
di�erent types of fares� We will assume that �ight information is stored as dynamic clauses using
the relation db seats��� For example�

db	seats�ia
�
�����

represents the fact that there are �� seats remaining on Imperial Airlines �ight number ia�	��
The airline reservations system must be able to service multiple sessions concurrently since

travel agents all over the world may be trying to book �ights at the same time� To manage these
concurrent connections� we need a session manager program� The session manager program creates
a socket on a publicised port number�� and waits for connections to that port from travel agents�
It forks a new thread to handle each session� This is coded as in Figure �� For the purposes of this
example� we will assume that the Imperial Airlines reservations system uses port number ���� and
runs on a computer with Internet address �������������

session	manager ��

tcp	server������ Socket�� � publicised port number

session	manager�Socket��

session	manager�S� ��

tcp	accept�S� NewS�� � got a new connection

fork�session�NewS��� � fork new thread to handle it

session	manager�S�� � listen for more ���

Fig� �� Session Manager Program

During each session� requests may be made to �nd out availability information or try to reserve
a number of seats� The system will reply with the number of available seats in the case of a query�
or the result ok or failed in the case of a reservation� To avoid the lost update problem� a �ight
number must be locked before a reservation can be made� and unlocked after updating the number
of remaining seats� If the �ight number is already locked� availability queries can still be answered
but reservations will be suspended until the �ight number is unlocked� This is expressed in Figure
��

Locking and unlocking �ight numbers is done by sending messages to a lock manager program�
We could have used pipes� TCP�IP or mailboxes to communicate with the lock manager� We have
chosen to use mailboxes on this occasion since this is the most e�cient method for creating short�
lived communication channels� To lock a �ight number� a new mailbox is created for the reply from
the lock manager� The identi�er of this new mailbox is sent to the lock manager along with the
�ight number to be locked� Unlocking is much simpler since it does not require a reply� In both
cases� we need to �rst obtain the mailbox identi�er of the lock manager� The code for these two
operations is shown in Figure ��

The lock manager maintains a list of �ight numbers which are locked i�e�� currently being
updated� The list consists of entries of the form


 analogous to the globally known telephone number for an airline�s reservations system



session�Id� �� � argument is socket no�

tcp	recv�Id� Request�� � received a new request

service�Request� Id��

service�quit� Id� �� �� � terminate session

tcp	close�Id��

service�info�Flight�� Id� �� �� � availability query

� db	seats�Flight� Num� ��

tcp	send�Id� Num� � reply with no� of seats

� tcp	send�Id� error��no such flight���

��

session�Id��

� the next clause is for making reservations

service�reserve�Flight� SeatsReqd�� Id� �� ��

lock	flight�Flight�� � this may suspend

reserve�Flight� SeatsReqd� Reply��

unlock	flight�Flight��

tcp	send�Id� Reply�� � send back result of reservation

session�Id��

service�Other� Id� �� � errors

tcp	send�Id� error��invalid request����

session�Id��

reserve�Flight� SeatsReqd� ok� ��

db	seats�Flight� Num�� � valid flight �

SeatsLeft is Num � SeatsReqd�

SeatsLeft �� �� �� � enough seats �

asserta�db	seats�Flight� SeatsLeft��� � update database

retract�db	seats�Flight� Num��� � delete old info

reserve�Flight� SeatsReqd� failed��

Fig� �� Handling Flight Requests

lock	flight�Flight� ��

mbx	create�ReplyBox�� � new mailbox for reply

mbx	getid�lock	manager� Mbx�� � where to send to

mbx	send�Mbx� lock�Flight� ReplyBox��� � send lock message

mbx	recv�ReplyBox� yes�� � wait for permission to proceed

mbx	close�ReplyBox��

unlock	flight�Flight� ��

mbx	getid�lock	manager� Mbx�� � where to send to

mbx	send�Mbx� unlock�Flight��� � send unlock message

Fig� �� Access Control Operations

locked�FlightNum� WaitingList�

where WaitingList is a queue of mailbox identi�ers to notify when the current lock is removed�
To guarantee the consistency of the database� it is crucial that the lock manager performs its
operations sequentially rather than concurrently� The code is shown in Figure ��

