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ABSTRACT 

This paper describes the basis of the design of a Prolog imple
mentation which is currently being built. This new implenenta
tion is intended to conbine a high degree of portability with 
speed and efficient utilisation of memory. Our approach is to 
compile Prolog clauses into instructions for a relatively 
high-level abstract machine. This abstract machine is imple
mented by an interpreter written in a high-level systems pro
gramming language ( C), giving a portable Prolog system. 
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well suited to 

is a small 
of the work. 

Some portability must be sacrificed, however, 
achieve the high speed required. The design is 
tailoring for particular machines, because ~here 
central core of the interpreter which does most 
This central core can be translated into assembly language or 
microcode ~hen necessary. 

An advantage of this approach is that it avoids the 
compiler/interpreter dichotomy found in DEC-10 Prolog and LISP 
systems with conpilers. All clauses are compiled, but conpila
tion is reversible so that it is not necessary to have a 
separate representation of the textual form of clauses. 

1. Introduction 

This paper describes some design principles behind current work at Oxford 
and Edinburgh Universities to build a new Prolog system. The desired qual
ities of the new system are that: 

(1) It should be highly portable. 

(2) It should be fast and 11se nemory efficiently; this requirenent 
directly conflicts with (1). 
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The approach we have chosen is to compile Prolog clauses into code for a 
relatively high-level (i.e. Prolog oriented) abstract machine. This 
abstract machine is implemented by an interpreter written in a high-level 
systems programming language (C). The compiler, and many of the evaluable 
predicates, are written in Prolog itself. This approach has allowed us to 
get a preliminary version of the system running fairly quickly. 

However, this system as it stands will not meet our requirement for speed. 
A certain amount of non-portable work will be necessary in order to achieve 
high speed on particular computers. Our intended methodology is to 
translate the most heavily used parts of the C code into assembly code, or 
microcode where possible (e.g. on the ICL Perq). This non-portable work 
is minimised because the central core of the interpreter is simpler and 
smaller than that of a direct Prolog interpreter. 

We have opted for the sructure-copying method of [Mellish 80) and 
[Bruynooghe 80], rather than structure-sharing [Warren 77}. An important 
reason for this is that structure-copying is expected to give better local
ity of reference and therefore better paging behaviour on virtual memory 
sys.terns. Another advantage is that it allows us to dispense with holding 
the Prolog form of all the clauses in the heap: our abstract machine is so 
arranged that we can reconstruct these terms when they are needed (i.e. in 
the implementation of the evaluable predicates 'clause' and 'retract') by 
effectively decompiling the compiled form of the clauses. 

Our storage management strategy is basically that of [Warren 77), i.e. 
there is a heap containing the program, a "lo.cal" stack for control infor
mation and variable bindings., a "global" stack for structures, and a 
"trail" stack which keeps track of when variables are bound so that they 
can be reset to "uninstantiated" at the appropriate time on backtracking. 
One change is that a reference count is maintained for each clause so that 
pointers to clauses (as returned by the predicate clause/3 in DEC-10 Pro
log) can safely be included in asserted terms. A consequence of this 
slightly complex memory management is that it is never necessary for a gar
bage collector to do a full sweep of the heap.; it only has to sweep the 
local and global stacks. 

As our run-time system is based on previously published work [Warren 77) 
[Warren 80), we will concentrate in the rest of this paper on the new part 
of our design which is the intermediate language. 

2. The Intermediate Language 

In this section we introduce the kernel of the intermediate language into 
which Prolog clauses are translated. Although this language subset has only 
seven instructions, it is sufficient; the only reason for extending it is 
for· efficiency as will be discussed later. We introduce it syntactically 
by discussion of the (reversible) cocpilation of a Prolog clause. The 
semantics of the language will be explicated in t.he following section by 
means of a simple interpreter for it written in Prolog. 

