
ON THE FIXED-POINT SEMANTICS OF HORN CLAUSES
WITH INFINITE TERMS

M.Falaschi, G,Levi, C,Palamidessi
DiPartimento di Informatica
Univirsita' di Pisa, Ital~

1. INTRODUCTION

Infinite terms (streams) have been introduced in
several PROLOG-like lansuases C2,J~4,8,10J in order to
define Parallel communicatins Processes. The resultins
operational semantics is auite similar to Kahn-McQueen's
model C5J, characterized bw asents which communicate throush
channels. Most of the above mentioned lansuases are anno
tated versions of PROLOG. Hence some of the most relevant
.features of PROLOG, such as the abilit~ to define relations,
set lost.

If infinite terms are added to pure PROLOG (i.e. Horn
clauses>, the definiti6n of a "Sood• fixed-Point semantics
is still an open problem. In C1J a sreatest fixed-point con
struction is Proposed. Such solution, however, is not satis
factorv, because:
i) the sreatest fixed-Point semantics sives a non-emPtv

denotation not onl~ to nonterminatins Procedures which
comPute infinite terms, but also to "bad" standard non7
terminatins Prosrams;

ii) the construction is not alwaws effective, i.e. there
exist Prosrams whose Sreatest fixed-Point cannot be com
puted.

In this PaPer we Propose two semantics based on a least
fixed Point construction. In the first· semantics we only
consider all the finite aPProximations of an infinite term,
while the second se~antics allows to handle infinite terms.
The lansuase we will consider is a manw sorted version of
PROLOG. Its swntax will be defined in the next section. It
is worth notins that the sortins mechanism will allow us to
distinsuish finite and infinite terms.

2. SYNTAX AND DERIVATION RULE

The lansuase alphabet is composed by;

1) A set S of identifiers for the representation of the
sorts. A sorts is!

, I

I I

!

I I

I I

a) simPle ifs belonss to s. The set of simPle sorts is
Partitioned into two disJoint classes, canonical and
non-canonical sorts, to coPe with .finite and infinite
data structures resPectivelv.

b) functional ifs belonss to s*--> S. If s has the
form: s 1 x • • • x sn --> s', and at least one of the si 's
is non-canonical, thens' is non-canonical too.

c> relational ifs belonss to S.
2) A familv C of sets of constant swmbols indexed bw simPle.

sorts. Ifs is a non-canonical sort, then the set of con
stants of sorts contains the special svmbol w 1 , which
~enotes an undefined (not vet evaluated) data structure.

3) A familv D of sets of data constructor svmbols indexed bv
functional sorts.

4) A family V of numerable sets of variable svmbols indexed
b!:I simple sorts.

5) A familY R of sets of Predicate svmbols indexed bv rela
tional sorts.

The lansuase data
data constructors to
sorts. Hore Preciselv,

i) a constant svmbol

structures are obtained bv aPPlvins
variables and constants of suitable

a term of sorts is:
of sorts.

. ii) a variable swmbol of sort s.
iii> a data cor,structor application d(t 1 , ••• ,tn> such that

.t1 , •··• • ,tn are data terms of sorts s 1 , • • • ,sn and d
belonss to D and has sort~ x ••• x ~--> s.
A term which contains at least one occurrence of an
undefined constant swmbol is called suspension and
deno.tes a not cotr1Pletel1::1 evaluated data structure.
Because of the condition,in t.b>, if one of .the t 1 's
.hiB~ ... a non-canonical sort (briefly is nor,-canonical>,
then also the term is non-canonical. In tact, the
result of the aPPlication of a data constructor to its
components Carsuments> is a suspension if some of its
components are suspensions.

