
PRIMAVERA DE 1981 / SPRING 1981

CONTENTS

Short Communications

Community News & Events

New Books

Abstracts

Research Centres Addresses

EDITOR

Prof. Lufs Moniz Pereira
Departamento de Informatica

da Universidade Nova de Lisboa

PUBLISHED

UNIVERSIDADE NOVA DE LISBOA

Departamento de Informatica

Quinta do Cabec;o - Oliva is

1899 Lisboa Codex

Portugal

2

7

9

10

12

Tels. 251 25 26 • 251 26 60 • 251 25 55

DESIGN, TYPESETTING AND PRINTING

Servic;os Graficos da Universidade

Nova de Lisboa

Av. Miguel Bombarda, 20-1 .0

1000 Lisboa

DISTRIBUICAO GRATUITA / FREE DISTRIBUTION

EDITOR'S FOREWORD

At the first Logic Programming Workshop, held at Debrecen, Hungary, July 1980, it
was decided to promote a Logic Programming Newsletter, to be issued at least twice a
year. It was also decided that it would be edited in Lisbon, and Lufs Moniz Pereira was
appointed editor. The aim of the newsletter is to improve communication and cooperation
among the Logic Programming Community as well as to divulge its ideas and achie
vements to a wider audience.

The newsletter will be sent free of charge to those soliciting it from the editor.
However, to keep the newsletter free of charge, avoid soliciting it from the editor if you
have easy access to a library or someone receiving it.

How can you participate?
(1) It would be useful if each group with an interest in logic programming chose

one representative in charge of:

- keeping the editor informed of local news
- pressing the group for contributions
- direct contact with the editor regarding any urgent matters.

So, choose your representative and send his name, address and telephone number
to the editor as soon as possible.

(2) Here's a list of different possible types of contribution (perhaps you will think
of others):

- short communications on your work
- reviews of other people's work
- abstracts of reports: send a report
- reports on conferences attended and visits to other groups
- personal news (posts, changes of address, etc.)
- exchange of posts and posts available
- description of grant proposals and contracts
- illustrative programs to be included in the Newsletter or in the next edition of

«How to solve it with Prolog", a compilation of Prolog programs
- description of your research and development aims, including your policy

regarding the institutional setting
- start a debate (eg. which syntax for Prolog?)
- comparison of Logic Programming with other programming languages
- implementation description and evaluation
- what you would like to see in the newsletter
- addresses of practioneers
- listing of papers published in journals and conferences (send your list).

(3) Contributions may be sent directly to the editor or through your representative.
They should fit, with regular margins, on standard size A4 paper (this size). Write

in Englisn, on one side only, with the spacing not endangering legibility, either type
written or printed on the computer.

The editor thanks Antonio Porto and Eugenio Oliveira for helping in producing this
issue, and acknowledges the financial suport of the «Junta Nacional de lnvestigar,ao
Cientffica e Tecnol6gica" through the «Centro de Informatica da Universidade Nova
de Lisboa".

The next number will be out as soon as there are enough contributions. Please
contribute generously.

The Editor
LUIS MONIZ PEREIRA

I

~ CT\
Q
"' ::.
~

1VISANONS

..

short communications

Summary of
EFFICIENT LOGIC PROGRAMS: A RESEARCH PROPOSAL

John S. Coery
Paul H. Morris

Dennis F. Kibler

Dept. of Information and Computer Science
University of California, Irvine

5 February 1981

The goal of the proposed research is to develop methods for
efficient implementation of logic programs. There are two areas we
wish to investigate, both of which are continuations of research
conducted by members of the UCI Dataflow Architecture group. One
aspect of the proposed research involves development of a non-von
Neumann architecture for parallel execution of logic programs, preli
minary work in this area is reported by Conery [3]. The second area
involves transformation of high level logic specifications into efficient
Prolog and/or procedural language programs, and is based on work by
Morris [7].

1. A Parallel Processor for Prolog

One possible configuration of a multiprocessor machine for logic
programs is to have all processors work on the same goal list, i.e.
replace DECsystem-10 Prolog's depth-first search with some parallel
search method. This is the approach implied by Kowalski («Algoritm =
Logic+ Control») [5], and by Nilsson [8], where Petri nets are
mentioned as possible parallel control structures for production
systems.

A major difficulty with this approach is possible conflicting assi
gnments for variables that could be generated by unifications in di
fferent branches of the search tree. The problem is one of simulta
neous access to common memory by processes executing in parallel.
This problem is avoided in data-driven systems (c.f. Arvind, Gostelow,
and Plouffe [1]).

The attached figure shows a tree, where each node contains a
goal list, and descendants of a node are obtained via one unification
-and-replacement step. What we propose is a data-driven machine that
would process independent branches of the tree using independent
processors. The data passed between processors would be goal lists;
thus our machine is more properly called a goal-driven processor.

Among the issues to be resolved are

- Strategies for creating the tree. The figure shows two possibi
lities: one very ambitious and wasteful of processors, and
another that is close to Prolog's search tree. Are there any
other strategies? Which is best? What runtime information can
be used to create more efficient search trees? (Work by Clark
and McCabe [2] on ordering subgoals and co-routining is
relevent here.)

- Methods for allocating processors to goal lists. When a pro
cessor has expanded a node, what does it do next? Can it work
on a completely independent branch, or should it confine itself
to one of the just-created goals? What happens when all of the
processors have be~ allocated?

- Methods for communicating results back to the processor that
originated search.

The proposed research program is a «top-down» approach,
moving from hand simulations to programmed simulations of an
abstract machine (on the order of the Irvine Dataflow base machine) to
simulations of a physical multiprocessor machine. This last machine
could very well have the same architecture as the Irvine Dataflow
machine [4].

2

m(elaine,A)

s

The numbers labelling arcs refer to the goal within the

parent that is used to create the descendant

Figure 2-3: Maximum Breadth-First Goal Tree

f(curt,YI, f(Y,AI f(curt,Y), m(Y,A)

f(elaine,A) m(elaine,A)

s

A less ambitious strategy for expanding nodes uses

only the first goal in the current list

(i.e. every label is 1)

Figure 2-4; Breadth-First Goal Tree

2. Optimization of Logic Programs

f(curt,elaine)

s

The goal of this research segment is to attain a certain level
of automatic programming, using logic programs as an intermediate
language for manipulation. Specification will be in a high-level decla
rative language which resembles the recursion equation of Manna and
Waldinger [6]. Conversion to efficient code will proceed in four stages:

- Straight-forward translation to a (probably inefficient) logic
program.