A c0t1piled clause has two main parts: an External Reference (XR) table, and 
a block of byte-codes. Let us consider the compilation of the clause: 
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p(tpl,tp2, ••• ) :- q(tql,tq2, ••• ), r(trl,tr2, ••• ). 

where the tpi, tqi and tri are arbitrary terms. The general fonn of the 
byte-code block is then: 

<code for tpl) 
<code for tp2) ... 
enter 
(code for tql) 
(code for tq2) ... 
call <XR offset for procedure q) 
<code for trl) 
<code for tr2) ... 
call (XR offset for procedure r) 
exit 

This introduces the three "control" instructions we need: 'enter', 'call' 
and 'exit'. The 'enter' instruction simply marks the division between the 
head and the body of the clause. Each 'call' has an argument (the next 
byte-code in the block) which refers to an entry in the XR table which is a 
reference to the required procedure. Finally, 'exit' marks the end of the 
clause. 

The terms which are the arguments of the head of a clause, and those which 
are the arguments of goals, are all translated in the same way. Each term 
is compiled into "data" instructions as follows: 

(1) If the term is atomic it is translated as 

const <XR offset> 

where the corresponding entry in the XR table is either an integer (if 
the term is an integer) or a pointer to an atom record. 

(2) If the term is a variable it is translated as 

var <number) 

where the variables in the clause are numbered in order of appearance. 

(3) If the term is compound it is translated as 

functor <XR offset) 
(code for 1st argument> 
(code for 2nd argument) 

pop 

The 'functor' ins true tion refers to an X..~ table entry which points to 
the corresponding functor record. It is followed by the compiled form 
of each of its arguments, followed by a 'pop' instruction. 
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For the purposes of the interpreter to be presented in the next section, we 
need to represent compiled code as Prolog data structures. Conpiled pro
cedures will be represented as assertions of the form: 

procedure( Name/Arity, List of Clauses). 

A clause will be represented by a term: 

clause( XR_Table, Number_of_Variables, List_of_Bytecodes) 

An XR table is also represented as a term: 

xrtable( ••• ) 

where the table entries are either integers, atoms, functors (written in 
the form Name/Arity), or procedures (written as procedure(Name/Arity)). 

For example, the compiled for.m of the procedure: 

append(nil,L,L). 
append(cons(X,Ll),L2,cons(X,L3)) :- append(Ll,L2,L3). 

looks like this: 

. procedure( append/3, [ 
clause( xrtable(nil), 1, 

[ const, 1, 
·var, 1, 
var, 1, 
exit]), 

% nil 
% L 
% L 

clause( xrtable(cons/2 ,procedure(append/3.)), 4, 
[ functor, 1, var, 1, var, 2, pop, % cons(X,Ll) 

var, 3, % L2 
functor, 1, var, 1, var, 4, pop, % cons(X,L3) 
enter, 
var, 2, var, 3, var, 4, call, 2, 
exit ] ) ]) • 

% append(Ll,L2,L3) 

1.• ~ Interpreter E?!_ ~ Intermediate Language 

We now present our mini-interpreter written in DEC-10 Prolog. For simpli
city, we use the unification and backtracking capabilities of Prolog rather 
than doing everything explicitly as is necessary in a real implementation. 
A consequence of this is that cut cannot easily be implemented in the 
mini-interpreter. 

The entry point to the interpreter is the procedure arrive/3. 
ments are the procedure to be called, a list of its arguments, 
tinuation list which represents goals still to be solved. E.g. 
one list to another we would call: 

Its argu
and a con
to append 

:- arrive(append/3,(cons(a,cons(b,nil)), cons(c,nil), L),[J). 
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This call should succeed, instantiating L to 

cons(a,cons(b,cons(c,nil))). 

There are two clauses for arrive/3 (Figure 1). The first of these finds 
any compiled clauses for the procedure. It then non-determinately selects 
(using member/2) the first clause, i.e. future failure will cause us to 
backtrack here and select another clause if there is one. Next it creates 
a new set of (uninstantiated) variables by means of the built-in predicate 
functor/3 which sets Vars to be the functor with name 'vars' and having 
Nvars uninstantiated arguments. Finally control is passed to execute/6 to 
execute the byte-code list (which we have called PC because it corresponds 
to the Program Counter in a real implementation). 

