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Abstract 

Concurren! Prolog is a logic-based concurrent 
programm,ng language which was designed and 
implemented on DEC-10 Prolog by E. Shapiro. In 
this paper, we show that the parallel computation in 
Concurrent Prolog is expressed in terms of message 
passings among distributed activities and that the 
language can describe parallel phenomena in the same 
way as Actor-formalism does. Then we examine the 
expressive power of communication mechanism based on 
shared logical variables and show that the language 
can express both unbounded buffer and bounded buffer 
stream communication only by read-only annotation 
and shared logical variables. Finally the new 
feature of Concurrent Prolog is presented, which 
will be very useful in describing the dynamic 
formation and reformation of communication network. 
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1. Introduction 

Concurrent Prolog was designed and implemented on the DEC-10 Prolog by E. 
Shapiro [l] for concurrent programming. As the Relational Language [2]. 
Concurrent Prolog adopts Or-parallelism as a basis for non-deterministic processing. 
and And-parallelism for description for parallel processes. Shared variables are 
used, with some control information uvariable annotation", as communication 
channels among concurrent processes. 

In the Relational Language, there are two kinds of the variable annotation. input 
and output, which are used for input suspension and output suspension respectively. 
On the contrary, in Concurrent Prolog, there is only one annotation. read-only 
annotation, which is a generalized idea of input annotation and by which we can 
also express the output suspension when an output buffer is full. This will be 
explained in the section 4. 

In the section 2, we review the Concurrent Prolog. In the section 3, the 
computation model of the language is presented and in the section 4 we examine 
the basic communication mechanism based on shared logical variables and derive 
the technique for implementing the bounded buffer communication in the language. 
In the section 5, we introduce the concept of the incomplete message as a new 
programming paradigm and explain briefly. In the section 6, we present a new 
feature of Concurrent Prolog which is very useful in describing the formation and 
reformation of the communication network. 

2. Review of the Concurrent Prolog 

2.1 Syntax of Concurrent Prolog 

In Concurrent Prolog, a program is represented as a list of guarded clauses. The 
form of a guarded clause is 

A :- 01, ... ,Gn I Bl, ... ,Bm. n.m >= 0. 

A guarded clause must have a guard bar "I". The left hand side of guard bar is 
called the guard sequence and the right hand side is called the goal sequence. The 
guard bar can be omitted when the guard sequence is empty, that is n=0. G's and 
B's are both lists of literals connected by logical AND. 

There are two kinds of logical AND's, which are parallel-AND and serial-AND. 

serial-AND 
parallel-AND 

u&" 
U II 

Their logical meaning are the same, but the way to interpret and execute is 
different. As it is clear from their name, goals connected by serial-AND must be 
executed in sequential order (left-to-right), and goals connected by parallel-AND 
must be executed in parallel. As for the operator precedence, 



"," is lower than "&", that is, 

f&g , p&q is equivalent to {f&g) • {p&q}. 

Current implementation of Concurrent Prolog only provides sequential-or mode. 
Therefore, alternative clauses are tried in the text order. 

On the notation, we adopt DBC-10 Prolog-like convention, for example, a word 
beginning with a capital letter denotes a variable. 

In Concurrent Prolog. variables can be accompanied with some special control 
information. "read-only" annotation, which can control the unification. Read-only 
annotation is denoted by •111 and can be attached to variables in the following way, 

X? where X is a variable. 
(JC~f.L 

The meaning of read-only annotation is that a variable) annotated by "?" must not be 
unified with a non-variable term. .The annotation can be attached to eadi ~ 7 
occurence of a variable, and will vanish when the variable will be instantiated to a 
non-variable term. Generally read-only annotation can be attached to the variables 
shared by concurrent processes in order to restrict the direction of data flow, where 
the process which annotates the shared variable can not instantiate the variable and 
wait for the variable to become instantiated by the other process which does not 
annotate it. This will be explained later again. 

2.2 Reduction 

In this section, the process of reduction is explained. Suppose that the goal A 
and the following program are given. 

