
Jul 14 21:53 1984 critical.ih Page 1 

I* CRITICAL.IH: Management of critical regions and interrupts 

INTERFACE 

Fernando 
Updated: July 14, 1984 

+========================================================+ 
I 
I WARNING: This material is CONFIDENTIAL and proprietary 
I to Quintus Computer Systems, Inc. 
I 
I 
I Copyright (C) 1984, Quintus Computer Systems, Inc. 
I All rights reserved. 
I 

+========================================================+ 
Interface Specification for Critical Sections (version of 7/14/84) 
Fernar,do Pereira 
Quintus CONFIDENTIAL 

The critical section mechanism allows C or Prolog code to block until 
explicitly unblocked the occurrence of selected classes of events. The main 
concepts are that of an event, wich is any kind of abrupt bump to the flow 
of execution of system code, and that of an event type, which is a class 
of events that have boradly the same kind of effect. For example, events 
that one way or the other make the system Jump to the top level, such as 
EV_ABORT, have all the event type ABORT_EVtype. It is possible to define an 
arbitrary number of event types; the classification of events in types is 
left to those people who define new events: they will know (I hope) what 
kind of behavior their new events cause. 

Events are blocked and unblocked by a pair of operations, which for Care 
actually expanded in-line for efficiency. A critical section is the stretch 
of code between a block/unblock pair. Blocking of event types is stacked, 
that is if an an event type is blocked several times without being 
unblocked, the same number of unblockings is required to allow events of 
that type to take action again. This way, functions that call other other 
functions within critical sections need not know whether the called 
functions have their own critical sections for the same type. 

The two operations are: 

BlockEvents(type) Cblock_eventsCType) from PrologJ 

Block all events of type 'type'. If an event of this type is called 
for while the type is blocked, the event number is recorded for 
later execution. If several events occur while their type is 
blocked, only the last one is remembered. 

Ur,blockEvents (type) C•.mblock_ever,ts (Type) from PrologJ 

Unblock all events of type 'type'. If events of the blocked type 
occured while the type was blocked, the last one is fielded now, 



Jul 14 21:53 1984 critical. ih Page 2 

unless other blockings of the same type are still active. 

Advice on the Use of Critical Sections 

Critical sections should be used whenever the occurrence of an event of a 
given type might leave some critical data in a corrupted state. For example, 
when new clauses are being added to the clause chain for a procedure, there 
might be an interval in which the pointers are not consistent. That interval 
should be a critical section for events of the ABORT_EVtype type, otherwise 
the code area might be corrupted. 

C1.1rrent ly, there are four event types: ABORT _EVtype already discussed, 
NULL_EVtype for events that are never blocked, EMUL_EVtype for events that 
need a tidy emulator state (this must be defined by someone> and CONT_EVtype 
for events that will Jsut continue the execution, maybe changing some atomic 
flags. 

I* Number of different event types *I 

£define EV_TVPES 4 

I* Current event types *I 

£define NULL_EVtype 
£define ABORT_EVtype 
£define EMUL_EVtype 
£define CONT_EVtype 

0 
1 
2 
3 

I* nothing at all -- never block these! *I 
I* events that bump us right to the top *I 
I* events that need a tidy emulator state *I 
I* events that Just continue *I 

I*-------------------------------------------------------------------
Block event types 
------------------------------------------------------------------- *I 

I* Block one type of event. Expanded in-line. *I 

exterr-, int ev_blocked CJ; 

£define BlockEvents(T) (ev_blockedtTJ++) 

I* Out-of-line version to be called from Prolog *I 

extern void block_events <I* int *I>; 

'* ------------------------------------------------------------------
Unblock event types 
------------------------------------------------------------------ *I 

I* Unblock one type of event *I 

extern int field_event <I* int *I>; 

I* An arithmetic test rather than a if is used so that the 
whole test will be an expression, making C syntax problems 
on macro expansion less likely. 