To start the reservations system� we start the session manager and lock manager in two separate
threads like this �

� �� fork�lock	manager�� fork�session	manager��



lock	manager ��

mbx	create�Mbx�� � create mailbox for access requests

mbx	bind�Mbx� lock	manager�� � make mailbox identifier public

manage	locks�Mbx� ���� � initialise with no locks

manage	locks�Mbx� Locks� ��

mbx	recv�Mbx� Request�� � received new request

lock	action�Request� Mbx� Locks�� � process the request


�

If flight number is already locked� add this

request to the queue of waiting threads

�


lock	action�lock�Flight� ReplyBox�� Mbx� Locks� ��

member�locked�Flight�Waiting�� Locks�� �� � already locked

delete�locked�Flight�Waiting�� Locks� Residue��

append�Waiting� �ReplyBox�� NewWaiting��

manage	locks�Mbx� �locked�Flight�NewWaiting� � Residue� ��


�

If flight number is not locked� notify requesting thread to

proceed and add new entry to list of locks� initialising

the queue of waiting threads to be empty�

�


lock	action�lock�Flight� ReplyBox�� Mbx� Locks� ��

mbx	send�ReplyBox� yes��

manage	locks�Mbx� �locked�Flight���� � Locks� ��


�

When unlocking� if there are other threads waiting for this

flight number� notify the first in queue to proceed� If

no thread is waiting� remove the entry from list of locks�

�


lock	action�unlock�Flight�� Mbx� Locks� ��

delete�locked�Flight�Waiting�� Locks� Residue��

� Waiting � �First�Rest� ��

mbx	send�First� yes��

manage	locks�Mbx� �locked�Flight�Rest� � Residue� �

� manage	locks�Mbx� Residue�

��

Fig� �� Lock Manager Program

This completes the description of the server code being run on the airline�s computer� A simple
client interface program that could be run on any travel agent�s computer worldwide� is shown
in Figure �� The travel agent or indeed any computer user connects to the Imperial Airlines
reservations system by calling the goal imperial airlines� He then interacts with the system�
sending requests and getting replies until he decides to quit�

This example has shown that it is possible to write network�ready applications involving con�
currency and synchronisation using the ICP system� ��
 shows ICP being used to specify another
example of a multi�agent system involving cooperative problem�solving�

� Related Work

ICP belongs to the class of Process Oriented Prologs� The processes or threads are explicitly

� as long as it is connected to the Internet



imperial	airlines ��


� Connect to Imperial Airlines reservations system �



� The address is public knowledge� so it is hardwired �


tcp	client�������
���
����
�
��Socket��

session�Socket��

session�Socket� ��

write��request � ��� flush� � display prompt

read�Req�� � read request

tcp	send�Socket� Req�� � send request

� Req �� quit �� � finished �

tcp	close�Socket�

� tcp	recv�Socket� Reply�� � wait for reply

write�Reply�� nl� � display reply

session�Socket� � recurse

��

Fig� 	� Simple Airline Reservation Client Program

forked sequential Prolog programs� The processes run concurrently and communicate using explicit
asynchronous message passing�

Delta Prolog ���
 is the oldest of the Process Oriented Prologs� It de�nes constructs for split
goals� event goals and choice goals� which roughly correspond to ICP�s forking of threads� inter�
thread communication and Parlog�s OR�parallel search respectively� There are notable di�erences
however� In split goals and event goals� two�way uni�cation and distributed backtracking are im�
plicit and fundamental� In contrast� ICP has uni�directional message passing only and no distributed
backtracking� This is less powerful but much simpler to implement� We believe that two�way uni�
�cation and distributed backtracking may be simulated explicitly using message passing in ICP on
the occasions when it is needed� Delta Prolog�s choice goals can be viewed as a form of committed�
choice non�determinism restricted to having event goals only in the guard� The Parlog thread in
ICP is more general and does not su�er from this restriction�

CS�Prolog ���
 has the same expressive power as Delta Prolog but makes a distinction between
backtrackable and non�backtrackable primitives for creating new processes and receiving messages�
The authors recommend the use of the non�backtrackable versions of the primitives for practical
applications since� in common with Delta Prolog� there is a heavy performance penalty for using
distributed backtracking� The facilities provided in ICP correspond only to the non�backtrackable
primitives�

The system most closely related to ICP is PMS�Prolog ���
� Although Delta Prolog and CS�
Prolog allows concurrent processes� the scheduling is data�driven � there is no time sharing� PMS�
Prolog has a scheduler which pre�empts processes after a �xed number of Prolog calls whereas ICP
uses �xed time�slices� Both systems do not allow backtracking on communication and therefore rely
on coarse�grain Prolog processes to provide messages with high information content� PMS�Prolog
enforces this style by adding a module construct to Prolog which allows coarse�grain processes to
be declared� In ICP� we can use the object�oriented extensions ���
 to give a similar structuring
facility though it is not obligatory to use it�

ICP has better support for highly parallel programs than the above three systems simply because
it has a built�in Parlog thread� The combination of Parlog and Prolog o�ers greater expressibility
compared to the rather limited form of don�t�care non�determinism supported by other Prolog
systems� Also� whereas the other systems are aimed at executing programs on multi�processor
machines� ICP o�ers network communication facilities to enable programs to communicate over
the network�

There are other systems such as Shared Prolog ��
� Multi�Prolog ���
 and Linda Prolog which
allow communication between Prolog programs� These all use a blackboard communication model�
We believe that blackboard systems are inherently restricted as a medium for inter�process com�



munication because the blackboard itself becomes a bottleneck in the system�

� Conclusions

ICP does not aim to give a performance improvement over normal sequential Prolog systems� as
the large body of work in parallelising Prolog aims to do� Rather� we aim to expand the expressive
power of Prolog to encompass distributed applications�

ICP has a comprehensive set of communication primitives but this is of no great signi�cance
on its own� Many Prolog systems have interfaces or can easily construct interfaces to TCP�IP
to allow network communication� For example� both Quintus Prolog ��	
 and SICStus Prolog ��

include a TCP�IP interface with their distribution� However� since neither of these systems o�er
multiple threads� network programming is in our opinion rather di�cult� The application needs
to be turned �upside�down� into a single threaded event�driven loop or rely on interrupt handling�
This is analogous to the process of converting a teletype�based application to use a graphical user
interface� It requires a totally di�erent programming style� Even then� they are unable to truly
time�share between two concurrent goals which we contend is a prerequisite of network�friendly
applications� In contrast� the same programs written in ICP retains the style of a sequential Prolog
application and therfore we maintain� is more natural to write�

ICP is suitable for programming applications such as cooperating expert systems where each
expert system resides on a di�erent machine connected through a local area network� This opens up
the more general application area of Multi�Agent Systems and Distributed Arti�cial Intelligence�
where distributed logic programming has much to o�er�

A compiled version of the ICP system for Sun Sparc machines is available by anonymous ftp
from src�doc�ic�ac�uk �Internet� �����������
 in the directory


computing
programming
languages
prolog
icprolog

Acknowledgements

The author wishes to thank Frank McCabe and Keith Clark for many valuable comments and
discussions� This work was supported by the European Commission under the ESPRIT program
project IMAGINE �project number ����
�

References

��
 K� A� M� Ali and R� Karlsson� The Muse Or�Parallel Prolog Model and its Performance� In
S� Debray and M� Hermenegildo� editors� Proceedings of the North American Conference on

Logic Programming� pages �������� Austin� ���	� MIT Press�
��
 A� Brogi and P� Ciancarini� The Concurrent Language Shared Prolog� ACM Transactions on

Programming Languages and Systems� ����
�������� January �����
��
 M� Carlsson� Freeze� Indexing and other Implementation Issues in the WAM� In Proceedings

of the Fourth International Conference on Logic Programming� pages �	���� Melbourne� �����
��
 M� Carlsson and J� Widen� SICStus Prolog User Manual� Research Report R��		�B� Swedish