Al:- 011 Bl. 
A2 :- 02 I B2 • 

. 
An:- Gn I Bn. 

where Oi and Bi {1 =< i =< n) are a guard sequence and a goal sequence 
respectively. 

Bach clause is classified into one of the three fallowing classes with respect to 
the goal A. 

1. Candidate Ai :- Oi I Bi. 

when, without instantiating variables annotated 
by "?" to non-variable terms, A and Ai can be unified · 
and Oi can be solved. 

2. Suspended Aj :- Oj I Bj. 
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when, except for instantiating read-only 
variables to non-variable terms, A and Aj can be 
unified and Gj can be solved. 

3. Failure 
otherwise. 

Each clause is checked in ~text order whether it can be a candidate, and the 
clause that is found to be a candidate first is selected. The selected clause, say A :­
GilBi., is used to reduce the goal to the goal sequence Bi. Once the goal is reduced, 
checking of the rest of clauses will be abandoned. In this sense, the guard bar "I" 
acts as a cut symbol. 

When the goal has no candidate and has at least one suspended clause, it will be 
suspended until at least one candidate will be found or it will be failed (i.e. all the 
clauses will be classified into the failure). 

~ 
Since the instantiation of shared variables can be undo.¢ by ~ backtracking 

before the guard sequence is solved completely, the values of the shared variables 
will be hidden from other processes until the guard sequence is solved completely. 

Although Concurrent Prolog adopts And-parallelism. consistency check of values 
of shared variables will be replaced by the restriction that the process instantiating 
the shared variables must be one. However, which process can instantiate a shared 
variable need not be specified before the execution, as long as it is guaranteed that 
there can be only one such process even if it is determined dynamically in a 
non-deterministic way. 

3. The Computation Model 

In this section we present the Actor-like ·model [3,4] of the parallel e&..Q 
computation in Concurrent Prolog. For the simplicity, we assume that ev,'J_ goals 
are solved in Or-parallel mode, that is, all the alternatives are checked in parallel. 

First we define the term "event" which is a basic concept in order to formalize 
the computation model. 

"An event is a successful unification between a foal 
and a head of a clause and a successful solution o the 
guard sequence of that clause." 

Using this definition, we can specify the condition for an event to arise. 

"The condition for an event associated with a goal to 
arise is that the goal can be unified with a head of 
some clause and its guard sequence can be solved 
successfully." 
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Given a goal A and a clause A' :- Gl, ... ,GnlBl, ... ,Bm, we denote the event by 

A:A'. 

Once a goal A is unified with the head A' of a clause 

A' :- Gl, ... ,GnlBl,... Bm. 

that is, the event A:A' happens, then A is reduced to the goal sequence Bl, ... ,Bm 
which in tum begin to invoke other events, say Bl:Bl', ... ,Bn:Bn'. In this way, 
generally an event causes other events except the case in which a goal is unified 
with a clause with empty goal sequence, in this case the event causes nothing. 

Let's define the causal relation among events more precisely. 

"An event B, A:A', causes an event B', B:B', 
if and only if B is included in the set 

{ Bi I 1 =< i =< n } 

where A' is a head of the clause 

A' :- I Bl, ... ,Bn. " 

It is clear from the definition of an event that there can be no circular causal 
relation among events. 

We denote the causal relation "B causes B'" by 

B => B' 

Generally an event causes more than one events. 

Bl ;, 
B => B2 

~ B3 

The reflexive transitive closure of the causal relation => is denoted by ==>. By the 
relation ==>, an event Bl can be related to the event B2 indirectly caused by the 
event Bl. For example, Bl => B2, B2 => B3 then Bl ==> B3 and so on. 

Note that the relation ==> also can be interpreted as the semi-order relation of 
an activation of an event. "Bl ==> B2" can be read as that an activation of an event 
Bl precedes an ·activation of an event B2. 

Now we define the term "process". 

"A process initiated by an event B is a chain of events 
connected by the relation =>." 



Given a goal A and a clause A' :- Gl, ... ,GnlBl, ... ,Bm., a process initiated by the 
event A:A' can be thought as the solution process of the goal A using that clause. 
From this point view, it is clear that the time when a process terminates is the time 
when the goal A is solved completely. 