- General transformations to remove some well-defined types of
inefficiency, using the dataflow network representation of logic
programs [7]. This version of dataflow is oriented towards
manipulation, rather than direct implementation, and differs
somewhat from both Irvine dataflow and the relational dataflow
system [3].

- Further optimization based on runtime information.
- Straight-forward translation to a conventional language.

.,

REFERENCES

1. ARVIND, GOSTELOW, K. P., and PLOUFFE, W. P. : An Asynchronous Programming
Language and Computing Machine. Technica l report 114a, Dept. of Information and
Computer Science, University of California, Irvine, December, 1978.

2 .. CLARK, K. l., and G. McCABE: The Control Facilities of IC-Prolog. In D. Michie, Ed.,
Expert Systems in the Micro Electronic Age, Edinburgh University Press, 1979.

3. CONERY, J. S.: A Relational Dataflow System. Dataflow Note 48a, dept. of Information
and Computer Science, University of California, Irvine, May, 1980.

4. GOSTELOW, K. P. and R. THOMAS: Performance of a Simulated Dataflow Computer.
IEEE Transactions on Computers C-29, 10 (October 1980), 905-919.

5. KOWALSKI, R. A.: Algorithm = Logic+ Control. Comm. ACM 22, 8 (July 1979), 424-436.
6. MANNA, Z. and WALDING ER, R.: A Deductive Approach to Program Synthesis. ACM

Transactions on Programming Languages and Systems 2, 1 (January 1980), 90-121.
7. MORRIS, P. M.: A Dataflow Interpreter for Logic Programs. Dataflow Note 50, Dept. of

Information and Computer Science, University of California, Irvine, May, 1980.
8.- NILSSON, N. J.: Principles of Artificial Intelligence. Tioga Publishing Company, Palo Alto,

Ca., 1980.
Please notify us of any related work.

A NEW PROPOSAL FOR CONCURRENT
PROGRAMMING IN LOGIC

Luis Monteiro
Departamento de Informatica
Universidade Nova de Lisboa
1899 Lisboa Codex
PORTUGAL

We outline in this note a proposal for an extension to Horn clause
predicate logic (HCL, for short) such that, when sets of clauses are
interpreted as programs as originally suggested by Kowalski [7, 8], the
entire execution of a given program may be viewed as the concurrent
execution of several of its parts. This extension consists, on the one
hand, in providing an explicit notation to distinguish between processes
that run concurrently from processes that run sequentially, and, on
the other hand, in introducing a construct for process synchronization.
It is hoped that this extension will not betray the essential spirit of
HCL programming. For example, we required from the outset that
our system shoulp possess equivalent operationa l and declarative
semantics, as is the case with HCL and in fact one of its more
distinctive features [3]. Unlike some other works that have appeared
recently and which try to enlarge HCL programs so as to include some
notion of concurrency [1, 2, 5, 6], our system seems to be the only
one to be defined entirely in logical terms. It is not the purpose of this
note, however, to compare our system with these other systems
issuing from HCL or, for that matter, with any other system for expre
ssing concurrency. For reasons that will be apparent later, we call
(provisionally) our system "state description logic" or SOL, for short.

When referring to HCL not ions we shall in the main follow
Kowalski's terminology and notation [7, 8], with one difference: identi
fiers starting with a lower case letter denote (ind ividual) constants or
pred icate or function symbols, while identifiers starting with an upper
case letter denote (individual) variables .

State descriptions are defined in the fo llowing way:

- the symbo l ' □ ' and every atom A are state descriptions;
-:-- if S and T are state descriptions then so are S.T and S+ T.

State descriptions are supposed to satisfy the following equations:

D.S ·s . □ = S,
R.(S.T) = (R.S).T,

□+s = s+ □ = s,
R+ (S + T) = (R+S)+ T.

Thus state descriptions have a structure which we might call a "bi
-monoid". Parenthesis are eliminated in the usual way and also by
assigning higher priority to '.' than to '+ '.

In the absence of the synchro,nization construct, state descriptions
may be used to generalize clauses in the following way. A "generalized
clause" is of either of the forms ..-S or A..-S, where A is an atom
and S is a state description. Declaratively, 'D' is interpreted as 'true'
and both '.'and '+' are interpreted as conjunction. Operationally, 'D'
means 'end of process', 'S.T' means that the process initiated by S

must be completed before the process with origin T starts, and 'S+ T'
means concurrent execution of the processes with origins S and T.

Let us now be more specific about the operational semantics. We
shall write a generic state description S in the form S1+ ... + Sn, n ;:a 0,
where no Si is either □ or S' +S" for some state descriptions S'
and S"; we assume that S = □ iff n = 0. In this case every Si has the
form Si · ... ·Si where no Si· is either □ or S'.5'' . If each S is an atom A

I nf j • I I

we shall say the state description S=A1+ ... + An is flat.
We associate with each state description S a f lat state description

front (S) defined recursively as follows:
front (S) = S if S is either □ or an atom;

· front (S.T) = front (S) and front (S+ T) = front(S)+front(T)

if S and T are state description distinct from □ .

We are now in a position to state precisely the notion of "direct
derivation". As a first aproximation, the notion that ..-S derives ..-T,
where S and Tare state descriptions, is precisely as in HCL [7, 8], with
the sole difference that the atom selected in S for resolving with a
clause of the log ic program is in fact selected in front (S) . The next
step wi ll be to allow several atoms in front (S) to be resolved simulta
neously. With this notion of direct derivation it is easy to define the
operational semantics of this system as for HCL. The equivalence
between the declarative and the operationa l semantics follows from a
result by Hill [4].

We view a state descriptions S=S1+ ... +Sn as a description of the
state of a process, which ci;insists in n processes running concurrently,
and described in the present state by S1, ... ,Sn respectively. Each of
these n processes may itself consist of severa l processes running
concurrently, and so on, depending on the way S is structured in terms
of '.' and '+' . What is lacking is a mechanism to synchronize these
processes.

