
ON COHP1LING PROLOG PBOGRAMS ON DEMAND DRIVEN AECBIT.ECTUBES.

Be1lia M.(*). Levi G.(*), Martelli H. {+)

(*) Dipartimento di ~nformatica
University of Pisa (1tal~)

{+) CNUCE Institute of CNR
Pisa {italy)

ABSTRACT

A conpi1er is proposed that maps Prolog clauses into a
language (LCA/1) with clauses annotated according to functional
dependencies. LCA/1 has a demand driven computation rule and
allows to cope vith streams and lazy constructors.

The compi1ation eliminates the non-determinism related to
the choice of the literal to compute and guarantees an
efficient computation.

1 519

1. Introduction.

Non-d€terminism in Pro1og comes in two f.lavours [1]. The
first one is related to the full declarative programming style
and comes from the absence of any ordering in the literals
occurring both in the cJ.ause right-part and in the goal. The
second one is rel.ated to the relational cal.cul.us and comes £rom
the existence of·superposal:t1e clauses (i.e.._clauses vhose left
parts atomic formulas are unifiab1e).·

.Both 0£ the above~.:features_contribute to making Prolog a
milestone 0£ the logic based programming languages and, at the
same ti.111e, the basis £or al1 the ··applications where calculus
and reasoning merge: expert systems, relational. knowledge base
management, software systems specifications and various A.I.
applications are only some of them I 2,3, 4 J.

Nevertheless, all these powerful Prolog aspects cause a high
complexity in the Prolog run-time support because a non
accurate choice of the literal to he computed can make bighly
non-deterministic even potentially deterministic computations.
This is a direct conseguence of the first type of
non-determinism because Prol.og programs do not expl.icitly state
for each variable vhich literals "co.mpate" the value and which
litera.ls use such _a. -value •.

Obvious.ly, ·specific interpreters choose particular
strategies such· as the left _to right evaluation of t.he
literals, but this .is a very strict choice and does .not solve
the problem. Incidental.ly, it is vorth to .Dote that this kind
of compl.exity cannot .te reduced by running programs on
efficient and Prolog oriented machines.

In order to avoid the first tipe of non-determinism and to
speed up the computation of those rel.ations which are
(multi-output) functioDs, manJ authors [S,6,7] have
experimented contro.l l.anguages to attach a.lgorithms to Prolog
_programs {SJ. The autb.qrs have considered some logically based
functional. l.anguages {9,10] and dezined a functional. l.ogic
language, LCA {11], which is a clause language vith terms

·constrained to be either 'input or output terms. LCA could
integrate Pro1og, as an algorithmic component which all.ovs to
explicitly express programs involving functions and to compute
them in a simpl.e and efficient way.

Nevertheless, all the proposed
inadequate. In fact all of tbe.m
respect to decl.arativeness: i.e.
contain procedural features.

ou.r aim is:

solutions are partiallJ
ioose transparenc~ with

the resulting p~ograms

to save the P.rolog expressive power with its uniform viev of
relations and functio~s;

- to develop a technique for automatically eliminating the
first type of non-determinism by attaching algorith•s to
clauses.

- to develop an efficient interpreter ab.le to compute the
intermediate form obtained with the above step.
The basic idea to achieve this goal is to define a language

2
52.D

{LCA/1, a generalization of LCA} vhose programs are sets of
tt.fully annotated" (Horn) c.lauses. Full annotation .means that
all the variables (not the terms) occurring in a clause (or
goal) are annotated as 1Npat or OOTput variables •. Different
occurrences of the same variable are possibly annotated in
Jii1:ferent ways. The ••£ul.ly annotatedvt c1auses Jllust obe,1 some
syntactic constraints ensuring that each OUT variable can be
computed in exactly one wa,1.

ne .language interpreter has been .defined along the .lines of
the interpreter a.lread~ given for LCA. Its main features are:

a demand driven computation rule;
the ability to hand.le lazy data constructors;
the ability to handle only the second {and rea11y semantic)
t~pe of non-determinism.
The second step is to define a translator from Prolog

programs :illto fu11,1 annotated programs. ~he translator
associates to each clause of a Prolog program a set of folly
annotated c.lauses. Each of them expresses both the specif.le
state that the vatiables in a goal must satisfy in order to
apply the c1ause (i.e. the variables vhich are already bound or
not), and a specific functional dependency among the atomic
formu1as (i.e. vhich comFutes what). All the ful.ly annotated
clauses, associat~d- to ~ach clause, only depend upo~ the
variables occurring'in the clause and are not superposable.

The compilation of .Ero.log progra.ms onto a demand driven
machine seems a promising solutioll to save on one hand, a.11 the
features of Prolog programming and, on the other hand, to earn
the efficiency of running programs on a demand driven
architecture.

Section 2 will give a brief introduction to LCA/1. Sections
3 and 4 treat the translation in detail, while section 5 will
describe the LCA/1 interfreter.

2. The lCA/1 language.

In this section ve ~ill not describe all the details of
LCA/1, because it is guite similar to other proposals [11], but
~e will point out the main differences.

