
ABSTRACT 

A VIRTUAL MACHINE TO IMPLEMENT PROLOG. 

Gerard BALLIEU 
Department of Computer Sciences 

K.U.Leuven 
Celestijnenlaan 200 A 

B-3030 Heverlee (Belgium) 

40 

We describe the design and the definition of a vitual Prolog 
machine. Like other computers, this virtual machine has an 
instruction set and a working storage (sstatements and data). 

The design of the instruction set is mainly based on the implemen
tation by D. Warren on the DEC10 where he used an abtract machine 
to explain the principles involved in his compiler. The organiza
tion of the working storage corresponds to the "non-structure 
sharing" technique of c.s. Mellish or the "copying" approach of M. 
Bruynooghe. 

One of our main purposes is of course to realise the idea of the 
virtual machine. The execution of a Prolog program on the vitual 
machine consists of two steps: 

Compilation of Prolog programs to virtual machine instructions. 
The compiler is written in Prolog and the compilation process 
should be completely reversible. 

Interpretation of the virtual machine instructions. An inter
preter is being developed in a high level language (Pascal and 
C) and it should be mainly portable. 

It is our goal to combine the advantages of both compiled Prolog 
(efficiency) and interpreted Prolog (adaptibility). We argue that 
this implemsntation is easily portable to different computer sys
tems be rewriting only that part of the interpreter which imple
ments the built-in procedures. 

-1-



I 

I I 
! 

A VIRTUAL MACHINE TO IMPLEMENT PROLOG. 

1. Introduction. 

Gerard BALLIEU 
Department of Computer Sciences 

K.U.Leuven 
Celestijnenlaan 200 A 

B--3030 Heverlee ( Belgium) 

41 

Prolog is a simple but powerful programming language based on 
symbolic logic. A lot of specific features such as declarative 
reading, incomplete data structures, unification and non determin
ism make Prolog programs very attractive and well suited for solv
ing a great variety of problems. There is a growing interest to 
use Prolog as a software tool to design and develop new projects. 
In order to support Prolog as a real programming language, we 
design a Prolog system having the following charateristics: 

the Prolog system has to be efficient: compared with other 
languages the execution time must be reasonable (maximum 3 or 4 
times slower) and the storage use may not overload the computer 
system. 

the Prolog system should be portable to a variety of machines 
and it should be easily adaptable to the specific capabilities 
of a particular computer. 

- Prolog programs have to be compiled to virtual machine instruc
tions which are completely machine independant. 

the data representation in the Prolog system should cover both 
Prolog implementations on conventional machines and on dedi
cated hardware. 

In the next section we describe the main features (storage areas 
and instructions) of the virtual machine. Some design decisions 
are discussed and compared.with the Prolog implementation of D. 
Warren [5]. Finally we discuss the current implementation and 
give some future developments. 

2. Description of the virtual Prolog machine. 

2.1. General processes. 

We design a virtual machine with an architecture which should 
support the efficient execution of Prolog programs. The execution 
mechanism of logic programs consists in constructing a sequence of 

-- 1 --



proof-trees according to the depth-first left-to-right search 
strategy [1] and to store in each node the appropriate variables 
and data. The fundamental questions we have to answer are of the 
form: "what does the machine do?" and "where and how does it 
represent its data?". 

A Prolog machine has to perform two kind of processes: a control 
process and a unification process. On a sequential machine archi
tecture these processes are alternated. The control process 
selects the next goal and the procedure definition, adjusts the 
proof-tree or restores the proof-tree to a previous state. The 
unification process is in fact a computation process which tests 
and assigns data or creates complex data structures. 

To represent the control information and the data structures 
involved in the execution of a Prolog program, the virtual machine 
will provide a complex run-time structure consisting of an 
environmentstack, a copystack and a resetstack (or trail). For 
complex terms we use the "structure copying" approach. 

The design of our virtual machine has strongly been influenced by 
the work of D. Warren [5] where he used an abstract machine to 
explain the Prolog compilation process. We also compile each Pro
log clause into a sequence of virtual machine instructions accord
ing to the following scheme: 

unification { 

control 
and 

data 

unification 

instructions 

'neck'instr 

'call'instr 
followed by 
its arguments 

' foot' instr 

2.2. The main working storage. 

head of the clause 

unification completed 

body of the clause 

completes execution of 
this clause 

The major data area of the virtual machine is the environ
mentstack. Like in block structured languages this stack is used 
to build a run-time environment for each goal (procedure call). 
When a new goal or subgoal is takled, a new stackframe is created 
and sp&~o is rese:::-7ed for tha variables and for li~ing (manage
ment) information. 

