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Efficient response to queries addressed to a large data 
base is an important problem of knowledge representation. The 
problem and various solutions have been well researched for 
certain "conventional" (e.g. relational) data- models. The 
analogous problem has been tackled and solutions similar in 
spirit to those for relational models developed for data bases 
and queries expre~sed in Horn clause systems such as Prolog 
with the severe constraint that the "data base" is a set of 
ground instances of assertions. 

The situation becomes more interesting and challenging 
when the data base is deductive: e.g. a Prolog first-order 
theory. Basically the interest is in finding an automatic way 
of representing the first-order theory which facilitates, the 
dynamic reordering of residual literals and the selection of 
the next goal to be evaluated based on a ~hanging measure of 
the cost of-~valuating each goal in the residual query. 

The current paper presents paitial solutions which can be 
used to obtain dramatic reductions in search times. The paper 
also identifies some remaining and difficult problems. 

The methodology was designed with the processing of 
natural language queries in mind, but it is quite general in 
its domain of application. 
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There -is an increasing demand for large database systems 
that provide efficient inference capabilities. These are 
~bviously needed in question answering systems and expert 
systems, buf their potential rang~ of application is really 
very wide~ It is an advantage to allow any database user a 
uniform view of both explicit and implicitly represented 

· information. Accessing the databa~e through a deductive 
inference system offers the possibility of such freedom, 
first, in its ability to decide whether any particular 
proposition follows from what is represented in the database, 
and second, in its ability to use rules, meaning postulates 
and definitions of new terms and relations .as nonlogical 
axioms in ~aking such decisions. Thus, ·rather th~n having to 

·search for particular pieces of information, the user can 
simply ask whether or not a partiqular proposition foliows 
fr~m the database: · g·eneral rules can be introduced to cover 
large classes of particular facts and to define new terms that 
might b~ used in queries. 

K~eping the deductive access to a large database efficient 
requires, in the first place, that we deal with some of the 
~tandard database management pr_oblems, viz., · the problems of 
making search efficient and- of optimizing queries to minimize 
the need for sear-ch. Tl;lese problems are paricularly pressing 
when the database and access system are to be embedded in a 
larger design, such as a question.answering system. In this 
conte~t the system must interface with natural language 
processors, rather ·than with the typical brilliant and 
insightful human database user who· can learn how to avoid the 
system's weak spots. ·As a result, database queries cannot be 
expected to arrive_ i-n a for-m that is optimal from the point of 
view of efficiency. In this rep~rt we·will show how such 
standard database management problems can be handled in 
PROLOG, one of the most. efficient and most widely known 
_theorem proving systems. 

--------------------* The software described in this paper was designed and 
implemented by a research group.which included the authors, 
D. Wyatt; and A .. Young. This work is also described in Elcock 
et al.(forthcoming) and Stabler (1982). 
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PROLOG preliminaries. Since PROLOG is fairly well known 
and'there are good introductions to the language (e.g., 
Clocksin and Mellishi 1981) we will only briefly review some 
important features. PROLOG i 9 basically a Horn clause theorem 
prover.· It also· has metalog ical facilities that can provide 
higher order effects, and of course nonstandard effects can be 
obtained by quantifying over possible worlds (cf. Moore, 
1980). A clause is a first or~er prenex formula whose prefix 
consists of (only) u_niversal quantifiers and whose matrix is a 
disjunction of literals, where a literal is an atomic formula 
or the·negation of an atomic formula. Since the order of 
universal quantifiers makes no difference, they do not need to 
be written down. A Horn clause is a clause whose matrix 
contains at most one positive literal. The restriction to 
Harn ·clauses does not, in principle, prevent us from 
expressing anythlng that can ~e expressed in first order 
logic. The relevant results are these: for any formula F of 
first order predicate cal.culus, there is an· easily 

.constructible set S of c~auses which is inconsistent if, and 
only if, Fis (see e.g., Chang and Lee thm.4.1.)~ and for any 
set S of clauses there is an easily constructible set Hof 
sets of Horn clauses such fhat the~e is an inconsistent set in 
H'if, and only if, sis inconsistent (see e.g., Henschen and 
Wos, 1974). In spite of this generality in principle, though, 
some problems are much more feasible and natural when 
ex~ressed in noa-Horn clause.form. 