Since an event can cause more than one event, the chain of events (= process) 
looks like a tree (see figure). 

c..1 

EIO 
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The terminal nodes of the tree correspond to the events each of which is a 
unification between a goal and a clause with an empty goal sequence. 

4. Interprocess communication 

In Concurrent Prolog, interprocess communication is realized by variables 
logically shared among processes. A process can send a message to other processes 
by instantiating a variable shared among them to the message. Since a destructive 
assignment to a logical variable is not permitted, communication using one variable 
cannot be done more than once. However, in general, because there is no 
restriction about the number of the processes sharing a variable, the message to 
which one of the processes instantiates the shared variable will be sent to the rest 
of processes at the same time. Therefore broadcasting of a message has been 
realized without any additional mechanism. 

Shared variables are created when, for example, a process forks to subprocesses. 

p(X) :- I q(X,Y),r(Y?). 

In the example above, the variable Y is shared between the processes, which are 
solution processes of the goal q and r respectively, and is used for communication 
between them. 

However, as mentioned above, communication using one shared variable cannot 
be done more than once. Therefore in order to enable the successive 
communication among processes, there must be some mechanism to create a new 
logically shared variable dynamically. Most general method for this is the technique 
of the stream communication which is well known by the work of Clark and 
Gregory [2]. 

In the stream communication. a shared variable is instantiated to a data structure 
which contains a message and a new uninstantiated variable. In the Relational 
Language, a list was used for such structure. 

[ <message>l<variable> ]. 

A variable contained in the structure is sent with a message from the sender to the 
receivers, becomes a new shared variable among processes and will be used for the 
next communication. Consequently as long as a process sends a message in this 
way, every time a message is sent, a new shared variable is created, so that the 
successive communication is established. 

In general, the successive communication consists of two phases. 

Phase 1 A shared variable is instantiated to a 
message. 

Phase 2 A new shared variable is created. 

In the phase 1, the action most essential to communication is performed. In the 
phase 2, what enables a next communication is performed. In the case of the 
stream communication, both phases are performed at the same time in the same 
process, the sender. However there is no reason for two phases to be performed in 
the same process and no restriction on the 
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execution order between the phase l and the phase 2. If we treat the two phases 
separately. we will be able to find several kinds of communication style based only 
on logically shared variables and read-only annotation. As an example. we present 
in this section the bounded buff er communication based on shared logical variables. 
which is implemented without introducing another annotation like the Relational 
Language. Before that, we summarize the unbounded buffer stream communication. 

[The Unbounded Buff er Communication] 

In the stream communication, both phases are performed at the same time in 
the sender of messages by instantiating a shared variable to a pair of a message and 
a variable. Therefore every time a sender sends a message, it gets a new "shared" 
variable, so that it can send a next message as soon as it sends a message. On the 
contrary, a receiver can read a message only after it is received and the receiver has 
to wait when it tries to read a message and no message is received yet. This "wait" 
mechanism is implemented by making the shared variable in the receiver read-only. 
Because there is no mechanism for inhibiting the sender to send a message, this 
type of communication realizes the unbounded buffer communication. Note that 
the essence of unbounded buffer communication is in the fact that both phases are 
performed in the same process, the sender of messages. 

As an example of the stream communication we show the program which 
describes the situation where there are two communicating processes, one of which 
sends an integer every time the process generates it and the other prints out an 
integer every time the process receives it. 

Goal:: integers(0,N) • outstream(N?). 

Program-I :: 
integers(I,[IIN]) :-

plus{I,1,J) I integers(J,N). 
outstream([IIN]) :-

write{I) I outstream(N?). 

[send] 

.... [receive] 

Note that "outstream" will be suspended when the variable N is not instantiated to a 
non-variable term, because of the condition for read-only variables. In the example 
above, message sendings and receivings are processed at the unification between a 
goal and a head of a clause. We could write the same program in more abstract 
level like below. 

Goal:: integers(0,N) , outstream(N). 

