
Intelligent Backtracking for Automated
Deduction in FOL

St:arusra w M atwin
Department of Computer Science, University of Ottawa, Ontario, Canada

Tomasz Pietrzykowski
School of Computer Science, Acadia Universitv, Nova Scotia, Canada

Atst:ract

An "intelligent" backtracking algorithm for depth-first search of the solution space
generated during linear res:il.ution in fcil has been designed. It inspects only a small
porticn of the total s:il.ut:im space, which consists of special graphs representing t.11e
deductive stru:::ture of the proof. These graphs are generalization of AN D/0 R
trees. Our (partially) complete search algorithm has natural potential fer paralJel
implementat:i.cn. However, it may generate redurrlant refutati.ro.s; it seems that
tlrls :is the effect of the prevailing design objective, which in our case was
completeness of the method.

A preliminary estimate of the efficiency of the algorithm has been carried out.
It indicates expcnential speed-up over the worst case of linear backtracking.

An implementation (3000 lines of PASCAL code, urrler CMS) has oow been
completed. That atlows us to experiment with the algorithm and investigate
certain open quest:kns.

L Introduction

Many researchers working in Artificial Intelligence and its awlicat:ims agree that
an efficient ba::ktrceking mechanism will drasticalfy exparrl atplicability of Logic
Program ming ([Warren et al 77], [Pereira and Porto 80], [Nau 82], [Stallman and
SU$man 77]). One su:h algcrithm has been designed by M. Bruynooghe f78] and
L.M. Pereira f79l, [80]. This paper presents an alternative and different awroach.
Our method :is base:! on a graph-based, depth-first proof procedure [Cox and
Pietrzykowski 81]. The basic notioo, on which thjs algorithm js based, :is the plan:
a directed graph, rei;:resent:ing deductive strocture of the proof. The plan ~a
natural generalization of AND/OR trees. 't'he unffi.caticns, generated during the
proof, are kept in a separate graph strocture, called the graph of constraints. In
tlrls way, even if backtracking along a particular path of tlie'pum-does oot lead to
a rolution and tlrls path wfil have to be re-gene: ated, there :is oo need to re
gene:ate the unifications obtained along that path.

Furthermere, our method :is awlicable to general first order log.:ic, without being
restricted to Hern clauses. Als:>, as it will be demcnstrated later, intelligent plan
based deductim has natural potential fer a parallel implementation.

Finally, it has to be emphasized that the prevailing design criteria of our
algcrithm was compl.etenegs of search of the search-space. This has been achieverl,
and the proof of (partial) completeness has been obtained [M atwin and
Pietrzykowski 83]. However, a price which had to be paid :is redurrlancy (i.e. the
same oolution may be obtained mere than once). Bruyncoghe-Pereira method does
oot suffer from this deficiency, but then it is oot certain that their solution is a
complete one.

1st
: Operat:i.oo of the Intelligent Backtracking System.

befa:e mt:rodudng the algcr.il:hm and a ma:e complete example, let us ilJnstrate
(he difference between "exhaustive" and "intelligent" backtracking using a very
· mp.1e case. Assume t."iat the foUow:ing set of clauses :is given:

P(x) Q{x).
-P(u,v) V(u) w (v).
-V(b). -V(a).
-w (c). -w (d).
-w (e). -w (f).

-Q(z) S(t,s) T(s,z).
-S (q,b). -S (q,c)
-S (q,d) • -S (q,e)
-T(b,a).

I.early, with the lefu-to-rlght "reduction" (althol)3h "expansim" seems to be mere
equate term) polic..y, the follow:ing plan, which in this case ?S just and AND/OR
ee, :is obtained:

-P (U,v) V(U) W (v)

3,
' ' '

P(x,y) Q(x)
1

-V(b) -vla) -W(c) ;.-,
I .__'

I ,. '• -w (d) -w (e) -w (£)

2

T(s,z)

" ~ 5'' 6
,I ' ' 'l.---------,, ' ..