The restriction to the Horn clause subset of first .order 
logic is not the only special logical.problem that faces a 
PROLOG database system. In the first place, we should note 
that PROLOG does not· immediately provide-ideal inference 
capabilities even within the Horn- clause logic: it's failings 
are the familiar ones. It is.well known that "Horn•sets" are 
not decidable (Hermes, 1965), and so of course PROLOG cannot 
decide whether an arbitrary query of its Horn clause logic 
follows from ·the database or not, even given unlimited time 
and space. And'although it is easy to design proof methods 
for Horn clause logic which are complete in the sense that 
they will find _a proof of an arbitrary sentence if there is 
one, the most efficient theorem p~overs, like PROLOG, are not 
complete. They are even unsound in the sense that they will 
sometimes claim ·to have found a proof when there is no valid 
proof. Let's consider these problems briefly before 
considering the ~ore standard database problems. 

Soundness. It is well known that PROLOG will sometimes 
produce an invalid proof. For example, -given the database 
"p(X,X).", PROLOG will say that the query 11 p(Y,f(Y))." 
follows. The instance that follows, according to the PROLOG 
system, is the one in which Y=f(f(f~-■• {f(Y)))).... (Since 
this is an infinite expression, there wJll be trouble if 
PROLOG tries to print it out.) But obviously, 
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"(E-y) (P(y,f{y)))" docs not follow from "(x) (P(x,x))". PROf.,OG 

gets this incorrect result because it does not do th~ "occurs 
check" in the .course of unification. What it does is this. 
When confronted with the query "p(Y,f(Y))" it tries to match 
it with the database clause "p(X,X)". It begins with the 
first argument; in effect, "Y" is substituted for "i". The 
result is "p(Y,Y).", and this is identical to the query up to 
the second argument. So now PROLOG tries to match the second 
arguments, which it does by substituting "f(Y)" for "Y". As a 
result, Y=f(f(f ••• (f(Y)))) ••• , and the query is judged to be 
an instance of the databas~ clause. Strictly speaking, this 
matching process is not the unification which is employed in 
sound, resolution procedures, because a variable cannot. 
properly be unified with any term which contains that 
variable.. Implementing unification correctly would involve 
performing an "occurs check" to .make sur·e that the variable 
does not occur in the term it is being unified with. 
Performing this check in every unification step is expensive, 
especially when t~e term~ being unified are large. Since the 
matching process without an o~curs check is so-much cheaper, 
-and since it is sufficient in most cases, most PROLOG 
implementatioris do not Dse strict ~nification. As noted 

·above, assuming that we do not want to just tolerate·errors, 
this means that the use:rs of thes·e systems must make sure they 
are not accepting conclusions based on unsound inference-s. 
There are a number of ways .to do this. · 

One way to. avoid unsound inferences is simply to require 
that only ground clauses occur in the database. -This 
restrict~on is perfectly straightforward, and it is obviously 
adequate since the database would then not contain ·any 
variables which might occur in terms tney would be matched 

. with.·· The problem is that this rest~iction is obviously going 
to eliminate the j;eatures which make logic programming 
languages particularly attractive. (Consider, for example, 
the features mentioned at the beginning of this paper.) · 

There are other similar and iess restrictive strategies. 
We can hope th.at programmers experienced.with PROLOG_will 
learn how to avoid creating a database in which unsound 
inferences will be made. If an unsound inference is going to 
cause trouble, they should block it. The problem then is not 
with th-·"systemlt datab~se whlch is provided by programmers, 
but with database.clauses which might be provided by naive 
useis. We do not want to require'the users to understand and 

·attend to such things as the peculiarities of the PROLOG 
·matching process. so we can either provide a complete system 

· to which the user cannot add information, or we can require 
that any information added be groupd·clauses •. The "system" 
database wou'id then be created by programmers famil.iar with 
PROLOG.' s matching process, and the ".user" database, if there 
is one, would not add any dangers.of uns6undness. This 
restriction on the users' database would certainly to be felt, 
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howe~er; it severely constrains what the user can do with the 
system. He would not,- for example, be able to add definitions 
of new relations in terms of relations already provided by the 
system. The only other alternative that seems to. be . 
available, though, would be to do the occurs check whenever 
non-ground clauses that could conceivably cause an error are 
used.· Since the main thrust of the present project is to 
allow the dat~base users the real advantages of accessing a 
database through an inference system (without errors, even· 
very unlikely ones!),· this last strategy is the only 
acceptable one, and is currently being explored. 

