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Currently PROI.00 implements resolution by means of symbolic substitution. 
The result is that symbolic operations (eg on lists) in PROLOG are 
reversible, whilst data operations (eg arithmetic) are not. This paper 

proposes an adaption to the resolution principle called the Finite 
Canputation Principle (FCP). Using FCP, symbolic substitution is still 
available rut is perfonned by a special predicate. 

FCP gives the UNO :important ber:iefits of Order independence and control 
over infinite processes. In addition, FCP improves reversibility and 
simplifies the connection of logic to existing languages. 

A logic language called Prolog M has been -implemented using FCP .• This 
provides standard negation, disjunction., conjunction, universal 
quantifiers and existential quantifiers. An important feature of the 
implementation is that if UNO Prolog M.·programs are equivalent according 
to the tautologies of Predicate Calculus, then these two programs will 
generate identical answers. 
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During the 1970s the author was actively involved in the hardware and 

software design of the ICL Content Addressable File Store ( CAFS) . It was 
during this period that a method of rraking queries to a database without 
the reference to relation or file names [2] was proposed. This shorthand 
was made possible by including a limited mathematical model in the 
language interpreter. This mxlel being made up of joins of relations. 
This technique has proved successful with database users but was limited 
to joins of physical relations - i.e. conjunctions of predicates. It was 

as a result of trying to generalise this nod.el that it was realised hoN 
useful Prolog might be in this area. 

Prolog is order sensitive. Despite the name, Prolog is not a true logic 
language and the database query below must be written in a particular 
order. 

Manweight(x,w) , w < 20 
w < 20, Manweight(x,w) 

.:,rksl 
Errors! 

In a database query, it is essential that the tenns can be written in any 
order. warren [7] recognises this in his CHAT80 database system. In CHA.TSO 

additional features are included to allCM order independence. 

Prolog is very likely to go infinite. For example, Define Append in the 
standard way and then rrake the follc:Ming queries: 

Append(x, (4) ,w) 

Append{ (4) ,y,w) 

Append{(4) ,y,w) , y:=w 

prints infinite fornula 
or infinite mmt>er of values 

prints w== (4.y) 

or infinite list of values. 
just does oothing 1 

In this last example, Prolog is trapped in a silent contradiction. One 
predicate generating an infinite number of instances of they and w 
variables, whilst the subsequent predicate y = w always fails. In a 
large machine with almost unlimited storage resources such an infinite 

contradiction could be a very expensive bug. 
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'Ihe Finite Canputation Principle (FCP) nakes two tltlngs p:>ssible: 

True order iooeperdence 
No infinite processes 

Ordinary resolution is still available using a pattern na.tching predicate. 
However, FCP allows cperations on lists or sets of data to be carried rut 
m::>re securely. 

'Ihe p::,wer of FCP appears when it is used in recursive definitions. Thus, 
most of the paper is ooncerned with explaining the cperation of a number 
of key exanples - in particular APPEND. The paper then hints at what 
may be fX)Ssible in the future. · 

1.1 R:>taticn 

Prolog M uses a LISP like notation for predicates. However, for clarity 
this paper uses the conventional na.thema.tical notation. Nevertheless, so 
that the flavour of Prolog M is not lost, the Prolog M syntax is often 
written alorg side in curly brackets. 

Prolog M means Prolog ~th a M:xiel[l,2]. It is hoped to describe the rccdel 
aspect of Prolog Min a forthcaning issue of the ICL technical journal. 
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2. '!BE FINI'l'E CCHUIM'ICl!l PRDCIPLE .(FCP) 

The basic notion of the Finite Conputation Principle is one that arises 

£ran the nature of logic programming. Sane expressions written in a logic 
programming language nay result in the infinite generation of data or sane 
other endless process. FCP seeks to flag up infinite processes and put 
off their evaluation until the last possible nanent by which time they nay 
beccme finite processes as a result of infonnation returned £ran other 
processes. 'l'hi.s is done by incluling in every wilt in predicate a test 
for the oooditioo. that DBkes it infinite. 

FCP detects that a process is infinite and then applies axioms and 
theorans to eventually create a finite process in the manner indicated 
bela,,: 

(~for:m. using 
,xians and=====:;;:::=== 

theorems) 

===-=====-====<==================="' 
(if still infinite) 

A process is either an atomic predicate, meta predicate (such as 
conjunction) or a user defined predicate. CUrrent Prolog M only uses the 
axions of logic to attempt to render a process finite. 

To a limited degree CHAT80 uses something similar to FCP to delay the 
execution of negated predicates. The crucial feature about FCP is that 
every predicate should be able to identify the conditions that might make 
it infinite. It is then possible, as indicated above, to delay the 
execution of infinite predicates, even in recursive definitions. 

