
ABSTRACT

LOGIC DAT A BASES VS DEDUCTIVE DA TA BASES

Working Paper to be presented at the

Logic Programming Workshop 1983

ALBUFEIRA - PORTUGAL

Herve GALLAIRE
Laboratoires de MARCOUSSIS

Centre de Recherches de la C.G.E.
Route de Nozay

91460 MARCOUSSIS - FRANCE

608

The area of data bases is the area of Computer science most likely to be inves
ted by a new methodology -should one say a new technology- based on logic
programming. This survey investigates various approaches to the merging of
these two worlds, trying to straighten out the advantages, problems and applica
tions of each of them.

INTRODUCTION

The area of data bases is one more area of computer science subject to being
taken over by a new methodology -should one say a new technology- based
on logic programming. This paper surveys the various approaches to merging
these two fields, depending on viewpoints adopted for one's problem analysis ;
the logic data base field starts from logic and tries to enhance it with data
base assets, be they data access techniques or data base features ; on the
converse deductive data bases are built from existing data base systems by
enhancing them with deductive, and other, capabilities. These two viewpoints,
although yielding different systems and being interesting for different types
of applications and goals, are rather complementary and share many common
problems. The paper concludes that enough of the theoretical aspects of the
deal are well-known and that it is time now for practical applications as well
as theoretical improvements.

The paper is divided into five sections. The first section presents the four
approaches to linking data bases and logic ; the first three to be described
in sections 2 through 4 adopt the logic viewpoint and culminate into full blown
logic database ; section 5 presents the deductive database approach.

60'7

One should take note that the modeling power of logic databases will not be
discussed in this overview because the paper does not deal at all with work
on knowledge representation formalisms.

Section I : Logic programming - Data Bases

The first to realize the potential of logic programming for data bases was
probably C.GREEN (1) who, although he did not know about logic program
ming which did not exist at that time, described how to connect logic-based
Question-Answering system to data Base systems. Since that time various
papers, books and workshops dedicated to that subject have brought up
the subject (2, 3, 4, 5, 6) without fully clarifying the relationships between
the two fields. ·

In order to study this relationship closely, we first decompose a logic pro
gramming system and a data base system into their respective components.
A logic programming system, PROLOG being the most well known example
of them, is made of a deductive component (A) and of a rudimentary access
component (B) which provides the· deductive component with individual
tuples ; the query to A may be a relational expresssion (usually a negative
clause in PROLOG) ; the interface between A and B is a relation.

A database system is made of a data description and data manipulation
component (C), a data access expression optimizer (D), and a data access
component (E) ; query relational expressions are submitted to (C) or to
(D) ; interface between (C) and (D) is a relational expression, usually of
the relational algebra ; interface between (D) and (E) is at the relation
level, bringing back full sets of tuples instead of individual tuples as (B).

A B
i

lpression

! ► Deduction
Relation Acces

elementaire
par n-uple !

Repr. Connaissances I
I ' -------- -- -- -

-~-.

escription des Donnee

Manipulation
des donnees

C

Expressi<2_n ...

Acces evolue
jointures, •••

D

Acces direct

►

Relati~n
-

Acces optimise F
par relation

E

With such decompositions in mind, four types of connections can easily
be thought of :

PROLOG+ : Some relations are defined as being managed by a mechanism
of type E, thus giving a system made of :

A #(B+E)

PROLOGDB : PROLOG formulas can be considered as being a full fledged
query language for a database access system (D-E) ; thus
we obtain :

A#(D+E)

Logic Data Base : This is the natural extension of the previous two approa
ches where one builds above or aside PROLOG a true data base system,
with a description and manipulation language, including capabilities for
integrity constraints expressions etc... Although it is not necessary to include
capabilities of type D or E they will be included if only for performance
reasons ; thus we obtain :

C#A#,(D+E)

with C # A as a minimum system.

Deductive Database : The goal here is to provide extensions to conventional
database systems which have well-known limitations,
if only for the query languages which need to be
embedded into foreign programming languages. The
systems so obtained are of the type :

A# C#D#E

or even C'# A #C #D #E

when one combines this deductive database approach with the logic database
one. Logic covers various aspects that the query language covers inade
quately: views, optimizing techniques, theoretical understanding of important
problems such as incomplete information handling, ••.