-- 2 --

4l 



I 
' I 

The stack frames are linked in two kinds of lists: a father-list 
and an alternative list. Each stackframe belongs at least to one 
of the lists. The father-list corresponds to a path in the 
proof-tree from the root to the current node. The alternative 
list is a list of backtrackpoints or nodes with alternative 
choices. to solve the goal corresponding to the node. In figure 1 
we show for a given proof tree the corresponding environmentstack: 
P is the initial goal or problem, Di is a deterministic node and 
Bi is a backtrackpoint. 

B1 

father-list alternative list 

D3 B3 

D6 
proof tree (current goal D6) 

figure 1 

ENV 

environments tack 

The top element of the father-list and the alternative list is 
pointed by ENV respectively ALT. When a goal is successfully com
pleted and no alternative choices remain (no backtrackpoint), the 
top frame of the stack (father-list) is removed. When a goal 
fails, the last backtrackpoint becomes the current frame and an 
alternative clause is chosen to solve the current goal. 

Each stack frame also has space for the variables in the 
corresponding clause. Due to the general tree structures and the 
incomplete data structures in Prolog (dynamic data structures) it 
is not always possible to put the variable binding in the reserved 
space. When a variable's value is a constant (atom or integer) 
the value is put in the stack frame. When a variable is bound to a 
compound term ( functor and arguments) a ~ of this term is made 
and put on a second stack, the conystack, and a reference to this 
copy is put in the stack frame. Another reason for having two 
stacks is that on successful completion of a deterministic goal we 
will deallocate a stack frame and that for further computation we 

-- 3 --



still need the variable bindings. The value of a variable in the 
environmentstack can either be a constant, undefined (free vari
ables), a reference to a compound term on the copystack or a 
reference to another variable earlier in the environmentstack. 

The third working area of the virtual machine 
which is a trail or a push-down list. This 
the addresses of variables which need to be 
(free) on backtracking. 

is the resetstack 
area is used to store 
reset to undefined 

The copystack and the resetstack generally increase in size with 
each new goal and are reduced by backtracking. The top elements 
are pointed by COPY respectively RESET and the old values of these 
pointers are kept in the mangement information part of the last 
backtrack frame. The management info contains also the links of 
the father-list and the alternative list, and pointers to the 
current goal and the alternative clauses if any. 

Next to the working storage areas which are writable, we have the 
~ ~ for storing the code of the compiled program. Informa
tion in the code area is generally accessed in a "read-only" 
manner. 

2.3. The instruction set. 

According to the control process and the unification process we 
can classify the virtual machine instructions in two classes: the 
unification instructions and the control instructions. 

2.3.1. The unification instructions. 

The main computation in Prolog consists of a sequence of unifi
cations or pattern matching operations. Each unification involves 
matching two terms. One term is a "goal" ( or procedure call) 
followed by its parameters and is instantiated. The other is the 
uninstantiated "head" of a clause. The control instructions ver
ify that unification only takes place between a goal and a clause 
with the same name and arity. The unification process tries to 
match each of the arguments of the head of the clause against the 
corresponding arguments of the goal. 

Instead of using a general matching procedure, the head of a 
clause is translated into unification instructions, most of which 
are simple tests and assignments. The arguments of the goal are 
translated into a sequence of literals ( or "argument instruc
tions"). 

The variable$of a clause are categorised in three classes as fol
lows: 

-- 4 --



local variables: multiple occurences, with at least one in the 
body, numbered from 1 ton 

temporary variables: multiple occurences, all in the head of 
the clause, numbered from n+1 onwards 

void variables: single occurences. 

The unification instructions are: 

uvar(i) 
uref'(i) 
uint(j) 
uatom(a) 
uvoid : 
uterm(f'n,n): 

matching of' the free variable~ against ••• 
matching of the bound va,tiable i against .••• 
matching of' the integer value j against ••• 
matching of the atom a against ••• 
matching always succeeds 
matching of' the functor fn with arity n against ••• 

(the number of a variable refers to a variable in the current 
frame.) 

The literals (argument instructions) are: 

var(i) the free variable i 
ref(i) the bound variable i 
atom(a) . the atom a . 
void a void variable 
funct(fn,n) : the functor fn with arity n 

(the number of' a variable refers to a variable in the goal frame.) 

The next table gives an overview of the unification process: 

~ var ref atom int void funct 
d 

uvar assign assign assign assign assign copy 
assign 

uref' assign general case of case of success case of 
general 

uint assign case of fail test success fail . 
uatom assign case of test fail success fail 

uvoid assign success success success success skip 

·uterm copy case of fail fail skip test 
assign general assign 

-- 5 --



assign 
copy 
test 
case of: 
general: 

si~ple assigrenent 
copy a compound term 
simple test (and assignment) 
multiple test 
general unification algorithm 

Most of the unification instructions are simple test and assign
ment instructions. If one of the terms is a reference we have to 
dereference that term until we get its value (undef, atom, int or 
funct). We can avoid long reference chains if we use only refer
ences to compound terms or to free variables. (Otherwise the value 
is copied.) The length of the reference chain would be mostly one. 