We enforce synchronization by organizing the (generalized) clauses·
into sets and requiring that, in a direct derivation from ..-s to ..-T, if
some clause C is used then the remain ing clauses belonging to the
same set as C must also be used. Put in another way, let us suppose
that A1 +- S1,---, An<--Sn is one of the distinguished sets of clauses. This
set may be represented by the expression

called an implication, and we assume that Ai1,A;n +- Sil' ·-- ,Sin is the

same implication if i1, ... ,in is a permutation of 1, ... ,n. An SOL program
is a finite nonempty set of implications. The definition of a direct
derivation from <--S to ..-T is the same as before with the sole di
fference that we now use implications instead of (generalized) clauses.
The operational semantics now fo llows in the usual way: a state
description S is a log ical consequence of a given SOL program iff ..-S
derives +- □ . (The variables of S are assumed to be existentially
quantified.) Notice that in a SOL program P a state description A+B
may be a logical consequence of P without A or B be ing logica l
consequences of P (consider for example the program A,B<--□,□).
Thus the semantics of SDL programs must be described in terms of
state descriptions and not of atoms, as is the case for HCL programs.
Another new situation we must consider is the possibility of some
processes being infinite yet meaningful!. In thi~ case we shift our
attention from the notion of logical consequence to the notion
of derivabi lity (of which, as a matter of fact, the notion of log ical
consequence is a particular case).

As an example of an SOL program (taken from [1 OJ) let us
consider a resource and two objects 'a' and 'b', each using the
resource in some phase of its activity, with the restriction that the
objects cannot ·use the resource simultaneously. The initial state
description and the program follow:

<-- object(a,ownactivity) + resou rce(avai I able)+ object(b,ownactivity)
object(X,ownactivity) +- object(X, requests)
object(X,requests), resource (available)+- 0bject(X,uses),resource

(taken)

3

object(X,uses) <- object(X,releases)
object(X,releases), resource(taken) <- object(X,ownactivity),resource

(available)

Another program for the same problem, more adequate for other
purposes, is the following:

<- object(a)+resource+object(b)
object(X) <- ownactivity.requests.uses.releases.object(X)
resource<- available.taken.resource
ownactivity <- D
requests,available <- D , □
uses<- □

releases,taken <- □, □

To define the declarative semantics of an SOL program we need
the notion of an interpretation. Let F and P be the sets of function
symbols and predicate symbols respectively occurring in the program.
Let BM(P) be the free bi-monoid generated by P. Each element s
in BM(P) has an arity which is the sum of the arities of the predicate
symbols ocurring in s. Now an interpretation of the SOL program is any
F-algebra A together with a mapping from BM(P) to the set Pred(A) of
all predicates over A. This function must satisfy some requirements,
such as the one of preserving arities (and some others as well).
A "valuation" is as usual a function mapping variables onto elements
of A. It is then possible to define the usual notions of "satisfaction" of
a state description or an implication, of "models", "Herbrand models"
and of a state description being a "semantic consequence" of the SOL
program. It can also be proved that the operational and the declarative
semantics are equivalent.

The work outlined herein will be the subjet a serie_s reports dealing
systematically with a general presentation of the system, the proof
of the equivalence between the operational and the declarative
semantics, and the presentation of an experimental interpreter for this

system written in Prolog.
(This note is a slightly revised version of an extended abstract

[with a different title] submitted to the International Colloquium on
Formalization of Programming Concepts, to be held in Peniscola, Spain,
in April 1981. The work was supported by the lnstituto Nacional de
lnvestiga,;:ao Cientffica, through the Centro de Informatica da Univer
sidade Nova de Lisboa.)

REFERENCES

1. K. CLARK. F. McCABE. The Control facilities of IC;-Prolog, Dept. of Computing and

Control, Imperial College, 1979.
2. M. DAUSMANN, G. PERSCH, G. WINTERSTEIN, Concurrent Logic, Univ. Kaiserslantern,

1979.
3. M. van EMDEN, R. KOWALSKI, The Semantics of Predicate Logic as a Programming

Language, JACM 23 (19761, 733-742.
4. R. HILL, Lush resolution and its Completeness, Dept. of A. I., Univ. of Edimburgh, 1974.
5. C. HOGGER, Logic representation of a Concurrent Algorithm, in 9.
6. K. KAHN, Intermission-Actors, in 9.
7 . R. KOWALSKI, Pred icate Logic as a Programming Language, Proc. IFIP 1974.
8. R. KOWALSKI, Logic for Problem Solving, North-Holland-Elsevier, New York, 1979.

9. S.-A. TARNLUND (Ed .I, Proceedings of the Logic programming Workshop, Hungary, 1980.
10. WINKOWSKI, An Algebraic Description of Discrete Processes and Systems, Polish

Academy of Sciences, 1980.

TRANSPORTING VALUES VIA RELATIVE ASSERTIONS

Paul Morris

Dept. of Computer and Information Sciences,
University of California, Irvine

lnterative loops are a frequently used construct of conventional
programming languages. An interesting property of iteration is that, in
terms of data paths, the entrances and exits are at opposite ends of

4

the loop. By contrast, in a recursively defined loop, both entrances and
exits are at the top. For recursively defined functions, the functional
value is available to pass at least one result back up the loop. In a
relational language such as PROLOG, however, additional arguments
are required to pass back results. Thus the PROLOG version of
efficient reverse

reverse (X,Y) :- reverse! (X,[],Y).

reverse! ([X, .. Y],Z,W) :- reverse! (Y,[X, . .Z],W).
requires three variables to implement the loop, while the iterative
program

procedure reverse(X);
local y <- [];
while X [] do

y <- cons(car(X),Y)
X <-· cdr(X);

return Y;

requires only two. We argue that our mental represention of loops
allows entrances and exits from both ends, and that the additional
variables are an unnecessary obfuscation of this mental image.

We propose cl new construct for PROLOG which will allow loops
to be accessed from both ends, without the need for transporter
variables. We do this by allowing PROLOG procedure calls to include
what may be regarded as "temporary assertions" which are valid for
the scope of the procedure call. We will call these relative assertions.
A call P with relative assertion O is denoted P/O (some versions of
PROLOG use the symbol "/" to denote what is called "cut" in DEC-1 O
PROLOG. We apologize for an{ confusion this may cause; the slash
symbol seemed irresistably suited for conveying the notion of relative
assertion) and may be read as "P given O" or "P is deducible from O."
The expression may perhaps be assigned a declarative meaning as 0
implies P, although, properly speaking, it is a condition in the
metatheory. Observe that the procedural interpretation here is quite
different from that of the "implies" in

subset(X,Y):- (member(Z,X) implies member(Z,Y)).

