
KNOWLEDGE REPRESENTATION
IN AN EFFICIENT DEDUCTIVE INFERENCE SYSTEM

E. P. Stabler, Jr.
E.W. Elcock

University of Western Ontario
London, Canada

ABSTRACT

216

Efficient response to queries addressed to a large data
base is an important problem of knowledge representation. The
problem and various solutions have been well researched for
certain "conventional" (e.g. relational) data- models. The
analogous problem has been tackled and solutions similar in
spirit to those for relational models developed for data bases
and queries expre~sed in Horn clause systems such as Prolog
with the severe constraint that the "data base" is a set of
ground instances of assertions.

The situation becomes more interesting and challenging
when the data base is deductive: e.g. a Prolog first-order
theory. Basically the interest is in finding an automatic way
of representing the first-order theory which facilitates, the
dynamic reordering of residual literals and the selection of
the next goal to be evaluated based on a ~hanging measure of
the cost of-~valuating each goal in the residual query.

The current paper presents paitial solutions which can be
used to obtain dramatic reductions in search times. The paper
also identifies some remaining and difficult problems.

The methodology was designed with the processing of
natural language queries in mind, but it is quite general in
its domain of application.

KNOWLEDGE REPRESENTATION
IN AN EFFICIENT DEDUCTIVE INFERENCE SYSTEM

E. P~ Stabler, Jr.
E.W. Elcock

University of Western Ontario
London, Canada

. L 1 t

There -is an increasing demand for large database systems
that provide efficient inference capabilities. These are
~bviously needed in question answering systems and expert
systems, buf their potential rang~ of application is really
very wide~ It is an advantage to allow any database user a
uniform view of both explicit and implicitly represented

· information. Accessing the databa~e through a deductive
inference system offers the possibility of such freedom,
first, in its ability to decide whether any particular
proposition follows from what is represented in the database,
and second, in its ability to use rules, meaning postulates
and definitions of new terms and relations .as nonlogical
axioms in ~aking such decisions. Thus, ·rather th~n having to

·search for particular pieces of information, the user can
simply ask whether or not a partiqular proposition foliows
fr~m the database: · g·eneral rules can be introduced to cover
large classes of particular facts and to define new terms that
might b~ used in queries.

K~eping the deductive access to a large database efficient
requires, in the first place, that we deal with some of the
~tandard database management pr_oblems, viz., · the problems of
making search efficient and- of optimizing queries to minimize
the need for sear-ch. Tl;lese problems are paricularly pressing
when the database and access system are to be embedded in a
larger design, such as a question.answering system. In this
conte~t the system must interface with natural language
processors, rather ·than with the typical brilliant and
insightful human database user who· can learn how to avoid the
system's weak spots. ·As a result, database queries cannot be
expected to arrive_ i-n a for-m that is optimal from the point of
view of efficiency. In this rep~rt we·will show how such
standard database management problems can be handled in
PROLOG, one of the most. efficient and most widely known
_theorem proving systems.

--------------------* The software described in this paper was designed and
implemented by a research group.which included the authors,
D. Wyatt; and A .. Young. This work is also described in Elcock
et al.(forthcoming) and Stabler (1982).

.218
Page 2

PROLOG preliminaries. Since PROLOG is fairly well known
and'there are good introductions to the language (e.g.,
Clocksin and Mellishi 1981) we will only briefly review some
important features. PROLOG i 9 basically a Horn clause theorem
prover.· It also· has metalog ical facilities that can provide
higher order effects, and of course nonstandard effects can be
obtained by quantifying over possible worlds (cf. Moore,
1980). A clause is a first or~er prenex formula whose prefix
consists of (only) u_niversal quantifiers and whose matrix is a
disjunction of literals, where a literal is an atomic formula
or the·negation of an atomic formula. Since the order of
universal quantifiers makes no difference, they do not need to
be written down. A Horn clause is a clause whose matrix
contains at most one positive literal. The restriction to
Harn ·clauses does not, in principle, prevent us from
expressing anythlng that can ~e expressed in first order
logic. The relevant results are these: for any formula F of
first order predicate cal.culus, there is an· easily

.constructible set S of c~auses which is inconsistent if, and
only if, Fis (see e.g., Chang and Lee thm.4.1.)~ and for any
set S of clauses there is an easily constructible set Hof
sets of Horn clauses such fhat the~e is an inconsistent set in
H'if, and only if, sis inconsistent (see e.g., Henschen and
Wos, 1974). In spite of this generality in principle, though,
some problems are much more feasible and natural when
ex~ressed in noa-Horn clause.form.