Program-2 :: 
integers(I,N) :-

send{I,N,M), plus{I,1,J} I integers(J,M). 
outstream(N) :-

receive(I,N? ,M), write{I) I outstream(M). 

In both predicates "send" and "receive", the first argument is a message, the second 
argument is a current communication variable and the third argument is a next 
communication variable. The program "send" and "receive" are: 

send(X,[XlM],M). 
receive(X.[XlM].M). 
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The advantages in using •send• and •receive• are to hide the internal structure to 
which the shared variable is instantiated and to modularize programs. In fact, even 
if we could use another data structures, say •stream{ <message>,<variable> )", instead of 
the list "[<message>l<variable>]", the programs which have to be changed are only 
"send" and "receive" {new codes are shown below) and no other programs including 
the user programs are kept unchanged. 

send{I,stream{I,M),M). 
receive{I,stream{I,M) ,M). 

On the other hand, we could say that using "send" and "receive" is to lose the 
simplicity of the Program-I. 

[The Bounded Buffer Communication] 

In the bounded buffer communication, to send a message is suppressed when 
messages, the number of which is equal to the size of the buffer, are kept unread in 
the buff er of the receiver. 

From the above analysis of communication through shared variables, we can 
naturally rmd the mechanism for this kind of communication. The key idea is the 
separation of the actors of two phases. 

The phase 1 {instantiation) is performed by the sender at the moment it send a 
message and the phase 2 is performed by the receiver when and only when it reads 
(picks up) a message from the buffer. Therefore the sender cannot send messages 
more than the buffer size if the receiver did not read the messages, that is, it did 
not generate new shared variables. 

We explain the method when the buffer size is equal to two, using the previous 
example. 

Goal:: integers(O,[X,YIZ]) , outstream([X,YIZ]). 

Program:: 
integers{I,N) :-

send(I,N? ,M), plus{I,l,J) I integers(J,M). 
outstream(N) :-

receive(I,N,M), write{I) I outstream(M). 

Note that the second argument of "send" is annotated as read-only, while in the 
previous example the second argument of "receive" is annotated as such. The 
following is a new code for "send" and "receive• programs in the bounded buffer 
communication. 

send(Msg,[MsglNewChannel],NewChannel). 
receive(Msg,[MsglNewChannel],NewChannel) :-

wait(Msg)lupdate_buff(NewChannel). 

Here again we use the list structure for implementing the stream. "wait(X)" is a 
system predicate which suspends when the argument "X" is not instantiated yet, and 
succeeds otherwise. "update_buff(X)" is a sequential Prolog program which takes a 
d-list as an ar~ument and instantiates the tail variable of it to a cons cell "[PIQ]" 
where both "P' and "Q" are uninstantiated variables. 



update_buff(X) :- var(X),!,X=[PIQ]. 
update_buff([XJYJ) :- update_buff(Y). 

1io 

The second argument of "receive" plays a role of a buffer consisting of slots 
(variables) which will be filled with messages by the sender. The buffer is updated 
by one slot when and only when the receiver picks up a message from the buff er, 
so that the length of the d-list (buff er) remains the same which corresponds to the 
buff er size. Although the sender shares the buffer with the receiver, it can not 
update the buffer and all it can do is to fill empty slots with messages if there is 
any such slot. When the size of buffer is equal to two, the buffer looks like: 

[X,YIZ]. 

For the sender, the buffer looks like one of the following. 

(1) [X,YIZ] 
(2) [YIZ] 
(3) Z 

where "X", "Y" and "Z" are all uninstantiated variables. (1) corresl)Onds the case in 
which the buffer is empty, that is, there is two empty slots and (2) corresponds to 
the case in which there is one room for sending a message. (3) corresponds to the 
case in which the buffer is full, that is, there is no room for sending a message. 
Because the second argument of "send" is treated as read-only, the reduction of 
"send" is suspended in the case (3). The figure below shows the situation where the 
sender tries to send three messages, "ab", "cd" and "ef" when the buffer is empty. 

the receiver 
[X,YIZ] 

[ab,YIZ] 

[ab,cdlZ] 

receive "ab" -

[cd,PIQ] 

the sender 
[X.YIZ] 

send "ab" 

[YIZ] , 

send "cd" 

z 

send "ef" is suspended 

[PIQ] 

send "ef" 

It is more convenient when we could parameterize the size of the buffer. 
Generally their usage are the following. 