The first one is that in a term the occurrence of a variab1e
symbol xis a.lways annotated by IN or OUT. ~e call these terms
fully annotated data terms and we refer to variables annotated
by IN (O0T) as input (output) variables.

The atomic formula will contain onlJ fully annotated data
terms.

Let us introduce some definitions:

- constant grm: a term ~ithout variables;
- input tm;~: a term with input variables only;
- .2.B!EY! !§~~: a ter~ with at least one output variable.

The following are examp.les of fully annotated clauses:'

521
3

* {s(x IN) 1 Y 1N ,:z. OUT) <-- *(x IN ,y IN ,w OUT),+ (If IN ,y IN ,z OUT)
*(s(x,N),.YIN'z,N) <- *{X1N,.J1N••ouT),+(v,N,J,N,z,N) (*)
* { S (X IN J II Y o u T , z o UT) <-- * (X , ·N , Yo uT' v o u T) , + (., 1 N , .J I N . • Z o u T)
BEV (X: IN• J I H , V ·ouT) <- BEV {J; 1 N.,Z 0 uT) ,APP (Z_.N ,x IN .nil.,V.ouT)
REV {X IN. y OUT , VIN l <- BEV (y OUT ,z IN) ,APP (ZOUT ,x,N .nil,v IN)

11here sand • are function symbol.s and*,+, REV and APP are
predicate symbo1s.

The predicate* ho1ds if the third argument is egua1 to the
product o.f the first two arguments, and the predicate UV ho.ids
if the first argument is the reverse 1ist of the second
argument. ttoreover, the intended meaning of the first clause
of* is that, for any i and y, the result of the product of
s(x) and y is the sum of J with the product of x and y, while
the second clause of* means that for any trip1e of numbers x,
y and z, z is the resul.t of the product of s(x) and y if z is·
the sum 0£ .J with the product of x and y.

Examples of fully annotated goals are the .following:

<-- * (S (S (OJ j ,s (0) ,x OUT)
<-- *(s{s(x 1NJ),s{.y 0 uT),z 0 uTl,+{s(s(O));x0 uT's(s{s(O)))J
<-- BEV(a.b.c.nil,Z 0 uT)
<-- REY(a.x 0 uT•c.ni1,c.t.a.nil)

The.syntax of the language h'a~ to satisfy some constraints
to have the desired properties. ID the following, we assume
familiarity with the terminology and the notatioB used in [1].

Let H '".(a} (.M ouT (a)) be the multiset of the input (outpat)
variahl.es of an atomic formula a.

Let H<-- a1,a2., ••• .,an be a clause, where Bis the conclusion
atomic formula, the ai•s are the atomic conditions, and all the
atomic formulas are fully annotated (a1,a2,~ •• ,an can also
indicate a goal).

Condition 1.
---1:l'f-Foi each

1.2) ror each
be a set.

clause and for each ai, MIN (H) n !f ouT(ai) = J.
clause or goal the multiset U MouT{ai) must

i E { 1,n]

~his condition ensures that ever~ variable is computed in
exactly one wa1 by only one atomic formula.

Condition 2.
--Toreach atomic for~ula ai in a clause or goal; each

variable belonging to l:1 1 N (ai) must belong to MO uT (ak) (or to
.M,N{H) in the case of a clause), where ak is an atoaic
formula of the clause or goal such that i ';' ..k.

This condition forbids to have atomic formulas whose input
variables do .not occur as output variables of ·other atomic
formulas.

Condition 3.
--!he-iultiset M1N(H) must be a set.

4

This condition is complementary to Co~dition 1 (about the.
unigueDess of the computations), and forbids to put conditions
on the input Yariables of the conclusion atomic formula; i.e.
the unification process does not need to contro1 egualitJ on
the input variables. Th.is allows to have a simple and
(possibly) parall.el. unification algorithm.

constraints on the va1ues computed by different variables
are allowed and efficiently handled by the primitive predicate
EQp._ The semantics of EQp corresponds ~o the Prolog assertion:

EQp(x, ••• ,x)<-- D (EQ1 (x,x) <-- □}.

p+1-times

Note that because of Conditions 1,2 and 3 all
s1mbols occurring in MouT{li), must belong either to
to K--ouT(ai) 1 for some ai in the clause, or must not

variab1e
!5 IN {H) or
occur in

the~clause right part.
As a conseguence, any out_put

one atomic .formula only or must
of all the terms oz the Herbrand

variable is either computed by
be considered bound to the set
Universe.

l.CA/1 is a generalization of LCA {11] mainly motivated by
the compilation of Prolog·· clauses. such a generalization is
obtained by redefining the term s-tructure and l:y relaxing some
constraints of l.CA. Nevertheless, the main properties of the
LCA semantics are saved in the ope.rational semantics of l.CA/1.
Thus, the definiti-0n -0£ the LCA/1 interpreter is structura1ly
similar to the one de£ined in (11]. Section 5 briefly analJses
the externa1 evaluation rn1e and the new formulation of the
computation rule needed to handle full annotations.