The restriction to the Horn clause subset of first .order
logic is not the only special logical.problem that faces a
PROLOG database system. In the first place, we should note
that PROLOG does not· immediately provide-ideal inference
capabilities even within the Horn- clause logic: it's failings
are the familiar ones. It is.well known that "Horn•sets" are
not decidable (Hermes, 1965), and so of course PROLOG cannot
decide whether an arbitrary query of its Horn clause logic
follows from ·the database or not, even given unlimited time
and space. And'although it is easy to design proof methods
for Horn clause logic which are complete in the sense that
they will find _a proof of an arbitrary sentence if there is
one, the most efficient theorem p~overs, like PROLOG, are not
complete. They are even unsound in the sense that they will
sometimes claim ·to have found a proof when there is no valid
proof. Let's consider these problems briefly before
considering the ~ore standard database problems.

Soundness. It is well known that PROLOG will sometimes
produce an invalid proof. For example, -given the database
"p(X,X).", PROLOG will say that the query 11 p(Y,f(Y))."
follows. The instance that follows, according to the PROLOG
system, is the one in which Y=f(f(f~-■• {f(Y)))).... (Since
this is an infinite expression, there wJll be trouble if
PROLOG tries to print it out.) But obviously,

.214
Page 3

"(E-y) (P(y,f{y)))" docs not follow from "(x) (P(x,x))". PROf.,OG

gets this incorrect result because it does not do th~ "occurs
check" in the .course of unification. What it does is this.
When confronted with the query "p(Y,f(Y))" it tries to match
it with the database clause "p(X,X)". It begins with the
first argument; in effect, "Y" is substituted for "i". The
result is "p(Y,Y).", and this is identical to the query up to
the second argument. So now PROLOG tries to match the second
arguments, which it does by substituting "f(Y)" for "Y". As a
result, Y=f(f(f ••• (f(Y)))) ••• , and the query is judged to be
an instance of the databas~ clause. Strictly speaking, this
matching process is not the unification which is employed in
sound, resolution procedures, because a variable cannot.
properly be unified with any term which contains that
variable.. Implementing unification correctly would involve
performing an "occurs check" to .make sur·e that the variable
does not occur in the term it is being unified with.
Performing this check in every unification step is expensive,
especially when t~e term~ being unified are large. Since the
matching process without an o~curs check is so-much cheaper,
-and since it is sufficient in most cases, most PROLOG
implementatioris do not Dse strict ~nification. As noted

·above, assuming that we do not want to just tolerate·errors,
this means that the use:rs of thes·e systems must make sure they
are not accepting conclusions based on unsound inference-s.
There are a number of ways .to do this. ·

One way to. avoid unsound inferences is simply to require
that only ground clauses occur in the database. -This
restrict~on is perfectly straightforward, and it is obviously
adequate since the database would then not contain ·any
variables which might occur in terms tney would be matched

. with.·· The problem is that this rest~iction is obviously going
to eliminate the j;eatures which make logic programming
languages particularly attractive. (Consider, for example,
the features mentioned at the beginning of this paper.) ·

There are other similar and iess restrictive strategies.
We can hope th.at programmers experienced.with PROLOG_will
learn how to avoid creating a database in which unsound
inferences will be made. If an unsound inference is going to
cause trouble, they should block it. The problem then is not
with th-·"systemlt datab~se whlch is provided by programmers,
but with database.clauses which might be provided by naive
useis. We do not want to require'the users to understand and

·attend to such things as the peculiarities of the PROLOG
·matching process. so we can either provide a complete system

· to which the user cannot add information, or we can require
that any information added be groupd·clauses •. The "system"
database wou'id then be created by programmers famil.iar with
PROLOG.' s matching process, and the ".user" database, if there
is one, would not add any dangers.of uns6undness. This
restriction on the users' database would certainly to be felt,

220
Page 4

howe~er; it severely constrains what the user can do with the
system. He would not,- for example, be able to add definitions
of new relations in terms of relations already provided by the
system. The only other alternative that seems to. be .
available, though, would be to do the occurs check whenever
non-ground clauses that could conceivably cause an error are
used.· Since the main thrust of the present project is to
allow the dat~base users the real advantages of accessing a
database through an inference system (without errors, even·
very unlikely ones!),· this last strategy is the only
acceptable one, and is currently being explored.