A definition of "/" for current interpreted DEC-10 PRO LOG
follows, together with its use in defining the reverse and concat
predicates. By separating out the termination conditions from the
loops, we potentially increase the reusability of the loop definitions.
Notice that with this definition, recursive calls on slash will stack the
relative assertions, i.e. they are local to the particular invocation of
slash. Thus relative assertions could be used to maintain an envir
onment across several levels of procedure call, giving the equivalent
of dynamic scoping.

The definition below cannot be used in compiled code since
compiled clauses are not accessible as data structures. We hope,
however, that it will prove useful and that implementers will thereby

be prompted to provide it at a more basic and efficient level of their
system.

Definition and examples:

PIP :- !.
true/A :- 1

(P,O)/A :- !, P/A, O/A.
P/A :- clause(P,O), O/A.

c([X, .. Y],,[X, .. Z]) :- c(Y,Z)

concat(U,V,W) :- c(U,W)/c([],V).

r([X, .. Y],Z) :- r(Y,[X, .. Z]).

rev(X,Y) :- r(X,[])/r([],Y).

I= I- I= I- I=

A PROLOG PROGRAM FOR THE 'S-P PROBLEM'

Departamento de Informatica
Universidade Nova de Lisboa
1899 LISBOA Codex

by Antonio Porto

I-

Reading through issue 37 of AISB Quarterly my attention was drawn to the 'S-P problem', which I had already seen
stated in the well-known Martin Gardner's section on Mathematical Games in Scientific American. This time, however,
there was along with the problem a challenge, attributed to John McCarthy, to write an 'Al-flavoured' program that could
solve it.

The problem follows:

There are two numbers, Mand N, such that 1 < M < N < 100. Mister Sis told the sum of the two numbers, Mister
P is told their product, and they both know they were told so. The following dialogue takes place:

Mr. P : I don't know the numbers.

Mr. S : I knew you didn't know them;
I don't know them either.

{

Mr. P: Now I know the numbers!

Mr. S: Now I know them too!

What are the numbers?

That issue of AISB Quarterly also contained what was then considered to be the best reply, so far, to the challenge:
it was a Prolog (what else?) program written by Martin Nilsson and John Campbell from the University of Exeter.

I decided to write my own Prolog program for this proplem. It has (I hope) a very clear reading, and uses as building
blocks for the formulation of the 'S-P problem' the general subproblems of finding if a given problem has one and only one
solution, if it has more than one solution, and if every one of its solutions entails a solution to another problem; these
subproblems are efficiently defined.

We can imagine many different problems of the same kind, just by changing the dialogue. Corresponding programs,
using my approach, would only differ in the top-level formulation of each particular problem, which just reflects the
dialogue taking place.

The whole program, as written for the DEC-10 Pro log compiler, is now presented: (by the way, the solution is M = 4
and N=13.)

/*

/*

DEFINITION OF INFIX OPERATORS */

op(800, xfy,[one_and_only_one, allows, verifying, every]).
op(800, xfy,[implies, more_than_one, have].
op(750, xf, :).
op(700, xfx ,given).

COMPILER DIRECTIVES */

public sp/2, one_and_only_one/2, verifying/2,
every/2, more_than_one/2, given/2.

mode sp(-, -),one_and_only_one(+,+),verifying(+,+),more_than_one(+, +),
every(+,+), no_record(+) ,update_record(+),not(+), the_sum_is(-),
given(+,+),have(+,+),integer(-,+,+),factor(+,+,-).

/* THE PROBLEM */

sp(M,N) : - the_sum_is(S),
sentence4 : ·
one_and_only_one product(P) given sum(S)
allows sentence3 verifying Sx=S :

5

6

/*
/*
/*
/*
/*
/*
/*

one_and_only_one sum(Sx) given product(P)
allows sentence2 :

every product(Px) given sum(Sx)
implies sentence1 :

more_than_one sum(_) given product(Px),
the_numbers(M,N) have sum_and_product(S,P).

The following subproblems make use of the DEC-10 Prolog
recording mechanism, which works as follows:

'recorda(K,T,R)' records term T under key K,
using reference R.

'recorded(K,T,R)' accesses term T recorded under key K,
its reference being R.

'erase(R)' erases the term recorded with reference R.

S : one_and_only_one X allows Y :- call((X,Y)),(recorded(S,_,R),
erase(R), !,fail ;

recorda(S,X allows Y,_),
fail) ;

recorded(S,X allows Y,R), erase(R).

S verifying P one_and_only_one X allows Y :-
call((X,Y)),(not(P),

no_reco1•d(S), ! , fail
recorded(S,-, R),

erase(R), ! ,fail ;
recorda(S,X allows Y,_),

fail) ;
recorded(S,X allows Y,R), erase(R).

S more_than_one X :- call(X),(recorded(S,-,R), erase(R), ! ,
recorda(S, 1 ,-), fail) ;

recorded(S,_,R), erase(R), fail.

S every X implies Y :- call(X),(not(Y),
no_record(S), !,fail ;

update_record(S), fail)
recorded(S,N,R),erase(R),N=2 .

no_record(S) :- recorded(S,_,R), erase(R)
true.

update_record(S) recorded(S,2,_) ;
recorded(S, 1,R), erase(R), recorda(S,2,_)
recorda(S, 1,_)), ! .

not(X) :- call(X), !,_fail ;
true.

the_sum_is(S) :- integer(S,4, 198).

the_numbers(M,N) have sum_and_product(S,P) integer(M,2,99),
N is S-M,
P is M*N, !.

product(P) given sum(S) :- S2 is S/2, integer(M,2,S2), P is M*(S-M) .

sum(S) given product(P) :- factor(P,2,M), S is M+(P/M) .

integer(l,I,_),

integer(!, Low, Up) New_low is Low+1, ~w_low =< Up,
integer(l,New_low,Up).

factor(P,M,M) :- 0 is P mod M.

