page 1 of 18

443

INTERNATIONAL COMPUTERS LIMITED REF
SYSTEMS STRATEGY CENTRE DATE

EB 83/6
4th May 83

s oo

FINITE COMPUTATION PRINCIPLE
An Alternative Method
Of Adapting Resolution
For lLogic Programming

E. Babb
ABSTRACT '

Currently PROLOG implements resolution by means of symbolic substitution.
The result is that symbolic operations (eg on lists) in PROLOG are
reversible, whilst data operations (eg arithmetic) are not. This paper
proposes an adaption to the resolution principle called the Finite
Computation Principle (FCP). Using FCP, symbolic substitution is still
available but is performed by a special predicate.

FCP gives the two important benefits of Order independence and control
over infinite processes. In addition, FCP improves reversibility and
simplifies the connection of logic to existing languages.

A logic language called Prolog M has been implemented using FCP. This
provides standard negation, disjunction, conjunction, universal

quantifiers and existential quantifiers. An important feature of the

- implementation is that if two Prolog M programs are equivalent according

to the tautologies of Predicate Calculus, then these two programs will
generate identical answers.

page 2 of 18

444

l. INTRODUCTION

During the 1970s the author was actively involved in the hardware and
software design of the ICL Content Addressable File Store (CAFS). It was
during this period that a method of making queries to a database without
the reference to relation or file names [2] was proposed. This shorthand
was made possible by including a limited mathematical model in the
language interpreter. This model being made up of joins of relations.
This technique has proved successful with database users but was limited
to joins of physical relations - i.e. conjunctions of predicates. It was
as a result of trying to generalise this model that it was realised how
useful Prolog might be in this area. ’

Prolog is order sensitive. Despite the name, Prolog is not a true logic
language and the database query below must be written in a particular
order.

Marweight(x,w) , w < 20 works!

w < 20 , Marmeight(x,w) Errorsl
In a database query, it is essential that the terms can be written in any
order. Warren [7] recognises this in his CHAT80 database system. In CHATS80
additional features are included to allow order independence.

Prolog is very likely to go infinite. For example, Define Append in the
standard way and then make the following queries:

Append(x, (4) ,w) print-;s infinite formila

or infinite number of values
Append((4),y,w) prints w = (4.y)

or infinite list of values.
Append((4),y,w) , y=w just does nothingl

In this last example, Prolog is trapped in a silent contradiction. One
predicate generating an infinite number of instances of the y and w
variables, whilst the subsequent predicate y = w always fails. 1In a
large machine with almost unlimited storage resources such an infinite
contradiction could be a very expensive bug.

page 3 of 18
445

The Finite Computation Principle (FCP) makes two things possible:

True order independence
No infinite processes

Ordinary resolution is still available using a pattern matching predicate.
However, FCP allows operations on lists or sets of data to be carried out
more securely.

The power of FCP appears when it is used in recursive definitions. Thus,
most of the paper is concerned with explaining the operation of a number

of key examples - in particular APPEND. The paper then hints at what
may be possible in the future.

1.1 Notation

Prolog M uses a LISP like notation for predicates. However, for clarity
this paper uses the conventional mathematical notation. Nevertheless, so
that the flavour of Prolog M is not lost, the Prolog M syntax is often
written along side in curly brackets.

Prolog M means Prolog with a Model[l,2]. It is hoped to describe the model
aspect of Prolog M in a forthcaming issue of the ICL technical journal.

page 4 of 18

44¢

2. THE FINITE COMPUTATION PRINCIPLE (FCP)

The basic notion of the Finite Camputation Principle is one that arises
fran the nature of logic programming. Same expressions written in a logic
programming language may result in the infinite generation of data or same
other endless process. FCP seeks to flag up infinite processes and put
off their evaluation until the last possible mament by which time they may
becaome finite processes as a result of information returned fram other
processes. This is done by including in every built in predicate a test
for the condition that makes it infinite.

FCP detects that a process is infinite and then applies axioms and

theorems to eventually create a finite process in the manner indicated
below:

INFINITE (transform using FINITE
== =—axiams and ———————————>
PROCESS theorems) PROCESS

<
(if still infinite)

A process is either an atomic predicate, meta predicate (such as
conjunction) or a user defined predicate. Current Prolog M only uses the
axiams of logic to attempt to render a process finite.

To a limited degree CHAT80 uses something similar to FCP to delay the
execution of negated predicates. The crucial feature about FCP is that
every predicate should be able to identify the conditions that might make
it infinite. It is then possible, as indicated above, to delay the
execution of infinite predicates, even in recursive definitions.