Completeness~ The second-problem that we would like our
system to deal with as well as possible is that of avoiding
attempts to- find proofs which are beyond the theoretical
capabilities of PROLOG. We have already noted the obvious
point that mere completeness is not going to do us any good if
the proof proced~re is just not feasible. But the point of
interest is that if finding a proof of some result is beyond
PROLOG's theoretical capabilities, it is of course also beyond
its practical capabilities. It is a good strategy to try to

_keep the whole class of proofs that might be sought within the
theoretical capabilities of PROLOG, and then to keep those
proofs as efficient as possible. Sometimes a simple change in
the databa~e, query, or proof strategy that brings a res~lt
within the theoretical capabilities of the system also
suffices to bring the result wi t·hin the practical capabilities
of the system.

Th~ following familiar sort of example illustrates this
situation. (This example is taken from Moore(forthcoming),
where it is used to illustrate the related problem of forward
vs. backward chaining.·) One of ,the standard ways to define a
relation is with "base rules" and "induction rules." For
example, the one-place r~lation or property of being Jewish
might be partially defined with a list of people who are
Jewish and with the rule from the Talmud that a person is
Jewish if the mother of that person is Jewish, as follows:

jewish(bar-hillel}.
jewish(X}:-jewish(mother(X}).

Given this database, PROLOG will properly indicate that there
is a proof of the query ~jewish(bar-hillel).". If, however,
the clauses in the database are reversed,·putting the
"induction rule" before the "base rule," PROLOG will never
succeed in finding a proof of this query. -Because it uses a
depth-first proof strategy and selects the first database
clause first, it would never get to the second rule, the base
rule, which it would need to use. It would "loop," using· the
first rule, the "induction rule," over and over again. Since
this sort of situa~ion is quite common, we can adopt the

-Page 5

strategy of alway~ putting "base" rule~ before "induction"
rules. The problem is to recognize them. A crude
approximation that will handle this case is to check each
clause that is going· into the· database to see if it is a
simple assertion, a unii clause with an empty body. If it is,
put it at tbe beginning of the list of clauses which have the
same predicate; otherwise, put it at the end of the list.
(This is one of the things which is done by our predicate
"update" which will be described in more detail later.) It
should be noted, however, that- this ordering strategy will not
work in, cases where the "base" rules are not simple
assertions, and it will not.work in cases in which there is
more than one· "induction rule." There are cases of
incompleteness which cannot be remo_ved by any reordering of
database clauses. (Cf. Elcock, 1982; 1983.) Thus,- our
implementation of this ordering strategy is not.motivated so
much by completeness considerations as by. feasibility: it is

· gene·rally cheaper to find· s.olutions using unit clauses, so·
·these should be tonsidered f~rst.

Feasibility. Problems which are at prese-nt effe·ctively
insurmountable also seem to face the general goal of staying
within the practical limits-of the system. The use of a
language .that has a formal, logical interpretation is no
panacea for the standard sorts of programming problems; we do
not have any mechanical method for transforming logically .
correct but inefficient code into correct and efficient code.
The ordering method just described will help in some cases.
Another thing that. is done (by "update") to improve efficiency
i~ that whenever a clause is added to the database, all
instances of that clause -are deleted. So, for example, the
addition of "p(X)." to the database will cause "p(a)." to be
del~ted. And the addition of "p(X,Y)." will cause dp(X,X)."
to be ·deleted. So a certain easy to find redundancy is
automatically eliminated. Apart from such simple steps as·
these, though, there is not much that can be done cheaply and
easily to enlarge the class of feasible proofs except to
provide as much time and space as is practical, to minimize
the need for unnecessarily long searches, and to make searches
of the database.as effi9ient as possible. Search efficiency·
can be improved by indexing the database; unnecessary search

·c,n be eliminated with appropriate goaL s~lection strategies
and intelligent backtracking. Each of these method·s will now
be considered in turn. Notice that none of them are theorem
proving matters; they are metalogical operations that change
the set of axioms from which we may draw inferences. They can
be taken care of automatically, out of the sight of the user.
The user should s~e only the improved efficiency.