*/
*/
*/
*/
*/
*/
*/

factor(P,Guess,M) :- New_guess is Guess+1, P >= New_guess*New_guess,
factor(P, New_guess, M).

l

community news & events

LOGIC PROGRAMMING WORKSHOP USA

A Logic Programming Workshop was re
cently organized by Syracuse University, from
8-10 April, and held at Thornfield, an ,ame
nable location on lake Cazenovia, 30 minutes
from Syracuse.

Most of the 60 odd people or so attending
were americans and canadians, plus a sprinkle
of european "veterans". Logic programming,
mainly through the use of Prolog, is picking up
speed in the States, and is also very much a
la mode.

There were 5, 20 and 30 minute informal
presE;Jntations, grouped into sections. These
were Program Design, Control (compile
and runtime), Metalanguage, Data Bases,
Implementation, Parallelism, Natural Lan
guage, and a General Section (applications,
extensions, etc.).

Participation was lively, the surroundings
beantiful, and the atmosphere friendly.

MICRO-PROLOG 2.0

Micro-Prolog is an interpreter for a subset
of Prolog for micro-computers. Its runs on the
Z80 processor, under CP/M operating system,
in 32 K bytes of memory. The interpreter itself
is 8,5 K bytes (written in ZS0 assembler).
Speed is approximately 120 resolutions/sec
on a_ 2 MHg Z80 with no wait states. It is
available on North Star, Heath/Zenith and
8" formats, Licence for single user, single site
is US$250, but multi-user single site agree
ments are available. For further information
contact:

Logic Programming Associates Ltd.
36 GORST RD.
LONDON SW11 6JE

NEWS FROM IMPERIAL COLLEGE

Education. Dr. Kowalski is holder of a three
year grant from the Science Research Council
to develop "Logic as a computer language for
children". Employed on this grant are Frank
McCabe, programmer; Richard Ennals,
teacher; Diana Reeve, secretary. Using an
implementation of Prolog for a micro
computer, "micro-Prolog", written by Frank
McCabe, Richard Ennals is writing and using
teaching materials. The initial school used in
the project is Park House Middle School, in

Windkdar, where Robert Kowalski had briefly
used some trial materials two years ago.
A class of 10-11 yearolds have lessons on
two afternoons each week. Copies of the first
term's teaching materials are now available.
Judging response to date from teachers,
teacher-trainers, government inspectors, pu
blishers and local authority education depar
tments, the educational potential of logic
programming is considerable "micro-Prolog"
currently is implemented for ZS0 micro
processors, using the CP/M operating system,
It is running on North Star Horizon, Research
Machines 3802 and Heathkit Zenit disk-based
systems. It is hoped that an effective means
of distributing materials, either through go
vernment agency or educational publishers,
will soon be formulated, with software
handled, as at present, through Logic
Programming Associates.

Language definition. 1.,,,, ,s Moss is just
-finishing a Ph. D. thesis on the definition
of programming languages. Logic is providing
a unified approach to both syntax and
semantics. Metamorphosis grammars (also
called definite clause grammars) allow one to
describe the context sensitive portions of a
programming language with unrivalled clarity.
The dual semantics of Prolog provides a
"denotational" and an operational semantics
for programs, and they can also express the
axiomatic approach.

Program transformation. The work on
transformation of algorithms is continuing and
the classification of algorithms via synthesis
has been extended by Keith Clark, Derek
Brough and Phil Vasey.

Loop trapping. The previons investigations
by Derek Brough into loop trapping for logic
programs has been applied to micro-Prolog to
simplify its use in the schools project.

"LOGIC PROGRAMMING CONFERENCE"

The next Logic Programming event will take
place at Luminy, an altogether beautiful
campus just outside Marseille, .France, in the
middle of September 1982. The exact date
and arrangements are not yet known, but it is
to be a major event for the logic programming
community.

"HOW TO SOLVE IT WITH PROLOG"_

Copies of the August 80 2nd edition of this
compilation of Prolog programs may be obtai
ned by writing to:

Helder Coelho
Laborat6rio Nacional de Engenharia Civil
Av. do Brasil
1799 Lisboa Codex

"PROLOG BIBLIOGRAPHY"

An updated listing of publications on Prolog
may also be obtained from Helder Coelho, at
the address above.

RESEARCH GRANTS AT MARYLAND

Professor Jack Minker informed us that he
holds two grants that may be of interest:

(a) Investigations of a predicate logic lan
guage for problem solving (NASA).

(b) Investigations of the use of predicate
logic in deductive database systems (NSF).

WORK IN PROGRESS AT THE K. U. LEUVEN/
/BELGIUM

In 1979, we have developed a portable
Prolog interpreter written in Pascal (space
efficient, i.e. tail recursion optimisation).

Last year, we have developed a new inter
preter in the language C for the UNIX operating
system. In this new interpreter, all names of
constants are placed on a file, this results
in more working space, but also in some
overhead for input/output. Recently, we
have connected this interpreter to a simple
relational database. When the interpreter
accesses this database, it asks for all tuples
matching a certain pattern, it pushes all these
tuples on a stack. Then it consumes these
tuples one by one (the normal backtracking
mechanism).

For more information, write to

Maurice BRUYNOOGHE
K. U. LEU\/EN
Afdeling Toegepaste Wiskunde

en Programmatie
Celestijnenlaan 200 B
B-3030 Heverlee/Belgium

7

Report on VLBD Montreal, 1-3 October 1980

by Robert Kowalski

Imperial College, London

I was invited to VLDB to participate in a
panel on the relationship between database
theory and practice. Predictably, my contribu
tion concentrated on the role that logic pro
gramming can play in the database field. The
reception to my talk was encouraging as was
the general attitude towards logic and data
bases. I got the impression that the database
_research community has had enough of rela
tiona I database theory (though not with
implementation) and is now ready to look
further afield in such directions as logic and
artificial intelligence.

A separate panel was organised to report
on a workshop held in Colorado earlier this
year specifically to explore relationships bet
ween databases, abstract data strctu res and
artificial intelligence. There were several
papers presented at the VLDB conference
which used logic for query optimisation and
integrity checking. I think there will be a lot
more activity using logic in these two areas.

The next VLDB will be held in Cannes from
9-11 September 1981. The call for papers
explicity included the fol lowing topics:

Database and Logic
Natural Languages
Artificial Intelligence
Programming Language and Databases
Knowledge Based Systems

The deadline for submission of papers was
March 1981.