There are two cases where we have to copy a compound term, depend
ing on its source: 

the compound term appears in the haed of the clause 

the compound term appears in the argument list of the goal. 
Since the argument list is accessed in a read-only manner, only 
the parts containing variables must be copied. Therefore the 
compound terms are marked with "labelvar" or "labelcons". 

There are three cases where the general unification algorithm can 
be invocated. This happens when two compound terms are to be uni
fied and neither of them is known at compile time. 

Remark that the virtual machine has no special instructions for 
initialising variables since the types "ref" and "var" indicate if 
a variable is free or bound. 

2.3.2. Control instructions. 

Each clause of a Prolog program is translated into a sequence 
of virtual machine instructions consisting of unification instruc
tions for the haed of the clause, literals for the argument lists 
and control instructions (neck, call and foot). 

neck(n) : unification is completed; n is the number of local 
variables to be kept on the current environment. 

call(p) this is a procedure call; a new frame is created, the 
call or return address is saved and a jump to address pis per
formed. 

foot: completes the execution of a goal, possibly removes the 
current frame and transfers control to the next instruction of 
the parent goal. 

A Prolog procedure is composed of one or more clauses and is 

-- 6 --



translated into a list of control instructions of the form: 

p: enter 
try(C1) 
try(C2) 

. 
trylast(Cn) 

enter: new procedure starts 
try(Ci) : execute the instructions of clause Ci and note that 

there are alternative choices (backtrackpoint). 
trylast(Cn) : execute the instructions of the clause Cn. 

Note that these instructions manage the different clauses of a 
procedure and that they are generated at the end of the compila
tion process. If we extend our Prolog system with built-in predi
cates for adding or deleting clauses, this part of the code must 
be changeable. 

Finally we have two control instructions which are strongly 
related to the Prolog source program: "cut" and "fail". 

cut(i) : i is the number of local variables; the alternative 
list must be adjusted and space can be recovered from the 
environments tack. 

- fail: forces backtracking. 

2.4. Example. 

As an example we show the quicksort program: source and virtual 
machine instructions. 

qsort(.(X,L),R,RO):-partition(L,X,L1 ,L2), 
qsort(L2 ,R1 ,RO), 
qsort(L1 ,R,.(X,R1)). 

qsort(nil,R,R). partition(.(X,L),Y,.(X,L1),L2):
lt(X,Y),!,partition(L,Y,L1,L2). partition(.(X,L),Y,11 ,.(X,L2)):
partition(L,Y,L1 ,12). partition(nil,_,nil,nil). 

3qsort1 uterm(. ,2) 
uvar(O) 
uvar(1) 
uvar(2) 
uvar(3) 

-- 7 --

3qsort2 uatom(nil) 
uvar(O) 
uref(O) 
neck(O) 
foot 

4r 



neck(?) 
call(partition,4) 
ref(1) 
ref(O) 
var(4) 
var(5) 
call(qsort,3) 
ref(5) 
var(6) 
ref(3) 
call(qsort,3) 
ref(4) 
ref(2) 
labelvar(1) 
fn(. ,2) 
ref(O) 
ref(6) 
foot 

4partition1 uterm(.,2) 4partition2 
uvar(O) 
uvar(1) 
uvar(2) 
uterm(. ,2) 
uref(O) 
uvar(3) 
uvar(4) 
neck(5) 
call(lt,2) 
ref(O) 
ref(2) 
cut(5) . 
call(partition,4) 
ref(1) 
ref(2) 
ref(3) 
ref(4) 
foot 

4partition3 uatom(nil) 4partition 
uvoid 
uatom(nil) 
uatom(nil) 
neck(O) 
foot 

-- 8 --

3qsort enter 
try(3qsort1) 
trylast(3qsort2) 

uterm(.,2) 
uvar(4) 
uvar(O) 
uvar(1) 
uvar(2) 
uterm(. ,2) 
uref(4) 
uvar(3) 
neck(4) 
call(partition,4) 
ref(O) 
ref(1) 
ref(2) 
ref(3) 
foot 

enter 
try(4partition1) 
try(4partition2) 
trylast(4partition3) 



I I 

3. Implementation. 

As a first step in our Prolog system the Prolog source programs 
are compiled into a sequence of virtual machine instructions. A 
first version of the compiler has been written in Prolog itself. 
[6] The output consists of symbolic Prolog machine code as illus
trated in the previous example and of two tables: a functor table 
(names of the predicates and arity) and an atom table. 