/ ' '
-V(q,c) -V(q,a) -V(q,e}

-T(b,a)

e cmtinuous lil'Es represent the AND arcs, the dotted are the o R arcs.
bviously, in this tree there is a clash between ccnstant b, generated by arc 3, and
i-..-. ,,...t a, generated by arc 6. One look at the pl.an cmvinces us that arc 3 :is

culprit, and that a reduct:ioo following its alternative reme:lies the problem.
owever, exhaustive bc.cktracking will perfcrm 33 redlct:i.a'ls [3*2 + 3*((4*2) + 1) =
] befere generating the s:iluti.cn. The rearori · fer that is the fact that all the
:tematives between the arcs 3 and 6 involved in the cooflict are tried by

austive bcctracking. Our method is different: it only tries 6, 3 and the
:tematives lying above them. In tlrls case, ooe reduct:::im replacing 3 with its
:temative w:il.J. cb the job. In a reas:,nably balanced ~ND/OR tree, the number of
:temative deduct:i.a'ls obtainable in between two mcrles :is of the order exponential
rt the he:ight of the tree. Therefore, a method which operates only above the

es w:ill be expmentiall.y faster than the worst:-case behaviour of exhaustive
rcktracking discussed here.

NI e shall row p.roc:eed with a mere thoiotJ3h discussim of our method, beginning
ith the urrlerly.ing rot::ials and cmcepts.
rhe basic stru::ture, involved in the algorithm i3 the pl.an. By a plan we
hdetstand a ditecmd graph, rooes of which represent variants of clauses. One of
lie nodes, referred to as TOP, reiresents the clause to be proven. Arcs of the
~ camect pa:iJ:s of literals, belonging to in:lividual rooes. Each two literals,
efi.rrlng ann · arc, are unifiable and of 0!_:PCSi.te sign. 't'here are two types of arcs:
µB arcs and RED arcs (as proven in [Cox and Pietrzykowski 81], those two rules
~ovide a complete set}. Infermally speaking, SUB arcs point "downwards'' in the
Ian, while RED arcs point "upwards". Each ncx:le, except the ":'OP, :is entered by
'actly me SUB arc (and, pc:mi.bly, by zero or mere RED arcs). The literal within

a nooe, rointed to by a SUB arc, is the l<ev of t.li:is node. Each other literal of tJus
rode is caTurl a goal. A goal is calJed c1cse1 ff there is an arc, originating in this
goal, otherwise the goa1 is an open one.

1:~ath each goa1 of t."1e plan we ae:oc:i.ate a set of arcs, called the set of
potentials. They are the arcs which could have been generated i'1Stead of the one
actuaJJy created. Let us ootice that, jf the plan :is a tree, then the initial value
of all potentials represents all the OR arcs. In any case, this initial value :is static
information.

As mentime:l befcre, the information gathered as resu:!.t of unification :is kept
se-parately, :in a special data strocture called the graph of constraints. 'I'his graph
reflects the history of un:ificatims which have taken place in the proof during its
pro9¾eEE. A rode of the graph of constraints, called a constraint, represents the
infar'maticn atcut the bi.rrlings which have ben impcsed on a vanable during the
history of proof. Therefore, presence of two di.tferent constants in a coostraint :is
an irrlication of a clash. This clash is then mag:,ed on the plan. Each minimal set
of plan arcs su:::h that its removal annihilates the clash is referred to as a ccnflict.
The conflict set is the set of all su:::h cooflict:s for a given plan. In oome
si.tuatiOns, e,,en though the cooflict set is empty, we want to create an artificial
conflict set, in order to aEEure completeneEE. Artificial conflict set contains all
the arcs entering unit clauses, and all the reduction arcs.

F:inaily, our methoo introduces two other rotims, motivated by memory
management problems. The algcrithm uses a repcsi.tory of plans, accompanied by
their graphs of constraints and cmflict sets. This repcsi.tory, called the store
resides on disk, and plans are fetdled from it and added to it. There is always
me plan being operated m: it :is caned the table plan (or simply the table).