The lansuase basic construct is the atomic formula.
An atomic formula is a Predicate aPPlication P<t 1 , ••• ,tn >
such that t 1 ,. •. ,tn are data terms ot sort s 1 , ••• ,sn resPec
tivelv, and Pis a Predicate s~mbol of sort s 1 x ••• x Sn•

A set of atomic formulas can be interpreted as a col
lection of Processes or asents C2,7J connected b~ channels .•
Each atomic f_orm•Jla denotes a Process. There e>d sts a chan
nel connectins processes. Ph and~, if there exists a vari
able svmbol which occurs in the atomic formulas denotins \
and ~. The basic activit~ is messase Passins throush chan
nels and reconfisuration of the collection of Processes.
Informations can pass throush a channel in both directions.
This is not the case of the SCA model C7J, as well as of the
Kahn-McOueen model C5J.

The d~namic behaviour of the collection of Processes is
specified b~ a set of clauses, which are expressions of the
lansuase defined as follows:
1> A definite clause is a formula of the form:

A <- - B1 , • • • , Bn
where A and the Bi's are atomic form1Jlas. If n=O the
clause is called "unit clause• and is denoted as follows:

A <-- ..:l
All the variables occurrins in a clause are viewed as
universal!~ auantified.

2) A nesative clause (Soal statement> is a formula of the
form:

<-- A1 , • + +, A111

where the A1 's are atomic formulas. If m=O it is a null
clause denoted b~

<--..\ <or □ >
From a losical viewpoint, the s~mbol •,• denotes the losical
connective AND, the s~mbol "<--• denotes the losical imPli
cation, and A is the neutral element with respect to the
operator•,•, that is<-- A,..\=<-- A

The notion of derivation of a soal -statement from a
siven soal statement and a prosram is essentiall~ the same
defined for PROLOG C6J, and is based on resolution C9J. The
onl~ trivial difference has to do with sort checkins.
The relation (J .

G 1--> G' w
denotes that the soal state~ent <-- G' is derivable from the
soal statement <-~ G and the Prosram W, with the substitu
tion 8, which is the composition of all the substitutions
used in the elementar~ derivations.

If, for some fJ, the relation

G 1-8-> ..:l
w

holds, then<-- G is refutable in w.
Our interpretation of soal statements and clauses is

·exactl~ the same siven b~ Kowalski C6J for PROLOG. However,
we think of a soal statement as denotins a collection of
Processes. The derivation of a new soal statement
corresponds to a reconfi~uration of the collection. Each
elementar~ variable bindins in a unification can be seen as
a messase Passins from a Producer to a consumer. Our
interpretation is motivated b~ the fact that we view
Processes as non terminatins procedures which Produce (or
consume) infinite data structures. Such Procedures have an
empt~ denotation in PROLOG, both from the operational and
the fixed-Point semantics viewpoint.

' !

I I

I !

3. OPERATIONAL SEMANTICS

In standard Horn Clause Losic the concept of computa
tion of a soal statement is essential lid based on the re.f•Jta
tion of that soal statement, (i,e, the derivation of the
null clause>, and therefore on the concept of termination.
In other words, the result of a computation of a soal state~.
ment (i.e. its operational semantics) is the relation esta
blished, for each Predicate in the soal, b~ the substitu
tions determined in all the Possible refutations C6J.

This definition of operational semantics results inade
auate to describe Processes which handle infinite terms
(streams). Consider, for examPle, the followins Prosram:

W = (list<x,x,L> <-- list<s<x>,L>>
where the sort of xis •naturals• <canonical sort>, the sort
of L is •streams of natural' <non canoriical sort>, •••
denotes the stream of naturals constructor, and •s• denotes
the successor constructor on naturals (for the sake of sim
PlicitY we will use 1 instead of s<O>, 2 instead of s<s<O>>,
etc,).

Since the soal statement <-- listCO,L) has no refuta-
.. tions in W, the ·denotation of the Predicate list siven by

the standard operational semantics is an emPt~ relation.
In SPite of this, a derivation of listCO,L) Produces, step
by step, the substitutions:

L = O+L
L = 0+1+L
L = 0.1.2.L etc •••

It is easy to see that an infinite computation of this
soal statement will lead L to be instanced to the infinite
list of natural numbers. In seneral ever~ Process which Pro
duces infinite terms has the same Problems with resPect to
its semantics definition, since its computation necessaril~
does not terminate.