3. The compiler.

The compiler from Prolog into LCA/1 is a mapping of clause
structures of Prolog into LCA/1 ones.

This mapping is based on the concept of state of the
computation, i.e. the state of the variables during the
computation of the current goal: each var~able can be already
bound (totally or partially computed) or not. The variab1e can
be considered, i.n the first case, as a possible input and, in
the secoDd case, as a possible output for an atomic £ormula.

A second aspect of the concept of state is related to the
applicability of a clause. LCA/1 allows to explicitly define,
for each conclusion atomic formula, vhich variabl.es are assumed
to be .i.nput (and thus must be bound to a value by the
unification), and which variables are assumed to be output (and
,.ill have a value "computed 11 by the clauseJ at resolution time.

The first aspect of state is also present in Prolog (bound
and unbound variables in the unification process).

The main idea of the transformation is that a Prolog atomic
formula implicit1y expresses a finite number of possible

5

different states (the second
combinatorially depends upon the
in the clause. A Prolog clause
of fully an.notated clauses,
·particular st.ate.

aspect) and this number
number of variables occurring

can then be mapped into a set
each of them expressing a

As an example of the transformation, the three clauses in
(*J are some of .the eight fully annotat~d clauses defined by
the folloving 2rolog clause=

.._.(s{x) ,y,z) <-- *.{x,_y,v),+(v,y,z).
Let us take the first clause of(*), i.e.:

*(s(x.JNJ,1,N,ZouT) <-- *{JC1N•Y1N ,WouTL,+(v,N•l',N,ZouTl•~
This clause explicitly defines a state of applicahi.lity,

where tbe variables % and y must be hound and where the
variable z is computed by the ·the clause itself_.

4. The transformation.

In order to formally define the transformation from PROLOG
programs into LCA/1 programs ve vi11 use the following simple
structurEs.

DEFINITION 1 {Y.,griable §EQUeD~ or §_eguence).
To each term t we can associate the variable sequence

containing all the variacle occurrences as found by a Rre-order
term traversing process.

As an exampie, <x,~,i,2> is the sequence associated to the
ter.m f (.x, 9 {Y ,xJ ,z).

1f tis a constant term, the sequence associated tot is the
empty seguence. Let s be the sequence of length n associated
to the term t, s[iJ (or t[iJJ, for each ie {1,nJ, sel.ect.s the
i-th variable ins. ·

rn the £ollowing, the concept of sequence vi11 be
generalized to atomic formulas by associating to each-- formula

.of the form P(t1, ••• ,tk) the seguence obtained by concatenating
the seguences s1, ••• ,sk associated to the terms t1, ••• ,tk
respectively.

DEP1NITION 2 (gAnotateg segy~~). s
Lets be a segueace of length n, ve define {IN,OUTJ a.s tbe

set of all the annotated sequences generated bys.

The annotated seguence ve{IN,OUT}s. differs from s because,
for each i e [1,n J, v[i] is the variable s{ i] annotated by IB or
b~ CUT. We call v{i] an annotation for the variable s[i].

7he set {IN,OUT}8 contains exactly 2" annotated sequences.

DE~INITION 3 (2J!Be!ii!!ti~ seg~~)-
Let she a sequence ~lld v .be an annotated sequence of the

same length of s, we define a substitution as the pair (s,v) •.

'-

i •

6

DEPINITION 4 {§YRStitUY,.Q.!! applicability).
Lett be a term and S be the sllbstitution (r,v), ve say that

Sis app1icahle tot il£ r is equal to the sequence associated
to t.

The app1ication 0£ S to the term t results in the term t•
such that:

• · ¥ieI 1,n],
if n is the length of s.

t•[i] = v[i],

The· transformation maps a clause c into a set U{c) of
annotated clauses. lt will he described in a tvo step process._
First of al.1, given a clause c of the form B<--L, ve compute
the set o• (c) of partially annotated clauses. The clauses in
u•tc) have a11 the variables occurring in. H replaced by
annotated variables. Zn the first step, the 1oca1 variables of
c {i.e. variables not occurring in the c1ause conclusion) are

· ignored.
The second step takes care of the l.ocal variables bJ

providing the computation of a £ully annotated clause for each
clause in the set U'{c) • .In the same way, t-he second step is
al::le to provide the transformation of a goal statement into the
correspo.nding .fully .. annotated goal •

. -·-

4.1 The computation of u•(c).

Let c be the clause B<--11, ••• ,l.ll, the computation of u•(c)
proceeds as follows:

1) Define {IN,ODTJ 5 ,

associated to H.
where s is the variable sequence

2) Compute the subset K ~ {.lll,OUT} 5 which contains all the
annotated sequences having multiple occurrences of the same
variahie annotated bJ IN. Note that, the set K could be
empty. The set is empty i£ and onlJ if the sequences does
not contain multiple occurrences of the same variable.