611

Section 2 : PROLOG+

It is known that PROLOG-like access to individual data is not well-suited
to relations which would be stored in secondary memory, due to the fact
that data is requested one at a time. Also it is known that even in primary
memory there are ways to index data which make it faster to retrieve
(e.g indexing on specific fields of a relation rather than sequential access
on its name). On the contrary database systems are very much concerned
with the efficiency of data retrieval. PROLOG+ systems are nothing more
than systems in which some relations have been declared as database rela
tions or DB-relations and handled by a DB-like access mechanism (indexing,
B*-tree, multiple hashing, •••). Such systems have already been built ; PRO
LOG-like access is simulated for the DB relations by buffering the set
of tuples retrieved in one operation, and giving PROLOG one tuple at a
time from this buffer. See eg (7). It is clear that this approach is an easy
way to enhance PROLOG, and for some well defined large applications
of PROLOG, worth implementing. It is surprising that no such a large scale
application has been reported up to now.

Section .3 : PROLOG BD

Recall the configuration of such systems :

A_#(D+E)

Such a system can be seen as a PROLOG+ system in which instead of inter
facing with the DB system at the relation level, one interfaces at the resol
vent level : given DB-relations, given other relations (called PROLOG rela
tions or P-relations to distinguish them from DB-relations), given a PROLOG
program including clauses mixing P-relations and DB-relations, one would
like to optimize access to P-expressions i.e. to expressions containing P
rela tions only, rather than to evaluate each P-relation when, in the deductive
part of PROLOG, it becomes the leftmost literal of the resolvent (as done
in PROLOG+). There are several ways to do this which are examined below.
First let see why one would want to do such global retrieval as opposed
to an individual, relation-based retrieval ; among the possible reasons one
which is most appealing is that it is known that DB systems behave more
efficiently than virtual memory systems, that they have quite efficient
optimizers, that they offer set-operators which can be very much optimized
and even executed through specific hardware (the database machines).

The connection sketched above is in principle easy to imagine. A major
initial decision to be made is how much control over the evaluation process
is left to the programmer ; in other words the decision is to be made whe
ther the programmer can decide (i.e can tell the system) when a (sub-)
expression is to be sent to the database system, how much data is to be
brought back, etc.

Making such a possibility explicit in the hands of the programmer requires
an extension of the logic language, namely that a set of system predicates
be added which allows to express information about retrieval, insertion,
deletion, etc., thus makin,g a "data sublanguage" out of PROLOG by exten
ding it. Such an explicit control has been defined and advocated in (8) ;
it could be a basis of some of the 5G languages. One could perharps also
adapt to DB the technique of (9). These approaches are certainly worth
experimenting, but we believe it is not easy : it is certainly not a simple
matter to find logic programmers knowledgeable enough to make the right
decisions about these retrieval expressions. Nevertheless it is the one which,
in the short term, could prove the most effective ; one should bear in mind,
though, that some DB researchers express concern about optimization pro
blems and believe that DB access optimizing is a formidable task that
needs much processing power, which is sometimes· counter-intuitive, and
which is usually better carried out by general programs.

If the responsability of the decision is to be taken by the system and not
by the programmer, it remains two basic roads. The first is the compilation
technique in which one translates an initial request into a DB-expression
which is then sent to the DB-system ; thus there is a clear cut separation
between deduction (generation of an evaluable expression) and access. The
second technique is the interpretation one, in which both processes are
intermixed.

. 9!meilation

This technique has been widely studied (10) and has led to several implemen
tations and approaches depending on the complexity of the logic program.

Case l

There is no recursive axiom in the program for defining P-relations
in terms of DB-relations.

This case is without difficulties. There are two ways to deal with it.
One can modify the logic interpreter so that it delays evaluation of
DB-relations until the resolvent involves DB-relations only ; this might
perharps be done by ·· using Geier (Freeze) predicate from PROLOG
II. Alternatively one could write a translator which acts as a meta-inter
preter as done in (11, 12).