The second clause for arrive/3 allows the built-in predicates of Prolog to 
be used in the mini-interpreter. 

arrive(Proc,Args,Cont) :
procedure(Proc,Clauses), !, 
member(clause(XR,Nvars,PC),Clauses), 
functor(Vars,vars,Nvars), 
execute(PC,XR,Vars,Cont,Args,[}). 

arrive(Name/Arity,Args,Cont) :
Proc =•• [NamejArgs], 
call(Proc), . 
execute([exit],_,_,Cont,_,_). 

member(X,{XI 1). 
member(X,[_IL]) :- member(X,L). 

Figure!= arrive/1_ 

% Find clause list for Proc 
% Select one 
% Make new set of variables 
% Go to execute byte-codes 

% No compiled clauses: call 
% normal Prolog procedure 
% and continue 

The clauses for execute/6 (Figure 2) are all determinate, so that it resem
bles a CASE statement in other languages. Let us consider the data 
instructions first, assuming for now that they are in the head of a clause 
(i.e. before the 'enter' instruction). 

The 'const' instruction is fairly straightforward: it simply matches the 
first element of the argument list with the appropriate entry in the XR 
table. (arg(X,XR,Arg) unifies Arg with the Xth argument of the term XR.) 
If successful, it then tail-recursively calls execute/6 to execute the sub
sequent instructions with the rest of the argU1:1ent list. Note that if Arg 
was initially uninstantiated it will have become instantiated to the given 
constant. Similarly, 'var' matches the given variable with the current 
argument. 

For 'functor' we first check that the argument has the right principal 
functor (or instantiate it to the most general term with this principal 
functor if it is uninstantiated). If successful, we obtain the list Args 
of the arguments of Arg and go to execute subsequent instructions which are 
to be matched against them. There remains the list Arest of argunents to 
be matched after Arg. This list is stacked on Astack froc where it is 
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execute([const,XjPC],XR,Vars,Cont,[ArgjArest],Astack) :- !, 
arg(X,XR,Arg), % Match XR entry with Arg 
execute(PC,XR,Vars,Cont,Arest,Astack). 

execute( [var,VjPC] ,XR,Vars,Cont,[ArgjArest] ,Astack) :- ! , 
arg(V,Vars,Arg), % Match variable with Arg 
execute(PC,XR,Vars,Cont,Arest,Astack). 

execute([functor,XjPC],XR,Vars,Cont,{ArgjArest],Astack) :- !, 
arg(X,XR,Fatom/Farity), % Get functor from XR table 
functor(Arg ,Fatoa,Farity), % Match principal functors 
Arg ••. [Fatoal Args], % Get Args of Arg term 
execute(PC,XR,Vars,Cont,Args,[ArestlAstack]). 

execute([popjPC],XR,Vars,Cont,[],[ArgsfAstack]) :- !, % Pop Args off Astack 
execute(PC,XR,Vars,Cont,Args,Astack). 

execute([enterlPC],XR,Vars,Cont,[],{J) :- !, 
execute(PC,XR,Vars,Cont,Args,Args). % Initialise diff list: 

execute([call,XIPC],XR,Vars,Cont,[],Args) :- !, 
arg(X,XR,procedure(Proc)), % Extract proc name from XR 
arrive(Proc,Args,{frame(PC,XR,Vars)jCont]). % Save context & go 

execute( [exit] ,_,_,[frame(PC,XR,Vars) jcont] ,[] ,[]) :- ! , 
execute(PC,XR,Vars,Cont,Args,Args). % Resur.ie previous context 

execute( [exit] ,_,_, [ ] , [ ] , [ ] ) :- ! • % No previous context: stop 

Figure!= execute/! 

removed by the corresponding 'pop' ~nstruction. 

We have explained how the data instructions work in the head of a clause. 
It is the 'enter' instruction that ensures that they also work in the body, 
where what they are required to do is build up rather than take apart the 
argument list. What it does is initialise a difference list: a partially 
formed argument list is the difference between the 6th and 5th arguments of 
execute/6. For example, if two arguments have been processed we would get 
a goal of the form: 

:- execute(_,_,_,_,X, [ (arg l> ,<arg 2> IX]). 