The solution we Propose is based on the introduction
for each Predicate s~mbol P which is non-canonical Ci,e+
which handles infinite terms>, of a terminal clause (unit
clause) defined as follows:
If P has sort s 1 x ••• x sn, then the terminal clause has the
form PCt1 , ••• ,tn> <-- , where each t 1 is:
- . a v a r i able of so rt s1 , i f s I i s canon i ca 1
- the undefined cor,stant sYmbol w51 , if s 1 is non..,canonical.

The terminal clause is added onlld if there exists no
unit clause, in the Prosram, for which there is a superposi
tion. This condition is necessarld because it must not be
Possible to introduce new solutions b~ addins a terminal
clause. The new terminal clause must onl~ allow termina
tion.

Note that if there exists a terminal clause, for which
there exists a superposition with the new one, then it con-
tains some non-canonical terms that can be substituted
with w. For this reason the termination is suarant~ed in
this case.

In our example the terminal clause is
list(n,w) <--A

This clause allows the seal statement <-- listCO,L) to have
a refutation. The values that it computes for Lare of the
form: w, o.w, 0.1.w, 0.1.2.w, etc •••

The s~mbol w, in this example, looks like the empty
list constant, and the values for L look like standard fin
ite lists. Their Prasmatics however is auite different,
since the Prosrammers can think in terms o~ infinite lists
a~d not be worried about artificial terminal cas~s, which
can be inserted systematically by the interpreter.
The introduction of the terminal clause is similar to the
termination rule for infinite data productors Proposed in
C7J. In that case a Process Producins a (potentiallw> infin~
ite data structure terminates when all the Processes which
consume that data structure have terminated (l~zy · evalua
tion>. We obtain the same behaviour by exPloitinS the non
determinism of the lansuase. A process which produces a
(potentially) infinite stream, at each stream aPProximation
can be reduced to A. However, if there exist consumins
Processes, the Process has an alternative reduction which
Produces a refinement of the stream.

The operational semantics is defined as follows:

If Wis a set of clauses, and Pis a Predicate swmbol of
so~t s1 x ••• x ¾, then the operational semantics of Pin W
is~

D0 (P, W) = < (t , ••• , t 0) I t 1 has sort s1 , i = 1 , •• • 0, n
and P < t 1 , • ·• • , t 0) I w; A }

where W' is the union of the Prosram Wand
terminal clauses, added accordinsl~ to
described.

EXAMPLE 1)
listCn,n.L> <-- list<s<n>,L>

of
the

P(s(n),k.L,~) <-- P(n,L,m) , Prod(k,m,~)
P<O,L,1> <--A

all
rule

of its
above

Assume <-- Prod<k,m,~> be refutable iff Y results to
be the Product of m and k.
list<n,L) is the Process which Produces the stream L of
al! the natural numbers ctartins frcm n.

' ' ' ' '

' . '

I !

I I

I !

6 4+4
P(n,L,m> defines the relation •mis the Product of the
first n numbers in the stream L•.
Then, consider the Prosram:

1) fact<n,m) <-- list<l,L> , P<n,L,m)
2) P(s(n),k.L,~l <-- P(n,L,m) , Prod(k,m,~)

W'= .3) PCO,L,1) <--..l
4) list<n,n.L) <-- list<s<n>,L>
5) list<n,w) <-- .,l <terminal clause)

Note that 5 is the onl~ terminal clause, since the
clause P<x,w,y)(--.,\ will not satisf~ our condition.

factin~m> defines the relation 'mis the factorial of
o•.
We will now Sive an examPle of computation. For the
sake of simPlicitw, the second clause will be rewritten
in the form:

P<s<n>,k.L,k*m> <-- P<n,L,m)
where the swmbol '*' is interPreted as the Product
operator on natural numbers.