Indexing the database. A standard technique for making
search efficient involves indexing the units of information so

2-ZZ
Page 6

that when an item is needed the whole memory does not need to
be searched~ insiead the location of the needed information
can be looked up in an array cir hash table. ·The DEC-10.PROLOG
interpreter indexes database clauses according to their "head"
predicates, i.e., according to the predicate in the head of
each clau~e (Pereira et al., 1978). But when a relation is
large, when there are many clauses with a particular head
predicate, the searches will still be long.. In this
situation, the standard strategy is to start secondary
indexing on the arguments of the relations. A database that
is indexed for every argument of every relation is said to be
totally indexed or totally inverted. Some PROLOG
implementations, s.uch as IC-PROLOG,. provide facilities for
indexing according to the principal· functor of arguments to
the head predicates in the database (Clark and McCabe, 1982).
And in systems.like interpreted DEC-10 PROLOG, secondary
indexing effects ca.n be obtained si-mply by building auxiliary
predicates which incorporate names of the principal functors
of the arguments. This technique was U$ed in the Edinburgh
Chat-80 system (Warren, ·1981; Warren and Pereira, 1981), and
we used it in our work.

Goal selection strategies. The order in which the goals
of a query are solved can make a substantial difference in
resource use. Suppose, for example, that the· database has
4000 clauses with the predicate "gl" and 1 clause with .the
predicate "g2", and that all of these are ground clauses.
Then, given the left-to-right selection method that is
standard in PROLOG, and assuming that the database is totally
indexed, it is much.more efficient to evaluate the query,

g2 (X, Y) ,gl (X, Y}.
than it is to evaluate the query~

. gl(X,Y),g2(X,Y).
Evaluating the latter query could involve an enormous amount
of backtracking. Evaluating "g2(X,Y)" first, on the other
hand, immedi~tely provides the only instances of "X" and "Y"
which could possibly satisfy the query. The indexing will
allow this instance to be checked without a long search, and,
in any ~ase, backtracking is more expensive than a simple
search for a matching head predicate. so· in general, we want
to evaluate the least expensive goals first. When the
database is all ground clauses and the query has variables in
all argument places, we can let the c,ost of a goal be the size
of the relation, i.e., the number of clauses in the database
whose heads have the same predicate as the goal. The cost
function should be more elaborate, however, when the database
contains clauses with variables (or terms-containing
variables) or the query contains goals with non-variables.

Let',s consider ~irst the·elaboration of the cost function
which is needed to allow for queries with instantiated
arguments. If a predicate is indexed in the database, then

.2. 2.3
Page 7

a·ny "use-r" query of that predicate will be solved by first
·converting it into its indexed form and then finding a
solution to that "i~dexed" query. In a totally indexed
database the cost of solving the original query will not in
general depend on the size of its main predicate, but rather
on the size of the sets of arguments that occur in each of the
n-positions of any n-place prediGate in the query, since these
are the.arguments to the indexed predicates. In order to

. estimate the expense of finding a solution to a query (in a
manner which will be described below) we can keep records of
the sizes of the sets of arguments that occur in each place of
every predicate. When all the database clauses are ground
clauses, calculating the sizes of these sets is ·

1 straightforward. The sets s_imply include all the different
te+ms. that occur in the relevant argument positions.

This brings us to the question of how to elaborate the
cost function to make it appropriate for a totally indexed
database that is not restricted to ground cleuses~ In this
situation, not all of the possibl~ instantiations of any
par·ticulat: argument position need be explic1tly available;
some of them will only.be found by the inference process. We
do not want tri have to calculate .all of the·possible ·.
instantiations ·of each predicate, so we need some reasonable
way of estimating the number.of distinct-terms that could
occur in each argument position. The details of the ·
calculation will not be described here, but roughly, we make
worat-case assumptions that allow us to calculate the maximum

1 number of possiple distinct provable instantiations of e.ach
predicate. And th~n, thinking of each different pre~icate as
a relation, we want some reasonable way of calculating the
relation size. Again, we calculate relation sizes by making a
worst-case ~stimation of the number of solutions one would be
able to find to the query consisting of any particular
predicates followed by the appropriate number of variables.
We calculate these estimates and revise them when new
information is added as part of the "updating" process. Given
these estimates, we are able to use the same cost es.timation
formula as was used in the Chat-80 system for ground clause
databases. The cost of solving a goal ·is defined as the size·
0f the relation divided by the product of the argument domain
sizes associated with argument positions that are instantiated
at the time a solution is•sought. . ·