Thus each data instruction encountered in the body appends an argur.1ent onto 
this argument list by instantiating the variable at the end of it to 
[<argument>l<new variable)]. It is interesting to see how this works for 
'functor': this is left as an exercise for the reader! 

The 'call' instruction terminates the difference list by instantiating the 
variable at the end to[]. It then goes off to arrive at the called pro
cedure with the new argut1ent list, first stacking all the infomation 
needed to resume this clause on the continuation list. 

Of the two clauses for 'exit', the first is selected when the continuation 
list is non-empty. It causes resumption of a clause after the successful 
completion of a 'call'. Note that it is necessary to reinitialise the 
difference list here so t,hat another argument list is cons~ructed for the 
next 'call'. The second clause for 'exit' terminates the program. 
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4. Some Additions to the Intermediate Language - ------- -
It may be noticed that there is no point in returning from. the last 'call' 
in a clause and restoring its context only to imnediately 'exit' and 
restore a previous context. This can be avoided by introducing a new 
'depart' instruction which replaces the last 'call' and the subsequent 
'exit' (cf. [Warren 80]). The interpreter is easily extended to handle 
this new instruction by the addition of one more clause for execute/6: 

execute([depart,X],XR,Vars,Cont,[],Args) :- !, 
arg(X,XR,procedure(Proc)), 
arrive(Proc,Args,Cont). 

This is just like 'call' except that no continuation frame is stacked. 

Another inefficiency arises in the execution of 'functor' if it appears as 
the last argument in the clause head, or as the last argut:1ent of sooe other 
term. In either case there are no remaining arguments (Arest is[) or will 
be instantiated to {l later) but we are stacking Arest anyway and popping 
it back to no useful purpose when 'pop' is encountered. The cure is to 
introduce anothe.r new instruction, 'lastfunctor', which is like functor 
except that it has no corresponding 'pop'. It is interpreted thus: 

execute([lastfunctor,XIPC],XR,Vars,Cont,[Arg] ,Astack) :- !, 
arg(X,XR,Fatom/Farity), 
functor(Arg,Fatom,Farity), 
Arg ••• [FatomlArgs], 
execute(PC,XR,Vars,Cont,Args,Astack). 

Various other instructions can be introduced to save space in the clause 
representation or to gain speed. An example is <'immediate' N> which 
allows a SMall integer N to be represented directly in the byte-code block 
without the need for an XR table entry. It is also useful to provide 
instructions for the simpler built-in predicates such as integer/I, var/I 
etc. A possibility is to combine some of the instructions with their most 
cor.imon arguments to make new single-byte versions of two-byte instructions, 
but the trade-off with increasing the size of the interpreter needs to be 
studied empirically. 

5. Considerations for_! Practical Implementation 

The operation of our environment (or local) stack, which holds continuation 
and backtrack information as well as the argt.1t1ents of procedures and vari
able bindings, is based closely on [Warren 80]. At the point where we are 
about to colllI:lence execution of a byte-code block, the top frame of this 
stack is like this: 
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Continuation {byte-code) Pointer 
Continuation Local stack frame 
XR table for continuation 
Backtrack Point {clause pointer) 
Backtrack Local frame 
Trail marker 
Global stack marker 

The first three words of the frame {marked blank because they have not yet 
been filled in) are for exactly the continuation information that was in 
the continuation stack of the mini-interpreter: the CL pointer allows 
access to the variables of the contination frame. The next four words are 
for control of backtracking. Then come the arguments to the procedure, 
which have already been filled in, followed by the variables which have 
not. 

An argument register, A, is initially set to point to Argument I. Each 
byte-coded instruction matches against the argument pointed to by A and 
then increments it. When a 'functor' instruction matches against an unin
stantiated argument, it creates a new term with uninstantiated arguments on 
the global stack, and A is then set to point to the first of these new 
arguments. The previous value of A is saved on a special stack so that it 
can be retrieved by the corresponding 'pop'. 

