
AN OPERATIONAL ALGEBRAIC SEMANTICS OF PROLOG PROGRAMS 

DERANSART Pierre 

INRIA 

Demaine de Voluceau - Rocquencourt 

BP 105 

78153 Le Chesnay 

April 1983 

Abstract We shall show that the resolution strategy implemented in most of 
the PROLOG interpretors may be equivalently viewed as a particular 
equation solving in an associated algebraic specification. We 
suggest and illustrate possible applications of this approach to 
analysis of PROLOG programs. 

Keywords PROLOG - ALGEBRAIC ABSTRACT DATA TYPES - PROGRAMMING ENVIRONMENT. 



PRESENTATION {Long abstract) 

We shall show that the resolution strategy implemented in most of the 
PROLOG interpretors may be equivalently viewed as a particular equation sol­
ving in an associated algebraic specification. We suggest and illustrate 
possible applications of this approach to analysis of PROLOG programs. 

The basic point of this work is a rigorous correspondence between a 
PROLOG program and his translation -if any- into an algebraic specification. 
Most of the studies about PROLOG semantics [Vako76J are devoted to the "pure 
PROLOG 11 , i.e. PROLOG (restricted to first order logic programming) without 
11 control 11 nor evaluable predicates. By 11 control 11 we mean two things : the 
famous 11 cut11 operator and the strategy of choosing the clauses and the lit­
terals to be solved. Our aim is to integrate the second element into these­
mantics in order to get a kind of operational semantics taking in account 
this aspect of the control. 

In fact, the logical part of a PROLOG program get rise, in numerous 
programs, to a rapid understanding and easy verification of the program pro­
perties, analogous to partial correctness proof of programs [C1Ta77J. But 
halting problems or invertibility aspects give unexpected and sometimes dif­
ficult to manage behaviours, even of simple programs. A programmer is not 
only interested to know if his goal is a logical consequence of the axioms, 
but essentially interested to know how his goal will be satisfied, if there 
is no infinitely nested loop or if he will obtain all the solutions {the 
completness in this sense has to be defined), in which order, etc .... Lot of 
these questions have an empirical answer, without any aid of known semantic 
models. 

On the other side, algebraic specifications have teen extensively 
studied with practical (operational) and semantical points of view [AOJ78, 
GH78J. Some specifications can be viewed as equational theories. In our ap­
proach, specifications are only viewed as a practical way to describe envi­
ronments and programs in the same formalism and are limited to so-called 
"specification with constructors" similar to equational theories with cons­
tructors of [HH80J but with conditional axioms. 



This work should have various applications. Behaviour studies of 
PROLOG programs or equivalent program transformations are part of them. Some 
examples of non trivial programs have been studied by this method, like per­
mutations, eight-queens problem and Baxter example [Ba81J. Practical limita­
tions of this approach come from the type of conditional axioms which can be 

easily studied. 

Each time the specification is a canonical and complete TRS the situ­
ation is quite agreable: it is in fact possible to use directly properties 
of the specification fo order to transform or modify the programs. 

In the general case of equalitarian axioms, the main difficulties 
seem to come out from the few existing works on such axiomatisation and the 
equalitarian TRS that can be defined on. Some constraints can be given such 
that numerous interesting programs fall down in this class, but the practical 
study of derivations remains difficult. It seems to us that a usefull tool 
could be a PROLOG progranming environment in which narrowing of transformed 
goals cou,ld be formally analyzed. Nevertheless, difficulties come from two 
levels 

1) Semantical level : in all the cases, the obtained specification is 
a partial algebra, because of the manipulation of partial func­
tions. 

2) Operational level : the generalized TRS did not have been enough 
studied until now [Re82, Ka83J. The corresponding notions of cano­
nical and complete TRS remain to be better known. 

It seems to us that these difficulties reflect well the situation we 
feel in PROLOG programming : difficulties to specify the error cases in a 
satisfactory manner (frequently only positive cases are spe.cified), quasi­
impossibilities to have a clear idea of the set of produced solutions, his 
completness, except by personal conviction of the programmer. 

Finally, our study can be viewed from a dual point of view 

- Conversion of an abstract data type into a PROLOG program. So it is 
a way to get a direct and efficient implementation of the transitive 



Various papers are dealing with correspondence between specifications 
or functional programming and PROLOG [VaMa81, B081]. Generally the correspon­
dence shows that PROLOG is a suitable specification approach. But the corres­
pondence is not always very precisely stated. 