Initial soal statement:
<-- factC2,x>

bw clause 1),and the substitution x=m:
<-- list(1,L) , PC2,L,m>

bw clause 2, and the substitution L=k+L1 , m=k*m,:
< - - 1 is t C 1 , i'~ •. L1) , P (1 , L1 , m 1)

bw clause 2, and the substitution L1 =k 1 .L2 , m1 =k,*ml
.. <-- 1 is t (1 , k + k 1 • L2) , P CO , L 2 , 1t,2)

bw clause J, and the substitution m2 =1:
<-- list(1,k,k1 +L2 >

bw clause 4, and the substitution k=l:
<-- list(2,k1 .L2 >

bw clause 4, and the substitutiqn k1 =2:
<-- listC3,L2 >

bw clause 5, and the substitution L2 =w:
<-- .,\

The .resultinS substitution for H is:
x=m=k*m,=k*k,*m 2 =k*k 1 =k 1 =2

The resultins substitution for L •is:
L=k+L1 =k,L 1 ,L2 =1,2.w

Note that, to have a refutation, at least two elements
of the list L have to be computed.

4. FIXED POINT SEMANTICS: FINITE APPROXIMATIONS

The fixed Point semantics for a Prosram Wis defined as
a model of the set of clauses WU {terminal clauses},
obtained as the least fixed Point of a transformation which
is defined on the set of the interpretations of W C1,10,11J.

The interpretations of Ware defined over an abstract
domain U, which is a famil~ of sets u5 ,. each set beins
indexed b~ a sorts occurrins in w.
Each U5 is defir,ed as follows:
1) All the constant s~mbols of sorts, occurrins in W, are

in U5 (note that ifs is a non-canonical sort, also w 5 is
a constant s~mbol of sorts and then also~ belonss to
Us > •

2) For each data constructor s~mbol of sorts x ••• x sn--> s,
U 5 contairis all the terms d<t 1 , ... ,tn> such that t 1 , ••• ,tn
belonss to U5 , ••• ,u 5 , respectivelw.

I n

Note that U contains the standard manw sorted Herbrand
Universe as a Proper subset, i.e. the set of all the sround
terms in which none of the w5 occ•Jrs. In addition U con
tains suspensions, i.e. non comPletelw evaluated data, where
both undefined and standard constant s~mbols occur.
Finallw, U contains also the fullw undefined terms, i.e. the
terms w5 •

The He~brand Base B of Wis the set of all the sround
atomic formulas: for each Predicate P occurrins in W, of
sort 51 x ••• x Sn, and for each n-tuple of terms t 1 , ••• ,t11

belonsins to u5 ••••• Us resPectiveh,, PCt 1 , ••• ,t11 > belonss
to B. 1 n

A Herbrand Interpretation I of Wis anw subset of B
contairdns A.

The set~ of all the Herbrand InterPretations of W is
partiallw ordered b'.:I the relations (set inclusion). As is
the case for standard Horn clauses, <d,s> is a complete lat
tice, i.e. for everw Possibl'.:1 non finite s•Jbset"' of ;J.,
there exists lub<4'> and slb<.t>.

It is possible to associate, to an'.:I Prosram W, a
transformation T on. the.domain of interPretations, defined
in the followins wa'.:I:

T(I)={AIA<--B1 ,. .. ,Bn is a !:!round instance of a clause of W'
and B 1 , • • • Bn E I } U < A }

where W' is the union of the set W and of the terminal
clauses for w.

It is well-known that the transformation Tis monotonic
and continuous C6J.