In sender :: send(Msg,Channel?,NewChannel) 

In receiver At the rust communication 
:: open(Channel,N). 

receive{Msg,Channel,NewChannel) 

At the subsequent communications 
receive(Msg,Channel,NewChannel) 

1 8 1 

"open" takes two arguments, a communication variable "Channel" and a size of a 
buffer "N", and it instantiates the variable "Channel" to the d-list with the rust "N" 
arguments of it instantiated to variables. "open" is also a sequential Prolog program. 

open{X,O) :- !. 
open([XIY],N) :- Nl is N-1,open(Y ,Nl). 

The program above specifies the case in which the buffer size is more than or 
equal to one. Implementation of 0-Buffer communication is a little different from 
the above. The predicate "receive" is replaced by the following definition. 

receive(Msg,[MsglNew],New ). 

and their usage becomes: 

In sender :: same as above 
In receiver :: receive(Msg,Channel,NewChannel},wait(Msg) 

The bounded buffer communication is very important when there are several 
processes, each of which produces or consumes data in different speed. Suppose 
that, in the example above, the rate of integer generation in "integers" is much 
greater than that of data consumption in "outstream", in such case if we use the 
unbounded buffer .communication between two processes, the huge amount of 
unprocessed integers will be produced. The bounded buffer communication is a 
simple and efficient method to control and combine processes having different rate 
of data producing or consuming by controlling the production of data according to 
the consumption of them. 

As an example of the application of this bounded buffer communication, we 
can define a 2 x 2 communication switch which has two input ports and two output 
ports. It can receive inputs from two ports and sends them to the output port which 
has at least one empty slot. If both ports are not available, the "switch• is 
suspended. 

switch2x2{Inl,In2,0utl,Out2) :-
receive(M,Inl,Insl)&send(M,Outl,Outsl} I switch2x2(Insl,In2,0utsl,Out2). 

switch2x2(Inl,In2,0utl,Out2) :-
receive(M,In2,Ins2 )&send(M.Outl,Outsl} I switch2x2(Inl,Ins2,0utsl,Out2). 

switch2x2(Inl,In2,0utl,Out2) :- . 
receive(M,Inl,Insl)&send(M.Out2,0uts2) I switch2x2(Insl,In2,0utl,Outs2). 

switch2x2(Inl,ln2,0utl,Out2) :-
receive(M,In2,Ins2)&send(M,Out2,0uts2) I switch2x2(Inl,Ins2,0utl,Outs2). 
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5. Incomplete Message 

As in the actor formalism, Concurrent Prolog is a model of the parallel 
computation and provides a communication methods through shared variables. A 
message will be sent by instantiating the shared variables. A message which 
contains a variable is called an incomplete message [5]. It makes a new variable 
shared by the sender and the receiver of the 

message, that is, it creates a new communication channel. It means that a 
communication channel can be made dynamically and it can be sent to other 
processes also. 

182 

The concept of an incomplete message is a large programming paradigm which 
includes the basic communication mechanism between processes, so-called pipeline 
processing on stream data, and yields new features of Concurrent Prolog. The close 
analysis of this concept is described in the paper of Shapiro and Takeuchi [5]. 

In this section, we review the key features of this concept according to the 
paper of Shapiro and Takeuchi [5]. 

(1) [Stream] Once a variable is instantiated, it· will never be rewritten except the 
case where the whole goals fail. Therefore it can not be used as a communication 
channel in the next message passing phase. In order to enable subsequent 
communication, in the stream communication generally a shared variable is 
instantiated to a list of a message and a variable which will be used in a next 
communication. In this sense, the stream communication is one of the examples of 
incomplete messages and provides a basic communication mechanism in Concurrent 
Prolog. 