3) Vre{IN,OU:J:} 5 -K, let {s,r) be a substitution. Compute
H•<--L' U1 (c) as follows:

+ B'
of

+ L'

is the atomic formula resulting from the application
{s,r) to H;
is the sequence 11 1 , ••• ,lm' such that:
n <= m, and
¥iE[1,n], and for each variable x occurring both in
li and in the sequences, li' contains z annotated as
follows:
1) if x occurs in r annotated bJ

occurrence of xis replaced in li'
2) if x occurs in r only annotated by

the following holds:

.IN., then each
by .J: IN.

OUT., then one of

a) 3 je{ 1 ,n J suc.h that i;tj and lj' al.ready contains
an occurrence of XouT• Then each occurrence of
xis replaced in li' by x,N•

5J.5
7

b) ¥ je[1, n], such t.ha t i 7 j, .lj • does not contain
occurrences of XouT• Then
1) if li contains exactly one occurrence of i,

then the _ occurrence . of x is rep.laced in 1i •
by XouT •

2) i£ li contains p+1 occurrences of x, then
+ the first occurrence of xis rep.laced in

J.i• b.1 .xouT and all the other occurrences
are rep1aced by different renamings of x
annotated by OUT •.

+ let .x1 0 uT , ••• ,XPouT he the above
introduced·renamings. ~hen

· EQp (x 1N ,x11N 4• • • ,xp 1N)

is a SEecia1 atomic for•u1a lu• in L• for
some u e {n+1,a].

-4) lr/- rEK, .we add to the set resulting from step 3) the clause

H1 <--11•,•~-,ln•, ••• ,lh 1 , ••• ,1m• (ll <-= h < JD)

obtained as follows:
+ for each variable x

x1 IN, ••• ,xp 1N _ . .be a
first. Then·

occurring in r more than once, let
renaming for each occurrence but the

EQp (JC IN ,.%1. IN ,. ~ • ,Xp IN)

is an atomic formula .lu• for so.me u e [h+1,m]
+ 1et r• be the annotated sequencer whose variables are

r~named according to the above st:ep, then (s,r•) is sti.11
a substitution and H'<--.11•, ••• ,ln•, ••• ,lh' is the result
of step 3) appliEd to (s,r•).

4.2 .Example.

Let us consider the clause c:
A(.x,d(JC)) <-- B(X,l'),E(JC,X)

where dis a function s1mbol, A,B and E are predicate symbo.ls
and x, l' are ~he variables occurring in the clause such that y
only is loca1. Then, the computation of. u• (c) proceeds as
fo1lows:

1) s=<.x, :x>
{:IN,OOTJ5 = {<x IN , JC IN> ,<x IN ,x ouT > ,<x: ouT ,:x IN>, <iouT ,lCouT >.}

2) K={<.x IN ,x IN>}

3) lr/- SE {<J: 1N ,XouT>,<XouT1X1N>,<.1:ouT,XouT>l
+ s:: (J[IN ' X OUT)

H'=A (X IN, d (Xo 111))

1.•~B(:x iN,Y) ,E(x,N ,x,N)

+ s=<x OUT ,x ltl >
H'=A(x 0 uT ,d(x,N))
L'=B(x,N ,y) ,E(x 1N ,x,N)

+ s=<xOUT , X OUT>

i •

H'=A (X 0 uy ,d (XouT))
I.'=B(XouT1Y) ,.E(X1N ,x,N)
.Q~

8

I.•=B (X IN ,1> ,E (.x-ouT .x1 0uT) ,EQ1 (X IN ,x1 IN)

4) V r E {<z,N ,x,N >J
-+ EQ1 (x,N ,x1 ,N)
+ r•=<x 1N ,x1 ,N >

H•=A (X IN ,d (X1 IN))

1.:s=B{.x,N ,J) ,E(x,N 1X,N) ,.EQ1 {x.N ,x1,N)

52.6

The comRutation defines two u•(cJ, each one containing four
f u.lly an.notated clauses, which differ in ·· the right part of the
clause obtained from the substitution s=<xouy,XouT> •.

4.3 BemaJ:ks about u•(c)

i~S!.E9§i:ti.2.!!.1
For each Prolog clause c, u•(c) contains at

clause. Horeover, u•(c) contains exactly the clause
conclusion atomic formula of c has no variables •

.£~2.22§ill2!! ~

least one
c iff.the

U'{c) as computed by steps 1)-4) is not unique • .In £act,
step 3.2) could lead to more than one U'(c), if more than one
atoi:ic formu.la in the right part contaills a variable which, in
the sequencer, is on.l.f annotated bJ OUT.

Actually, we are not concerned 11ith the choice of U'(c),
although the problem of choosing the best atomic formula is the
key issue for optimizatio~.

RI'.2I!2§iti2!! 1
7he following properties hold for the annotations oz the

clauses in 0'(c):

f~Eert? j No conclusion atomic formu.la contains more than one
occurrence of the same variable annotated by IB, as
guaranteed by the subset K in steps 2) and .Q).

Proeerti: 1 No clause right part contains more than one.
occurrence of the same variable annotated by OUT, as
·g11ar an teed by step 3).