Notice that, given this definition, the cost of a goal may
change when other goals in the query are solved. For example,

· in solving the query,
g l (X , Y) , g 2 (Y , Z) , g'3 (Z·, a) •

th~ solution of the first goal will instantiate the first
argument of the second goal, making it cheaper to solve. And
the solution to the second goal will leave no uninstantiated
arguments in the third goal. So-if we want to plan our
queries in such a way that the cheapest goal will always be

2.i 1
Page 8

the next one solved, we will have to anticipa~e the
instantiation of the relevant variables. This process
interacts with the backtracking strategies described below, so
let's consider those before describing how this query planning
should be done.

Selective backtracking. Sometimes PROLOG will do a lot of
unnecessary backtracking in the course of finding the set of
solutions to a query. Consider, for example, the query,

bagof(X,h(X),B).
where the unary predicate "h" is defined by the database
clause, ·

h (X) :-gl (X) ,g2 (Y).
And suppose the database provides some number n of solutions
to the first goal, "gl (X)-", and some very, large number m of
solutions to "g2(Y)". In finding the list B of solutions to
"h(X)", a solution to the first goal "gl(X)" ~ill be found;
the~ a solution to the second goal "g2(Y)" will b~ found and

.the instance of "X" will be put in list B. The system will
then backtrack to find all m ~olutions to the second goal,
putting the first solution to the first goal in.the list B
each time. Since we are only interested in getting the
instances of "X" whi6h satisfy the g6als given, it is just a
waste to get each such solution m times. We could use "setof"
instead of "bagof" to get a nonredundant list of solutions,
but this query also wastes the time to get all the redundant
solutions before deleting them.· r'nterchanging the positions
of "gl ('X) 11 and "g2 (Y) 11 do_es not ·improve things. And simply
putting a cut into ·the original query somewhere will also not
achieve the goal of getting a complete set of the .instances of
"X 11 without this wasted effort. (In this case we could
interchange the goals and put a cut between them, but this
sort of solution will not always be available, as the examples
below will illustrate.) Because it shares no variables with
the head of the clause, the goal 11 g2(Y)" is, in effect, an
independent subproblem; it must have a solution, but this is
all we need to know to find all of the solutions to "h(X) 11 •

Precisely the same situation arises if instead of having a
definition of "h", we s.imply ask,

bagof(X, (gl(X) ,g2(Y)} ,B) .-
We would like to be able to avoid the unnecessary backtracking
in all such cases.

This problem was handled in the Chat-80 system by putting
independent subproblems inside braces,· and then changing the
PROLOG interpreter so that it would evaluate queries
containing such braces ~ppropriately. We used the standard
interpreter and used new rules with cuts to achieve the same
effect.• Thus, instead of evaluating a query like

bagof (X, {gl (X) ,g2 (Y)) ,B). .
or putting a rule in our database like,

· h(X):-gl{X),g2(Y).

.2..«5
Page 9

we would enter the auxiliary rule,
r 1 (Y) : -g 2 (Y) , ! .

, and then evaluate the eq~ivalent query,
bagof(X, (gl(X) ,rl(Y)) ,B).

or put the following equivalent rule into our database,
h (X) : -g 1 (X) , r 1 (Y) •

The latter query and rule will yield the same results but
without all the ~necessary backtracking.and inference. The
body of the auxiliary rule is appropriately evaluated as an
"independent subproblem." The savings in resource use can
obviously be enormous.

Extending this sort of treatment to more complicated
queries and rules is not trivial, but not terribly hard
either. Consider the follo·wing sort of case,· for example,

h{X.,Z) :-gl(X) ,g2(Y) ,g3 (Z).
In this case we do not want to enter the auxiliary rule,

rl(Y,Z):~g2(Y)·,g3(Z),!.
and change our original ruie to,

. ·. h(X,Z):-gl(X),rl(Y,Z) ..
since this procedure would only allow us to find one of the
possibly many solutions to g3(Z). The moral of this sort of
case is that no head variable should occur uninstantiated in a

: subproblem when that subproblem is evaluated. Thus, although
1 _"g3(Z)" s~ould not be includ~d in a subproblem in thii last

·example, it could be included in a subproblem in
_h(X,~)~-gl(X,Z);g2(Y),g3(Z).