Since Tis monotonic, there exists:

I,= min{II I=TCI)}

Horeover, since Tis continuous:

IF= U yk ({A))
k!:O

8 ~31

The fixed Point semantics of a Predicate P, of sort
s x ••• x sn, in a Prosram Wis defined as follows:

DF CP,W) = <<t1 , • • ,tn > I t 1E U51 , • • •, tnE Usn' P<t1, • •. ,tn > f I }

The eGuivalence of the operational and fixed-point semantics
come~ directl~ from the similar result for PROLOG.

5. FIXED-POINT SEHANTICSl INFINITE TERMS.

Now we want to define an alternative fixed-Point seman
tics, which reflects the idea that non-canonical data, con
tainins the s~mbols w5, are suspensions, that is Partial
aPProximations ·of infinite terms.

A term containins occurrences of the s~mbol ~ cannot
be transformed into an infinite term conta1nins no
occurrences of ws, because it would be necessar~ an infinite
number of derivations. However it is Possible to compare two
suspensions to establish which is a better aPProximation.

Consider, for example, the Process P<n,L> which
duces the stream of all the odd numbers startins from
n is odd, and the stream of the even numbers _startins
n~ if n is even. Such Process is defined b~ the clause:

1. P<n,n.L> <-- P<~<s<n>>,L>

while the terminal clause is:

2. P<n,w) <-- A

Pro
n, if.
.from

One of the streams Produced b~ the Process P, startins from·
O, is Lt = 0.2.w, obtained b~ aPPl~ins clause 1 twice and
clause 2 once.
Another stream is L2 = 0.2.4.w, obtained b~ aPPl~ins clause
1 three times, and clause 2 once.
L1 is a better approximation than L2 of the st.ream which
tould be obtained startins from O and aPPl~ins clause 1 for
ever:

0.2.4.6. •. •

Clearl~ L1 cannot be compared to an~ of the streams
obtainable, for examPle, startin~ from 1 Cl.w ,1.3.w,

9

etc.).

It is then necessary to define a partial orderinS < on
the elements of A <~round terms), which corresponds t6 the
concept of "better approximation•.

i) For anw c~nstant ~Ymbol c of sorts, c 5 < c 5 and, ifs is
non-canonical, w5 ~ ~•

ii) For anw constructor sYmbol of sort s1 x ••• x sn--> s:
a) if ti=w5., i=1, ••• ,m, then d(t1 , ••• ,tn>=ws
b) if ti< t~', i=1, ••• ,m, then d<t 1 , ••• ,tn><d<t{,•••'t~)

A similar Partial orderins is defined on the Herbrand
Base 8, as follows:

For any Predicate swmbol P of sort s 1 x ••• x s., and for anw
t 1 , ••• , t .. , t{, ••• ,t.~ of sorts s 1 , ••• ,~ .. :

if ·ti < t (i = 1 , • • , m , then P (t 1 , ••• , tm) < P (t { , • • • , t ~)

Furthermore, it is necessarw to introduce in the
universe U all the infinite terms which are limits of mono
tonic seauences of terms. Similarlw, it is necessary to
introduce in the base Ball the atomic formulas which con-

~ tain infinite terms and which are limits of monotonic
seauences of atomic formulas.

An interpretation of Wis anw subset of B which con
tains A and which does not contain anw Pair formulas A and
A' , such that A< A' •

Obviously, the interpretation containins atomic formu
las in which the~e occur infinite terms can be resarded as
limits of monotonic seauences of interPretations without
infinite terms.

Let p be a function which t~ansforms subsets of B Ccon
tainins A> into interpretations. It is defined as follows:
ifs is a subset of B then

p(S) = S -: <A(AES , 3A'E S, A<A'}

In other words p eliminates all those atomic formulas
for which there exists in Sa better aPProx~mation.