Case 2

There exist recursive axioms in the program ; an example of such
a case would be a transitive closure relation supposed to be a P-relation
and defined in terms of itself (hence the recursivity) and a DB-relation.
Whereas in case l all that was to be done was a macro-expansion,
one is now confronted to a true program generation problem ; at least
in principle two classes of solutions have been studied :

pseudo-compilation : This is an extension of case 1, i.e the recursive
program is not translated into an iterative one,
or into an evaluable formula ; rather it generates

a sequence of evaluable formulas each correspon
ding to an alternative solution used on backtracking
when the logic interpreter, or the user asks for
additional solutions. An example extracted from
(7) follows :

given ancestor(X, Y) + parent(X, Y)

ancestor(X, Y) + ancestor(X,Z), ancestor(Z, Y)

and a query + ancestor(X, Y)

the system will generate the following evaluab~e formulas :

[edb(parent,X, Y)] then

[edb(parent,X,Z), edb(parent,Z, Y)] then

[edb(parent,X,Z), edb(parent,Z,Z 1), edb(parent,Z 1, Y)]

where edb(parent,-,-) is a relation evaluable by the DB ; such formulas
evaluation can be optimized. Other examples show that additional
capabilities (one should notice the example used a non-trivial recursion)
such as negqtion and mixed relations . can be handled too. A mixed
relation is a relation defined by a program which includes assertions
i.e positive litterals as well as conditionals (general axioms as above).

Although such systems are, in principle, simple enough, their drawback
is a redundancy which is obvious from the example above : consecutive
formulas share common literals which will be evaluated several times ;
getting rid of this redundancy at the deductive system level amounts
to a true compilation (see next) ; getting rid of it at the DB level
is not a classical operation of such systems.

True compilation : It is possible to generate truly iterative programs
involving purely evaluable DB-relations starting
from recursive logic programs including both P
relations and DB-relations. Several techniques have
been proposed (13, 14, 15).

In (13) recursive programs of the regular type (in the formal language
sense) only can be handled ; it is not surprising that such a class of
programs can be translated into iterative programs, as this is well
known from automata theory. In (14) various extensions to the regular
programs are given, without reaching the full power of logic programs.

(15) describes the most general approach as of to-day, it is based on
connection graphs, a well-known technique (16) ; the basic idea is to
generate a program which is a loop around the cycle(s) in the connection
graph, collecting all DB-relations involved in this process until the
exit of the loop. A simple example is in order (15) : given the following
connection graph and a query s(? ,a).

1p(Wl,Zl) l t(Yl,Zl) , s(Yl,Wl) , s(?,a)

7m(Xl,Yl) , t(Yl,Zl) s(Xl,Zl)

, f(Yl,Zl) t(Yl,Zl)
corresponding to the program

s(Xl,Zl) + m(Xl,Yl), t(Yl,Zl)

t(Yl,Zl) + s(Yl,Wl), p(Wl,Zl)

t(Yl,Zl) + f(Yl,Zl)

with p,m,f DB-relations, the program to be generated goes along the
loop collecting p-tuples, each of them driving an inner evaluation
loop of m-tuples and f-tuples as can be seen by looking at the succes
sive evaluable formulas :

m(?,Yl), f(Yl,a)

m(?, Y2), m(Y2, Y 1), f(Y 1, W2), p(W2,a) (r2)

m(?, Y3), m(Y3, Y2), m(Y2, YI), f(Yl,W2), p(W2, W3), p(W3,a) (r3)
•

The program is :

Zl = a
edb(p,W2,Zl); edb(m,X,Yl) ; edb(f,Yl,Zl) ; print(X)
enqueue(Q, W2) values of W2 will drive an outer loop
foo = m(X2, Y2), m(Y2, Y 1), f(Y 1, W2) to be evaluated, starting from

f for each value of W2
i = 2
while (Q I empty) do

od

while (Qllempty) do W2=Deque(Ql) ; edb(foo) ; print(Xi) ; od
does what was expected, see(r2) above

Ql = Q

Q = empty
while (Ql I empty) do W3 = Deque(Ql) ; edb(p(W2, W3) ;

enqueue(Q, W2) ; od
collects now values for W2 as in r3 above

replace m(Xi,Yi) by m(X. 1,Y. 1), m(Y. 1,Yi) in foo; i=i+l
i+. l+ l+ prepare for a new outer loop

This program is, on the surface, satisfactory ; the authors state that
its only limitation is due to the fact that the form of the initial querv
must be known (here s(?,a)). There may be another difficulty which
is that, in order for the program to stop, the enqueue operation is
not a mere "push" : it must check that the value has not been pushed
i.e. enqueued before ; this may be a practical limitation of the system.