Property .a For each clause vJiose concl.usion atom.ic formula
contains a variable annotated by OUT, only one of the
following cases holds:

1-the same v.ariahle annotated by .I:N occurs in the
conclusion atomic formula also;

2-the same variab.le annotated hJ OUT occurs in exactly one
atomic formula in the clause right part;

J-t.he same variable a.nnotated by OUT occurs in the
conclusion atomic formula only.
This property is guaranteed by the variable rena~ings

9

introduced in point 2.b.2 of step 3} •

.:fropert_y ,! Par each variable annotated by IB in a clause
atomic £ormula,.only one 0£ the following cases holds:

- the same variable aJlllotated hJ IN occurs in. the clause
concl.usion;
-·the same variable annotated by OUT occurs in exacUy

another atomic formul.a of the clause right part.
This property is guaranteed by point 1) and 2.a) of step

3).

4.4. The computation of U{c)

7he computation of U(c) provides ~he annotation of the J.ocal
variables occurring in c. Local variables are· variables which
occur only in the right part of the clause._Snch variables are
left unchanged liy the computation of O'(cJ. Thus the following
p.roperty holds:

P.roposi,tion .!
¥ c = B<--L. c E u • (c) i£f there exists I.• such that:

H<--:t.• E U (c).

Thus, i.ri order to obtain U(c:) , for each clause c of u• (c),
only L• has to be computed.

Let H<--11, ••• ,ln be a clause in U'(c), then U(c) contains
H<--.1 P , ••• ,lm• (n<=m) such that:-

S} ¥ i e [1,n) such that li is al.readJ a
atomic formula (i.e., li does not contain
then 1i'=li;

£u1ly annotated
loca.l variables)

·6) .I.et i E [1,n] be such that 1i co.ntains at least a local
variable .x, then one of the £olloving cases ho.lds:
1) 3 j e [1, n), such that i 7 j and lj• · contains an occurrence

of X0uT. Then each occurrence o.f JC is replaced in li • by
XIN •

2) v, j E [1.n], suc.h that i;tj, lj• does not co.ntain
occurrences of .XouT, then:
a) if li contains exactly one occurrence of x, then the

occurrence of xis replaced in li' by XouT•
b) if 1i conta.iJls p+1 occurrences of x, then the

following steps are performed:
the first occurrence of xis replaced in li' hJ
XouT and all the other occurrences by renamings of
x annotated tJ OUT.

- .let .x 1 ouT , ••• , xp ouT be the above introduced
annotated renamings for .x. Then

EQp (x ,N , :z:1 IN , ••• ,xp,N)
is the atomic formula lu•, for some u E [n+1,m],
added to t:he right pa.r~ of the'tra.nsformed clause.

• !

10

4.5 Exa.mple

As aD example of computation, 1et us
computation of -O{c1) and U(c2) in the case of
predicates for the addition:

c1: +{O,y,y) <--
c2: + (s (x) ,:t ,s (z)) <-- + (x,.r ,z)

w.here sis the successor function.

consider the
the fol.loving

U(c1t={+{0,1·,N,y1,N) <-- EQ1(y 1N ,y1 1N) (1)
+(O.,y,N,1ouT) <-- (2)
+(011ouT•Y1N) <-- (3)
+(O,youT 1 YoUT) <--} (4)

U(c2)={+(s(x 1N),Y,N1s(z 1N}} <-- +{x,N,1,N,z,N) (5)
+(s(x,N),J~,S(ZouT» <-- +(x,N .J,N ,ZouT) (6)
+{s(.x,N) ,YouT·,S{Z,N)) <-- +(x,N •l'ouT'z,N) (J)
+(s(x,N) •IouT ,s(ZouT)J <- +(x,N ,YouT ,zouT) (8}
+{s(X 0 UT) ,Y,N ,s(z,N)) <-- +(XouT•.Y,N ,z,N) (9)
+ (s (XouT) ,y IN ~s (ZouT)) <-- + (.XouT ,Y,N ,ZouT) f10)
+{s(xouT> ,YouT ,s(z,N)) <-- +(XouT•IouT ,z,N) (11)
+(s(XouTl,Y 0 uT ,S(ZouT)) <-- +(XouT,YouT ,zouTl} (12)

llote that U {c1) and U (c2) are unique.

4.6. Remarks about U{c).

Because of Proposition 4, some properties, already given for
the set U'(c), hold for the set O(c) as vel.l. In the
following, we state the properties vhich hold for the set U(c)
and we show hov the clauses in U{c) satisfy t.he conditions
give11 for the anDotated clauses of J.CA/1.

f.[.QJ?QSiti.Q!! j~
Proposition 1 holds in the case of O(c) also. However, U{c)

could contain exactly one clause c•, such that c 7c•, depending
on the occurre11ce of .local variables inc •

.f!:.2122siti.2.D ~
Proposition 2 holds in the case of O(c) also. In fa~t. i.n

addition to the non-unigueness of U'(c) (caused by step J.2),
step 6) could hold for more than one U(c) for similar
motivations. The remarks given about U'(c), concerned vith the
choice of the best atomic formula, apply to U(c) as vell.

ftOEQ§itJa~_g 1~
. Properties of u• tc}, involving only the clause conclusion,

obviously hold even for U(c), namely properties 1 and 3 of
Proposition 3. in addition, clauses in U(c) satisfy Properties
2 and 4 because of steps 5) and 6).