Completeness~ The second-problem that we would like our 
system to deal with as well as possible is that of avoiding 
attempts to- find proofs which are beyond the theoretical 
capabilities of PROLOG. We have already noted the obvious 
point that mere completeness is not going to do us any good if 
the proof proced~re is just not feasible. But the point of 
interest is that if finding a proof of some result is beyond 
PROLOG's theoretical capabilities, it is of course also beyond 
its practical capabilities. It is a good strategy to try to 

_keep the whole class of proofs that might be sought within the 
theoretical capabilities of PROLOG, and then to keep those 
proofs as efficient as possible. Sometimes a simple change in 
the databa~e, query, or proof strategy that brings a res~lt 
within the theoretical capabilities of the system also 
suffices to bring the result wi t·hin the practical capabilities 
of the system. 

Th~ following familiar sort of example illustrates this 
situation. (This example is taken from Moore(forthcoming), 
where it is used to illustrate the related problem of forward 
vs. backward chaining.·) One of ,the standard ways to define a 
relation is with "base rules" and "induction rules." For 
example, the one-place r~lation or property of being Jewish 
might be partially defined with a list of people who are 
Jewish and with the rule from the Talmud that a person is 
Jewish if the mother of that person is Jewish, as follows: 

jewish(bar-hillel}. 
jewish(X}:-jewish(mother(X}). 

Given this database, PROLOG will properly indicate that there 
is a proof of the query ~jewish(bar-hillel).". If, however, 
the clauses in the database are reversed,·putting the 
"induction rule" before the "base rule," PROLOG will never 
succeed in finding a proof of this query. -Because it uses a 
depth-first proof strategy and selects the first database 
clause first, it would never get to the second rule, the base 
rule, which it would need to use. It would "loop," using· the 
first rule, the "induction rule," over and over again. Since 
this sort of situa~ion is quite common, we can adopt the 
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strategy of alway~ putting "base" rule~ before "induction" 
rules. The problem is to recognize them. A crude 
approximation that will handle this case is to check each 
clause that is going· into the· database to see if it is a 
simple assertion, a unii clause with an empty body. If it is, 
put it at tbe beginning of the list of clauses which have the 
same predicate; otherwise, put it at the end of the list. 
(This is one of the things which is done by our predicate 
"update" which will be described in more detail later.) It 
should be noted, however, that- this ordering strategy will not 
work in, cases where the "base" rules are not simple 
assertions, and it will not.work in cases in which there is 
more than one· "induction rule." There are cases of 
incompleteness which cannot be remo_ved by any reordering of 
database clauses. (Cf. Elcock, 1982; 1983.) Thus,- our 
implementation of this ordering strategy is not.motivated so 
much by completeness considerations as by. feasibility: it is 

· gene·rally cheaper to find· s.olutions using unit clauses, so· 
·these should be tonsidered f~rst. 

Feasibility. Problems which are at prese-nt effe·ctively 
insurmountable also seem to face the general goal of staying 
within the practical limits-of the system. The use of a 
language .that has a formal, logical interpretation is no 
panacea for the standard sorts of programming problems; we do 
not have any mechanical method for transforming logically . 
correct but inefficient code into correct and efficient code. 
The ordering method just described will help in some cases. 
Another thing that. is done (by "update") to improve efficiency 
i~ that whenever a clause is added to the database, all 
instances of that clause -are deleted. So, for example, the 
addition of "p(X)." to the database will cause "p(a)." to be 
del~ted. And the addition of "p(X,Y)." will cause dp(X,X)." 
to be ·deleted. So a certain easy to find redundancy is 
automatically eliminated. Apart from such simple steps as· 
these, though, there is not much that can be done cheaply and 
easily to enlarge the class of feasible proofs except to 
provide as much time and space as is practical, to minimize 
the need for unnecessarily long searches, and to make searches 
of the database.as effi9ient as possible. Search efficiency· 
can be improved by indexing the database; unnecessary search 