We will define a strict correspondence by the following manner: 

- To any predicate we associate a functional decomposition. A predi­
cate of arity n is said I-decomposable, iff there exists an equiva­
lent function of arity n-1 with corresponding domains. This notion 
can be generalized into k-decomposability. 

- To any PROLOG program that can have a functional decomposition, it 
is possible to associate a specification with constructors. If the­
re is no functional decomposition, the transformation is trivial 
and of few interest. In all the cases the transformation is a one 
to one correspondence. 

- We show that the resolution of a PROLOG goal, using the usual in­
terpretor strategy, is exactly the same as to solve an equation 
(the transfonned goal) using a strategy called l-i-resolution. If 
the specification is an equational theory, this problem reduces to 
an unification problem solved by l-i-resolution (this approach uses 
a relation called 11 narrowing 11 ). 

- Finally we use this transfonnation in order to study the solutions 
of the goal equations, in particular the capacity of invertibility 
of a program. 

This approach gives an operational characterization of PROLOG pro­
grams admitting such an analysis (functional decomposition plus specification 
with particular properties). The approach is completely symetric and the ob­
tained class is not restrictive : it has the power of computable functions. 
So it is possible to have dual point of view: in one sense PROLOG realizes 
an operational implementation of conditional algebraic specifications, on 
the other the models of the specification can be models of the PROLOG 
program. 



closure of the l-i-narrowing. In this case we shall speak of 11 com­
pilation of specifications into a PROLOG program". 

- Conversion of a PROLOG program into an abstract data type. This is 
a way to verify the original program structure (by typing the ele­
ments, verifying completness •.. ) and, eventually, to modify it 
using correct transformations. 

BIBLIOGRAPHY 

[ADJ78J GOGUEN J .A., THATCHER J .W., WAGNER E.G. 

[Ba81J 

An Initial Algebra Approach to the Specification Correctness and 
Implementation of Abstract Data Types in "Current Trends in Program­
ming Methodology11 • 

Chap. IV (R. Yeh, ed) - pp. 80-149 - Prenctice Ha-1 1978. 

BAXTER L. 
The Versatility of PROLOG. 
SIGPLAN Notices - York University. 

I 

1_~ [BD81J BERGMAN M., DERANSART P. 
i Abstract Data Type and Rewriting System:: Application to the Pro­

granvning of Algebraic Abstract Data Types in PROLOG. 
CAAP 81 - Trees in Algebra and Programming - 6th Colloquium -
March 81 - LNCS 112. 

[ClTa77J CLARK K., TARNLUND S.A. 

[GH78J 

[HH80J 

A First Order Theory of Data and Programs. 
Proc. IFIP 77 - pp. 939-944. 

GUTTAG J.V., HORNING J.J. 
The Algebraic Specification of Abstract Data Types. 
Acta Informatica 10 (1978) - pp. 27-52. 

HUET G., HULLOT J.M. 
Proofs by Induction in Equational Theories with constructors. 
Rapport INRIA n° 28. 



[H080J 

[Ka83J 

[Re82J 

HUET G., OPPEN D. 
Equations and Rewrite Rules : a Survey. 
"Formal Languages : Perspectives and Open Problems". 
Ed. Book R. - Academic Press 1980 - Also TR-CSL-111. 
SRI International - January 1980. 

KAPLAN S. 
An Abstract Data Type Specification Language. 
(French) Thesis - University of Orsay - February 3, 1983. 

REMY J.L. 
Conditional Rewrite Rules Systems and Applications to Algebraic 
Data Types. 
(French) Doctorat Thesis - University of Nancy - July 13, 1982. 

,J 
[VaKo76J VAN EMDE,,M.H., KOWALSKI R. 

The Semantics of Predicate Logic as Programming Language. 
JACM 23 - 1976 - pp. 733-742. 

[VaMa81J VAN EMDE/M.H., MAIBAUM T.S.E. 
Equations compared with Clauses for Specification of Abstract 
Data Types. 
Advance in Data Base Theory - Vl - Ed. Gallaire, Minker, Nicolas -
Plenum Press. - 1981. 




