
Parallel Prolog Experiments

Tim Lindholm

Quintus Computer Systems, Inc
Mountain View

California

currently at Argonne National Laboratory

Prolog Characteristics

• Declarative

• "What" not "How" • Predicate logic

• Small set of key features

• Relational • F acts and ru les

• Pattern matching • Recursive data structures

• Internai database

• Concise and compact

Prolog Productivity in Application
Design

• "Al" techniques -- functionality

• Rapid prototyping

• High level application specification

• lncremental refinement

Â w

Prolog Productivity in Application
Development

• Easier to write and debug applications

• Allows concentration on problem

• Uniform approach to information manipulation

• Interactive development environment

• Libraries, toolkits and interfaces, training

Prolog Productivity in Application
Deployment

• Time to market

• High performance & efficient memory utilization

• General purpose hardware platforms

• lntegratable with other tools

• Effective runtime environments

• Robust and well supported products

Prelog Productivity in Application
Maintenance

• Understandable

• Compact

• Modular

• Extensible

• Verifiable

Prolog Users

• Universities

• Research institutions

• Government agencies

• Corporate

• Al groups

• Research and development

• MIS

• System integrators / application developers

• w

Prolog Application Markets

• Manufacturing (aerospace, automobile, electronics)

• CAO (electronic, mechanicar, architectural)

• Database, decision support

• CASE

----- -----~- ----- --

Prelog Application Areas

• Knowledge based systems

• Fault analysis

• Diagnosis

• Configuration

• Monitoring complex
situations

• Components of traditional applications

• Design • Compilers, generators

• Intelligent front ends • Translators

lndustry Trends

• Utilization of PCs and technical workstations

• Rapid price and performance improvements

• Distributed networks, distributed computing

• Standardization

• Languages • Communications

• Operating systems • Databases

• User interfaces

• General purpose hardware

• Multiprocessing and parallelism

Prolog Overview

The Basic Programming Structures are Facts and Ru/es

flight('New York',
flight('Washington',
flight('Washington',
flight('Dallas',

'San Francisco') .
'Chicago') .
'Dallas') .
'San Francisco') .

1 ?- flight(Originate, 'San Francisco') .

Originate - 'New York' ;

Originate 'Dallas'

Prolog Overview

The Basic Programming Structures are Facts and Ru/es

travel(A,B) :-
flight(A,B).

travel(A,B) :­
flight(A,Intermediate),
travel(Intermediate,B).

1 ?- travel(Originate, 'San Francisco') .

Originate - 'New York' ;

Originate - 'Dallas' ;

Originate 'Washington'

Parallelism in Prolog Programs

Why worry about paral/elism?

• Expressiveness

• coroutines?

• Functionality

• transaction servers?

• Speed

Parallelism in Prolog Programs

Sources of Parallelism in Prolog Programs

• OR-parallelism - investigate multiple alternatives in
parallel

• AND-parallelism - salve multiple goals in parallel

... and a swarm of others ...

For example:

travel(A,B) :-
flight(A,B).

travel(A,B) :­
flight(A,Intermediate),
travel(Intermediate,B).

The basic problem: resolving binding conflicts for shared

variables

Parallelism in Prolog Programs

Shared Variables

Due ta OR-parallelism:

travel(A,B) :-
flight(A,B).

travel(A,B) :­
flight(A,Intermediate),
travel(Intermediate,B).

Due ta AND-parallelism:

travel(A,B) :-
flight(A,B).

travel(A,B) :­
flight(A,Intermediate),
travel(Intermediate,B).

Parallelism in Prelog Programs

Exploitation of AND-parallelism

Unrestricted AND-parallelism

• Explicit parallelism

• Plenty of parallelism in most applications

• New languages (Parlog, GHC, Concurrent Prelog)

• New implementation techniques needed

• "Porting" existing Prelog applications means rewriting

• New applications cannot take advantage of Prelog
installed base

Restricted AN D-parallelism

• Exploitation of implicit parallelism?

Parallelism in Prelog Programs

Exploitation of OR-parallelism

lmplicit OR-parallelism in Prelog programs

• Exploitation of implicit parallelism

• Plenty of parallelism in a wide class of applications

• Retain Prelog syntax and semantics

• Prelog implementation technology carries over

• Minimal or no changes needed to run existing
applications

• Easy porting of new applications across a wide variety
of platforms

Caveat: Sorne algorithmic changes may be needed to take

best advantage of parallel execution

Parallelism in Prolog Programs

Claim: OR-parallelism should be attractive ta the Prolog

vendor and the application developer working in Prolog.

Ta the Prolog implementor, it should be viewed as an

implementation detail, like an optimizing compiler.

The Gigalips Project

Participants:

• Manchester University

• Argonne National Laboratory (ANL)

• Swedish lnstitute of Computer Science (SICS)

Goals:

• lnvestigate implicit parallelism in Prelog programs

• Target general-purpose shared memory
multiprocessors

• Run real programs

The ultimate goal of the Gigalips Project is ta run Prelog

programs faster than the best sequential systems on

shared memory multiprocessors

Aurora

Aurora - a prototype Prolog system exploiting

OR-parallelism

"Workers" explore the Prelog search tree in OR-parallel

• the "engine"

• the "scheduler"

The Aurora implementation environment:

• Engine-scheduler interface

• Scheduler test harness

• Instrumentation

------~- --------

Aurora

Aurora's Engine

• Based on SICStus Prolog 0.3

• Moderately high performance

• Portable (written in C)

• Runs David H. D. Warren's "SRI model"

• Creation, accessing variable bindings remain
constant time

• Process creation is inexpensive

• Task switching can be expansive

Aurora

Aurora's Schedulers

Early schedulers (ANL) relied on global "dispatching

pools"

Current schedulers operate on the basis of local

information

The various Aurora schedulers:

• ANL scheduler

• Manchester scheduler

• "Wavefront" scheduling (under development at SICS)

Task switching under the SRI model makes scheduling

technology critical

Language details also depend on scheduling technology

Aurora Â
-

Current Status

Can run moderate-sized "dusty-deck" Prelog programs

Can demonstrate speedups as workers are added

Needs more efficient, robust engine, better memory

management

Needs work on scheduling, primitives

Conclusions from Aurora

Engine overhead due to SRI model and scheduler hooks:

15-35%

This overhead defines breakeven with sequential systems

Speedups Measured under Aurora:

1
IExample

lparseS
18-queens2
lsalt&must
lparse3*20
lfarmer*l00

1 speedup for N workers 1

1 3 1 5 1

(2. 83)
(2. 97)
(2. 87)
(2.09)
(1. 63)

(4. 08)
(4 . 88)
(4. 82)
(2. 30)
(1.69)

Speedups measured on a six processor
Sequent Balance

' '
' ' . .

' ' ??

?? . .

Implications for Commercial Prolog
Systems

• Quintus Prelog has been released for the Saquent
Symmetry

• Studies at ANL indicate that degradation due ta the SRI
model for a worker based on a higher-performance
Quintus Prelog engine would be comparable ta those
seen in Aurora (and probably not better)

• Together with this, the speedups demonstrated by
Aurora allow us ta predict performance of a Quintus­
based OR-parallel system on the Symmetry

• Critical scheduler technology must continue ta develop
ta make speedups widely accessible, but adherence ta
the standard interface allows tracking of that technology

The Bottom Line: For a wide class of applications, an OR­

parallel Prelog system for the Saquent Symmetry based

on Quintus Prelog can be cost-effective.