·c,n be eliminated with appropriate goaL s~lection strategies 
and intelligent backtracking. Each of these method·s will now 
be considered in turn. Notice that none of them are theorem 
proving matters; they are metalogical operations that change 
the set of axioms from which we may draw inferences. They can 
be taken care of automatically, out of the sight of the user. 
The user should s~e only the improved efficiency. 

Indexing the database. A standard technique for making 
search efficient involves indexing the units of information so 
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that when an item is needed the whole memory does not need to 
be searched~ insiead the location of the needed information 
can be looked up in an array cir hash table. ·The DEC-10.PROLOG 
interpreter indexes database clauses according to their "head" 
predicates, i.e., according to the predicate in the head of 
each clau~e (Pereira et al., 1978). But when a relation is 
large, when there are many clauses with a particular head 
predicate, the searches will still be long.. In this 
situation, the standard strategy is to start secondary 
indexing on the arguments of the relations. A database that 
is indexed for every argument of every relation is said to be 
totally indexed or totally inverted. Some PROLOG 
implementations, s.uch as IC-PROLOG,. provide facilities for 
indexing according to the principal· functor of arguments to 
the head predicates in the database (Clark and McCabe, 1982). 
And in systems.like interpreted DEC-10 PROLOG, secondary 
indexing effects ca.n be obtained si-mply by building auxiliary 
predicates which incorporate names of the principal functors 
of the arguments. This technique was U$ed in the Edinburgh 
Chat-80 system (Warren, ·1981; Warren and Pereira, 1981), and 
we used it in our work. 

Goal selection strategies. The order in which the goals 
of a query are solved can make a substantial difference in 
resource use. Suppose, for example, that the· database has 
4000 clauses with the predicate "gl" and 1 clause with .the 
predicate "g2", and that all of these are ground clauses. 
Then, given the left-to-right selection method that is 
standard in PROLOG, and assuming that the database is totally 
indexed, it is much.more efficient to evaluate the query, 

g2 (X, Y) ,gl (X, Y}. 
than it is to evaluate the query~ 

. gl(X,Y),g2(X,Y). 
Evaluating the latter query could involve an enormous amount 
of backtracking. Evaluating "g2(X,Y)" first, on the other 
hand, immedi~tely provides the only instances of "X" and "Y" 
which could possibly satisfy the query. The indexing will 
allow this instance to be checked without a long search, and, 
in any ~ase, backtracking is more expensive than a simple 
search for a matching head predicate. so· in general, we want 
to evaluate the least expensive goals first. When the 
database is all ground clauses and the query has variables in 
all argument places, we can let the c,ost of a goal be the size 
of the relation, i.e., the number of clauses in the database 
whose heads have the same predicate as the goal. The cost 
function should be more elaborate, however, when the database 
contains clauses with variables (or terms-containing 
variables) or the query contains goals with non-variables. 

Let',s consider ~irst the·elaboration of the cost function 
which is needed to allow for queries with instantiated 
arguments. If a predicate is indexed in the database, then 
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a·ny "use-r" query of that predicate will be solved by first 
·converting it into its indexed form and then finding a 
solution to that "i~dexed" query. In a totally indexed 
database the cost of solving the original query will not in 
general depend on the size of its main predicate, but rather 
on the size of the sets of arguments that occur in each of the 
n-positions of any n-place prediGate in the query, since these 
are the.arguments to the indexed predicates. In order to 

. estimate the expense of finding a solution to a query (in a 
manner which will be described below) we can keep records of 
the sizes of the sets of arguments that occur in each place of 
every predicate. When all the database clauses are ground 
clauses, calculating the sizes of these sets is · 

1 straightforward. The sets s_imply include all the different 
te+ms. that occur in the relevant argument positions. 