In a fully working version of Prolog M, the optimal delaying of processes
would also be included, as indeed it was in the ICL CAFS database system

£3l.

page 5 of 18

441

3. ATOMIC PREDICATES

Atomic predicates flag infinite if their use would generate an infinite
solution set. For example:

X =6 FINITE: only one solution

X=y INFINITE: (1,1)(2,2)(3,3)...

2=4 FINITE: no solutions

X=y+z INFINITE: (1=1+0)(2=1+1)....

(2,3) =u .‘ p 4 FINITE: u 1s head of list ie 2 and

X is tail of list ie (3)

In Prolog M these have the syntax (-,x 6), (=,x, y), (=,2,4),
(+.%,v.2), (.,(2,3),1,%) respectively.

Infinity is flagged by including in the definition of the predicate, code

which will set an infinite flag for certain comblnatlons of free
variables.

4. LEFT TO RIGHT PREDICATE

Predicates are nommally executed fram left to right:
w < 20 , Manweight(x,w) { ((<,w,20) (Manweight,x,w)) }
Provided both are finite then the whole expression is finite. In this

case the first atamic predicate is infinite and so the whole expression is
infinite.

page 6 of 18
448
5. CONJUNCTION

Conjunction allows the machine to apply the axiams of logic to determine a
finite ordering. Thus, if we write the following:

w < 20 & Manweight(x,w) { (&(<,w,20) (Marweight,x,w)) }
The machine will attempt execution fram left to right:
w < 20 , Marweight(x,w)

The result is infinite and so using the axiom A & B <-=> B & A the
reverse ordering is tried:

Marweight(x,w) , w < 20

If we assune marweight has instance FRED, 18 then execution is as follows:

2w<2 & Manweight (x,w)

flags infinite l,======>lbindxtoFREDandwto 18
therefore delay

now test if 18<20
ANSWER w = 18 < =
X = FRED

If there had been nested conjunctions, these would be collapsed down so
that ((A & B) & C) would be replaced by (A & B & C). :

page 7 of 18

6. DISJUNCTION

Disjunctions of two or more predicates are executed as two quite separate
processes. Thus:

(x =3 or xA= 4) & f(x) { (&(Or(=lxl3)(=le4'))(flx)) }
is executed as two processes:

x =3 & £(x) { (&(=,%,3)(£f,x)) }
X =4 & £(x) { (&(=,x,4)(£,%)) }

First, x is given the value 3 and f is executed. Second x is given the
value 4 and f is again executed. For a disjunction to be finite both these
processes must be finite.

7. EXISTENTIAL QUANTIFICATION

If there exist values of x1,x2,... that satisfy an expression p then the
expression q is executed:

same(x1,x2,...)(pP) , q { (some (x1,x2,...)p) }
We evaluate this by forcing x1,x2,.. to be variables local to p. Thus,

they start off initially as free variables. If there are instances of
these variables locally in p then the expression q is executed.

449

page 8 of 18

8. NEGATION

Negation is implemented by transforming the negated expression so that the
not is moved to a subexpression using one of the three axiams:

not(p&q) —> notp or notq { (not(&,p,q)) ——>
(or(not,p) (not,q)) }

not(p or q) —> notp & notq { (not(or,p,q))—>
(&, (not,p) (not,q)) }

notnotp —> p { (not(not;p))-->p }

Eventually, the expression cannot be changed because none of these trans-
forms can be applied. It will then be found that p is either an atomic
predicate or an existential quantifier. We therefore actually execute the
not(p) predicate. The not means no instances. Thus, the not is
executed by checking that the predicate p has indeed no instances. If
this is the case, then we allow execution of any statements that follow.
This is "Negation as Failure" [4]. In the example:

not6e=7 & x=9 » { (&(nOt(=l6l7))(=lxlg)) }

six does not equal seven, there is no instance, and so the next term x=9
is executed. :

Negation has its own special infinities. A negation is finite only if all
the free variables of p are externally bound. Thus, the free variable of
the expression x = 6 is x. Therefore, for not x = 6 to be finite, x
must be bound at the time when the not is executed. Clearly, if x had
been free then there would be an infinite number of x values not equal to
six. Again by trapping this infinite case it is possible for other
processes to bind x.

450

page 9 of 18

45

8.1 SPECIAL CASE

Suppose an expression not p has free variables and is therefore
infinite. It is sametimes possible, when the expression p starts with the
quantifier some, to manipulate p to give a new expression p' which
generates the bindings for these free variables. The resulting expression
p'¬ p now being finite. For example, the infinite statement

not same(x)(r(x)¬ h(x,y))
{ (not(same(x) (&, (r,x) (not(h,x,y))))) }

can be rendered finite by moving h(x,y), the negated term in p, outside:

some(x)h(x,y) & not same(x)(r(x)anot h(x,y))

This new term now creates a finite set of bindings for Y. A general
theorem for transforming p to p' is given in reference [1].