Another approach, without any . of these limitations maybe under way
(17) but not enough is known about it at this time.

Interpretation

These techniques intermix deduction and evaluation steps ; in fact
what was described in section 2 for PROLOG+ was already an interpre
tation. Other schemes have been presented, starting from the idea
that unification done tuple at a time was not precisely adapted to
systems in which DB-relations were handled ; such a case was argued
in MRPPS (4) where the concept of Il-unification was developed. A
more systematic study in terms of PROLOG implementation is described
in (11) where the basic idea is the . following : rather than storing at
each node of the proof tree the whole set of unifications (as a table),
it is possible either to store a unification set only at the root and
to store at each node the computation rules which will allow to compu
te their new unification sets from their parent node, or to store unifi
cation sets at the leaves and at each node the information which allows
to compute their unification set from their descendent nodes. Examples
are described in (11) although a complete implementation of PROLOG
based on this has not been realized.

Such techniques would be interesting for parallel PROLOG implemen
tations.

Section 4 : Logic DB

This approach is the most natural one for all those who believe logic pro
gramming to be a universal programming language. Their arguments are
strong, we adhere to them basically. A database, as seen by KOWALSKI
(6,18) is a collection of HORN clauses including functions if one wishesto
(already an extension of conventional DB), atop of which it suffices to
build DB functionalities.

A starting point is that PROLOG, including its set-of extension is relational
ly complete, i.e. can express all queries expressed in relational algebra,
the common base language to all relational DB systems (with operators
such as union, projection, join, division, •••) ; such a result although interes
ting is well-known since CODD results on equivalence between relational
calculus (i.e. logic) and relational algebra. Of course the set-of construct
gives all that is needed to express aggregation constructs, averages, •••

However, PROLOG and logic provide more than a conventional query lan
guage because the expressive power of logic programming is at least that
of least fixed points, an example of which being transitive closures :

lfp(R,R*) can be expressed as a simple PROLOG program computing the
least fixed point R* for any PROLOG relation R. In specific cases, it
is simpler to compute the closure directly, as in

ancestor(X, Y) + parent(X, Y)

ancestor(X, Y) + parent(X,Z), ancestor(Z, Y)

Some limitations of the approach should nevertheless be phrased :

- It must clearly be connected to a DB system as described in Section
3 if only for efficiency problems ; this is clear for example in (19)
where a set of queries to a DB system expressed in PROLOG had
to be optimized before being sent to the DB system ; although one
could argue that one of the major difficulties (duplicates) in the
answers came from the PROLOG evaluation scheme itself, not from
logic, this is still a problem to be faced in general.

- HORN clauses, if relationally complete, are not sufficient to express
naturally all queries that one would like to ask using logic itself
(6,18) : find all suppliers · supplying all pieces needed for project
"au.

Such a query. involves conditionals within conditionals ; this is tran
slated into negation within the body of a clause and is not properly
handled by PROLOG unless specific attention is paid.

- Iritegrity constraints, time-constraints involves additional mechanisms
which resemble plan-generation techniques ; non-monotonic reasoning
is also necessary ; possible solutions are presented in (6,18,20).

Some realizations have been reported along these lines, eg (21,22). The
first one is a PROLOG implementation of QBE, while the other is a des
cription of a system where PROLOG is an intermediate language target
for a QBE external language as well as an SQL external language and a
relational algebra external language. In the PROLOG implementation of
QBE (21) it is shown how to simply take into account integrity constraints
on inserts and deletes using a technique which was also used in (23), the
catchall clause. That logic database approach is typically an approach
which is closest to Artificial Intelligence, at least to the theorem proving
part of Artificial Intelligence if not to the knowledge representation one.
Systems built in that perspective include (4, 24). Powerful non-HORN theo
rem provers can be used, plan-generation techniques can be expressed.

G11-

Section 5 : Deductive Data Bases

The bias introduced in developing deductive database systems is that DB
systems can be enhanced by adding to conventional retrieval capabilities
of data explicitly introduced, that of retrieval through deduction mechanisms
using general laws. This extension, introduced at first purely for retrieval
purposes turns out to have many more facets which are briefly examined.