With this bcekgrourrl, we can now fal.Jow the operation of our algorithm m the
foll.owing set of clauses: 0 ~

A. P(x) Q(y) R(x,y) j<a,x) = TOP
Ii z B. -P(a)
10 , c. -}!_(t,y)

D. -P(C)
E. -Q(w) V(v,w)
F. -R(z,z)
G. -R(u,v) S(u)
H. -S(a)
L -V(b,b)
J. -V(c,c)

Initia1ly, the store :is empty. Clause A :is chosen as the TOP and a single-node
plan consisting of A 1s generated. Since it is rot clcsed, it w:ill be further
developed until. either a clcsed plan :is obtained or a non-empty ccnfl.ict set is
generated. In our case, we get the following plan:

plan Pl ""'A:.;.--------------.--------r
.,-----., l
B

' ,8 E
D

I
I

L

,'6 3

J I

F 'G C

l CCllfUct set is (3, 1 A 5: 4). Suppose that 3 is
-~ P2 is obtained and pl.aced in the store:

1 89

chcsen fer re mov~ the open

~ P2!! (A}

I ,·a (E)
D ;6 ,

I
J

he cmflict on the table is row (1 A 5, 4). If 1" 5 is chcsen, prunrring annihilates
pl.an, as 5 has ro pd:ential and A is the TOP. With t.li.e choice of 4, open t;ilan

3 is obtained and placed in store:

P3 A
2 ' 7 5

' ' . ' . '8 E "G
\,

0 9' 3 , , ,
J I

· e there are ro ma:e cmflicts on the table, one of the store pl.ans (suppa;e it
P2) is placed on the table. Potential 6 is realized as an arc, which leads to a

· t set (1 A 5, 6, 4) a, the table. S:ince choice of either 6 or 1 A 5 leads
where, suppose that 4 is dlcsen and P4 is sent to store.

A
__ -#1

,
,' 8
'o 6

J

' 7 ,.
' 'G

s the ccnflict set is again empty, cne of the store plans P4 and P3 is placed on
ne table. Amume P3 is dlcsen; the only open goal is closed with its p::,tential 7
pd a roluti.on is obtained:

lan PS
1'""'--
l 1 , ,.

,'8 ,
D

2 5

6/ 3 ,
I

Jt!. I H

rt.ificlal caiflict set of PS is (1, 3, 5, 9). Femoval. of 5 and 9 leads rowhere as
nere are ro potentia1s between these arcs and the top. Reol.acement of 1 by 8 is
~ unproductive (the reader w:i11 easily see why). This ieaves us with 3 as a
~aronable candidate far removal, which results in plan P6.

I

1,t.1,J...t /71· •lv'- L. rrtrr LA...., , ,

Plan P6
"'----

A
l
, ,

/8 ,,
D

17 0

E

The only plans in store are now P4 and P6. ·with t.he choice of P6, potential J is
realized and we get roluticn P7:

'A
l

B ,
/'

,.-· 8 E G C
D 9

J

Since all attempts of obtaining new plans from its artificial cnflict set fail, the
only remaining store pl.an, P4, is placed on the table. Tts potential 7 and then arc
9 are realized, which gives a redurrlant solution identical to P7. The store is now
empty and the algcrithm terminates.

We have proven elsewhere [Matw:in, Pietrzykowski 831 that when our algorithm
terminates, it generates all the existing proofs {partial completenee:;).

3. Further Inhancements of the Algorithm

There are at least three di.recti.als of further research, leading to potentially
interesting enhancements of the algorithm.

1. Different strategies fer nondeterminism. A number of rondeterm:in:istic choices
is involved in the algcrithm. Two typ~ of such choices were menticned in
the brief descr:ipt:i.oo in the preceding section: choice of the plan from the
store to be placed on the table, and choice of a ccnfl.ict from the set of
ccnflicts. It is rot clear, at this stage, what are the right criteria fer these
choices. This is partia.il.arly important when the objective is to firrl a proof,
rather than all the rx::s=;ible proofs. 1t seems that :in this case the right
strategy may bring a.rout significant increase in efficiency.