IIUW-Prolog

Feliks Kluiniak
Institute of Informatics
Warsaw University
P.O.B. 1210
00-901 Warszawa, Poland

IIUW-Prolog is a Prolog interpreter written
in 1979 at the Institute of Informatics,
Warsaw University. The program is written
entirely in standard Pascal and the language
it supports is very similar to a Marseilles
version described in Ph.Roussel's 1975
manual.

While the data structures were designed
from the scratch to take full advantage of

8

Pascal's type-definition and data-packing
features, their basic philosophy is also that of
Battani's and Meloni's 1973 Marseilles inter
preter. Note, however, that no bootstrapping
is employed (*) - the resulting program
-reading speed, accompanied by exhaustive
diagnostics, makes IIUW-prolog especially sui
table for novice Prolog programmers.

The interpreter performs particularly well on
the CDC 6000 series computers, thanks to
the quality of the ETH Pascal compiler and its
ability to get the most out of data-structure
packing. We measured the cost- in CPU
time - of solving standard Warplan problems
on a CYBER 73: the results were comparable
to those published by Warren for the Mar
seilles interpreter on an IBM 360/67. In this
test the cost of data packing offsets the di
fference in processor speed, but better
memory utilisation makes it worthwhi le. We
have always found 72000 (octal) words satis
factory for large programs, and most student
jobs can run within the standard limits set for
Fortran "quickies". Thus, the performance of
IIUW-Prolog seems significantly better than
that of the standard Lisp interpreter for this
range of machines.

The implementation techniques used in
IIUW-Prolog are slightly obsolete, but it was
not our aim to advance the state of the art.
All we needed was a cheap but reasonably
efficient interpreter which we could use to
teach Prolog in an academic community that
is rather hard-pressed for computer time. The
cost of the whole effort, from the initial
design to an almost bug-free version, was
very low indeed. The present author did it
single-handedly in two months, of which a
week was spent punching cards and three
weeks were used for debugging on a batch
system with 3-4 runs a day. (I admit, through,
that I put a lot of overtime and did not write
the documentation).

After using the interpreter for one year we
found it worth-while to add a number of new
standard procedures (i.e. evaluable pre
dicates), tracing facilit ies on so on. By mid-'81
this effort will be over and IIUW-Prolog will
probably take over as the standard big
-machine implementation in Poland. We will
also gladly suppl),' it to anyone who will be
interested enough to send us a tape.

{ *) While metamorohosis grammars are processed by

brute force, the problem of Prolog's variable syntax was
rather satisfactorily solved by applying the wel l-known

(though rarely used) algorithm originally designed for the

translation of expressions to Reverse Polish notation

THE PROLOG TEAM AT WARSAW
UNIVERSITY

Prolog is not yet widely known in Poland,
though research workers at several universities
have shown interest in the language, and
some are even using it. Our group at Warsaw
University, however, is still the only one that
is actively concerned with logic programming
as such. The group now consists of a core of
three persons (Janusz S. Bien, Ph. D., Feliks
Kluzniak, M. Sc., Stanislaw Szpakowicz,
Ph. D.) and a few cooperating students and
programmers. We are mainly interested in
implementing Prolog, teaching Prolog and
Prolog applications, especially in the field of
computational linguistics. Our activities in
these three areas are summarized below.

There are at present two Prolog implementa
tions being used in Poland. The first, official ly
distributed one is a variation of the original
Marseilles interpreter; it was cleaned out and
extended (eg. by adding tracing facilities), and
adapted for the ICL 1900-compatible Polish
ODRA 1305 computer. The other version is a
new interpreter written in Pascal for the CDC
CYBER (see a note on IIUW-Prolog in this
newsletter). We are now in the process of
porting it to an R-32 (the local version of an
IBM 360)

Other implementation efforts are under
way. One of these is a Warren-like compiler
for the CDC CYBER, which is being written by
M. Lazinski for his M. Sc. degree.

A regular Prolog course is being taught to
computer science students since 1979 (we
presented at the Debrecen Workshop a short
report on our teaching method). We also do
our best to spread knowledge of Pro log
outside Warsaw University; an important
result in this field is a textbook on Prolog for
professional programmers, research workers
in computer science and students. The text
book has now been submitted to a Warsaw
publisher (Wydawnictwa Naukowo-Techniczne).

Two rather large app lication programs are
worth mentioning. One is a surface-syntactic
analyser of written Polish (by Szpakowicz); the
other is an experimental interactive railway
timetable information system with natural lan
guage interface (by Szpakowicz and Marek
Swidzinski).

Warsaw, Jan. 1981.

Stanislaw Szpakowicz

new books

FORTHCOMING BOOKS

"Programming in Prolog", by William F. Clocksin and
Christopher S. Mellish, from the Dept. of Artificial Inte
lligence at Edinburgh, is the long waited for primer on
Prolog, by experienced practicioneers. It is to be
published by Edinburgh University Press this year. Here
are some extracts from its Preface:

Until now, there has been no textbook with the aim
of teaching Prolog as a practical programming language.
It is perhaps a tribute to Prolog that so many people
have been motivated to learn it by referring to the
necessarily concise reference manuals, a few published
papers, and by the orally transmitted 'folklore' of the
modern computing community. However, as Prolog is
beginning to be introduced to large numbers of undergra
duate and postgraduate students, many of our colleagues
have expressed a great need for a tutorial guide to
learning Prolog. We hope this little book will go some
way towards meeting this need.

This book can serve several purposes. The aim of
this book is not to teach the art of programming as such.
We feel that programming cannot be learned simply by
reading a book or by listening to a lecturer. You've got to
do programming to learn it. We hope that beginners
without a mathematical background can learn Prolog
from his book, although in this case we would
recommend that the beginner is taught by a programmer
who knows Prolog, as part of a course that introduces
the student to programming as such. It is assumed that
the beginner can obtain the use of a computer that has a
Prolog system installed, and that he has been instructed
in the use of a computer terminal. The experienced
programmer should not require extra assistance, but he
also should not dismay at our efforts to restrain
mathematical affectation.