In this case the mentioned auxiliary rule would be
appr·opr·iate, since the head variable "Z" will always be
-instantiated at.the time "g3(Z)" is evaluated, and so its
occurrence in an independent subproblem wiil not restrict the
number of solutions found. . · .

. An6ther sort of case that can arise is that we may have
i subproblems within subproblems. Consider for example the

query.,
h(W) :-gl(X) -g2(X,Y) ,g3(X,Z).

None of these goals contain head variables, so they can
immediately be put into an independent subproblem. After the
f.irst of these goals has been solved, though, the remaining
two goals do not share any variablas, so they break into two
further subproblems. Accordingly, the rule· wouia be handled
by transforming it into,

h (Wl: ..-r 1 (X, Y, z) •
and th~n we enter the following auxiliary iules~

r 1 (X, Y , Z) : -g 1 (X) , r 2 (X, Y) , r 3 (X , Z) , ! .
•r2 (X, Y) :-g2 (X, Y), ! .
r 3 (X, Z) : -g 3 (X, Z} , ! •

The ratio'nale for doing this is just the same as ·above.
Suppose for example,. that for some choice of "X" we are unable
to prov·e "g3 (X, z) ". There is no point in_ backtracking to find
other solutions to "g2(X,Y)", since the choice of "Y" is
irrelevant to our problems with "g3(X,Z)". What we need to do

...

Page 10

is.-immediately go back to find another choice of "X". This is
precisely what our new rules will accomplish.

This g~ouping of goals into subproblems is sometimes going•
to interact with our goal selection strategy. For example,
after ordering the goals on the basis of solution cost, it may
turn out that an independent subproblem is broken up by a goal
containing a head variable. This sort of conflict is resolved
with an optimizing algorithm which integrates the cost
planning and the selective backtracking stra·tegies we have
described. · ·

Optimizing,. The optimizing algorithm that was implemented
is roughly the following:

Giv·en a rule of. the form H:-Gl,G2, ••• Gn,
(1) Order the list of goals, Gl, G2, •.• r Gn, according

to solution cost, as discussed above.
(2) Look through the goals, in order, to find head

variables.
(i). If such a a goal is found, it will be the cheapest
goal containing a head variable, so move it to the front
of the list of goals,. and assume for the remainder of the

.optimizing process.that its arguments are instantiated.
(S.ome of them· may 9ccur in other goals.) Consider oniy
the remaining goals for the rest of the optimizing
process •. Reorder· these goals according to cost, and
repeat step (2).
(ii) If no such goal containing head var:i:ables•is found,
proceed to· the next s-tep. · ·

(3) Any goals that remain to be considered at this
poin·t will not have any head variables at the time they
are to be solved, so they constitute independent .
subproblems. Take the first ~oal Gi on ·the list - it will
be_ the cheapest - and check the following goal to see if
it shares any variables with Gi; If it does, it is to be
included in the same subproblem with_Gi, and check the
next goal to see if it contains any of the same variables
as Gi, and so·on until there are no more goals or until a
goal with no variables ·in common with Gi are found. At
this point we have a list of the goals in the Gi
subproblem, and possibly also a list of remaining goals
not in the Gt subproblem. Now enter an auxiliary rule,
"the Gi rule," i~to the database. The Gi rule is given a
unique head predicate and has as head arguments all the .
variables· that occur in. the goals of the subproblem. '!'he
body of the Gi rule consists of the 9oals in the Gi
subproblem. We now want to optimiz€ the body of this rule
as welli so assume foi the.remainder of the optimizing
process that the variables in Gi are all instantiated.
Reorder the rest of the goals in the body of Gi rule {if
any) and perform-this step (3) again on these goals to

;_ .2:,...
Page 11

find subsubproblems. Finally, reorder the list of goals
outside of the Gi subproblem and perform this step (3) o~
them as well.

This algorithm anticipates the instantiation of variables both
in its cost calculations and in its recognition of independent
subproblems. I_t appears to be a very expensive process, but
it need only be done once for any rul~ being put into the
database, and it can actually save an enormous amount of time.