This brings us to the question of how to elaborate the 
cost function to make it appropriate for a totally indexed 
database that is not restricted to ground cleuses~ In this 
situation, not all of the possibl~ instantiations of any 
par·ticulat: argument position need be explic1tly available; 
some of them will only.be found by the inference process. We 
do not want tri have to calculate .all of the·possible ·. 
instantiations ·of each predicate, so we need some reasonable 
way of estimating the number.of distinct-terms that could 
occur in each argument position. The details of the · 
calculation will not be described here, but roughly, we make 
worat-case assumptions that allow us to calculate the maximum 

1 number of possiple distinct provable instantiations of e.ach 
predicate. And th~n, thinking of each different pre~icate as 
a relation, we want some reasonable way of calculating the 
relation size. Again, we calculate relation sizes by making a 
worst-case ~stimation of the number of solutions one would be 
able to find to the query consisting of any particular 
predicates followed by the appropriate number of variables. 
We calculate these estimates and revise them when new 
information is added as part of the "updating" process. Given 
these estimates, we are able to use the same cost es.timation 
formula as was used in the Chat-80 system for ground clause 
databases. The cost of solving a goal ·is defined as the size· 
0f the relation divided by the product of the argument domain 
sizes associated with argument positions that are instantiated 
at the time a solution is•sought. . · 

Notice that, given this definition, the cost of a goal may 
change when other goals in the query are solved. For example, 

· in solving the query, 
g l ( X , Y) , g 2 ( Y , Z ) , g'3 ( Z·, a) • 

th~ solution of the first goal will instantiate the first 
argument of the second goal, making it cheaper to solve. And 
the solution to the second goal will leave no uninstantiated 
arguments in the third goal. So-if we want to plan our 
queries in such a way that the cheapest goal will always be 
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the next one solved, we will have to anticipa~e the 
instantiation of the relevant variables. This process 
interacts with the backtracking strategies described below, so 
let's consider those before describing how this query planning 
should be done. 

Selective backtracking. Sometimes PROLOG will do a lot of 
unnecessary backtracking in the course of finding the set of 
solutions to a query. Consider, for example, the query, 

bagof(X,h(X),B). 
where the unary predicate "h" is defined by the database 
clause, · 

h (X) :-gl (X) ,g2 (Y). 
And suppose the database provides some number n of solutions 
to the first goal, "gl (X)-", and some very, large number m of 
solutions to "g2(Y)". In finding the list B of solutions to 
"h(X)", a solution to the first goal "gl(X)" ~ill be found; 
the~ a solution to the second goal "g2(Y)" will b~ found and 

.the instance of "X" will be put in list B. The system will 
then backtrack to find all m ~olutions to the second goal, 
putting the first solution to the first goal in.the list B 
each time. Since we are only interested in getting the 
instances of "X" whi6h satisfy the g6als given, it is just a 
waste to get each such solution m times. We could use "setof" 
instead of "bagof" to get a nonredundant list of solutions, 
but this query also wastes the time to get all the redundant 
solutions before deleting them.· r'nterchanging the positions 
of "gl ('X) 11 and "g2 (Y) 11 do_es not ·improve things. And simply 
putting a cut into ·the original query somewhere will also not 
achieve the goal of getting a complete set of the .instances of 
"X 11 without this wasted effort. (In this case we could 
interchange the goals and put a cut between them, but this 
sort of solution will not always be available, as the examples 
below will illustrate.) Because it shares no variables with 
the head of the clause, the goal 11 g2(Y)" is, in effect, an 
independent subproblem; it must have a solution, but this is 
all we need to know to find all of the solutions to "h(X) 11 • 

Precisely the same situation arises if instead of having a 
definition of "h", we s.imply ask, 

bagof(X, (gl(X) ,g2(Y)} ,B) .-
We would like to be able to avoid the unnecessary backtracking 
in all such cases. 