Like most other programming languages, Prolog
exists in a number of different implementations, each
with its own semantic and syntactic peculiarities. In this
book we have adopted a "core Prolog", and all of our
examples conform to a standard version that corres
ponds to the implementations, developed mainly at
Edinburgh, for three different computer systems: the
DECsystem-10 running TOPS-10, the DEC PDP-11
running Unix, and the PDP-11 running· RT-11 . These
implementations are probably the most widespread. All
the examples in this book will run on all three of the
implementations. In an appendix, we list some of the
existing Prolog implementations, indicating how they
diverge from the standard. The reader will appreciate
that most of the deviations are of a purely cosmetic
nature.

This book was designed to be read sequentially. Each
chapter is divided into several sections, and we advise
the reader to attempt the exercises that are at the end
of most sections. The solutions to many of the exercises
appear at the end of the book. Chapter 1 is a tutorial
introduction that is intended to give the reader a "feel"
for what is required to program in Prolog. The funda
mental ideas of Prolog are introduced, and the reader is
advised to study them carefully. Chapter 2 presents a
more complete discussion of points that are introduced
in Chapter 1. Chapter 3 deals with data stuctures and
derives some small example programs. Chapter 4 treats
the subject of backtracking in more detail, and introdu
ces the "cut" symbol, which is used to control back
tracking. Chapter 5 introduces the facilities that are
available for input and output. Chapter 6 describes each
built-in predicate in the standard "core" of Prolog.
Chapter 7 is a potpourri of example programs collected
from many sources, together with an explanation of how
they are written. Chapter 8 offers some advice of
debugging Prolog programs, and provides an alternative
model of control flow. Chapter 9 introduces the
Grammar Rule syntax, and examines the design deci
sions for some aspects of analysing natural language
by using Grammar Rules. Chapter 10 describes the
relation of Prolog to its origins in mathematical theorem
proving and logic programming. Chapter 11 specifies a
number of projects on which interested readers may
wish to practise their programming ability.

"LOGIC PROGRAMMING WORKSHOP 1"

A book coming out of the workshop held last July at
Debrecen, Hungary, is being edited by Keith Clark and
Sten-Alke Tarnlund. The book contains re-written
versions of many of the papers presented at Debrecen,
as well as some entirely new contributions. All were
refereed by the present Logic Programming Workshop 2
Comittee.

"MATHEMATICAL LOGIC PROGRAMMING
COLLOQUIUM 78"

The proceedings of this Colloquium, held at
Salgotarjan, Hungary, in September 1978, are now under
print by North-Holland, and should be out before next
summer.

9

NEW PAPERS

from Syracuse:

Programming with Full First Order Logic

Kenneth A. Bowen

An automatic deduction system based on a
modification of Gentzen's sequentzen system
LJ is presented and its use as the basis for a
logic programming system is described. The
system is a natural extension of Horn clause
logic programming systems in that when all of
the formulas in the input sequent are atomic,
the behavior of the system mimics that of
LUSH resolution systems. The use of such
systems in program development systems
and in database management systems is
discussed.

Loglisp - An Alternative to Prolog

J. A. Robinson
E. E. Sibert

(No abstract provided)

Logic Programming in Lisp

J. A. Robinson
E. E. Sibert

This document describes version V1 M1 of
LOGLISP, an extension of LISP in which one
can do logic programming [Kowalski 1974,
1979). The logic programming system within
LOGLISP is called LOGIC. Thus we have:
LOGLISP = LOGIC + LISP.

LOGIC differs in a number of ways from the
well-known PROLOG implementations of logic
programming [Roussel 1975). [Warren 1977).
[Roberts 1977), [Clark 1979). The most
noteworthy difference is that LOGIC is simply
a set of new LISP primitives designed to be
used freely within LISP programs. These
primitives are invoked in the ordinary LISP
manner by function calls from the terminal or
from within other LISP programs. They return
their results as LISP data objects which can
be subjected to analysis and manipulation.
Each of the logical procedures comprising a
LOGIC knowledge base is a LISP data objet

10

abstracts

kept (like the definition of an ordinary LISP
procedure) on the property list of the identifier
which is its name.

Thus one calls LOGIC from within LISP. It is
also possible to call LISP from within LOGIC.
The identifiers used as logical predicate
symbols, function symbols and individual
constants within a knowledge base or query
can ben given a LISP meaning by the ordinary
LISP method of definition or assignment.
Some identifiers (CAR, CONS, PLUS, etc.)
already have a LISP meaning imposed by the
system. Thus every logic construct (term, or
atomic sentence) is capable of being inter
preted as a LISP construct. During the
deduction cycle of LOGIC each logic construct
is "evaluated" as a LISP construct, according
to a suitably generalized notion of evaluation.

The effect of this LISP-simplification step
within each deduction step is to make
available to the LOGIC programmer virtually
the full power of LISP. This makes trivially
easy the "building-in" of "immediately
evaluable" notions - but far more than that.
In particular, LOGIC calls can be made from
within LOGIC calls .

from Waterloo:

Predicate Logic as a Language
for Parallel Programming

by M. H. van Emden, G. J. de Lucena *
& H. de M. Silva

We describe the formulation, execution,
semanticization, and verification within first
-order predicate logic of programs in Kahn's
model of computation. The relations compu
ted by process activations are defined in logic.
The state of a network of communicating
parallel processes is specified in a single
statement of logic which is a concise textual
representation of such a network. The state is
understood to comprise the configuration of
the network of process activations, the co
ntents of the channels, as well as the state of
each sequential computation within a process
activation.

It is possible to derive within logic results
from the process definitions and from the
state specification in such a way that each
stage of the derivation can again be inter
preted as a state of a parallel computation and
that the transitions between stages is also

directly meaningful in terms of Kahn's model
of computation.

We show that dataflow programs in Lucid
are closely related to our representation of
these programs in logic. We give an example
of partial verification of a terminating program.
Finally, we sketch the application of recent
results on greatest fixpoints and infinitary
Herbrand universes to verification of nonter
minating programs.

from Maryland:

On Optimizing the Evaluation of a Set
of Expressions

John Grant and Jack Minker

A branch-and-bound type algorithm is
developed to optimize the evaluation of a set
of expressions. This algorithm proceeds in a
depth-first manner and achieves an optimal
solution. The algorithm is applied to optimize
the evaluation of sets of relational expre
ssions. Analogies to the heuristic information
associated with the A *-algorithm are inve
stigated. Examples are presented illustrating
the use of the algorithm. Pragmatics asso
ciated with the algorithm are discussed. Using
the same framework, we present a new
method to optimize the evaluation of Boolean
expressions.