Suppose that our dat·abas·e contains one ground clause with
the predicate "gl", -0ne hundred ground clauses with the
predicate "g2"~ five hundred ground clauses wiih the predicate
"g3", and nothing else except the follo~ing definition of the
predicate "h":

. h (·x) : -g 3 (Y) , g 2 C z , Y) , g 1 (x) .
Now consider the query, ·

setof(X,h(-X) ,S).
This query is obviously maximally ineffi.cient, but our
database is not really huge and so it may not be obvious that
it would be worth.optimizing the rule for "h(X)". The actual
processing times are as follows. Executing the maximally ·
inefficient qu~ry in fhe situation described takes 2291 ms.
OptimiziQg the r~le for "h" tranforms it into,

h{X):~gl(k),~l(Y,Z)~ ·
: and enters the auxiliary rules, -

· r 1 (Y, z) : -g 2 (Y, z·) , r 2 (z) , ! .
r 2 (Z) : -g 3 (Z) , l • .

. This optimizing process takes· about· 280 ms. And executing the
same "setof" query, but now with the optimized definition of
"h" and the auxiliary rules, takes about 30.ms. Obviously,
the optimizing is worthwhile in any case like this one. On a

' larger·database, the improvements are even more dramatic, as
would be expected. The optimizing code could also be compiled
to improve its efficiency further once it has been p~t in the
form in which we want to use it in any particular application.

Conclusion. The work that has been desc-ribed here is
aimed. at providing the basis for a feasible, pragmatic

·deductive inference system. It is completely general and
~ortable. The applications that this work is specifically·
designed for are those -in which a user wants to have
inte~active deductive access to a database ~hich may include
general rules (expressions containing logical variables} as
well as particular facts (expressions containing n6
variables). This sort of application would go substantially
beyond most previous logic programming projects which usually
require.that the database contain only ground clauses or that
the user cannot add new ·rules. It is precisely the more
general sort of _database system that exploits the real
advantages of a.deductive system, though, and this sort of
system would be required in many question answering systems.

References.

Chang, c. and Lee, R.C. (1973) Symbolic Logic and
Mechanical Theorem Proving. New Yorl<: Academic Press.

Page 12

Clark, K. L. and McCabe, F.- (1982) IC-PROLOG - language
features. In K.L. Clark and S.-A. Tarnlund, eds., Logic
Programming. New York: Academic Press.

Clocksin, W.F. and Mellish, C.S. (1981) Programming in
PROLOG~ Berlin: Springer-Verlag. . -·

, -) -Elcock, E.W. (1982) Goal selection strategies in Horn
claus~·programming. Proceedings of the Fourth National
C0nference of the Canadian Society for Study in Artificial
Intelligence.

Elcock, E.W. (1983} The pragmatics of PROLOG - some
comments. Unversity of Western Ontario, Department of
Computer Science Technical Report.

~ Elcock, E.W., Stabler, E.P.-. Wyatt, D., and Young, .
A •. (forthcoming} Database management in PROLOG. Unp_ublis·hed

· technical report •.
Henschen, L. and Wos, L. (1974) u·nit refutations and Horn

sets. JACM, 21, pp 590.-605.
-Hermes, H:-(1965) Enumerability, Decidability,·

Computability. New York: Springer-Verlag.
Moore, R.C. (1980) Reasoning about Knowledge and Action.

SRI Technical Note 191. --
! ~ Moore, R.C. (forthcoming) The role of logic in knowledge

r~presentation and commonsense reasoning.
Pereira, L.M-1 Pereira, F.C.N. and· Warren, D.H.D. (19-78)

User's Guide to DECsystem-iO PROLOG.
~ Stabler, E°:"P. (1982) Database arid theorem prover designs

for quest.ion answering systems. Centre · for Cognitive Scien.ce
technical report, Cogmem No. 12, University of Western
Ontario. · '

Warren, D.H.D. (1981) Efficient ~recessing of interactive
relational database queries expressed in logic. Department of
Artifical Intelligence Research Paper No. 156, University of
Edinburgh.

Warren, D.H.D. -and Periera, F.C.N. (1981) An efficient
easily adaptable system for interpreting natural language
q·uer ies. Department of Artificial Iritelligence Research Paper
No. 155, University of Edinburgh.