This problem was handled in the Chat-80 system by putting 
independent subproblems inside braces,· and then changing the 
PROLOG interpreter so that it would evaluate queries 
containing such braces ~ppropriately. We used the standard 
interpreter and used new rules with cuts to achieve the same 
effect.• Thus, instead of evaluating a query like 

bagof (X, {gl (X) ,g2 (Y)) ,B). . 
or putting a rule in our database like, 

· h(X):-gl{X),g2(Y). 
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we would enter the auxiliary rule, 
r 1 ( Y) : -g 2 ( Y) , ! . 

, and then evaluate the eq~ivalent query, 
bagof(X, (gl(X) ,rl(Y)) ,B). 

or put the following equivalent rule into our database, 
h ( X) : -g 1 ( X) , r 1 ( Y) • 

The latter query and rule will yield the same results but 
without all the ~necessary backtracking.and inference. The 
body of the auxiliary rule is appropriately evaluated as an 
"independent subproblem." The savings in resource use can 
obviously be enormous. 

Extending this sort of treatment to more complicated 
queries and rules is not trivial, but not terribly hard 
either. Consider the follo·wing sort of case,· for example, 

h{X.,Z) :-gl(X) ,g2(Y) ,g3 (Z). 
In this case we do not want to enter the auxiliary rule, 

rl(Y,Z):~g2(Y)·,g3(Z),!. 
and change our original ruie to, 

. ·. h(X,Z):-gl(X),rl(Y,Z) .. 
since this procedure would only allow us to find one of the 
possibly many solutions to g3(Z). The moral of this sort of 
case is that no head variable should occur uninstantiated in a 

: subproblem when that subproblem is evaluated. Thus, although 
1 _"g3(Z)" s~ould not be includ~d in a subproblem in thii last 

·example, it could be included in a subproblem in 
_h(X,~)~-gl(X,Z);g2(Y),g3(Z). 

In this case the mentioned auxiliary rule would be 
appr·opr·iate, since the head variable "Z" will always be
-instantiated at.the time "g3(Z)" is evaluated, and so its 
occurrence in an independent subproblem wiil not restrict the 
number of solutions found. . · . 

. An6ther sort of case that can arise is that we may have 
i subproblems within subproblems. Consider for example the 

query., 
h(W) :-gl(X) -g2(X,Y) ,g3(X,Z). 

None of these goals contain head variables, so they can 
immediately be put into an independent subproblem. After the 
f.irst of these goals has been solved, though, the remaining 
two goals do not share any variablas, so they break into two 
further subproblems. Accordingly, the rule· wouia be handled 
by transforming it into, 

h (Wl: ..-r 1 ( X, Y, z) • 
and th~n we enter the following auxiliary iules~ 

r 1 ( X, Y , Z ) : -g 1 ( X) , r 2 ( X, Y) , r 3 ( X , Z ) , ! . 
•r2 (X, Y) :-g2 (X, Y), ! . 
r 3 ( X, Z) : -g 3 ( X, Z} , ! • 

The ratio'nale for doing this is just the same as ·above. 
Suppose for example,. that for some choice of "X" we are unable 
to prov·e "g3 (X, z) ". There is no point in_ backtracking to find 
other solutions to "g2(X,Y)", since the choice of "Y" is 
irrelevant to our problems with "g3(X,Z)". What we need to do 

... 
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is.-immediately go back to find another choice of "X". This is 
precisely what our new rules will accomplish. 

This g~ouping of goals into subproblems is sometimes going• 
to interact with our goal selection strategy. For example, 
after ordering the goals on the basis of solution cost, it may 
turn out that an independent subproblem is broken up by a goal 
containing a head variable. This sort of conflict is resolved 
with an optimizing algorithm which integrates the cost 
planning and the selective backtracking stra·tegies we have 
described. · · 

Optimizing,. The optimizing algorithm that was implemented 
is roughly the following: 

Giv·en a rule of. the form H:-Gl,G2, ••• Gn, 
(1) Order the list of goals, Gl, G2, •.• r Gn, according 

to solution cost, as discussed above. 
(2) Look through the goals, in order, to find head 

variables. 
(i). If such a a goal is found, it will be the cheapest 
goal containing a head variable, so move it to the front 
of the list of goals,. and assume for the remainder of the 