Jul 14 21:53 1984 critical. ih Page 3 

£define UnblockEvents(T) ((--ev_blockedCTJ == 0 && 
ev_happenedCTJ != EV_NULL) ? field_event(T) : 0) 

I* Out-of-line version to be called from Prolog. *I 

extern void unblock_events(/* int *I>; 

'* ------------------------------------------------------------------
Test for blocked event ------------------------------------------------------------------ *' 

extern Bool EventBlocked(/* int *I>; 

'* ================================================================= 
FINIS 

================================================================= *' 



Jul 14 21:54 1984 critical.c Page 1 

I* CRITICAL.C: Management of critical regions and interrupts 

Fernando 
Updated: July 14, 1984 

+========================================================+ 
I 
I WARNING: This material is CONFIDENTIAL and proprietary 
I to Quintus Computer Systems, Inc. 
I 
I 
I Copyright (C) 1984, Quintus Computer Systems, Inc. 
I All rights reserved. 
I 
+========================================================+ 

£ir,clude "critical. ih" 

I* Level of event type blocking, suspended events. For simplicity, 
no more than one suspended event per type. *I 

public int ev_blockedCEV_TYPESJ, ev_happenedCEV_TYPESJ; 

I* Event type table*' 

private int ev_typeCJ = { 
NULL_EVt ype, I* 

'* 
EV_NULL -- no event at 
EV_NOTHING *I 

all *' NULL_EVt ype, 
NULL_EVtype, 
NULL_EVtype, 
ABORT_EVtype, 

'* EV_START <must check this ••• ) 

} 

ABORT _EVtype, 
ABORT _EVt ype, 
ABORT _EVtype, 
ABORT_EVtype, 
NULL_EVtype, 
NULL_EVt ype, 
EMUL_EVtype, 
EMUL_EVtype, 
EMUL_EVtype, 
EMUL_EVt ype, 
EMUL_EVtype, 
EMUL_EVt ype, 
EMUL_EVtype 

'* 
'* 
'* 
'* 
'* 
'* 
'* 
I* 

'* 
I* 
I* 
I* 
I* 
I* 
I* 

EV_DIE <never blocked) *' 
EV_IOERR *I 
EV_ARITH *I 
EV_EOF *I 
EV_SIGNAL *I 
EV_ABORT *I 
unused *I 
unused*' 
EV_OVSTACK *I 
EV_OVHEAP *I 
EV_OVTRAIL *I 
EV_OVPDL *I 
EV_OVSYMATOM *I 
EV_OVSYMPROC *I 
EV_OVCODE *' 

£defiY,e EV_BLOCKABLE EV_OVCODE I* the last event ir, the table *I 

*' 

'* -----------------------------------------------------------------
Test for blocked event ----------------------------------------------------------------- *' 

public Bool EventBlocked(ev) 
i r,t ev; 



Jul 14 21:54 1984 critical.c Page 2 

{ 

} 

int evtype; 

if Cev < EV_NULL I I ev > EV_BLOCKABLE> return false; 
evtype = ev_type[evJ; 
if <ev_blocked[evtypeJ > 0) < 

ev_happened[evtypeJ = ev; 
return true; 

} 

return false; 

I*------------------------------------------------------------------
Field the saved event for an event type Just unblocked ------------------------------------------------------------------ *' 

I* This function returns an int to typecheck with the funny 
inline code of UnblockEvents (critical.ih) 

public int field_event(evtype> 
int evtype; 
{ 

} 

int event= ev_happenedtevtypeJ; 
ev_happened[evtypeJ = EV_NULL; 
if (event != EV_NULL> PrologEvent(event>; 
return event; 

'* ------------------------------------------------------------------
block_events and unblock_events 
------------------------------------------------------------------ *I 

public void block_events(evtype) 
int evetype; 
{ 

BlockEvents<evtype>; 
} 

public void unblock_events(evtype) 
int evtype; 
{ 

ur,block_events (evtype) ; 
} 

I*================================================================= 
FINIS 

================================================================= *' 