In a fully w::,rking version of Prolog M, the optimal delaying of processes 
would also be included, as indeed it was in the ICL CAFS database system 

[3]. 
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3. ATCMIC PREDICATm 

Atomic predicates flag infinite if their use \\OUJ.d generate an infinite 
solution set. Fbr exarcple: 

x=6 FINITE: aily cne solutioo 

x=y INFINITE: (1,1)(2,2)(3,3) ••• 

2=4 FINI'm: ID solutioos 

X = y + Z INFINITE: (l=l+o) (2=1+1) •••• 

(2,3) = u • X FINITE: u is head of list ie 2 and 
xis tail of list ie (3) 

In Prolog M these have the syntax (=,x,6), (=,x,y), (=,2,4), 
(+,x,y,z), (.,(2,3),u,x) respectively. 

Infinity is flagged by including in the definition of the predicate, code 
which will set an infinite flag for certain combinations of free 
variables. 

4. LEFr TO RIGfr PREDICATE 

Predicates are nonnally executed fran left to right: 

w < 20_,.!_Manllleight(x,w) { ((<,w,20){Manweight,x,w)) } 

Provided both are finite then the whole expression is finite. In this 
case the first atanic predicate is infinite and so the whole expression is 
infinite. 
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Conjunction all<MS the machine to apply the axions of logic to detennine a 
finite ordering. 'lbus, if we write the following: 

w < 20 & Manweight(x,w) { (&(<,w,20){Manweight,x,w)) } 

'lh.e machine will attEnl}?t execution fran left to right: 

w < 20 , Manweight(x,w) 

The result is infinite and so using the axiom A & B <-> B & A the 
reverse ordering is tried: 

Manweight(x,w) , w < 20 

If we assume manweight has instance FRED,18 then execution is as foll<MS: 

? w < 20 & Manweight(x,w) ,~~f >lbim x m FRFD am w m 1a1 

1==:: ~201<=====:;:==="I 
If there had been nested conjunctions, these would be collapsed down so 
that ( (A & B) & C) \oJO\lld be replaced, by (A & B & C) • 
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6. DI~W 

Disjunctions of two or rrore predicates are executed as two quite separate 
processes. 'Ihus: 

(x = 3 or x = 4) & f(x) 

is executed as two processes: 

X = 3 & f(x) 
X = 4 & f(;x) 

First, xis given the value 3 
value 4 and f is again executed. 
processes must be finite. 

7. EXIS'lDTIAL amN'l'Ili'IC'ATIW 

{ (&(or(=,x,3) (=,x,4)) (f,x)) } 

{ (&(=,x,3)(f,x)) } 
{ (&(=,x,4)(f,x)) } 

and f is executed. Second x is given the 
For a disjunction to be finite both these 

If there exist values of xl,x2, ••• that satisfy an expression p then the 
expression q is executed: 

sane(:xl,x2, ••• )(p), q { (sane(xl,x2, ••• )p)} 

We evaluate this by forcing xl,x2, •• to be variables local top. 'nlus, 
they start off initially as free variables. If there are instances of 
these variables locally in p then the expression q is executed. 

441 
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a. NEX;ATICE 

Negation is implemented by transfonning the negated expression so that the 
not is rroved to a subexpression using one of the three axions: 

not(p&q) -> notp or notq { (not(&,p,q)) --> 
(or(not,p}(not,q)) } 

not(p or q) -> notp & notq { (not(or,p,q} )--> 
(&,(not,p}(not,q)) } 

notnotp -> p { (not(not;p))-->p} 

Eventually, the expression cannot be changed because none of these trans­
fo:rms can be applied. It will then be found that p is either an atomic 
predicate or an existential quantifier. We therefore actually execute the 
not(p) predicate. The not means no instances. Thus, the not is 
executed by checking that the predicate p has indeed no instances. If 
this is the case, then w1e alla,.r execution of any statements that folla,.r. 
This is "Negation as Failure" [4]. In the example: 

not.6=7 & X = 9 { (&(not(=,6,7))(=,x,9)) } 

six does not equal seven, there is no instance, and so the next term x=9 
is executed. 

Negation has its own special infinities. A negation is finite only if all 
the free variables of p are externally bound. Thus, the free variable of 
the expression x = 6 is x. Therefore, for not x = 6 to be finite, x 
must be bound at the time when the not is executed. Clearly, if x had 
been free then there ...ould be an infinite number of x values not equal to 
six. Again by trapping this infinite case it is possible for other 
processes to bind x. 