(2) [Pipeline] In addition, incomplete messages make it possible to process partially 
obtained data in a pipeline style. Although pipeline processing on stream data is a 
new concept of programming languages, it is included naturally in the paradigm of 
the partially defined message. In some sense, usual message passing can be seen as 
a kind of pipeline processing on a sequence of commands generated incrementally. 

(3) [Response] When a process sends a message which requires a response, the 
response can not be sent through the same shared variable, since logical variables 
are single-assignment. The technique of the incomplete messages is also useful in 
this case, in which the sender sends a message that contains an uninstantiated 
variable, and then examines that variable in a read-only mode, which causes it to 
suspend until this variable gets instantiated to tb.e response by the recipient of the 
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message. However this is different from the examples above, because the process 
which instantiates a shared variable is the receiver of the message. In this case, 
once a message is sent to a process, the sender can run independently whether the 
receiver returns the response as long as the sender need not to refer to the . 
response. When the sender needs the response it is forced to wait until it will be 
instantiated. This behavior associated to a shared variable used in a response takes 
an advantage in writing a monitor of shared resources and highly reduces the 
overhead on the resource manager because the manager will never be locked and 
the request will never be refused. 

6. New Features of Concurrent Prolog 

In this section, we explain the another feature of the Concurrent Prolog not 
available in other concurrent programming languages. . 

The interprocess communication based on shared variables is not new method 
and has been implemented generally by sharing physical memory cells. The 
difference between the communication by the shared variables of Concurrent Prolog 
and that of traditional languages is the highly abstracted level of shared object. In 
traditional languages, the objects shared are physical objects such as memory cells or 
global variables. On the contrary, in Concurrent Prolog, the objects shared are 
highly abstracted logical variables which can be objects of the unification operation, 
a very high level operation. Because of this hip level abstraction, Concurrent 
Prolog can express very high level communicatJ.on style among parallel processes in 
a simple way, · that is, unifying two communication channels. 

The well-known "merge" program is an example of this feature. 

merge([AIXJ,Y.[AIZ]) :- I merge(X?,Y .Z). 
merge(X,[AJY],[AIZ]) :- I merge(X, Y?,Z). 
merge([l,Y,Y). 
merge(X,[],X). 

Goal:: p(X),q(Y),merge(X?,Y?,Z),r(Z?) 

This program merges two input streams into one stream. The first two clauses are 
used for this purpose. The rest two clauses describe the situation, where one of the 
input stream {say "X") reached the end, and the remaining stream C-Y") is unified 
with the output stream ("Z"). After this unification, data on the remaining stream 
("Y") are sent to the output stream ("Z") without any relay, because the input stream 
and the output stream are logically the same. The important point is that this 
change of the data flow can be performed only by the unification and that both the 
sender and the receiver never know the change of data flow (Figure) . 

⇒ 
.. -- --...... -0 

r Y= ~ ' 
r \ ; r \ , _____ .... 

Ci)) 
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The next program shows another example. 

switch({ on!X],{1,X). 
switch{[AIX],[AIY],Z) :- I switch{X?,Y,Z). 

Goal:: p(X), switch(X?,Y,Z), q(Y), r{Z). 

"switch" takes three arguments. The first argument is the input stream and the 
second and the third are the output streams. "switch11 program keeps the connection 
between the input stream and the second ar~ent until it will fmd the "on" 
message in the input stream. When "switch receives it, it changes the connection 
and thereafter it will pass input data to the third argument. Here again the 
important point is that the the data flow can be changed directly by the unification 
and it is hidden from both the sender and receivers {figure). 

0 t C switc~ 

0 
These two examples demonstrate the new feature of interprocess 

communication in Concurrent Prolog. Other powerful examples are presented in 
the paper [5]. 

7. Conclusion 

In this paper we present the computation model of Concurrent Prolog and 
explain mainly the interprocess communication based on the shared logical 
variables. 1) From the close analysis of the stream communication, we derived the 
mechanism for implementing the bounded buff er communication only by the 
read-only annotation. 2) We have shown briefly the basic programming paradigm 
"incomplete messages" as a source of the powerful programming technique. 3) We 
have shown the new features of Concurrent Prolog provamming which originate 
from the logical power of the unification. 
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