5.29

11

we vil.l now show that, if
condi~ions given for the cl.auses
Section 2 are satisfied.

Proposition 3• holds, t.he
of the 1anguage introduced in

- Condition 1 Point 1 is achieved hy
Ri:oposiilon J'•, because, vhen it is applied
atomic formula, the first case holds. Point
by property 2• of Proposition 3 1 •.

property 4• of
to the conclusion

2 is guaranteed

~gitioB 1 The condition immediate1y £oll.ovs from property
'4 1 of Proposition 3•.

- Condition 3 The condition is guaraateed by property 1• of
Proposition -3•.

As a final remark 1et us note that property 3 of Proposition
3 is not. Essential aDd follows directly from the other
properties in the Proposition.

Fina1ly, a few -w.o.rds about the goal. A goal. is a special
clause structure whose left part is •empty", and, thus, it only
has 1ocal variables. The com~utation of U'(c), in the case of a
goal c, is the set {c]. Given u•(c)={cJ, the computation of
U {c) proceeds as inA:;he case of any other clause structure • .It
results in the-· set {c71) whose unique clause is a fully
annotated goal and satisfies all'the above propositions.

4.7 E:xamFle

As an example of a goal computation l.et us consider the
foll.owing clause c:

<-- + l31 u, V)
The computation of c is:

U (c) = {<-- + {3,uOUT ,VouT) J

Note that the solution is unique.

5. The language interFreter.

Whil.e .mentioning the laiiguage features, ve pointed out i.n
Section 2 how LCA/1 is a ge.nerali2ation of LC!, proposed for
functional (even if non-deter.ministic) computations in
.Prolog-like programming envirome.nts. 7hus the l.anguage
:interpreter we propose is defined al.ong the same l.ines of the
·tcA interpreter given in [11). it has a simil.ar algebraic
definition and it handles some features, like lazy constuctors
and streams, in exactl~ the same vay.

Nevertheless, some relevant differences must be considered,
mainly with respect to:

the evaluation order of the goal atomic formulas;
- the clause unification mechanism.

I
I • 530

12

5.1 The evaluation order and the demand driven rule.

The evaluation order of atomic formulas in a fully annotated
goal is established on the basis of a demand driven rule.

Each fullJ annotated goal contains so~e of the fol.loving
three types of atomic formulas:

1) constant formulas: atomic formulas whose terms are only
constant terms;

2) inJ?!!t formu1~2: ··· atomic formulas whose terms ai:e either
constant or input terms and contain at least.one input term;

3) output formul~: atomic formulas containing at least one
output term.

The first t:110 types of formulas correspond to foraulas which
only put constraints OD the goal or on the values of the
variables occurring in the goal. As a matter of fact, atoaic
formulas, whose predicate symbol is EQp, are of the second type
and their evaluation constraints the evaluation of the formulas
which use the same variables. Annotations allov us to define
.9.!QRil each variable annotated bJ OUT which occurs in a goal
and such that:
+ the varia.b1e does not occur annotated by IN in the goal

or
+ the variable occurs annotated by 1N in input formulas only.

Xhus a goal could be partitioned into two parts. One part
consists of the set of all t.he atomic formulas which contain at
least one occurrence of a global. This part provides the
computations of the "results11 of the goal evaluation.

The atomic formulas of the second part do J1ot contain
globals and -0nly provide the computations of intermediate (and,
possibly unessential) values.

The evaluation of a goal proceeds as follows: the constant
formulas are evaluated first, then the iDput formulas
containing globals are considered. Finally, when the goal does
not contain any constant nor input formolas with globals, the
output formulas which contain at least one global are
evaluated ..

The evaluation of an atomic formula of the secoDd or third
type could require the evaluation of output formulas .includi11g
atomic formulas not containing globals. In the case of the
evaiuation of formu1as not containing globals, 1nput formulas
are evaluated first.

Note that the order is statically defined by the
input-output relation among atomic formulas. The relation is
i.Ilduced by the occurrence of the same variable aJ1J1otated by IB
and OUT respectively in different atomic formulas. The relation
we have defined is a .E.grtia1 order. Hence the choice of the
formula, where more than one choice is possible, is unessential
to a right seguentialization of ~he computation.

52>1
13

5.2 ~he clause application mechanism

The c.lanse application •echanisa allows to app1J a clause to
an .atomic :formula in the goal, and·resu.lts in the eva.luation of
goa.l atomic formulas._ Whenever the· value of a variable is
needed to app.ly a . cl.aase, the . : atomic formal.a computing that
variab1e is ~e.lectea (by the Demand Driven Bule) for the
eva.lu·ation. ·

The mechanism is •a.inly based on a tern unification
mechanism vhich·provides:

• the binding of -the .input · .. variahl.es which occur in the
coac'J.usion atomic formula of the c.lause with the
correspondi.llg input or constant terms of the goal ato■ic
formula; ·

• the binding of the output variables which occur in the goa1
atomic :formula with the corresponding output or constant
terms of the coDClusion atomic formula of the c.lause.