Conventional DB's manipulate facts only (the tuples of the relations). The
general laws they use are so-called integrity constraints (IC), used to vali
date updates of facts. All queries are evaluated with respect to facts
only.

In deductive DB's general laws can be partitioned in two sets : IC's and
deductive rules (DR). Queries are then evaluated with respect to facts
and DR's. But IC's will also need to be evaluated with respect to facts
and DR's. This makes it more difficult of course to check IC's which thus
require deductive capabilities. Deductive databases (DDB's) are made of
a collection of solutions to various problems whose conventional solutions
in DB's have to be adapted in this new context. To understand these new
solutions, old problems and solutions must first be reviewed.

Conventional DB's enforce implicit assumptions for retrieval :

- Closed world assumption (3, 36) : all facts not known to be true,
i.e not stored as tuples, are false

-, R(al , ••• ,an) iff < al , ... ,an > 4 R

- Unique names : elements with different names are different

'r/ b,c b-/:c

- domain closure : there are no other elements than those stored in
the DB.

The first two hypotheses combined allow negation evaluation (recall that
NOT is an operator in relational algebra). The third one allows evaluation
of queries such as 'r/ xP(x),... It could be dispensed of if one restricted
the allowable queries to meaningful subsets of the syntactically correct
queries, thus reducing to range-restricted queries.

'r/ x(Q(x) + P(x)) is evaluable without hypothesis(3)

while 'v xP(x) is not.

These conventional assumptions have to have counterparts in any formalized
view of conventional DB's. After this formalization is done, it is possible
to extend it to DDB's. Two formal views of conventional DB's have been
studied (25, 5) : a model-theoretic view (MTV) and a proof-theoretic (PTV)
one. Without going into details, the MTV assumes that the set of facts
is an interpretation E, a model, of a theory made of IC's and that query
evaluation is done in E, abiding to the above three assumptions. Although
such a view deals with problems such as query evaluation and optimization,

choice of conceptual schemas, etc ••• it does generalize to DDB's and incom
plete information problems. The PTV sees a conventional DB as a first-order
theory T plus a set of closed formulas, the IC's. The theory T is made
of facts (positive HORN formulas) and a set of particularization axioms.
These particularization axioms (Domain closure, Uniqueness of names,
completion, equality) are the formal translation of the above three as
sumptions. The DB is still not a DOB but deduction could be used to handle
T ; this may be unwise and in any implementation this is likely to be dealt
with at a metalevel, i.e integrated to the query algorithm. Nevertheless
PTV is very useful in terms of the generalizations it suggests :

- DDB's which are obtained via a third class of axioms, the deductive
rules (DR) mentioned earlier.

- DB's which allow disjunctive information, leading to incomplete
information (5, 26, 27).

DDB's are subject to new problems, in that the axioms introduced in T
may be inconsistent with some general deductive laws ; it is well known
that such is the case between disjunctive axioms and those (in T) accounting
for CWA.

, R(al, ••• ,an) iff { T,DR} \-f- R(al, ••• ,an)

cannot be accepted as such :

Cat(X) -+ Black(X) U White(X) (DR)

Cat(Felix) +

axioms in T

t-f- Black(felix) hence -, Black(Felix)

l-f- White(felix) hence , White(Felix)

These two informations are contradictory with the unique DR. Solutions
to handle this are partially known (5, 26, 27) and consist either in restricting
general laws (DR) to regular clauses with adequate axioms T' instead of
T, or in dealing with incomplete information systems.

It must be emphasized again that this theoretical view (regular clauses
+ axioms T') is not to be implemented as such ; again, implementation
goes through some meta-rules rather than using T' axioms ; for instance
negation as failure (33) and range-restricted formulas (35).

There are two ways to exploit a DOB. Most of the systems realized today
use the deductive approach where data is actually deduced when needed.
In the generative approach (28), deductive rules are used as generative
rules : each time data is entered, all information derivable from it, or
with its help, is derived and generated (stored in the DB) ; of course supres
sing data becomes a non-trivial process, akin to Truth Maintenance Systems
in AI since generation is similar to forward system in AI. The generation
task appears to be prohibitive in terms of computation overhead, but it
may not be so depending on the context of application.