9. UNIVERSAL QUANTIFIERS

Universal quantifiers are equivalent to negative existential quantifiers
and so they are transformed before execution using the axiam:

all (X-l'xztO“)(P) ——> l’DtSGTE(X]-vxz00°°)(mt P)

{ (al1(x1,...)p)-~>(not(some(xl,..)(not p))) }

page 10 of 18

45
10. DEFINITIONS

Definitions allow complex expressions to be represented by a single
predicate. Consider the definition:

amplifier(vo,vi) <~ vo=6*y & y=vi+ 12

When this is called using the query ?amplifier(l2,w), the variable vo

inside the definition takes on the value 12 while the variable vi points
to an identical location in store to w and hence become equivalent. The

variable y is local to the definition and so there is an implicite
existential quantifier.

This definition is fully reversible, so we can either ask the question
2amplifier(12,w):

vw=6"%y & y=vi+ 12

v = 12, y=2
therefore, y = 2}|======>|therefore vi = -10,
and so w = =10

or the reverse question Zamplifier(x,-10):

vo=6%*y & y=vi+12

INFINITE vi = =10, therefore
therefore > y=2
delay

y=2
therefore

vo = 12 and
therefore x = 12

We can now define another predicate representing two amplifiers in cascade
and still have reversibility:

amps(vo,vi) <- amplifier(vo,x) & amplifier(x,vi)
Term 1 or 2 being automatically selected depending whether vo or vi is
bound.

page 11 of 18

453

10.1 RECURSIVE DEFINITICNS

Consider the operation of append. This can be defined by the single
recursive definition which appends list x to list y to give list z:
append(x,y,z) <- x=() & y=2z or

X = u.x' & z7u.z' & append(x',y,z')
This definition states that if x is an empty list then lists y and z are
equal. Otherwise, if we strip u off lists x and z then the remaining lists
x' and z' are related by the append predicate. When used in recursion
neither or nor & are order independent. This is because recursive
calls to the append predicate always have the possibility of being
infinite and so should always be written last. It may be sensible in some
future implementation to automatically place such recursive calls last
thus restoring order independence.

Using FCP this definition gives the following results. Readers interested
in the details of the execution are refered to the appropriate appendix.

= (2,3) APPENDIX 1

?M((2)1(3)lz) z
2append(x,y, (2,3)) x=() y=(2,3)
x=(2) y=(3) APPENDIX 2
x=(2,3) y= ()
2append(x, (2),z) infinite flag set APPENDIX 3
?append((2),y,z) infinite flag set

Notice how FCP correctly traps the infinite process. Contradictions as
mentioned earlier can therefore be trapped before execution:
2append((2),y,z) &y = z
flags infinite
Without this facility a naive user could be faced with some expensive
camputer bills!

page 12 of 18

454

10.2 EXPLICI'.@{ TRAPPING OF INFINITE PROCESSES
/

Suppose we define a factorial predicate fact'(x,n) which gives the
factorial x of a number n. When x and n are both free we find that
fact' executes an actual infinite loop. To prevent this infinite loop
we precede fact' by the predicate free:

fact(x,n) <~ free(x,n) , fact'(x,n)

The predicate free flags infinite if all its arguments are free. Thus by

detecting that x and n are both free, factorial is now secure against
infinite loops. ‘

Notice that append did not require any such trap to stay finite.

11.THE FUTURE

Prolog M uses the axiams of logic to transform an infinite expression to a
finite expression. However, the capabilities of the language could be
considerably extended if the user were also able to define his own
infinite to finite axioms and theorems. Below is a simple example of an
axiam to allow a natural way of writing a range of numbers:

X > xmin & X < xmMAX & integer(x) <~ range(x,xmin,xmax)

{ (define (&(>,x,xmin) (<, x,xmax) (integer,x)) (range,X,xmin,xmax))}

It is now possible to write the query:

?2x > 1 & x < 12 & integer(x)
and obtain the integers 2,3,...10,11 using the range predicate.

We can define new functions in the same way that we can bind variables to
values. For example:
quadfn(x) = "x*x + 2*x - 4" ,
{(=,quadfn, ' (lambda(x) (plus(times, x,x) (times, 2,x),-4)))}
binds the function variable quadfn to "x*x + 2*x - 4" using a lambda
expression. The function quadfn can then be used in an equality predicate:

Yy = quadfn(x) { (=/y,(quadfn,x)) }
Unlike normmal equality, this is finite only if x is bound.

page 13 of 18

455

Predicates are often defined in terms of a forward and reverse function. A
reversible quadratic function quad(y,x) is defined as the conjunction

of quadfn and quadreversefn. The appropriate function being chosen by
FCP.