The set of the interpretations of W is partially
ordered bw the relation< defined as follows: if I,J belonss
to :

I<J iff VA E I 3A' E J A<A'

or, eouivalentl~:
I<J iff IE u(J)

where u is defined as follows:

' !

o-(I) = {A I :I A' E: I A<A'} U { ..l }

Note that, if I is an interPretation: pCo-<I>>=I

10

The set~ of the interpretations is a complete lattice
with respect to <, and it holds, if J. is a subset of;, :

Slb<l> = pCU u<t>>
lub<.G> = slb<.l'>

where ,t' = -CI' I VIE la I< I'}

Note that A' is never emPtw, because it contains at
least p. In Particular, if Lis finite:

lub<.t> = P <U u <.t> >

The transformation T' associated to • - Prosram W is
defined jn the followins waw:

T'(I) = p({AI A<--B 1, ••• ,Bn is a sround instance
of a clause of W', and B1 , •• ,BnEu(I>)U-C..l})

where W' is the union of Wand of the terminal clauses of w.

tain
also
must

- u(I) occurs in the definition of I because, if a cer
aPProximation of a data structure is computed, then

any less defined ~PProximation of such a data structure
be considered as computed.

It can easily be Proved that T' is monotonic and con
tinuous, hence there exists the least fixed-Point I{ of T'
and:

I ' = U T ' 11({ ..\ })

f ·~
The second .. fixed-Point semantics is defined analosously to
the first:

D,,<P,W>=-C(t1, • • • ,tn) lt1E U51, • • •, tnE Usn' P_(t,, • • • ,tn LE o-(If))

It is worth notins that in the Pre~ious semantics, the
lub of the chain yk(-C..l)) contains onl1;1 finite aPProxima
tions (suspensions>, while, for this semantics, the lub of

.T'k({..\}) can contain also infinite terms.

BIBLIOGRAPHY

1. APt, K.R. and M.H. van Emde~. •contributions to the
theory of losic Prosrammins•. J. ACM 29 (1982).

11 48~

2. Bellia,M., Dameri,E., Desano,P., Levi,G. and M.Martelli.
•Applicative Communicatins Processes in First Order
Losic•. S~mPosium on Prosrammins. Lecture Notes.in Com
puter Science 137 CSPrinser Verlas, 1982) 1-14.

3. Clark,K.L. and S.Gresorw. •A relational lansuase for
Parallel Prosrammins•. Proc. of Functional Prosrammins
Lansuases and Computer Architecture Conf. (1981) 171-
178.

4+ Hannson,A., Haridi,S. and s.A.Tirnlund. •Properties of a
Losic Prosrammins Lansuase•. Losic Prosrammins, Clark
and Tarnlund Eds. (Academic Press, 1982) 267-280.

5, Kahn,G. and D.B.MacQueen. •coroutines and networks of
Parallel Processes•. Information Processins 77, North
Holland (1977), 993-998.

6, Kowalski,R. 'Predicate losic as·a Prosrammins lansuase•.
Proc.IFIP Cons. 1974, North-Holland Pub+ Co., Amsterdam,
1974, PP,569-574+

7 •.. M.onte i ro, L. • An eHtensi on to Horn Clause LoSic al 1 owi n!:l
. the definition of concurrent Processes•. Proc.1.c.F.P,C,

<Eds: J.Diaz, I.Ramos>, LNCS 107, SPrinser-Verlas 1981.

a. Pereira,L.M. •A PROLOG demand-driven comPutation inter
preter•. Losic Prosrammins Newsletter 4 (1982), 6-7.

9. Robinson,J.A. •A machine-oriented loSic based on the
resolution Principle'. J.ACM 12 (1965>~ PP.23-41.

10, Van Emden,M.H. and G.J. de Lucena. 'Predicate losic as a
lansuase for Parallel Prtisrammins•. Losic Prosrammins,
Clark and T~rnlund Eds. <Academic Press, 1982) 189-198.

11. Van Emden,M.H., Kowalski,R. •The semantics of predicate
lo!.iic as a Pro·srammins lans1.1ase 1 • J.ACM vol.23 {1976)
n.4, PPt733-742.