Finally, one should note that DDB's are not yet fully understood ; however
they already permit various generalizations of conventional DB's among
which generalized notions of views, integrity constraints, query languages,
data dependencies studies, etc (29, 30, 31, 32, •••). Obviously, not all of
these notions have an acceptable treatment : among them one can mention
update of views, recursive DR's, checking IC's, etc.

It should be clear from the above discussion how close are some of the
problems which are dealt with both from the DB viewpoint and from
the logical one ; what to emphasize and how to solve problems, is where
these two fields separate.

CONCLUSION

In this overview paper, two main trends for enhancing data bases on one side,
logic on the other, have been examined. Both aim at bridging the gap between
DB and logic. One puts the emphasis on efficiency, the other on functionalities.
As a result there is no single logic & DB system : a taxonomy of systems inclu
ding DB's, knowledge-based systems, logic interpreters handling large sets of
assertions, etc can be developed ; corresponding to this taxonomy which is
rather intuitive and well-known, another one has been proposed here according
to the emphasis on logic or on DB's : PROLOG+, PROLOGDB, logic DB, deduc
tive DB. Yet, another- taxonomy is still . to be developed : it has to do with
the types of axioms that could be sufficient for the purpose of each type of
system corresponding to the above taxonomies. As an example, consider recursive
axioms : what is the complexity of such axioms when one adopts the deductive
DB perspective ? Isn't it sufficient to have the power of transitive closure ?
Then, isn't it possible to take advantage of such a simplification in the deductive
system to be built. Such questions are important and the task of finding such
a taxonomy is now to be undertaken. It may be presently undertaken in the
framework of the Japanese 5G Project which aims at the same objective :
bring together logic and database system. One should note that we have not
covered the use of logic as an implementation language for interfacing DB's,
e.g. for a natural language interface (19) or for menus and other tools (37).
Finally recall that an important topic has not been discussed here at all : the
knowledge representation problem and the contribution of logic databases to
it.

ACKNOWLEDGMENTS

Views expressed here result from many years of studies in common with J.M.
NICOLAS, and also discussions with J. MINKER ; our collaboration started
with the logic and databases publication and is still continuing. The influence
of R. KOWALSKI and of R. REITER's work should be obvious throughout.

(,2.0

REFERENCES

(l) GREEN C., "Theorem proving by resolution as a basis for Question-Answe
ring systems", Machine Intelligence 4 (MELTZER, B., and MICHIE, D.,
eds), American Elsevier Pub. Co., NEW-YORK (1969), pp. 137-147

(2) GALLAIRE H., MINKER J., eds, "Logic and Data Bases Plenum Press,
NEW-YORK (1978).

(3) NICOLAS J.M. and SYRE J.C., "Natural question-answering and automatic
deduction in the system SYNTEX", Proc. IFIP 74, North-Holland, AMSTER
DAM (1974), pp. 595-599

(4) MINKER J., "An Experimental relational database system based on logic"
in (2), pp. 107-147

(5) REITER R., "Towards a logical reconstruction of relational database theory",
unpublished manuscript

(6) KOWALSKI R.A., "Logic as a database language", Proc. advanced seminar
on TIDB, Cetraro (Sept. 1981)

(7) BRUYNOOGHE M., nPROLOG-C implementation", University of LOUVAIN,
1981

(8) MIYAZAKI N., "A data sublanguage approach to inferfacing predicate logic
and relational databases", ICOT report, 1982

(9) CLARK K.L. and Mc CABE F., "The Control facilities of IC-PROLOG",
In "Expert Systems in the Micro Electronic Age" (Ed. MICHIE), EDINBURGH
University Press, 1979

(IO) GALLAIRE H., MINKER J. and NICOLAS J.M., "An overview and intro
duction to logic and databases", in (2).

(II) CHAKRAVARTY U.S., MINKER J. and TRAN D., "Interfacing predicate
logic languages and relational databases", Proc. 1st Int. Conf. on logic
programming, MARSEILLE (Sept. 1982), pp. 91-98

(12) KUNIFUJI S. and YOKOTA H., "PROLOG and relational databases for
fifth generation computer systems", ICOT Report presented at CERT 82
workshop "Logical Bases for Databases".