Optimization in Deductive and Conventional
Relational Database Systems

John Grant and Jack Minker

A deductive relational database system is
one which permits new relations to be
derived from given relations stored in a
conventional relational database system, and
from axioms. It has been shown that a query
in a deductive relational database system can
be transformed, using the axioms, into a
query that involves searches only over the
relational database. The transformed query
results in a set of conjuncts which generally
share similar if not identical searches that
must be made of the indexes and the tables
storing the relations. The purpose of this
paper is to describe a "global" optimizing
algorithm which accounts for similarities
between conjuncts.

The algorithm consists of two major parts:
the preprocessor and the optimizer. The pre
processor is used once for a given set of
axioms and indexes. Its functions are to:
transform each atomic query type into a group
of formulae, list al possible access methods
for single tables and join-supported joins and
to calculate costs for the access methods.
The optimizer is used to select a method of
evaluation of the formulae which answers the
query in the shortest possible time. Details
concerning the preprocessor and the optimizer
are provided. An example is given that shows
the effectiveness of "global" optimization
in contrast to optimizing the retrieval of indivi
dual conjuncts. The changes needed to incor
porate semantic knowledge into the algorithm
are also given.

A Set-Oriented Predicate Logic
Programming Language

Jack Minker

A predicate logic language based on types
and set operations is presented. The use of
set operations is shown to alleviate some
problems associated with backtracking in
nondeterministic systems.

The basic syntax and semantics of the
typed-set-oriented language is specified. It is
shown that types and set operations may be
embedded as part of the unification algorithm.
This permits a uniform way to handle types
and set operations, and permits dynamic type
checking.

The inference mechanism and bookkeeping
features employed with the system · provide
debugging features for the user. A discussion
of some of the features in the language is
presented. We discuss both the limitations of
some of the features, and how a number of
features described may be incorporated within
a language such as PROLOG by modification
to the control structure.

from Pisa:

Using Meta-Theoretic Reasoning
to do Algebra

by L. Aiello and R. W. Weyhrauch

We report on an experiment in interactive
reasoning ,with FOL . The subject of the
reasoning is elementary algebra. The main
point of the paper is to show how the use of
meta-theoretic knowledge results in improving
the quality of the resulting proofs in that in
this environment they are both easier to find
and easier to understand.

Evaluating Functions Defined
in First Order Logic

by L. Aiello

After a short introduction to FOL, an inter
active reasoning system for first order logic,
we present a way of extending the use of the
FOL evaluator by showing how systems of
(mutually recursive) function definitions
formulated in first order logic can be trans
lated into programs . This allows function
definitions (syntactic objects) to be treated as
programs (semantic objects) . The advantages
of this translation are illustrated.

The Call-by-Name Semantics of a Clause
Language with Functions

by M. Bellia, P. Degano and G. Levi

The paper presents a language which
extends TEL, a functional language, with
(somewhat constrained) Horn clauses. The
resulting language provides some features
which are characteristic of relational lan
guages, such as procedures with more than
one output. We have defined an operationa l
semantics, based on a lazy evaluation rule .
Finally, a ca ll-by-name semantics is given,
which is an extension of the tarskian model
theoretical semantics.

From term Rewriting Systems to Distributed
Programs Specifications

by M. Bel/ia, E. Dameri, P. Degano,
G. Levi, M. Martelli

The paper presents a formal model for dis
tributed systems of computing agents, which
is based on extended term rewriting systems.
An operational semantics is given, which

neatly mirrors both the non-deterministic and
the parallel features of systems of computing
agents. The formalism we introduce has an
immediate interpretation in terms of first order
logic. Thus, we provide it with a fixed-point
semantics, closely related to the model
theoretic semantics of first order theories .

from Marseille:

Dialogues en Franliais avec un Ordinateur

Paul Sabatier
(now at Universidade Nova de Lisboa)

We present a complete system of natural
language communication w ith a computer, in
which a casual user can describe and modify
an open world dealing with persons and
objects (any proper noun). Persons give, lend,
exchange objects they possess and/or they
hold. The user can ask any question about the
current relations of possession between the
different persons and objects. Written in
PROLOG, this system provides a logic for
actions, questions, presuppos itions and
ellipsis sentences.

PROLOG: A Language for Implementing
Expert Systems

K. L. Clark, F. G. McCabe
Dept. of Computing
imperial College, London SW7 ZBZ
November 1980

ABSTRACT

We briefly describe the logic programming
language PROLOG concentrating on those
aspects of the language that make it suitable
for implementing expert systems. We show
how features of expert systems such as:

(1) inference generated ed requests for data,
(2) probabilistic reasoning,
(3) explanation of behaviour

can be easily programmed in PROLOG. We
illustrate each of these features by showing
how a fault finder expert could be pro
grammed in PROLOG.

11

research centres addresses

Dept. de Informatica
Universidade Nova de Lisboa
Quinta do Cabe90
1899 Lisboa Codex Portugal

Dept. of Artificial Intelligence
University of Edinburgh
9 Hope Park Sq.
Edinburgh EHB 9NW UK

Dept. of Computing and Control
Imperial College
180 Queen's Gate
London SW7 2BZ UK

Groupe d'lntelligence Artificielle
Universite d'Aix-Marseille II
70 route Leon Lachamps Case 901
13288 Marseille Cedex 2 France

Afdeling Toegepaste
Wiskunde en Programmatie
Katholieke universiteit Leuven
Celestijnenlaan 200 A
B - 3030 Haverlee Belgie

Dept. of Information Processing
and Computer Science
Stockholms Universitet
S-106 91 Stockholm Sweden

12

1st. di Scienze dell' lnformazione
Universita di Pisa
Corso Italia 40
1-56100 Pisa Italia

lnstitut fur lnformatik
Universitat Karlsruhe
Postfach 6380
D-7500 Karlsruhe 1

SZKI
P.O.B. 224

Deutsch land

Budapest H-1368 Hungary

Institute of Informatics
University of Watsaw
P.O.box 1210
00-901 Warszawa Poland

School of Computer and
Information Science
Syracuse University
Syracuse,
New York 13210 USA

Dept. of Information
and Computer Science
University of California
Irvine,
California 92717 USA

Dep. of Computer Science
University of Waterloo
Waterloo, Ontario Canada

I