We do not actually have to initialise all the variables in the local stack 
frame to be "uninstantiated". The first occurrence of <'var' N) in a 
clause {for each N) is changed to be a new instruction ('firstvar' N) which 
simply assigns the value indicated by A to variable N. If a variable only 
appears once in a clause, there is no point in doing even this much work, 
so there is also a 'void' instruction which does nothing. 

Another improvement we can make is to overlap the variable and argument 
blocks in the stack frame. That is, if a variable appears at the top level 
in the head of a clause, e.g. L2. in append{[XILI] ,L2,[XjLJ]) :- ••• ), then 
we can use the appropriate argll!lerit slot for the variable value, thus sav
ing space and avoiding superfluous assignments. All that has to be done is 
rearrange variable frame offsets appropriately (variables are not actually 
nt.Dllbered l, •• ,n, but by their offsets in the frame), and use 'void' instead 
of 'f irstvar'. 

Without special-purpose hardware, there is bound to be inefficiency in the 
way we have described building terms: first we build the term with all its 
argur.tents uninstantiated, and then subsequent instructions match against 
these uninstantiated arguments and fill them in. This involves ( unneces
sary) testing to see if each argwnent is uninstantiated; also it is in gen
eral necessary when instantiating a variable to test whether or not it 



82 
- 9 -

should be put on the trail. We avoid all this checking, and the need for 
initialising the arguments of the constructed tem, by introducing a new 
mode of interpretation of our instruction set. This is called 'copy' mode, 
as opposed to 'match' mode which is what we have been discussing until now. 
In 'copy' mode data instructions simply copy the data they stand for over 
to A. 

This concept of interpreter modes can also be useful for debugging. In 
nonnal operation, the abstract machine goes to great lengths to throw away 
any information which it will not need again. When debugging, this is 
undesirable, so we plan to include a 'debug' mode in which more information 
is kept. 

One other cooplication should be mentioned. This is the problem described 
in [Warren 80] of dangling references arising from tail~recursion optimisa
tion. We follow his approach of putting variables which may give rise to 
this problem onto the global stack. For this purpose we require two new 
instructions which are global stack versions of 'var' and 'firstvar'. 

6. Related Work 

A compiler for Prolog has been written in POPll by c.s. Mellish at Sussex 
University. This actually compiles Prolog into the POPll abstract machine 
language which is then in turn compiled into real machine language. Advan
tages of this approach are (1) relative ease of implementation, and (2) 
instant access to a good programming environment. The long-term drawback, 
however, is that there is no possibili.ty of tailoring the memory management 
to the special needs of Prolog. The fully general POPll garbage collector 
has to be used (even for backtracking). 

Another approach has been taken by [McCabe 83]. His Abstract Prolog 
Machine is specified at a much lower level than ours, and depends on the 
availability of a LISP style garbage collector of some sort. 

7. Conclusions 

The design we have described is a compromise between pure interpretat-ion 
and pure compilation. Preliminary tests have shown our initial system to 
be comparable in speed with Pereira's C-Prolog interpreter· [Pereira 82]. 
It has the advantage over pure interpretation that it is easier to optimise 
for particular hardware: the kernel of the interpreter is relatively simple 
and compact and well suited to microcoding. 

Our design requires much less space for program storage than pure compila
tion, due to the relatively high level of the byte-code instructions, and 
to the fact that we do not need to store a separate representation of the 
Prolog source code. Also there is the advantage that there is no dichotomy 
between interpreted code (that you can debug) and conpiled code (which goes 
fast) as there is on the DEC-10 system. Finally, our design has the advan
tage of minimising the amount of machine-specific work which needs to be 
done in implementation. 
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It is our belief that people are going to want to run larger and larger 
("knowledge-based") programs, and that therefore the efficiency of both 
program storage and garbage collection will become increasingly important. 
Prolog does not require the generality of a LISP or POP garbage collector, 
so it should have an advantage over these languages if more efficient, 
special-purpose memory management is used. 
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