Thus, the application of the unification to teras is not
symmetric. In fact, unification behaves, on one haad, like a
match of input terms-·in the goal atomic formula to input terms
in the clause conclusion, and, on the other hand, 1ike a match
of output terms in the clause conclusion to the output terms in
the goal atomic formula. . .

The unification of a term in the goal atomic £0.rlllula, tg,
with the corresponding term in the clause conclusion, tc, has
the fol.loving properties •

.fn>Eosition .2
The term tg is unifiable vit.h tc if one of the fol.lowing

cases holds:
_1) tg is a constant ter11;
2) tg is aD inFut term and tc is either an input or a coDstant

t-erm;
3) tg is an output term and tc is either an output or a

constant term •

.f.I:op9sition §
The unification of tg and tc results in the pair of unifiers

(.a ,N•~ouT) respectively fer input and output variables, i£ and
only if:
1) tg is a constant term and .a,N is such that:

tg = [tcJ.,
II, IN

Note that, if tc is an output term, the unification
requires the evaluation of the right part of the clause in
order to compute the output variables occurring in tc.

2). tg is an input term and i..,N is such that:

tg = [tcJl
IN

.. ~32
14

In this case, the unification could require the
evaluation of the goal in order to compute the variables
occurring as inputs in tg and corresponding to terms
(different from varia£1es) in tc.

3) tg i.s an output term such that:
3.1) tg is an output ~ariable. Then

= tc

that is, louT contains a binding oft.he variable tg to
t.he ter.m tc. Moreover, tc must be a constant term o.c an
output term containing only output variables.

3.2) tg is a term of the form f(tg1, ••• , tgk) (where f is a
data constructor and at ·least one of the tgi•s is an
output term), then:

{tgJ'l = [tc] 1
AouT ,., IN

If this iilii. :the case and if tc is an output variable,
the unification needs the eva1uation of the right part of
the cl.ause to obtain for tc the term f(tc1, -~•• tck).
Then, the unification· proceeds through the unification of
tgi, tci for .each i. from 1 to k.

Note that, because of 3.1, if. t.c is an output variable, its
value f(tc1, ••• , tck) contains output variables on11- Thus, to
obtain an uni:fica tion, tg must also be a term containing output.
variables only. ·

A special case arises when ~c is an output variable which
does not occur in the right part of the clause, i.e. there a.ce
no atomic :formulas in the goal which can compute values for the
variable • .In this case the variable is considered bound to all
terms of the Her.brand Universe, and the value of the variable
is denoted by HU. The match of such a variable to an output
term tg must bind the variables in tg to HO also.

5. 3 .Exam.Ple

As an example of a computat.io.n of a ful.lj' annotated program,
let us consider the evaluation of the goal in the exalllple i.n
4.7 with the clauses U(c1) and U(c2) in 4.5.

<-- '+ {3, U OiJT I VOUT)

resolved by {8)

with:). ~H: {J:~N =2}

i:uT= (UOUT -=1~uT ,voUT =s(z!uT)}

deriving:

15

(8)

f8J

i:N ·= {X~N =OJ
') 2 _ '! "1 1 · _ 2 -1 _ 2
"'ouT- "'ouTU{.YouT -youT • 2 ouT-S(ZouT)}

<-- + (0,_l'!uT ,z!uT)

{4)

.· 3

l,N = {}
'!3 '12 { 2 _ 3 2 _ 3 }
"'ouT= "'ouTU YouT -YouT • 2 ouT-YouT

-·□
'I• - 13 U {v3 =HU J "'ouT - "'ouT .l OUT

6. Conclusio•

.The design of new machines for logic based 1anguages,
including the functio~a1 ones, reguires the project of
unconventional architectures oriented to efficiently handle the
language computation rules.

Thus it is important to define a (small) nucleus of
primitive rules which, on one hand, guarantees to express each
language computation step and, on the other haDd, becomes a
model to tailor the language architecture.

In this trend, we have considered the selection
formulas in the goals of a ~rolog computation. As
fact, the selection has a remarkable relevance in
i~plementation because:

of atomic
a mat·ter of
the Prolog

the selection affects the efficiency of the computations:
i.e. it 4 can cause too 1ong computations;
the selection reguires a specific mechanisa vhich. can even
affect the efficien~y of the mecbanism to handle the
non-determinism.
Actually, t:he selection is handled. in two dif£erent vays.

The first, common to all the Prolog implementations, makes a
static seiection. This is achieved either by ordering the
atomic formulas from left to right (12], or bJ using
annotations {SJ. The former does not cope vith · ezficiencJ,
while the latter looses the declarative transparency and.does

16

not guarantees efficienci.
The dynamic handling of the selection is the second approach

[13). it allo.s e££icient computations but requires mechanisms
which are complex and hard to build.

A promising solution to this problem seeas to be a
compilation of the Prolog clauses illto fully annotated clauses.