(13) CHANG C.L., "DEDUCE 2 : further investigations of deduction in relational
databases", in (2), pp. 201-236

(14) MINKER J. and NICOLAS J.M., "On recursive axioms in deductive data
bases", Information Systems 7,4 (1982)

(15) HENSCHEN L. and NAQVI S., "Compiling recursive databases", submitted
to JACM (1982)

(16) SICKEL S., "A search technique for clause interconnectivity graphs", IEEE
Transactions on computers, Vol. C-25, n° 8, 1976

(17) NAQVI S., FISHMAN D. and HENSCHEN L.J., "An Improved compiling
technique for first-order databases", Presented at CERT 82 Workshop "Lo
gical Bases for Databases", Bell laboratories and Northwestern University

(18) KOWALSKI R., "Logic Programming", Invited paper IFIP PARIS Sept. 19-23

(19) WARREN O.H.D., "Efficient processing of interactive relational database
queries expressed in logic", Proc. 7th VLDB Conf., CANNES (Sept.1981),
pp. 272-281

(20) BOWEN K.A. and KOWALSKI R.A., "Amalgamating language and meta
language in logic programming", in "Logic programming" (K.1 CLARK and
S.A. TARNLUND eds), Academic Press, LONDON (1982), pp. 153-172

(21) NEVES J.C., ANDERSON S.O. and WILLIAM H., "A PROLOG implementation
of Query-by-Example", Proceedings 7th Int. Computing Symposium, March
22-24, 1983, NURNBERG

(22) LI O.Y. and HEATH F.G., "ILEX : an intelligent relational database system",
HERIOT-WA TT University, Dept. of Electrical and Electronic Engineering,
EDINBURGH 1982

(23) GRUMBACH A., "Knowledge Acquisition in PROLOG", 1st Int. Logic Pro
gramming Conf., Sept. 14-17th, MARSEILLE

(24) KELLOGG C. and TRAVIS L., "Reasoning with data in a deductively
augmented data management system", in Advances in Database Theory,
Vol.I (Plenum 1981), pp.261-295 (H.GALLAIRE, J. MINKER, J.M. NICOLAS
editors)

(25) NICOLAS J.M. and GALLAIRE H., "Database : theory vs. interpretation",
in (2), pp. 33-54

(26) BOSSU G. and SIEGEL P., "La saturation au secours de la non monotonicite",
These de 3e cycle, Universite de MARSEILLE-LUMINY, MARSEILLE (Jun.-
19 81), to appear in A .I.

(27) MINKER J., "On indefinite databases and the closed world assumption",
Proc. 6th Conf. on Automated Deduction, in Lecture Notes in Computer
Science, Vol. 138, Springer-Verlag, NEW-YORK (1982)

(28) NICOLAS J.M. and YAZDANIAN K., "An outline of BDGEN : a deductive
DBMS", Techn. Rep., ONERA-CERT, TOULOUSE (Oct. 1982)

(29) NICOLAS J.M. and YAZDANIAN K., "Integrity checking in de_ductive data
bases", in (2), pp. 325-344

(30) BLAUSTEIN B. T ., "Enforcing database assertions : techniques and appli
cations", Ph.D. Thesis, HARVARD Univ., CAMBRIDGE (Aug. 1981)

(31) PIROTTE A., "High level database query languages", in (2), pp. 409-436

(32) FAGIN R., "HORN Clauses and databases dependencies", J.ACM 29,4 (Oct.
1982), pp. 9 52-985

(33) CLARK K.L., "Negation as failure", in (2), pp. 293-322

(34) GALLAIRE H., MINKER J. and NICOLAS J.M., "Logic and Databases -
An overview and survey", Joint report CER T-CGE-Univ. of MARYLAND

(35) DEMOLOMBE R., "Utilisation du calcul des predicats com me langage d' inter
rogation des bases de donnees", These de doctorat d'Etat, ONERA-CERT,
TOULOUSE, Feb. 1982

(36) REITER R., "On closed world databases", in (2), pp. 55-76

{37) PEREIRA L., FIGUEIRO M : Relational Databases a· la carte, Centro de
Informatica, Universidade Nova de Lisboa, PORTUGAL