.optimizing process.that its arguments are instantiated. 
(S.ome of them· may 9ccur in other goals.) Consider oniy 
the remaining goals for the rest of the optimizing 
process •. Reorder· these goals according to cost, and 
repeat step (2). 
(ii) If no such goal containing head var:i:ables•is found, 
proceed to· the next s-tep. · · 

(3) Any goals that remain to be considered at this 
poin·t will not have any head variables at the time they 
are to be solved, so they constitute independent . 
subproblems. Take the first ~oal Gi on ·the list - it will 
be_ the cheapest - and check the following goal to see if 
it shares any variables with Gi; If it does, it is to be 
included in the same subproblem with_Gi, and check the 
next goal to see if it contains any of the same variables 
as Gi, and so·on until there are no more goals or until a 
goal with no variables ·in common with Gi are found. At 
this point we have a list of the goals in the Gi 
subproblem, and possibly also a list of remaining goals 
not in the Gt subproblem. Now enter an auxiliary rule, 
"the Gi rule," i~to the database. The Gi rule is given a 
unique head predicate and has as head arguments all the . 
variables· that occur in. the goals of the subproblem. '!'he 
body of the Gi rule consists of the 9oals in the Gi 
subproblem. We now want to optimiz€ the body of this rule 
as welli so assume foi the.remainder of the optimizing 
process that the variables in Gi are all instantiated. 
Reorder the rest of the goals in the body of Gi rule {if 
any) and perform-this step (3) again on these goals to 
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find subsubproblems. Finally, reorder the list of goals
outside of the Gi subproblem and perform this step (3) o~ 
them as well. 

This algorithm anticipates the instantiation of variables both 
in its cost calculations and in its recognition of independent 
subproblems. I_t appears to be a very expensive process, but 
it need only be done once for any rul~ being put into the 
database, and it can actually save an enormous amount of time. 

Suppose that our dat·abas·e contains one ground clause with 
the predicate "gl", -0ne hundred ground clauses with the 
predicate "g2"~ five hundred ground clauses wiih the predicate 
"g3", and nothing else except the follo~ing definition of the 
predicate "h": 

. h ( ·x ) : -g 3 ( Y) , g 2 C z , Y) , g 1 ( x) . 
Now consider the query, · 

setof(X,h(-X) ,S). 
This query is obviously maximally ineffi.cient, but our 
database is not really huge and so it may not be obvious that 
it would be worth.optimizing the rule for "h(X)". The actual 
processing times are as follows. Executing the maximally · 
inefficient qu~ry in fhe situation described takes 2291 ms. 
OptimiziQg the r~le for "h" tranforms it into, 

h{X):~gl(k),~l(Y,Z)~ · 
: and enters the auxiliary rules, -

· r 1 ( Y, z ) : -g 2 ( Y, z·) , r 2 ( z ) , ! . 
r 2 ( Z ) : -g 3 ( Z ) , l • . 

. This optimizing process takes· about· 280 ms. And executing the 
same "setof" query, but now with the optimized definition of 
"h" and the auxiliary rules, takes about 30.ms. Obviously, 
the optimizing is worthwhile in any case like this one. On a 

' larger·database, the improvements are even more dramatic, as 
would be expected. The optimizing code could also be compiled 
to improve its efficiency further once it has been p~t in the 
form in which we want to use it in any particular application. 

Conclusion. The work that has been desc-ribed here is 
aimed. at providing the basis for a feasible, pragmatic 

·deductive inference system. It is completely general and 
~ortable. The applications that this work is specifically· 
designed for are those -in which a user wants to have 
inte~active deductive access to a database ~hich may include 
general rules (expressions containing logical variables} as 
well as particular facts (expressions containing n6 
variables). This sort of application would go substantially 
beyond most previous logic programming projects which usually 
require.that the database contain only ground clauses or that 
the user cannot add new ·rules. It is precisely the more 
general sort of _database system that exploits the real 
advantages of a.deductive system, though, and this sort of 
system would be required in many question answering systems. 
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