An annotatio~ assigns a role to atomic formulas bJ
distinguishing between the one vhich, for a given variable,
must compute a value and the ones vhich will use that value •
.In this va.1, a functional. dependency is statically imposed on
the atomic formulas. Then the selection is handled by means of
a demand-driven mechanisD •

.In addition to it, the proposed compil.ation allows us to
reduce both the overhead of the unification mechanism (vhich
becomes a •atching mechanism) and of the computation
environment (onlI the output terms unifiers, AouT, must be
kept).

However, some opeB guestions can be considered.
The firs~ is the choice of the object program when more than

one is possible. The choice is semanticall.y unessential (as ve
will point out in the foll.owing) and does not affect the design
or the efficiency of.the tlemand-driven mechanism. However, it
is essential .in order to .shorten the computations.

Given a sets of Horn clauses, the choice solutions are
strictly related to a selection function vhich guarantees, for
each goal for s, a derivation (if any) with the smallest
number of· input clauses [14].

The use of partially anDotated clauses (cl.auses like those
occurring in u• (c}) together vith the results concerning the
superposition [15] seems a promising approach towards the
definition of such a functioD.

.For what the semantics is concerned, it is
that any object obtained by the compilation
eguivalent to the original Prol9g set of
program).

si.mple to prove
is semantical.ly
clauses (source

proble~s arising from
the derivation of the fullj

case of the LUSH resolution

The proof could ignore the
superposable clauses and show that
annotated clauses is a special
applied to .Horn clauses.

Finally, the progra.mming environment, the proposa1 al.lows to
define, deserves some remarks.

Programming applications often need to integrate declarative
programming vith procedural one. Such an integration will
allow to easily combine declarative and procedural knowledge
(i.e. algorithms) and is currently been pursued by several
projects, notably Bobinson•s LOGLISP [16~

. To obtain it, attention has to be put on the integration
level which must allow, on one hand, to easily merge
declarative with procedural computations, and on the other
hand, to maintain, as small as possible, the nucleus for the
different types of computation.

· 17

LCA/1 seems a good candidate for the integration level, in
particular it allows the same nucleus to compute both
declarative and procedural programs. !oreover, the proposed
compile£ could he 1ightly aodi£ied in order to be ·applied to
programs of partially annotated clauses, thus including pure
Prolog programs, l.CA_ programs and programs whose clauses
contain both Prolog and I.CA atomic £oraulas.

,ll.FEBBNCIS

[1) Kowalski, B.A. Predicate Logic as a Prograaming Language.
Information Processing '74, Borth· Bolland. 1974, pp.
556-5711.

[2] Kowalski, B. A. Logic
Intelligence Series,
1979 •.

for Probiem Solving. Artificia1
H.J. Nilsson Ed., Borth Bol1and,

£ 3] Logic Prograia11ting •. CJ.ark X. L •. · and S. A. Tarn1und Eds. ,
Academic Press, 1982.

[4] Proceedings of the 1st I~t•l Logic Programming Conference.
Marseille, 1982.

[5] Clark, K •• .Mccabe, F.- and Gregory, S. lC-PBOtOG Language
Features. In { 3], pp. 253-2.66 ...

{6] Gallaire, H. and Lasserre c. HetaleveJ. Control £or Logic
Programs. in [3], pp.173-185.

(7) Pereira, L.M. and Porto, A. Intelligent Backtracking and
Sidetracking. in Horn Clause programs - The Theory.
Departamento de Informatica, Universitade Bova de Lisboa,
Bep. 2/79 CIUNt, October 1979.

[8] Kowalski* R.A. Algorithm=Logic+Control. Comm. of A.C.M.,
22, 1979, pp. 424-431.

(9] Bellia ~-, Degano P. and Levi G. The call hI name
semantics of a clause language vith functions. In [3], pp.
281-298. .

(10]Bellia, H • ., Dameri, L, Degano, P., Levi, G. and Martel.li,
.rs. Applicative Com.municating .Processes in First Order
Logic. Lecture Notes in Computer Science, 137, Springer
Verlag, 1982, pp. 1-14.

[11]Bellia, a., Dameri, E., Degano, P._Levi, G. and ttartelli,
!. A lormal ~odel for Demand-driven I.mplementatiODs of
Rewriting systems and its Application to Prolog Processes.
I.E.i • .Internal Beport. IEI-B81-3, 1981. .

{12Jaoss, C. 7he comparison 0£ several Prolog systems. 2roc.
of First Logic Programming Workshop, Debrecen,
1980,pp.198-200. ,

[l3)Pereira, L.H. and Porto, A. Selective Backtracking. In
[3 J, p:p.107-116.

[14)Hill, R. LUSH-Resolution and its compliteness. DCL !!emo
No-78, Dniv. of Idimburgh, 1974.

(15JSato, !I. and Tamaky, H. Enumeration of success patterns in
Logic Programs. 70 be presented at 10th ICALP.

(16)Robi.nson, J.A. and Sibert, E.E. LOGLISP: an al.ternative to
PBCLOG. Machine Intel1igence No.10, 1982, pp. 399-420.