Institute of Computer Science� Kista� �����
��
 D� A� Chu� I�C� Prolog II � a Language for Implementing Multi�Agent Systems� In S� M�

Deen� editor� Proceedings of the SIG on Cooperating Knowledged Based Systems� pages ������
DAKE Centre� University of Keele� �����

��
 K� L� Clark and S� Gregory� Parlog and Prolog United� In Proceedings of the Fourth Interna�

tional Conference on Logic Programming� pages �������� Melbourne� ����� MIT Press�
��
 K� L� Clark� F� G� McCabe� and S� Gregory� IC�PROLOG Language Features� In K� L� Clark

and S��A� Tarnlund� editors� Logic Programming� pages �������� Academic Press� London�
�����

��
 A� Colmerauer� Prolog�II Manuel de Reference et Modele Theorique� Groupe d�Intelligence
Arti�cielle� Universite d�Aix�Marseille� Luminy�



��
 Y� Cosmadopoulos and D� A� Chu� IC Prolog II Reference Manual� Logic Programming
Section� Dept� of Computing� Imperial College� London� �����

��	
 V� S� Costa� R� Yang� and D� H� D�Warren� The Andorra�I Engine� A Parallel Implementation
of the Basic Andorra Model� In Eighth International Conference on Logic Programming� Paris�
����� MIT Press�

���
 J� Crammond� The Abstract Machine and Implementation of Parallel Parlog� New Generation

Computing� �	��������� �����
���
 K� De Bosschere� Multi�Prolog� Another Approach for Parallelizing Prolog� In D� J� Evans�

G� R� Joubert� and F� J� Peters� editors� Proceedings of Parallel Computing� pages ��������
Leiden� ����� Elsevier North Holland�

���
 Sz� Ferenczi and I� Futo� CS�Prolog� a Communicating Sequential Prolog� In P� Kacsuk and
M� Wise� editors� Implementations of Distributed Prolog� pages �������� John Wiley � Sons�
Chichester� �����

���
 S� Gregory� Parallel Logic Programming in PARLOG� International Series in Logic Program�
ming� Addison�Wesley Publishing Company� Wokingham� �����

���
 E� Lusk� D� H� D� Warren� and S� Haridi� The Aurora OR�Parallel Prolog System� New

Generation Computing� �����
��������� ���	�
���
 F� G� McCabe� Logic and Objects� Prentice Hall international series in computer science�

Prentice Hall International �UK
 Ltd�� Hemel Hempstead� �����
���
 L� Naish� Parallelizing NU�Prolog� In R� A� Kowalski and K� A� Bowen� editors� Proceedings of

the Fifth International Conference and Symposium on Logic Programming� pages ����������
Seattle� ����� MIT Press�

���
 L� M� Pereira and R� Nasr� Delta�Prolog� A Distributed Logic Programming Language� In
Proceedings of the International Conference on Fifth Generation Computer Systems� pages
�������� Tokyo� �����

���
 A� Porto� Epilog� a Language for Extended Programming in Logic� In J� A� Campbell� editor�
Implementations of Prolog� pages �������� Ellis Horwood� Chichester� �����

��	
 Quintus Corporation� Palo Alto� Manual for Quintus Prolog Release ���� �����
���
 W� R� Stevens� UNIX Network Programming� Prentice Hall Software Series� Prentice�Hall�

New Jersey� ���	�
���
 J� Thom and J� Zobel� NU�Prolog Reference Manual� version ��	� Technical Report ����	�

Dept� of Computer Science� University of Melbourne� �����
���
 D� H� D� Warren� An Abstract Prolog Instruction Set� Technical Note �	�� Arti�cial Intelli�

gence Center� SRI International� October �����
���
 M� J� Wise� D� G� Jones� and T� Hintz� PMS�Prolog� a Distributed� Coarse�grain�parallel Pro�

log with Processes� Modules and Streams� In P� Kacsuk andM� Wise� editors� Implementations
of Distributed Prolog� pages �����	�� John Wiley � Sons� Chichester� �����

This article was processed using the LaTEX macro package with LLNCS style