2. Applicability of the algorithm in the domain of expert systems. The
researchers in expert systems point out that a method of limiting the search
space is of great importance fer implementation of practical systems f'Nau 83].
The early work of [Stallman and Su..,:;sman 771 bears a good deal of
resemblance to our methcrl, althotJ3h their awroach is lee; general. System
ARS, repcrted in [Stallman and Sussman 77] implements a method of
dependency directed backtracking, tailored to the particular environment of
algebraic relatirnsh:ip; encountered in the analysis of electrlc circuits.
Therefcre it seems that a met..11<xl like ours mav be productive, particularly in
case of e:xpert S"JStems usi.ng fol or its derivatives (Skuce 831 to represent
krowledge bases.

3. Distributed implementation. Since no orderi...rig of conflicts in within the

conflict set :is assumed, an :interesting parallel implementat:im seems pcssible.
It will. :involve a number of proceS90rS, each of which would remove a ccnflict,
carry out the neceg:iary pruming (if any) and develop the plan. The result of
devel.opment :is placed in store, ready to be picked up by another proce$0t".
The whole system stop; when the store becomes empty. Such a parallel,
distributed implementat:ioo seems to be feasible. Let us ootice that the
si.m:ilar awroach to Bruynooghe-Pereira method would not work, si.nce their
algcrithm specifically orders the ccnflicts, which in turn allows t.hem to avoid

'l the redurrlancy problem.

,eferences

ruynooghe 78) Bruyrooghe, M., Intel.ligent Backtracking fer an Interpreter of Horn
Clause Logic Programs, Procs. of Calloquim en Mathematical Logic in
Program ming, Salgotarjan, Hungary, 1978.

rt.tynooghe and Perren-a 81] Bruyncoghe, M., P~eira, L.M., revision of Top-Down
Logical Reas:>ning Through Intel.ligent Backtracking, res. Report of KUL and
CIUNL, 198L

ox and Pietrzykowsld 81] Cox, P., Pietrzykowsld, T., Deduction Plans: A Basis
for Intel.ligent Backtracking, mEE PAMI, .Tan. 198L

atwin and Pietrzykowsld 82] Matwin, s., Pietrzykowski, T., Exponential
Improvement of Exhaustive Backtracking: Data Structure and Implementation,
Procs. of CA DE-6, 1982.

atwin and Pietrzykowsld 83] Matwin, s., Pietrzykowski, T., InteJJigent
Backtracking in Plan-Based Deduction, Submitted to IEEE PAML

au 83] Nau, D.S., Expert Computer Systems, IEEE Computer, Feb. 1983. C:::::--

ereira 79] Pereira, L.M., Backtracking Intelligently in AND/OR Trees, Research
Repcrt, CIUNL 1979.

ereira and Porto 80] Pe:eira, L. M ., Porto, A., Selective Backtracking fer Logic
Programs, Procs. of CADE-5, 1980.

l

ietrzykowsld and M atwin 82] Pietrzykowsld,
'Improvement of Exhau..c;ti_ve Backtracking:

T ., M atwin, s., Exponential
A Strategy fer Plan-Based

' Deducti..cn, Proc. of CADE-6, 1982.

I . •
ll{uce, 83] Skuce, D., KNOWLOG, Submitted to IEEE Computer.
'
i

:i:an.man, R.M. and Sug:iman 77] Stallman, R.M., Sug:iman, G.J., Forward Reasoning
I and Dependency-Directsd Backtracking in a System fer Computer-aided Circuit
1 Analysis, Artificial Intelligence, 1977.
I
iarren et al 1977) Warren, D.H.D., Pereira, L.M. Pereira, F.,. PROLOG - The
. language and its implementation compared to LISP, ACM SIGPLAN, Aug. 1977.