450 
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8.1 SPECAL CASE 

Suppose an expression not p has free variables and is therefore 
infinite. It is sanetirnes p::>ssible, v.hen the expression p starts with the 
quantifier some, to manipulate p to give a new expression p' which 
generates the bindings for these free variables. The resulting expression 
p'&not p nON bein; finite. For example, the infinite statement 

not sane(x)(r(x)&not h(x,y)) 
{(not(sane(x}(&,(r,x)(not(h,x,y)}}}) } 

can be rendered finite by noving h(x,y), the negated tepn in p, outside: 

sane(x)h(x,y) & not sane(x)(r(x)&not h(x,y)) 

This new term now creates a finite set of bindings for y. A general 
.theoren for transforming p top' is given in reference [1]. 

Universal quantifiers are equivalent to negative existential quantifiers 
and so they are transfonned before execution using the axion: 

all (xl,x2, ••• ) (p) -> notsane(xl,x2, ••• ) (not p) 

{ (all(xl, ••• }p)-->(not(sane(xl, •• )(not p}}} } 
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10. DEFINITICES 

Definitions allow complex expressions to be represented by a single 
predicate. Consider the definition: 

anplifier{vo,vi) <- vo = 6 * y & y =vi+ 12 

When this is called using the query ?amplifier(l2,w), the variable vo 
inside the definition takes on the value 12 while the variable vi points 
to an identical location in store tow and hence become equivalent. The 
variable y is local to the definition and so there is an implicite 
existential quantifier. 

This definition is fully reversible, so we can either ask the question 
?anplifier(l2,w): 

vo=6*y & y=vi+l2 

I::~, y = 21=====:>l~fore vi= -10,I 
and sow= -10 

or the reverse question ?anplifier(x,-10): 

vo=6*y & y =vi+ 12 

~1 
y=2 
therefore l <:========= 
VO= 12 and 
therefore x = 12 

We can nON define another predicate representing two amplifiers in cascade 
and still have reversibility: 

aqJS(vo,vi) <- aq,lifier(vo,x) & anplifier(x,vi) 
Tenn 1 or 2 being automatically selected depending whether vo or vi is 
bound. 

~51 
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10.1 REXIJBSIVE IEFINITICE 

Consider the operation of append. This can be defined by the single 
recursive definition which appends list x to list y to give list z: 

aa:,eo:i(x,y,z) <- x = () & y = z or 
x = u.x• & z=u.z' & aa:,ern(x' ,y,z') 

This definition states that if x is an arpty list then lists y and z are 
equal. Otherwise, if~ strip u off lists x and z then the remaining lists 
x' and z' are related by the · append predicate. When used in recursion 
neither or nor & are order independent. This is because recursive 
calls to the append predicate always have the possibility of being 
infinite and so should always be written last. It may be sensible in some 
future inplementation to autanatically place such recursive calls last 
thus restoring order independence. 

Using FCP this definition gives the follarrlng results.. Readers interested 
in the details-of the exemtion are refered to the appropriate appendix. 

?ag>end((2),(3),z) 
?ag>end(x,y,(2,3)) 

?ag>end(x,(2),z) 

?aa:,eo:1((2),y,z) 

z = (2,3) 
X = (l y = (2,3) 
X = (2) y = (3) 
X = (2,3) y = () 

infinite flag set 

infinite flag set 

APPm>IX 1 

APPD\1DIX 2 

APPm>IX 3 

Notice how FCP correctly traps the infinite.process. Contradictions as 
mentioned earlier can therefore be trapped before execution: 

?ag>end{(2) ,y,z) & y = z 
flags infinite 

Without this facility a naive user could be faced with some expensive 
caaputer bills! 



page 12 of 18 

Suppose we define a factorial predicate fact'(x,n) which gives the 
factorial x of a number n. When x and n are both free we find that 
fact• executes an actual infinite loop. To prevent this infinite loop 
we precede fact' by the predicate free: 

fact(x,n) <- free(x,n), fact'(x,n) 

The predicate free flags infinite if all its arguments are free. Thus by 
detecting that x and n are both free, factorial is now secure against 
infinite loops. 

Notice that appem did not require any such trap to stay finite. 

11. 'lBE FUTURE 

Prolog Muses the axians of logic to transform an infinite expression to a 
finite expression. However, the capabilities of the language could be 
considerably extended if the user were also able to define his own 
infinite to finite axians and theorems. Bela.v is a simple example of an 
axian to alla.v a natural way of writj,ng a range of numbers: 

x > xmin &: x < xnex & integer(x) <- range(x,xm:i.n,xnex) 
{ (define (&(>,x,xrnin){<,x,xrnax)(integer,x)) (range,x,xrnin,xrnax) )} 

It is na.v !X)ssible to write the query: 
?x > 1 &: x < 12 &: integer(x) 

and obtain the integers 2,3, ••• 10,11 using the range predicate. 