12. CONCLUSION

Prolog M is still in its infancy. There are at least three important
questions left unanswered:

1. By trapping the generation of infinite formulas,
will FCP make conventional resolution more
flexible?

2. Can trace facilities easily explain why programs
are infinite?

3. Can we easily include user defined theorems?

ACKNOWLEDGEMENTS

The author is grateful to the late Roy Mitchell, Vic Maller, Norman Truman,
Martin Stears and the other members of the ICL Systems Strategy Centre,
Stevenage who have helped to formulate and develop the ideas in this
paper. ’

(1] BABB E

[2]

[31]

[4]

[5]

Lel

71

£8l]

BABB E

BABB E

CLARK K &
TARNLUND S.A.(Eds)

CLOCKSIN W &
MELLISH C

KOWALSKT R A

WARREN D

WARREN D &
PEREIRA F

page 14 of 18

456

SYSTEM MODELLING LANGUAGE (SML) For Enquiries to
a Business or Scientifi_c Model.
ICL Technical Note TN 82/1, 1982

Joined Normal Form: A storage encoding for
relational databases.

ACM Trans. on Database Systems. December 1982

Implementing a Relational Database by means of
Specialised Hardware.
ACM TODS, June 1979

Logic Programming,
Academic Press, 1982

Programming in PROLOG,
Springer-Verlag, 1981

Logic For Problem Solving,
North Holland 1979

Efficient Processing Of Interactive Relational
Database Queries Expressed In Logic,
Edinburgh DAT Research Paper No 156

An Efficient Easily Adaptable System For
Interpreting Natural Language Queries,
Edinburgh DAI research paper no 155

page 15 of 18

457
Appendix 1 Append forward
What is the result of appending (2) to (3)?

?append((2),(3),2)

X=u.Xx' & z=u.z' & apperd(x',y,z')
X =2, INFINITE
=>|therefore > |therefore|==—==>|y = (3), x' = ()
u=2, x'=()}{ delay but append((),(3),z')
gives: z' = (3)
iu =2 |
1z' = (3) i<
| therefore !
|
1

{ANSWER z = (2,3)

Appendix 2a Append backwards
What two lists appended together give the empty list?

?append(x,y, ())
x = () & Yy = 2z
=>| x= () >|z = (), therefore, y = ()
ANSWER x = () v = ()
X=u.x' & z=u.2z' & append(x',y, z')
infinite z = ()

===> | therefore

delaz

>

therefore, fails,
NO ANSWER

page 16 of 18

Appendix 2b

What two lists appended together give the list (3)?

?append(x,y,(3))

x = () &)'4

i
N

—_— x= () > |z = (3), therefore, y = (3)

ANSWER x = (), y = (3)

x=u.x' & z=u.2z' & apperd(x’,y,z"')
infinite z = (3) 1z' = ()
===> |therefore|======>|therefore >lappend(x',y,())

delay u=3, z' = () lgives one solution
| (see appendix 2a)
ix' =0, y=0

x' = ()

u=3
therefore <
x = (3)

ANSWER x = (3), v = ()

458

page 17 of 13
459
Appendix 2c

What two lists appended together give the list (2,3)?

?appem(x,y, (2,3))

s x = () |=m=——=—=|z = (2,3) therefore
ANSWER x= (), y=(2,3)

XxX=u.x & z=u .z & append(x',y ,z')
infinite z = (2,3) z' = (3)
==> [|therefore|=====>|therefore >lappend(x',y,(3))
delay u=2, z' = (3) gives two solution
(see appendix 2b)
x'=0,y=1(3)

x'=(3), v= ()

u=2
therefore <
x = (2) or (2,3)

ANSWER x = (2) y = (3)
ANSWER x = (2,3) vy = ()

x' = () or (3) "

page 18 of 18

460

Appendix 3 Append infinite
What are all the lists which end with a 2?

?append(x, (2),2z)

y = (2)
=——> x = () |=====>|therefore z = (2)
ANSWER x = () y = (2)

x=u . Xx' & z=u.z & append(x’,y,2')
INFINITE INFINITE append(x',(2),z')
> | therefore|=——=—=>] therefore|==——=—=>]therefore a soln is
delay delay x' =0z =(2)
z' = (2),u=free
therefore <

ANSWER INFINITE

EB/SAC
SALLY836:EB 83/6