The next step in our Prolog system is the interpretation of the 
virtual machine instructions. The interpreter should be query
oriented and has the following structure: 

init read-only part (code area) 
WHILE not end 

DO read query 
compile query (set Program Counter to first instr.) 
init working storage 
execute (Program Counter) 
remove query 

The initialisation part reads the symbolic code and transforms it 
into a sequence of word-codes which are loaded in the code area. 
The call instructions are divided in two classes: calls of evalu
able predicates (built-in procedures) and calls of user-defined 
procedures. In the WHILE-loop a query is read and compiled into a 
sequence of word-codes which are added to the code area. This 
compilation can result in extending the atom table and the functor 
table. After execution of the query, the code area and the tables 
are restored. 

In our prototype version we have split up the code in two parts: 

the executable part (unification and control instructions) is 
put in the code area 

the literal part (argument lists) is put on the copystack as a 
read-only segment. The literal part has the same structure as 
the compound terms except that a literal can be "var(j)" while 
a compound term on the copystack has the value "undef" instead 
of "var". 

Figure 3 gives an overview of the Prolog system. 

-- 9 --



list of 
evaluable 
predicates 

50 

Prolog 
program _ _._,, 

Prolog 
machine 
instr. 

1----tio.r-esults 

Figure 3 

4. Design concepts. 

atom 
table 

functor 
table 

Having described the main features of our Prolog system, we now 
comment some design concepts and their consequences. 

- The "structure copying" approach is used as data representation 
technique for compound terms. Compared with the, implementation 
of D. Warren, in our system there is no need to split up the 
variables in globals and locals: they are all local. A com
pound term is copied on the copystack only if it has variables. 
In addition the copying ap~roach will behave better when a gar
bage collector is needed. L2] 

- For the head of a clause we generate exec~table code for all 
terms nested to any level. We also detect the first 
occurrences of the variables in the body of the clause and the 
arguments of the goals are marked with "var" or "ref". Due to 
this decision we have eliminated the need to initialise the 
variables and the specific initialization instructions. 

- The variables of the parent frame which are bound during the 
execution of a goal are never to be put on the resetstack 
because the arguments of the goal define which variables are 
free. 

- The Prolog system has a modular strucure. Optimizations and 
extensions of the system require only small adjustments. The 

-- 10 --



' ! 

I 

l ! 

implementation of the "neck"-instruction is responsible for 
tail recursion optimization. If we will add the "occurcheck" 
to the unification process, we only have to extend the imple
mentation of "uref". 

- The Prolog system is easily portable to other machines. If we 
will take full use of the capabilities offered by the underly
ing machine, it is sufficient to adapt the implementation of 
the evaluable predicates or to add new built-in procedures. 

5. Future developments. 

The virtual machine described in this paper is being imple
mented. A prototype of this machine has been written in the 
language C (under the UNIX operating system) and some simple Pro
log programs have been tested. In comparison with the existing 
interpreter (written in C by M. Bruynooghe) our system behaves 
favourably in speed and space. For more complex programs we 
expect better results. Another implementation will be written in 
Pascal for machines with a Pascal-oriented architecture such as 
the PERQ. 

We further plan to set up a complete Prolog program environment 
for this Prolog system: 

- the current implementation will be optimized: tail recursion, 
clause selection based on the arguments, intelligent backtrack
ing ••• 

development of a Prolog debugging tool 

different modules of a Prolog program may be compiled and 
linked into one executable program. 

the list of built-procedures and utility programs has to be 
extended 

the Prolog system has to be• coupled with a relational data
base or with a database machine. 

Acknowledgements 

I am grateful to Maurice Bruynooghe for the many helpful discus
sions and to Gerda Janssens who has implemented and tested as a 
student project, this virtual machine in Prolog and c. 

-- 11 --



6. References. 

[1] Bruynooghe, M. The memory management of PROLOG implementa
tions, in Logic Programming (Clark & Tarnlund eds.), Academic 
Press, 1982. 

[2] Bruynooghe, M. A note on garbage collection in Prolog inter
preters, Proc of the first Int Logic Conf., Marseille, September 
1982. 

[3] Cloksin, W.F. and Mellish, C. Programming in Prolog, Springer 
Verlag, 1981. 

[4] Mellish, c.s. An alternative to structure sharind in the 
implementation of a PROLOG-interpreter, in Logic Programming 
(Clark & Tarnlund eds.), Academic Press, 1982. 

[5] Warren, D.H. Implementing PROLOG- Compiling Logic Programs, 
and 2, D.A.I. Research Report No 39, 40, University of Edinburgh, 
1977. 

[6] Warren, D.H. Logic programming and Compiler Writing, Software 
Practice and Experience, Vol 10, nr 2, pp97-126. 

-- 12 --