We can define new functions in the same way that we can bind variables to 
values. For example: 

quadfn(x) = "x1"x + 2*x - 4" 

{(=,quadfn,'(larnbda(x)(plus(times,x,x)(times,2,x),-4)))} 
binds the function variable quadfn to "x*x + 2*x - 4 11 using a lambda 
expression. The function quadfn can then be used in an equality predicate: 

y = quadfn(x) { (=,y, (quadfn,x)) } 
Unlike nonnal equality, this is finite only if x is bound. 
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Predicates are often defined in tenns of a forward and reverse fllllction. A 

reversible quadratic function quad(y,x) is defined as the conjunction 
of quadfn and quadreversefn. The appropriate function being chosen by 
FCP. 

12. CXBDJSICN 

Prolog M is still in its infancy. There are at least three important 
questions left lll'l.answered: 

1. By trapping the generation of infinite fonnulas, 
will FCP make conventional resolution nore 
flexible? 

2. can trace facilities easily explain why programs 
are infinite? 

3. can we easily include user defined.theorems? 

The auth::)r is grateful to the late Roy Mitchell, Vic Maller, Nonrian Truman, 
Martin Stears and the other members of the ICL Systems Strategy Centre, 
Stevenage who have helped to fonnulate and develcp the ideas in this 
paper. 
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Appemix .. l Alp-rldfoniard 
What is the result of appending (2) to (3)? 

?append((2),(3),z) 

X = U • X 1 & z = u. z' & append(x' ,y,z') 

lx = 2, 
=> therefore 

INFINITE I 
•===> therefore ===> y = (3), x' = () 

u = 2, x'=() · delay but append((),(3),z') 

lu = 2 

lz' = (3) 
!therefore 
!ANSWER z = (2,3) 

Atpndix 2a Afflerld backwards 

gives: · z •_=_(3_) ___ _ 

I 
I 

I<======· 

What two lists appended together give the enpty list? 

?append(x,y,()) 

X = (} & y = z 

==> X = () ==>lz = (), therefore, y = () 
.____ ANSWER X = () y = () 

X = U • X1 & z = u. z' & ag>end(x' ,y, z') 

infinite z = () 
=> therefore•===> therefore, fails, 

delay NO ANSWER 



page 16 of 18 

AJpndix 2b 
vmat two lists appended together give the list (3}? 

?append(x,y, (3}) 

X = (} & y = z 

==> X = () ===> z = (3}, therefore, y = (3) 

ANSWER X = (), y = (3} 

X = U • X 1 & z = u·. z' 

> 
infinite lz = (3) 
therefore ===> therefo. re 
delay · u = 3, z' = () 

& append(x' ,y,z') 

lz' = 0 
=>lappend(x' ,y, (}} 

lgives one solution 
l ( see appendix 2a) 

Ix' = 0, = 0 

x' = () 
u=3 
therefore 
X = (3} 

<============= 

ANSWER x = (3), y = (} 
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~ 2c 
What two lists appended together give the list (2,3)? 

?append(x,y,(2,3)) 

X = () 

=> X = (} 

X = U • X 1 

& y = z 

===> z = ( 2, 3) therefore 
ANSWER x= (), y=(2,3) 

& z=u • z' & ~(x' ,y ,z') 

z = (2,3) z' = (3) 
.:__> linflllite 

therefore > therefore > append{x' ,y, (3)) 

gives two solution 
(see appendix 2b) 
x' = (), y = (3) 

delay 

x' = () or (3) 

u=2 
therefore 
x = (2) or (2,3) 
ANSWER x = (2) 

ANSWER x = (2,3) 
y = (3) 

y = () 

u = 2, z' = (3) 

x' = (3), y = () 

<============= 
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Afp!D:lix 3 Append infinite 
What are all the lists which end with a 2? 

?append(x,(2),z) 

X = () 

X = U • X 1 

& y = z 

y = (2) 
====>: therefore z = (2) 

ANSWER X = (} y = (2) 

& z = u. z' & ~(x',y,z') 

I INFINITE I INFINITE I I append ( x' , ( 2) , z' ) 
=> therefore ====> th.erefore ===> therefore a soln i.s 

delay delay .!' = () z' = (2) 

EB/SAC. 
SALLY836:EB 83/6 

z' = (2) ,u=freel 
therefore <====== 
ANSWER INFINITE 




